
NASA Techni_ca! Memorandum 1__024_98_........

ICOMP-90-03
...........................

.. : :: -d-= 7 JsL.: , _ ?= : 7 -_ :=

-Parallel Algorithms fdi:-B0undary
Value_ Problems_

Avi Lin

Temple University

Philadelphia, Pennsylvania

and Institute for Computational Mechanics in Propulsion

Lewis Research Center

Cleveland, Ohio

January 1990
(NASA-TH-102498) PARALLEL ALGORITHMS FOR
aOUN_A_Y VALUE PROSLEMS (NASA) 21 p

N90-1_783

CSCL 12A

Unclas

G3/o_ 026621_

https://ntrs.nasa.gov/search.jsp?R=19900010467 2020-03-19T23:00:27+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42824508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PARALLEL ALGORITHMS FOR BOUNDARY VALUE PROBLEMS

Avi Lin*

Department of Mathematics
Temple University

Philadelphia, Pennsylvania 19122

and Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

1 Abstract

In the present paper we discuss a general approach to solve Boundary Value

Problems numerically in a parallel environment, The basic algorithm con-

sists of two steps: The local step where all the P available processors work

in parallel, and the global step where one processor solves a tridiagonal lin-

ear system of the order P. The main advantages of this approach are two

fold: First - this suggested approach is very flexible, especially in the local

step and thus the algorithm can be used with any number of processors and

with any of the SIMD or MIMD machines. Secondly- the communication

complexity is very small and thus can be used as easily with shared memory

machines. Several examples for using this strategy are discussed.

*Work partially funded by Space Act Agreement C-99066-G.

Parallel BVP

2 Preliminaries

One of the main problems that appears in mathematical computing when

a new concept of computer hardware arrives is how to redesign efficiently

the existing numerical schemes, or how to invent new numerical schemes so

as to take advantage of the special capabilities of the new machine. Now it

is quite evident that the forthcoming computers in the present decade will

have substantial capabilities of parallelism. The present paper deals with

reformulation of numerical schemes for boundary value problems (BVP

hereafter), taking advantage of the availability of the parallel computers on

the market, and trying to use their features to the full extent. Numerical

methods for solving BVPs are well established. These methods were de-

signed mainly for serial computers and have been tested intensively because

of their relative importance: not only because they appear in many phys-

ical fields as the basic governing equations, but also because they appear

as a sub-problem of solving Partial Differential Equations of the elliptic

and parabolic type [Lin (1986d)]. The parallel algorithms for BVPs that

will be presented here are based on the general strategy for creating high

order three point finite difference (FD hereafter) numerical schemes that

were presented before [Lin (1986a) and Lin (1986b)] and on the new paral-

lel technique for solving inherent serial problems [Lin (1986c)]. These two

elements will be briefly discussed later. Several different parallel engines

are already in use by the scientific community and many more are com-

ing along the line. With such a wide variety of parallel computer systems

and architectures, the challenge is to develop parallel algorithms that are

efficient and portable from one machine to the other. There are several

possibilities for doing this for a given algorithm [Gannon et al (1985)], but

expressing the algorithm in terms of modules with high level of granular-

ity is optimal in some sense of portability. The algorithms that will be

presented hereafter are well suited for most of the machines, keeping their

features unchanged. However, in order to make the presentation and the

analysis easy, we'll refer to a certain type of a parallel engine model.

The parallel engine model for which the present algorithms are easily

applied is of the SIMD (single instruction stream multiple data stream)

type [Flynn (1966)] as well as of the MIMD (multiple instruction multiple

data) type, with any number of processor-elements (PE) P, where each PE

2

• has its own ALU (arithmetic logic unit) to perform standard calcula-

tions.

• may have its own local memory.

• can be masked by a disable signal, for leaving it idle during some

period of time.

Although the categories of MIMD and SIMD are too crude, we can find

generally two types of machines that are considered in the literature:

• the shared memory machines (where a common memory is available

for all the PEs).

• the interconnection network machines (where all the PEs are con-

nected via a specific network).

Parallel machines of the second type appear to be more realistic [Dekel et

al (1981), the INTEL Hypercube machine - Seitz (1985) and the IBM RP3

machine - Pfister et al (1985)], mainly because the number of connections

per PE is small (log P for the Cube network and 3 for the Shuffle-Exchange

network), while for the shared memory type of machine this number is large.

