4 research outputs found

    Analysis of a parallel multigrid algorithm

    Get PDF
    The parallel multigrid algorithm of Frederickson and McBryan (1987) is considered. This algorithm uses multiple coarse-grid problems (instead of one problem) in the hope of accelerating convergence and is found to have a close relationship to traditional multigrid methods. Specifically, the parallel coarse-grid correction operator is identical to a traditional multigrid coarse-grid correction operator, except that the mixing of high and low frequencies caused by aliasing error is removed. Appropriate relaxation operators can be chosen to take advantage of this property. Comparisons between the standard multigrid and the new method are made

    Parallel algorithms for boundary value problems

    Get PDF
    A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are two fold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed

    Desempenho de um algoritmo multigrid paralelo aplicado à equação de Laplace

    Get PDF
    Resumo: Entre os métodos mais eficientes empregados na solução de sistemas de equações estão os métodos multigrid. Apesar de numericamente eficientes, a solução de sistemas de equações com um grande número de incógnitas pode resultar em elevado tempo de CPU, visto que normalmente apresentam tempo de processamento proporcional ao número destas. Uma possível solução para este problema é a paralelização destes métodos através do particionamento do domínio em subdomínios menores (menos incógnitas). Neste trabalho foi resolvido numericamente o problema de condução de calor bidimensional linear governado pela equação de Laplace com condições de contorno de Dirichlet. Utilizou-se o Método das Diferenças Finitas (MDF), com esquema de aproximação de segunda ordem (CDS) para discretização do modelo matemático. Os suavizadores (solvers) utilizados foram os métodos Gauss-Seidel red-black e Jacobi ponderado. Para a obtenção da solução, foi empregado o método multigrid geométrico, com esquema de correção CS, restrição por ponderação completa, prolongação utilizando interpolação bilinear e número máximo de níveis para os diversos casos estudados. A paralelização do multigrid foi realizada aplicando-se uma metodologia, proposta neste trabalho, a cada uma de suas componentes algorítmicas: solver, processo de restrição, processo de prolongação e cálculo do resíduo. Os resultados podem ser considerados positivos, pois verificou-se que, além do tempo de CPU ter sido reduzido significativamente, este diminuiu à medida que o número de processadores utilizados aumentou
    corecore