106 research outputs found

    On the Structure of Bispecial Sturmian Words

    Full text link
    A balanced word is one in which any two factors of the same length contain the same number of each letter of the alphabet up to one. Finite binary balanced words are called Sturmian words. A Sturmian word is bispecial if it can be extended to the left and to the right with both letters remaining a Sturmian word. There is a deep relation between bispecial Sturmian words and Christoffel words, that are the digital approximations of Euclidean segments in the plane. In 1997, J. Berstel and A. de Luca proved that \emph{palindromic} bispecial Sturmian words are precisely the maximal internal factors of \emph{primitive} Christoffel words. We extend this result by showing that bispecial Sturmian words are precisely the maximal internal factors of \emph{all} Christoffel words. Our characterization allows us to give an enumerative formula for bispecial Sturmian words. We also investigate the minimal forbidden words for the language of Sturmian words.Comment: arXiv admin note: substantial text overlap with arXiv:1204.167

    A Characterization of Bispecial Sturmian Words

    Full text link
    A finite Sturmian word w over the alphabet {a,b} is left special (resp. right special) if aw and bw (resp. wa and wb) are both Sturmian words. A bispecial Sturmian word is a Sturmian word that is both left and right special. We show as a main result that bispecial Sturmian words are exactly the maximal internal factors of Christoffel words, that are words coding the digital approximations of segments in the Euclidean plane. This result is an extension of the known relation between central words and primitive Christoffel words. Our characterization allows us to give an enumerative formula for bispecial Sturmian words. We also investigate the minimal forbidden words for the set of Sturmian words.Comment: Accepted to MFCS 201

    The sequence of open and closed prefixes of a Sturmian word

    Full text link
    A finite word is closed if it contains a factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We are interested in the {\it oc-sequence} of a word, which is the binary sequence whose nn-th element is 00 if the prefix of length nn of the word is open, or 11 if it is closed. We exhibit results showing that this sequence is deeply related to the combinatorial and periodic structure of a word. In the case of Sturmian words, we show that these are uniquely determined (up to renaming letters) by their oc-sequence. Moreover, we prove that the class of finite Sturmian words is a maximal element with this property in the class of binary factorial languages. We then discuss several aspects of Sturmian words that can be expressed through this sequence. Finally, we provide a linear-time algorithm that computes the oc-sequence of a finite word, and a linear-time algorithm that reconstructs a finite Sturmian word from its oc-sequence.Comment: Published in Advances in Applied Mathematics. Journal version of arXiv:1306.225

    Open and Closed Prefixes of Sturmian Words

    Get PDF
    A word is closed if it contains a proper factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We deal with the sequence of open and closed prefixes of Sturmian words and prove that this sequence characterizes every finite or infinite Sturmian word up to isomorphisms of the alphabet. We then characterize the combinatorial structure of the sequence of open and closed prefixes of standard Sturmian words. We prove that every standard Sturmian word, after swapping its first letter, can be written as an infinite product of squares of reversed standard words.Comment: To appear in WORDS 2013 proceeding

    Enumeration and Structure of Trapezoidal Words

    Full text link
    Trapezoidal words are words having at most n+1n+1 distinct factors of length nn for every n≥0n\ge 0. They therefore encompass finite Sturmian words. We give combinatorial characterizations of trapezoidal words and exhibit a formula for their enumeration. We then separate trapezoidal words into two disjoint classes: open and closed. A trapezoidal word is closed if it has a factor that occurs only as a prefix and as a suffix; otherwise it is open. We investigate open and closed trapezoidal words, in relation with their special factors. We prove that Sturmian palindromes are closed trapezoidal words and that a closed trapezoidal word is a Sturmian palindrome if and only if its longest repeated prefix is a palindrome. We also define a new class of words, \emph{semicentral words}, and show that they are characterized by the property that they can be written as uxyuuxyu, for a central word uu and two different letters x,yx,y. Finally, we investigate the prefixes of the Fibonacci word with respect to the property of being open or closed trapezoidal words, and show that the sequence of open and closed prefixes of the Fibonacci word follows the Fibonacci sequence.Comment: Accepted for publication in Theoretical Computer Scienc

    Sturmian numeration systems and decompositions to palindromes

    Full text link
    We extend the classical Ostrowski numeration systems, closely related to Sturmian words, by allowing a wider range of coefficients, so that possible representations of a number nn better reflect the structure of the associated Sturmian word. In particular, this extended numeration system helps to catch occurrences of palindromes in a characteristic Sturmian word and thus to prove for Sturmian words the following conjecture stated in 2013 by Puzynina, Zamboni and the author: If a word is not periodic, then for every Q>0Q>0 it has a prefix which cannot be decomposed to a concatenation of at most QQ palindromes.Comment: Submitted to European Journal of Combinatoric

    On a generalization of Abelian equivalence and complexity of infinite words

    Full text link
    In this paper we introduce and study a family of complexity functions of infinite words indexed by k \in \ints ^+ \cup {+\infty}. Let k \in \ints ^+ \cup {+\infty} and AA be a finite non-empty set. Two finite words uu and vv in A∗A^* are said to be kk-Abelian equivalent if for all x∈A∗x\in A^* of length less than or equal to k,k, the number of occurrences of xx in uu is equal to the number of occurrences of xx in v.v. This defines a family of equivalence relations ∼k\thicksim_k on A∗,A^*, bridging the gap between the usual notion of Abelian equivalence (when k=1k=1) and equality (when k=+∞).k=+\infty). We show that the number of kk-Abelian equivalence classes of words of length nn grows polynomially, although the degree is exponential in k.k. Given an infinite word \omega \in A^\nats, we consider the associated complexity function \mathcal {P}^{(k)}_\omega :\nats \rightarrow \nats which counts the number of kk-Abelian equivalence classes of factors of ω\omega of length n.n. We show that the complexity function P(k)\mathcal {P}^{(k)} is intimately linked with periodicity. More precisely we define an auxiliary function q^k: \nats \rightarrow \nats and show that if Pω(k)(n)<qk(n)\mathcal {P}^{(k)}_{\omega}(n)<q^k(n) for some k \in \ints ^+ \cup {+\infty} and n≥0,n\geq 0, the ω\omega is ultimately periodic. Moreover if ω\omega is aperiodic, then Pω(k)(n)=qk(n)\mathcal {P}^{(k)}_{\omega}(n)=q^k(n) if and only if ω\omega is Sturmian. We also study kk-Abelian complexity in connection with repetitions in words. Using Szemer\'edi's theorem, we show that if ω\omega has bounded kk-Abelian complexity, then for every D\subset \nats with positive upper density and for every positive integer N,N, there exists a kk-Abelian NN power occurring in ω\omega at some position $j\in D.
    • …
    corecore