151,161 research outputs found

    Stability and Error Analysis for Optimization and Generalized Equations

    Get PDF
    Stability and error analysis remain challenging for problems that lack regularity properties near solutions, are subject to large perturbations, and might be infinite dimensional. We consider nonconvex optimization and generalized equations defined on metric spaces and develop bounds on solution errors using the truncated Hausdorff distance applied to graphs and epigraphs of the underlying set-valued mappings and functions. In the process, we extend the calculus of such distances to cover compositions and other constructions that arise in nonconvex problems. The results are applied to constrained problems with feasible sets that might have empty interiors, solution of KKT systems, and optimality conditions for difference-of-convex functions and composite functions

    Stability and Sensitivity Analysis in Convex Vector Optimization

    Get PDF
    In this paper we provide some theoretical results on stability and sensitivity analysis in convex vector optimization. Given a family of parametrized vector optimization problems, the perturbation maps are defined as the set-valued map which associates to each parameter value the set of minimal points (properly minimal points, weakly minimal points) of the perturbed feasible set with respect to an ordering convex cone. Sufficient conditions for the upper and lower semicontinuity of the perturbations map are obtained. We also provide quantitative properties of the perturbation maps under some convexity assumptions

    On the stability of the optimal value and the optimal set in optimization problems

    Get PDF
    The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property)

    Optimal bounds with semidefinite programming: an application to stress driven shear flows

    Full text link
    We introduce an innovative numerical technique based on convex optimization to solve a range of infinite dimensional variational problems arising from the application of the background method to fluid flows. In contrast to most existing schemes, we do not consider the Euler--Lagrange equations for the minimizer. Instead, we use series expansions to formulate a finite dimensional semidefinite program (SDP) whose solution converges to that of the original variational problem. Our formulation accounts for the influence of all modes in the expansion, and the feasible set of the SDP corresponds to a subset of the feasible set of the original problem. Moreover, SDPs can be easily formulated when the fluid is subject to imposed boundary fluxes, which pose a challenge for the traditional methods. We apply this technique to compute rigorous and near-optimal upper bounds on the dissipation coefficient for flows driven by a surface stress. We improve previous analytical bounds by more than 10 times, and show that the bounds become independent of the domain aspect ratio in the limit of vanishing viscosity. We also confirm that the dissipation properties of stress driven flows are similar to those of flows subject to a body force localized in a narrow layer near the surface. Finally, we show that SDP relaxations are an efficient method to investigate the energy stability of laminar flows driven by a surface stress.Comment: 17 pages; typos removed; extended discussion of linear matrix inequalities in Section III; revised argument in Section IVC, results unchanged; extended discussion of computational setup and limitations in Sectios IVE-IVF. Submitted to Phys. Rev.

    Stability in Linear Optimization Under Perturbations of the Left-Hand Side Coefficients

    Get PDF
    This paper studies stability properties of linear optimization problems with finitely many variables and an arbitrary number of constraints, when only left hand side coefficients can be perturbed. The coefficients of the constraints are assumed to be continuous functions with respect to an index which ranges on certain compact Hausdorff topological space, and these properties are preserved by the admissible perturbations. More in detail, the paper analyzes the continuity properties of the feasible set, the optimal set and the optimal value, as well as the preservation of desirable properties (boundedness, uniqueness) of the feasible and of the optimal sets, under sufficiently small perturbations.Research supported by the grants: BASAL PFB-03 (Chile), FONDECYT 1130176 (Chile) and MTM2011-29064-C03-01 (Spain). Research supported by the grant MTM2014-59179-C2-1-P (Spain) and the Discovery Projects DP120100467 and DP110102011 (Australian Research Council). Research supported by the MIUR project ’Variational and Topological Methods in the Study of Nonlinear Phenomena” (2009)

    Robust control for nonlinear discrete-time systems with quantitative input to state stability requir

    Full text link
    In this paper, we consider state feedback robust control problems for discrete-time nonlinear systems subject to disturbances. The objective of the control is to minimize a performance function while guaranteeing a prescribed quantitative input to state stability (ISS) property for the closed-loop systems. By introducing the concept of ISS control invariant set, a sufficient condition for the problem to be feasible is given. Built on the sufficient condition, a computationally efficient control design algorithm based on one-step min-max optimization is developed. An example is given to illustrate the proposed strategy. Copyright © 2007 International Federation of Automatic Control All Rights Reserved

    Subdifferentials and Stability Analysis of Feasible Set and Pareto Front Mappings in Linear Multiobjective Optimization

    Get PDF
    The paper concerns multiobjective linear optimization problems in R^n that are parameterized with respect to the right-hand side perturbations of inequality constraints. Our focus is on measuring the variation of the feasible set and the Pareto front mappings around a nominal element while paying attention to some specific directions. This idea is formalized by means of the so-called epigraphical multifunction, which is defined by adding a fixed cone to the images of the original mapping. Through the epigraphical feasible and Pareto front mappings we describe the corresponding vector subdifferentials, and employ them to verifying Lipschitzian stability of the perturbed mappings with computing the associated Lipschitz moduli. The particular case of ordinary linear programs is analyzed, where we show that the subdifferentials of both multifunctions are proportional subsets. We also provide a method for computing the optimal value of linear programs without knowing any optimal solution. Some illustrative examples are also given in the paper.Comment: 23 page

    Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    Get PDF
    The primary disadvantage of current design techniques for model predictive control (MPC) is their inability to deal explicitly with plant model uncertainty. In this paper, we present a new approach for robust MPC synthesis which allows explicit incorporation of the description of plant uncertainty in the problem formulation. The uncertainty is expressed both in the time domain and the frequency domain. The goal is to design, at each time step, a state-feedback control law which minimizes a "worst-case" infinite horizon objective function, subject to constraints on the control input and plant output. Using standard techniques, the problem of minimizing an upper bound on the "worst-case" objective function, subject to input and output constraints, is reduced to a convex optimization involving linear matrix inequalities (LMIs). It is shown that the feasible receding horizon state-feedback control design robustly stabilizes the set of uncertain plants under consideration. Several extensions, such as application to systems with time-delays and problems involving constant set-point tracking, trajectory tracking and disturbance rejection, which follow naturally from our formulation, are discussed. The controller design procedure is illustrated with two examples. Finally, conclusions are presented

    Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions

    Full text link
    This study investigates the optimization aspects of imposing hard inequality constraints on the outputs of CNNs. In the context of deep networks, constraints are commonly handled with penalties for their simplicity, and despite their well-known limitations. Lagrangian-dual optimization has been largely avoided, except for a few recent works, mainly due to the computational complexity and stability/convergence issues caused by alternating explicit dual updates/projections and stochastic optimization. Several studies showed that, surprisingly for deep CNNs, the theoretical and practical advantages of Lagrangian optimization over penalties do not materialize in practice. We propose log-barrier extensions, which approximate Lagrangian optimization of constrained-CNN problems with a sequence of unconstrained losses. Unlike standard interior-point and log-barrier methods, our formulation does not need an initial feasible solution. Furthermore, we provide a new technical result, which shows that the proposed extensions yield an upper bound on the duality gap. This generalizes the duality-gap result of standard log-barriers, yielding sub-optimality certificates for feasible solutions. While sub-optimality is not guaranteed for non-convex problems, our result shows that log-barrier extensions are a principled way to approximate Lagrangian optimization for constrained CNNs via implicit dual variables. We report comprehensive weakly supervised segmentation experiments, with various constraints, showing that our formulation outperforms substantially the existing constrained-CNN methods, both in terms of accuracy, constraint satisfaction and training stability, more so when dealing with a large number of constraints
    • …
    corecore