Therefore, although the algorithm can be applied for every machine, the

interconnection network-like machine will be considered primarily hereafter.

The main goal of this work is to formulate a parallel numerical scheme

for Boundary Value Problems and to evaluate its performance for the above

type of parallel engines. Basically the present method uses the parallel

technique idea developed in Lin (1986c). Let us consider the following

general BVP:

where we define

v. = a(x,¢, ¢.) (1)

d_ d2_ dn¢

'_'- dx ' '_zz- dx _ ' _"- dx" (2)

g is a (nonlinear) functional of ¢ , _= and the coordinate x. Equation (1)

has to be solved over the domain fI=(L,R) , L<R where L is its left

3

Parallel BVP

boundary and R is its right boundary. For simplicity we will consider the

following Dirichlet boundary conditions for the BVP:

¢(L)----¢L ; 4(R)----4R (3)

where 4L and 4R are know quantities. We will deal here only with cases

where equation (1) has a unique solution: This means that the quantlties:

ag c3g

b- a4, ' e- 04 ' (4)

and g are continuous over 12 and e > 0 [Lin (1986a)].

When trying to solve numerically equation (1) using traditional ap-

proaches, we face two basic questions. The first is how to handle computa-

tionally the nonlinearity of g, and the second is how to represent numerically

the spatial derivatives of 4. When parallel computing is considered, there

are some more questions that arises, for example: what do we mean by

"solving equation (1)"? does it mean that we should be able to evaluate

(within certain accuracy) at each point x Eft or does it mean to suggest

values for 4 at a finite number of points in 12. It turns out that the design

and the efficiency of parallel algorithms for BVP depend very much on this

and other similar questions.

In the first step we would like to factor out the effects of the nonlinearity

from the computational scheme since it is not a major issue of the present

parallel algorithm. It was shown that the non-linearities of eq.(1) can be

treated reas0nab]y simply by using some kind of an iterative procedure,

where at every iteration stage, a linear BVP is considered. Usually, a

Newton-like quasi-linearization is used for nonlinear BVPs [Lin (1986b)],

which results in the following linearized BVP of eq.(1):

4,, = g = d(x) - b(x)4, - e(z)4 (5)

which has to be solved every iteration. From now on we'll concentrate on

solving in parallel the boundary value problem associated with the above

equation.

3 The problem PI(g,X; C).

Before discussing the parallel algorithms, we introduce the following P1

problem, which turns out to be an important sub-problem that the final

algorithm solves. The P1 problem is related to eq.(5) as is discussed in

section 4. Let us define first the following variables:

• the real vector X :X T - (xx,x2, xs). IfL < xl < x2 < x3 _< R then

X is an acceptable vector. Thus an acceptable X is a vector of three

increasing elements.

• the real vector ¢: cT _--__(CI_l, (I_2 ' _3,1), where ¢, -= _(x,), i : 1,2,3.

Usually we'll denote it by ¢(X). Thus ¢ is a vector of four elements,

where the first three are the values of • at the three points given by

the three elements of X.

• the real vector C : C T -- (Cl, 1, c3, c4) is a vector of four scalars, three

of which are unknown, and are part of the solution of P1.

• the forward and the backward spacings around the point xz are: h -_

x3 - x2 , k =--x2 - xl where xi are elements of an acceptable vector

X.

With these definitions, the following problem is defined:

The Problem PI: Given some acceptable vector X, find a coefficient vec-

tor C such that

C T¢ = cx¢Cxl) + _Cx2) + c3¢(x3) + c, = 0 (6)

where the first three entries of ¢(X) are the discrete values of the

function _ that fulfill eq.(5) [or eq.(1)].

As we shall see later this problem is well defined and its solutions exist.

The relevance of this problem to our parallel algorithm is that in all of its

versions each of the processors solves a problem of a similar type to that

of P1. The elements of the vector X in these implementations are three

successive elements of the key points set that will be discussed later in the

parallel algorithm. One of the main features of P1 that is needed later in

the paper is the following theorem:
I

I THEOREM: 1 The solution C to the problem P1Cg,X;C } exists and
unique.

