1,080 research outputs found

    Deduction modulo theory

    Get PDF
    This paper is a survey on Deduction modulo theor

    Formalization of Universal Algebra in Agda

    Get PDF
    In this work we present a novel formalization of universal algebra in Agda. We show that heterogeneous signatures can be elegantly modelled in type-theory using sets indexed by arities to represent operations. We prove elementary results of heterogeneous algebras, including the proof that the term algebra is initial and the proofs of the three isomorphism theorems. We further formalize equational theory and prove soundness and completeness. At the end, we define (derived) signature morphisms, from which we get the contravariant functor between algebras; moreover, we also proved that, under some restrictions, the translation of a theory induces a contra-variant functor between models.Fil: Gunther, Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gadea, Alejandro Emilio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pagano, Miguel Maria. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentin

    A Spatial-Epistemic Logic for Reasoning about Security Protocols

    Full text link
    Reasoning about security properties involves reasoning about where the information of a system is located, and how it evolves over time. While most security analysis techniques need to cope with some notions of information locality and knowledge propagation, usually they do not provide a general language for expressing arbitrary properties involving local knowledge and knowledge transfer. Building on this observation, we introduce a framework for security protocol analysis based on dynamic spatial logic specifications. Our computational model is a variant of existing pi-calculi, while specifications are expressed in a dynamic spatial logic extended with an epistemic operator. We present the syntax and semantics of the model and logic, and discuss the expressiveness of the approach, showing it complete for passive attackers. We also prove that generic Dolev-Yao attackers may be mechanically determined for any deterministic finite protocol, and discuss how this result may be used to reason about security properties of open systems. We also present a model-checking algorithm for our logic, which has been implemented as an extension to the SLMC system.Comment: In Proceedings SecCo 2010, arXiv:1102.516

    A resolution principle for clauses with constraints

    Get PDF
    We introduce a general scheme for handling clauses whose variables are constrained by an underlying constraint theory. In general, constraints can be seen as quantifier restrictions as they filter out the values that can be assigned to the variables of a clause (or an arbitrary formulae with restricted universal or existential quantifier) in any of the models of the constraint theory. We present a resolution principle for clauses with constraints, where unification is replaced by testing constraints for satisfiability over the constraint theory. We show that this constrained resolution is sound and complete in that a set of clauses with constraints is unsatisfiable over the constraint theory if we can deduce a constrained empty clause for each model of the constraint theory, such that the empty clauses constraint is satisfiable in that model. We show also that we cannot require a better result in general, but we discuss certain tractable cases, where we need at most finitely many such empty clauses or even better only one of them as it is known in classical resolution, sorted resolution or resolution with theory unification

    Coalgebras and Their Logics

    Get PDF
    Transition systems pervade much of computer science. This article outlines the beginnings of a general theory of specification languages for transition systems. More specifically, transition systems are generalised to coalgebras. Specification languages together with their proof systems, in the following called (logical or modal) calculi, are presented by the associated classes of algebras (e.g., classical propositional logic by Boolean algebras). Stone duality will be used to relate the logics and their coalgebraic semantics

    Matching Logic

    Full text link
    This paper presents matching logic, a first-order logic (FOL) variant for specifying and reasoning about structure by means of patterns and pattern matching. Its sentences, the patterns, are constructed using variables, symbols, connectives and quantifiers, but no difference is made between function and predicate symbols. In models, a pattern evaluates into a power-set domain (the set of values that match it), in contrast to FOL where functions and predicates map into a regular domain. Matching logic uniformly generalizes several logical frameworks important for program analysis, such as: propositional logic, algebraic specification, FOL with equality, modal logic, and separation logic. Patterns can specify separation requirements at any level in any program configuration, not only in the heaps or stores, without any special logical constructs for that: the very nature of pattern matching is that if two structures are matched as part of a pattern, then they can only be spatially separated. Like FOL, matching logic can also be translated into pure predicate logic with equality, at the same time admitting its own sound and complete proof system. A practical aspect of matching logic is that FOL reasoning with equality remains sound, so off-the-shelf provers and SMT solvers can be used for matching logic reasoning. Matching logic is particularly well-suited for reasoning about programs in programming languages that have an operational semantics, but it is not limited to this

    UTP2: Higher-Order Equational Reasoning by Pointing

    Full text link
    We describe a prototype theorem prover, UTP2, developed to match the style of hand-written proof work in the Unifying Theories of Programming semantical framework. This is based on alphabetised predicates in a 2nd-order logic, with a strong emphasis on equational reasoning. We present here an overview of the user-interface of this prover, which was developed from the outset using a point-and-click approach. We contrast this with the command-line paradigm that continues to dominate the mainstream theorem provers, and raises the question: can we have the best of both worlds?Comment: In Proceedings UITP 2014, arXiv:1410.785

    Rn and Gn Logics

    Get PDF
    This paper proposes a simple, set-theoretic framework providingexpressive typing, higher-order functions and initial models atthe same time. Building upon Russell's ramified theory of types, we developthe theory of Rn-logics, which are axiomatisable by an order-sortedequational Horn logic with a membership predicate, and of Gn-logics,that provide in addition partial functions. The latter are therefore moreadapted to the use in the program specification domain, while sharing interesting properties, like existence of an initial model, with Rn-logics. Operational semantics of Rn-/Gn-logics presentations is obtained throughorder-sorted conditional rewriting
    corecore