1,108 research outputs found

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let HH^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code CC^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    Stopping Sets of Algebraic Geometry Codes

    Get PDF
    Abstract — Stopping sets and stopping set distribution of a linear code play an important role in the performance analysis of iterative decoding for this linear code. Let C be an [n, k] linear code over Fq with parity-check matrix H, wheretherowsof H may be dependent. Let [n] ={1, 2,...,n} denote the set of column indices of H. Astopping set S of C with parity-check matrix H is a subset of [n] such that the restriction of H to S does not contain a row of weight 1. The stopping set distribution {Ti (H)} n i=0 enumerates the number of stopping sets with size i of C with parity-check matrix H. Denote H ∗ , the paritycheck matrix, consisting of all the nonzero codewords in the dual code C ⊥. In this paper, we study stopping sets and stopping set distributions of some residue algebraic geometry (AG) codes with parity-check matrix H ∗. First, we give two descriptions of stopping sets of residue AG codes. For the simplest AG codes, i.e., the generalized Reed–Solomon codes, it is easy to determine all the stopping sets. Then, we consider the AG codes from elliptic curves. We use the group structure of rational points of elliptic curves to present a complete characterization of stopping sets. Then, the stopping sets, the stopping set distribution, and the stopping distance of the AG code from an elliptic curve are reduced to the search, counting, and decision versions of the subset sum problem in the group of rational points of the elliptic curve, respectively. Finally, for some special cases, we determine the stopping set distributions of the AG codes from elliptic curves. Index Terms — Algebraic geometry codes, elliptic curves, stopping distance, stopping sets, stopping set distribution, subset sum problem. I

    Enhanced Recursive Reed-Muller Erasure Decoding

    Get PDF
    Recent work have shown that Reed-Muller (RM) codes achieve the erasure channel capacity. However, this performance is obtained with maximum-likelihood decoding which can be costly for practical applications. In this paper, we propose an encoding/decoding scheme for Reed-Muller codes on the packet erasure channel based on Plotkin construction. We present several improvements over the generic decoding. They allow, for a light cost, to compete with maximum-likelihood decoding performance, especially on high-rate codes, while significantly outperforming it in terms of speed

    Refined Upper Bounds on Stopping Redundancy of Binary Linear Codes

    Full text link
    The ll-th stopping redundancy ρl(C)\rho_l(\mathcal C) of the binary [n,k,d][n, k, d] code C\mathcal C, 1ld1 \le l \le d, is defined as the minimum number of rows in the parity-check matrix of C\mathcal C, such that the smallest stopping set is of size at least ll. The stopping redundancy ρ(C)\rho(\mathcal C) is defined as ρd(C)\rho_d(\mathcal C). In this work, we improve on the probabilistic analysis of stopping redundancy, proposed by Han, Siegel and Vardy, which yields the best bounds known today. In our approach, we judiciously select the first few rows in the parity-check matrix, and then continue with the probabilistic method. By using similar techniques, we improve also on the best known bounds on ρl(C)\rho_l(\mathcal C), for 1ld1 \le l \le d. Our approach is compared to the existing methods by numerical computations.Comment: 5 pages; ITW 201
    corecore