II

i8

Parallel BVP

The following lemmas are needed for the proof of this theorem:
I

LEMMA: 1 The n th derivative of ¢ that fulfills eq.(5} can be ezpressed gen-

erally by:

¢(.) = a.(x)¢' + 13.(x)¢+'7.(_) , n = 2,3,... (7)

where the coefficients of this equation are governed by the following recurrence

system:

a,,+1 =a'n-ban+t3. ; ao=-b(x)
13.+1= Z'. - ca. ; Z0= -e(x) (S)
"7n+1 "7'. + da, ; "70 = d(x)

where the primes are the derivatives with respect to x.

LEMMA: 2 For a given Pl(g,X; C) problem and a given integer t, the fol-

lowing are approzimations for ¢1 and ¢3 of the order of (t + 1):

111+ Q,(Z; h)]¢_ + [Q,(a; h) + h]¢_ + Q,('7; h) - ¢31 _ O(h '+1)1[1+ Q,(13;-k)]¢2 + [Q,(a;-k) - k]¢ 2_'+ Q,('7;-k) - ¢11 _ O(k'+1)
(9)

wherea,13 and',/arethesets offunctionsa= {ca} , 13= {13_} , "7= {7,},

and/or any set 4 functions f =_ {A(x)},=2 the functional Q is definedas:

t z i

q,(f;z) = _: _f,(_)
i=2 "

(i0)

The proof of the first lemma is by induction, using the definitions of the

coefficients in eq.(2). Aigebraicially, the proof is simple and it assumes that

these coefficients are smooth enough. The second lemma can be proven in

a similar way to the proof of the correctness of the high order accurate

numerical schemes for BVPs [Lin (1986a)]: First we expand ¢1 and ¢3 into

a Taylor series around ¢2. Then the high order derivatives of ¢ appear

in these expansions can be replaced by a linear combination of ¢_ and ¢

6

using equation (7) in Lemma 1 and Lemma 2 follows.

Now, by eliminating the derivative of _2 in equations (9), it can be

shown that _1, _2 and _s are linearly related where the coefficient of (I)2

is always different from zero. This shows that the relation between all the

components of ¢ is unique and thus theorem 1 is proved.

There are several ways for solving numerically the P1 problem for eq.(5),

which, for a given BVP, is to find the dependency of the values of _(x), for

some specific x Efl, on the boundary conditions. We shall elaborate on one

possibility, although other possibilities can be also considered as well, as

long as they do not contradict the requirements that appear in the parallel

algorithm scheme (section 4). Say that we spread n grid points over fl,

where the number of the point xl is 1, the number of the point x3 is n and

k is the number of the point x2, 1 < k < n. Given a desired accuracy order

t, a FD approximation for eq.(5) that is spread over 3 grid points can be

generated [Lin (1986a)], by applying equations (9) at the i th grid point:

[Q,(a; h,) + hi]_,-1

+{[1 + Q,(_;h,)][Q,(a;-h,_l]- [1+ Q,(]_;-h,_l)][Q,(a;h, + hi]}_,

-[q,(_;-h,-1) - h,__]¢,+, =

-- Q,(_/;-h,_l)[Q,(a; h,) + h,]- Q,(_;-hi_,)[Q,(a; hi) + hi]

where

hi : Xi+l -- _i

Doing this for all the internal grid points in l'l, the following tridiagonal

like system is obtained:

li¢i-l-t-bydp i-Fri¢i+1 =d i_-ej¢1+1¢i¢. , J=2,'",n- 1 (11)

with l_ -- r,_-i = 0, and the nature of the FD equations is that ej = 0 for

j < 3 and f1 -- 0 for j <: n - 2. With this approach the solution vector C

to the problem P1 is obtained in two steps:

step 1: the contribution of the lower diagonal entries, lj, are eliminated

from the 2nd equation (j = 3) till the equation for j = k.

Parallel BVP

step 2: the contributions of the upper diagonal entries, ri, are eliminated

from the n - 1 equation (j = n - 3) backwards till the equation for

j:k.

Following is a PASCAL program that realizes this algorithm:

PROCEDURE Solve_Pl (VAR a, b, c, d, e, f : VECTOR ;

VAR C : SOLUTION ;

n,k : INDEX);

VAR j : INDEX ;

m : REAL ;

BEGIN

FOR j:=3 TO k DO

BEGIN

m := a[j]/b[j-1] ;

b[j] := b[j] - m*c[j-1] ;

d[j] := d[j] - m*d[j-1] ;

e[j] := -m*e[j-l] ;

END ;

FOR j:=n-2 DOWNTO k DO

BEGIN

m := c [j+l]/b[j] ;

b[j] := b[j] - m*a[j+l] ;

d[j] := d[j] - m*d[j+l] ;

f[j] := -m*f[j+l] ;

END ;

c[1] :--e[k]/b[k] ;

c [2] := 1

c[3] := -f[k]/b[k] ;

c[4] := -d[k]/b[k] ;

END ;

For the simple case of k = n- 1 we get the known folding algorithm

[Wang(1981)]. In order to evaluate the performance of this program the

following definitions and notations are needed:

"AS': The time needed to execute ADD or SUBTRACT on one processor.

"M': The time needed to execute MULTIPLICATION on one processor.

"D": The time needed to execute DIVISION on one processor.

"CS': The time needed to execute CHANGE SIGN on one processor.

Now, the complexity of the above program is given by the following lemma:

LEMMA: 3 The time T needed for one processor to finish the execution of

the program Solve__Pl is independent of the location k of of the point x_

inside the the set of n points -

T = En (12)

where

E -- 3M+ 2AS + D + CS (13)

The way the grid points are spread over fl depends on the error require-

ments and on some pre-knowledge of the solution's behavior. However, as

the order of accuracy is raised, this sensitivity is reduced [Lin (19865)] for

reasonable (polynomial) solutions. For very steep (exponential) solutions,

an adaptive version [Lin (1990)] of this algorithm has to be considered. It

should be noted that in order to solve P1 one does not need to solve for

_(x) over fl. Thus, for example, the use of a shooting method to solve

this problem may have some disadvantage in terms of the computational

complexity of the solution as in using this technique for solving P1 it is

necessary to solve also the function itself over 12. In order to solve for C,

we need at least three independent shootings and thus its complexity is

T = _n where n is the number of steps in fl, and usually _7 > 2E for most

of the second order accurate numerical schemes for initial value problems.

Methods that use superposition and orthonormalization techniques [Scott

et al (1977)] are favorable in this case since they may end up solving for C

without solving for ¢(x) ; however, they will do it by solving a full linear

system (and not form a simple tridiagonal system like here). Hereafter we'll

present and discuss two basic parallel algorithms to solve the BVP in (5).

Parallel BVP

4 The parallel Algorithm PARA1.

The first parallel algorithm to solve numerically equation (5) uses a similar

strategy developed in [Lin (1986c)]; this strategy consists of the following

three major steps:

Step 1: Choose a set W of P + 2 internal discrete points in f_ : W =

(z0, xl, ..., xp, xe+l} with the understanding that x0 - L and xp+l --

R and xi < X_+l for 0 < i < P. These points are the key points which

split the domain into P subdomains. The choice of W is usually based

on some estimation of the subregions in i2 over which it is expected

to have relatively large error in the solution, as well as on the upper

bounds requirements on the errors and on the order of accuracy as

will be discussed later in the paper. We define a set of P acceptable

vectors Y = {Yi}//'=I as follows:

Yi_ (xi-x,x,,x,+,) T , i= 1,2,..,P (14)

Step 2: Solve in a parallel manner P problems of the type: Pl(g,Y_; C,),

i = 1,2,..., P, where the i th processor solves the i th problem inde-

pendently of the other processors. Thus, each processor i suggests a

relationship of the type:

' ----0 (15)c = +,

,r c . "ii= PThe important issue here is to find the set of vectors C = t ,J_=l

such that the accuracy requirements on C are fulfilled and that all the

processors will finish this task in the same time. Later in the paper

we'll discuss the sensitivity of this demand in cases where not all the

PEs finish their task in the same time, and the tradeoffs between this

demand and the accuracy requirements. This step is sometimes called

the local step as it is local to the subdomaln defined by Yl and local

to the processor i.

Step 3: Solve the following tri-diagonal linear system for the set of vectors

{¢,},-, •¢ = i=P.

cT¢,=0 , i---- 1,2,...,P (16)

10

using one of the processors. This step is called the global step since

the results of all the processors interact here to produce the final

solution.

A possible way to execute step 2 is by letting each processor i spread a FD

grid over Yi (e.i. between the grid point xi_l and x;+1) and execute the

program Solve_P1. The number of grid points and the way they are chosen

in Yi is determined by the requirements on the accuracy of the coefficient

vector Ci. Its accuracy is related to the accuracy of the solution of

over YI. In any event, the resultant algebraic system is usually a banded

system. Moreover, in Lin (1986a) it was shown that for every BVP it is

possible to find a numerical scheme that will be accurate to any order of

accuracy, and still keep the FD approximation spread over only a three-

grid-point stencil. The idea behind this was explained before, and it relies

on the recursive usage of equations (7) and (8) as is given by equation (9).

Using this approach, let us spread mi grid points over Yi and construct the

tri-diagonal linear system for the solution • that is governed by eq.(5) [or

eq.(1)]. Now we can easily find, at any given internal grid the vector C,.

According to Lemma 3, the time T_ needed for the i th processor to finish

the execution of Step 2, is independent of the location of the point x2 inside

the rr_ points: T_ = Ern_. For the last step of this algorithm we have:

LEMMA: 4

where

The time R needed to execute Step 3 is

R = FP

F - 4M + 3AS + 2D

(17)

(is)

The total time needed by the algorithm is defined by TtotaZ - max,(T,) +

R. This approach is somewhat similar to that of Kowalik et. al. (1985),

where a parallel algorithm for solving a tridiagonal system was presented.

In general we should mention the SIMD partition algorithm for tridiagonal

systems of Wang (1981) and the partioning algorithm for banded systems

of Dongarra et al (1984). In the present case, when all the PEs are identical

to each other, it can be easily shown, that for all the processors to finish

11

Parallel BVP

Step 2 in the same time, all the m_ should be equal to each another, while

usually the error is determined by the total number of points m in 12:

i=P

m ----- m, (19)
i----1

The speedup is defined as the ratio between the time needed to solve the

problem on the serial machine and the total time that is needed to solve this

problem on a parallel machine using the suggested algorithm. Sometimes

this definition is confusing not only because the algorithms for the serial

machine and for the parallel one are not the same, but also because of the

definition of the term "the same problem". For example in our case, finding

the approximated values of ¢ at the set W of the key points (see Step 1

in the algorithm) is a different problem for the parallel machine than the

problem of finding all the m approximated values of ¢, while for the serial

machine it will be the same problem. The efficiency of the algorithm, r/, is

defined as the ratio between the speedup and the number of processors P.

The following property of r/is applied in our case:

LEMMA: 5 If only the P values of ¢ are required for the final solution, then

__ mi

rl = _, otherwise rl - ,,,_4P"

This lemma is proven simply by substituting the expressions for T and

R. An interesting case, yet not so important, is when the total number of

grid points in 12 is fixed and we have the flexibility to choose the number

of processors P. In this case the following lemma is applied:

I LEMMA: 6 The optimum number of processors for a given m is P =

I

where K = V_F is a constant which depends on the machine features. I
This result can be verified by minimizing the total time with respect to

1 1 for most of the
P. The efficiency in this case is r/ - 1+k/'P which is _

machines [see also Kowalik et al (1985)]. The sensitivity of the total time

2F tap)2to the number of processors in this case is ATtota = _ _ . It can

12

be seenthat as the optimal number of processorsincreasesthe total time
will not increaseasmuch.

5 The parallel Algorithm PARA2.

The second parallel algorithm for solving numerically eq. (5) that will be

considered here is similar to the first one, PARA1, in the general sense,

but its local and global steps are much more closely tied to each another

than in the first one, It consists of the following four steps:

Step

Step

Step 1: Similar to the first step of PARA1, choose a set W of P internal

discrete points in 12 which axe the key points: W -- {Xo, xl, ..., xp, xv+x)

with the understanding that x0 = L and xp+l = R. Given a posi-

tive real number h, add additional P + 1 points Z = {zi} so that

x_- zi = hi. For i = 1,2,...,P+ 1 define the subdomain fl_ as

12i - [z_,xi+l]. Yl is now a vector that has two vector components:

y_l)= (Z,,Xi,Z,+I)T and y_2)= (Xi,Z,+I,X,+x)T.

2: Solve in a parallel manner P systems of the type: PI(g,Y_ k) ;

C_ k)) ; k = 1,2 ; i = 1,2,...,P, where the i th processor solves the

ita system of the two problems independently of the others.

3: Each processor i , i = 1, ..., P - 1 sends its solution vector CI 2)

to the processor i + 1. Then each processor i substitutes the C_ 1

and C_ 2) results into the C_ x) vector result for zi, eliminating the

contributions of zi and zi+l. The new vectors C_ x) will be denoted by

Step 4: Solve the following tri-diagonal linear system for the set ¢ =
i=P{¢,},=1:

C-'--_iT¢i= 0 , i = 1,2, ...,P (20)

using one of the processors.

The way step 2 is executed is very similar to that of step 2 of the previous

algorithm; here each processor i spreads a FD grid over [x_, zi+1] domain,

with, say, n; grid points and executes the program Solve__P1 once with

13

Parallel BVP

k = n_ - 1 to solve for C (1) and once with k = 2 to solve for C (_). The main

difference between the two algorithms is that in the PARA1 algorithm the

domain [xi, xi+x] is solved twice during Step 2 by two different processors,

while in the PARA2 algorithm this domain is solved twice by the same

processor. It can be shown that the two algorithms have similar computa-

tional complexities and share the lemmas that have been discussed in the

previous section. In some sense PARA1 algorithm is similar to one that

appears in Kowalik et al (1985) and PARA2 algorithm is similar to that

of Dongarra et. hi. (1984). However, the effectiveness of PARA2 can be

observed when only P/2 subdomains are considered, and two processors are

attached to each subdomain. Each of the two processors solves one of the

two problems appear in step 2. Although step 3 is executed with (P + 1)/2

processors, the efficiency is a little better than that of PARA1. In this

result we did not take into consideration that the rest (idling) processors

in step 3, can still help on a different (finer) parallel grain level.

6 Computational Tests and Analysis.

We have tested intensively the parallel numerical algorithms for different

BVPs. To illustrate such a test and to demonstrate the potential of these

algorithms to solve numerically BVPs in a parallel manner much faster and

more exact than in the serial mode, we considered the following two point

non-linear boundary value problem:

L(+) - +"- l[e2_b -t- (¢,)2] -_ 0 (21)
2

with ¢(0) = 0 and ¢(1) -- -ln2. It has the exact solution ¢(x) = -In(1 ÷

x). Using the quasi-linear approach mentioned before, this equation is

solved iteratively. Denoting by superscript the iteration's number, and the

difference of two successive solutions by z:

z - 4 (i+1) - _(J) (22)

then the linear equation that is solved in the j + 1 iteration is:

z" - e2¢'J)z - ¢_"J'z' + L(¢ (1)) = 0 (23)

14

iterations

2

5

6

P

3

6

9
15

3

6

9

15

3
6

9

15

3

6

9

15

3

6

9

15

3=

6

9

15

number of

grid points

in method (1)

number Of

integration steps

in method (2)

number of

grid points

in method (3) PA RA 1

r/

PARA2

150 100 150 0.914 0.909

75 50 75 0.895 0.892

50 35 50 0.832 0.829

30 21 30 0.782 01778

300 200 300 0.901 0.998

150 100 150 0.881 0.878

100 70 100 0.818 0.815

60 42 60 0.765 0.763

600 400 600 0.888 0.887

300 200 300 0.865 0.863

200 140 200 0.807 0.805

120

12oo
600

4O0

240

1200

600

400

240

1200

85

800

400

280

160

800

4OO

280

16o

8OO

400

280

160

600

120

1200

600

200

240

1200

600

200

240

1200

600

2OO

240

400

0.744

0.872

0.850

0.790

0.722

0.743

0.873

O.85O

0.791

O.723

0.856 0.859

0.834 0.836

0.771 0.773

240

0.701 0.704

0.841

0.818

0.749

0.679

0.845

0.822

0.754

0.685

Table 1: The efficiency of the parallel algorithms as function of the itera-

tions.

15

Parallel B VP

We have used two parallel environments: the INTEL-Hypercube and the

Alliant-FX/8. Although the resu!ts for the intercon_necti?n time are not as

accurate, the measures for the CPU time in these models is quite good. In

the present tests we have considered methods that use fourth order schemes.

Three types of schemes to solve the P1 problem were considered: (1) the

adaptive high order scheme of Pereyra et al (1979), (2)the shooting scheme

of De Boor et. al. (1983) using the fourth order Runga-Kutta method

and (3) the high order three point scheme of Lin (1986b). Out of the P

available processors, processors number 1,4,7, ... use scheme 1, processors

2,5,8, ... use scheme 2 and the rest use scheme 3 ion the Alliant we ran only

two of the schemes in the same time). Table 1 summarizes the main results.

The first guess for @, _(0), was a linear function and the iterations were

stopped when I1 z Iloo< 10 -16. It took about 6 iterations for both algorithms

to converge. The variation in the eflqciency with P is due to the different

accuracy demands when Computing the n0n'linear functions. Unlike other

parallel algorithms [Dongarra et al (1984)], the algorithms used here do not

require many more arithmetic operations than the appropriate sequential

algorithm as is stated in the following lemma:

I LEMMA: 7 The redundancy of the PARA algorithms is O(P).

This lemma, which is simple to prove, means that the present paral-

lel algorithms requires a total number of operations that is greater by a

constant times P than this number for the serial machine. This result is

not bad when compared to other parallel algorithms. The communication

complexity is of the order of O(MAXI x P), where MAXI is the maximum

number of iterations (not counting the scattering of data to the processors,

if needed, in the beginning of the algorithm). Another measure involves

the computational cost and the communication cost is the ratio/_ of the

computational time needed for the local step, and that that is needed for

the global step. Usually, as # increases the algorithm is better in the above
-_ and assense. For the present algorithms it can be proven the /_ = p,

the accuracy demands increase (and thus also mi), # increases for a given

machine.

16

References

[De Boor et al (1988)] De Boor, C., Hoog, F. and Keller, H.B., (1983),

"The Stability of One-Step Schemes for First Order Two Point Bound-

ary Value Problems", SIAMJ. Numer. Analys., 20, 6, pp. 1139-1153.

[Dekel et al (1981)] Dekel, E., Nassimi, D. and Sahni, S., (1981), "Parallel

Matrix and Graph Algorithms", SIAMJ. of Computing, 10, 4, pp. 657-

675.

[Dongarra et al (1984)] Dongarra, J. J. and Sameh, A., (1984), "On Some

Parallel Banded System Solvers", Argonne National Labs, Mathemat-

ics and Computer Science Division, Technical Memorandum No. 27.

[Keller (1968)] Keller, H. B., (1968) , Numerical Methods for Two -

Point Boundary Value Problems , Waltham. Mass. : Blaisdell .

[Fend (1981)] Fend, Wse-yun, (1981) , "A Survey of Interconnection Net-

works", Computer, 14, 12, pp. 12-27.

[Flynn (1966)] Flynn, M. J., (1966) , "Very High Speed Computing Sys-

tems', Proc. IEEE, 54, pp. 1901-1909.

[Gannon et al (1985)] Gannon, D. and Van Rosendale, J., (1986), "On the

Structure of Parallelism in a Highly Concurrent PDE Solver", J. of

Parallel and Distr. Comp., 3, pp. 106-135.

[gowalik et al (1985)] Kowalik, J. S., and Kumar, S. P., (1985), Parallel

MIMD Computation: HEP Supercomputer and Its Applica-

tions, The MIT Press, pp. 295-307.

[Lin (1986a)] Lin, A, (1986), "High Order Three Points Schemes for

Boundary Value Problems : I) Linear Problems " , SIAM J. Scient.

and Stat. Computing , 7, No. 3, 1986.

[Lin (1986b)] Lin, A., (1986), "High Order Three Points Schemes for

Boundary Value Problems : II) Non-Linear Problems ", the J. of Com-

putational and App. Mathematics , 15, pp. 269 - 282.

17

REFERENCES

[Lin (1986c)] Lin, A., (1986), "On the Parallel Algorithm for Inherent Se-

rial Techniques", Linear Algebra and Applications, 79, pp. 229-236.

[Lin et al (1987)] Lin, A. and Gunton, D. J., "Parallel and Super Comput-

ing of Elliptic Operators", in Supereomputing, Kartasheve, L. and

Kartashev, S. editors, The International Supercomputing Institute, pp.

497-502.

[Lin (1989)] Lin, A., (1989), "Solving Numerically The Navier Stokes

Equations on Parallel Systems", The International Journal of Numer-

ical Methods in Fluids, to appear.

[Lin (1990)] Lin, A., (1989), "Parallel Numerical Algorithms for Fluid Dy-

namics Simulation", AIAA paper 90-0333.

[Pereyra (1979)] Pereyra, V. , (1979) , "PASVA3: An Adaptive Finite

Difference FORTRAN Program for First-Order Nonlinear Ordinary

Boundary Problems", in Codes for Boundary Value Differential

Equations, B. Childs, M. Scott, J. W. Daniel, F. Denman and P. Nel-

son (Eds), Lecture Notes in Computer Science, 76, Springer-Verlage,

New York, N.Y. , pp. 67-88 .

[Pfister et al (1985)] Pfister, G. F., Brantley, W. C., George, D. A., itar-

vey, S. L., Kleinfelder, W.J., McAuliffe, K.P., Melton, E.A., Norton,

V. A. and Weiss, J., (1985), "The IBM RP3 - Introduction and Ar-

chitecture", IEEE Proc. of the 1985 Int. Conf. on Parallel Processing,

Session lla, pp. 764-797.

[Schwartz (1980)] Schwartz, J., (1980) , "Ultracomputers", A CM Trans.

Program. Lang. Syst., 2, pp.484-521.

[Scott et al (1977)] Scott, M. R. and Watts, H. A., (1977), "Computational

Solution of Linear Two-Point Boundary Value Problems via Orthonor-

malization", SIAM J. Numr. Anal., 14, pp. 40-70.

[Seitz (1985)] Seitz, C.L., (1985) , "The Cosmic Cube", Communications

of the ACM, 28, 1, pp. 22-33.

18

[Wang (1981)] Wang, H. It., (1981), "A Parallel Method for Tridiagonal

Equations", AGM Trans. on Mathematical Software, 7, pp. 170-183.

19

National Aeronaulics and
Space Adminbstfatpon

1. Report No.
NASA TM- 102498

ICOMP-90-03

Report Documentation Page

I 2. Government Accession No.

4. Title and Subtitle

Parallel Algorithms for Boundary Value Problems

7. Author(s)

Avi Lin

9. Performing Organization Name and Address

National Aeronautics and Space Administration

l,ewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington. D.C. 20546-0001

3. Recipient's Catalog No.

5. Report Date

January 1990

6. Performing Organization Code

8. Performing Organization Report No.

E-5292

t0. Work Unit No.

505-62-2 I

1. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14 Sponsoring Agency Code

15. Supplementary Notes

Avi Lin, Dept. of Mathematics, Temple University, Philadelphia, Pennsylvania 19122 and Institute for

Computational Mechanics in Propulsion, Lewis Research Center, Cleveland, Ohio 44135. Work funded by Space

Act Agreement C-99066-G. Space Act Monitor, Louis A. Povinelli.

16. Abstract

In the present paper we discuss a general approach to solve Boundary Value Problems numerically in a parallel

environment. The basic algorith:n consists of two steps: The local step where all the P available processors work

in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main

advantages of this approach are two fold: First--this suggested approach is very flexible, especially in the local

step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD

machines. Secondly--the communication complexity is very small and thus can be used as easily with shared

memory machines. Several examples for using this strategy are discussed.

17. Key Words (Suggested by Author(s))

Boundary value problems

Parallel computation

High order schemes

NASA FORM 1626 OCT 86

18. Distribution Statement

Unclassified - Unlimited

Subject Category 64

Security Ctassif. (of this report) 20. Security Classif. (of this page) t 21. No. of pages

Unclassified Unclassified t 21

*For sale by the National Technical information Service, Springfield, Virginia 22161

22. Price'

A03

