
Chapman University
Chapman University Digital Commons

Engineering Faculty Articles and Research Fowler School of Engineering

2006

Coalgebras and Their Logics
Alexander Kurz
Chapman University, akurz@chapman.edu

Follow this and additional works at: https://digitalcommons.chapman.edu/engineering_articles

Part of the Algebra Commons, Logic and Foundations Commons, Other Computer Engineering
Commons, Other Computer Sciences Commons, and the Other Mathematics Commons

This Article is brought to you for free and open access by the Fowler School of Engineering at Chapman University Digital Commons. It has been
accepted for inclusion in Engineering Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For
more information, please contact laughtin@chapman.edu.

Recommended Citation
A. Kurz, “Coalgebras and their logics,” ACM SIGACT News, vol. 37, no. 2, p. 57, Jun. 2006. DOI: 10.1145/1140612.1140628

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chapman University Digital Commons

https://core.ac.uk/display/215787296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/fowler_engineering?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

Coalgebras and Their Logics

Comments
© ACM, 2006. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in ACM SIGACT News, volume 37,
issue 2, in 2006. DOI: 10.1145/1140612.1140628

Copyright
Association for Computing Machinery

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/engineering_articles/8

https://doi.org/10.1145/1140612.1140628
https://digitalcommons.chapman.edu/engineering_articles/8?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages

ar
X

iv
:c

s/
06

05
12

8v
1

 [
cs

.L
O

]
 2

8
M

ay
 2

00
6

SIGACT News Logic Column 15

Riccardo Pucella

Northeastern University

Boston, MA 02115 USA

riccardo@ccs.neu.edu

Some comments about the last Logic Column, on nominal logic. Pierre Lescanne points out
that the terminology “de Bruijn levels” was introduced in the paper Explicit Substitutions with

de Bruijn’s Levels, by Pierre Lescanne and Jocelyne Rouyer-Degli, presented at the 1995 RTA
conference. He also points out that Stoy diagrams were probably invented by Stoy, but appear in
work by Bourbaki as early as 1939 (published in 1954). Merci, Pierre.

That article also initiated what is bound to be an interesting discussion. The critique of higher-
order abstract syntax in that article prompted Karl Crary and Robert Harper to prepare a response
to the leveled criticisms. The response should appear in an upcoming Column.

In this issue, Alexander Kurz describes recent work on the topic of specifying properties of
transition systems. It turns out that by giving a suitably abstract description of transition systems
as coalgebras, we can derive logics for capturing properties of these transition systems in a rather
elegant way. I will let you read the details below.

I am always looking for contributions. If you have any suggestion concerning the content of the
Logic Column, or if you would like to contribute by writing a column yourself, feel free to get in
touch with me.

Coalgebras and Their Logics1

Alexander Kurz

University of Leicester, UK

1 Introduction

Transition systems pervade much of computer science. This article outlines the beginnings of
a general theory of specification languages for transition systems. More specifically, transition
systems are generalised to coalgebras. Specification languages together with their proof systems,
in the following called (logical or modal) calculi, are presented by the associated classes of algebras
(e.g., classical propositional logic by Boolean algebras). Stone duality will be used to relate the

1 c© Alexander Kurz, 2006.

ACM SIGACT News 1 Vol. —, No. —

http://arXiv.org/abs/cs/0605128v1

logics and their coalgebraic semantics. The relationship between these notions can be summarised
as

systems coalgebras

logic algebras

Stone duality

(1)

Let us have a closer look at the role of Stone duality, which relates the class A of algebras of a
propositional logic to the class X representing the carriers of the transition systems (i.e., coalgebras).
The duality is provided by two operations P and S

X
P ++

A ,
S

jj (2)

where P maps a carrier X to its propositional theory and S maps an algebra A to its ‘canonical
model’ (PX and SA are also called the dual ofX and A, respectively; the reason for the terminology
will become clear later). The situation in Diagram 2 describes a perfect match of logic and semantics
if both models and theories can be reconstructed (up to isomorphism) from their dual, formally, if
X ∼= SPX and A ∼= PSA for all X ∈ X and A ∈ A.

As we will explain below, the type of a class of coalgebras is an operation T : X → X . This suggests
that, in the same way as a logic for X is given by the algebras in A, a logic for T -coalgebras is
given by the algebras for the corresponding operation L on A. The Stone duality (2) then lifts to
L-algebras and T -coalgebras

Coalg(T)
P̃ --

��

Alg(L)

S̃

mm

��
XT

)) P
++
A

S

kk L

uu

(3)

The logical interpretation of the upper duality is that the logic corresponding to Alg(L) is (strongly)
complete and characterises bisimilarity wrt the transition system Coalg(T). This will be explained
in Section 3. Section 2 discusses one example of the dualities in Diagram 2 in detail and briefly
sketches the more general picture. The remainder of the introduction is devoted to a more detailed
exposition of the ideas above. Section 4 summarises what can be gained from this approach and
outlines some research directions. Definitions of the few notions from category theory we need are
collected in an appendix.

1.1 Systems as Coalgebras

In its simplest form, a transition system consists of a set X and a relation R ⊆ X ×X. Denoting
by P the operation mapping a set to its powerset, a transition system can equivalently be described
by a map

X
ξ

−→ PX

where ξ(x) = {y|xRy} is the set of successors of x. The structure (X, ξ) is a P-coalgebra.

This description of transition systems is very flexible. Table 1 gives some examples of T -coalgebras
(X, ξ) for suitable mappings T : Set → Set. The set C appearing in some functors is a constant

ACM SIGACT News 2 Vol. —, No. —

TX X
ξ

−→ TX

1. C ×X streams over C

2. C ×X + 1 finite or infinite lists over C

3. 2 ×XC deterministic automaton with input alphabet C

4. P(C ×X) ∼= (PX)C C-labelled transition system

5. (1 + DX)C probabilistic transition systems

6. 22X

predicate transformer

Table 1: Examples of Coalgebras

parameter denoting an input or output alphabet. The models we have in mind are often sys-
tems with a distinguished initial state (which we also call pointed coalgebras or processes). (1) A
coalgebra X → C × X with specified initial state x0 is a process outputting the infinite stream
(head(x0), head (tail(x0)), . . .) of elements of C, where head : X → C and tail : X → X refer to the
two components of X → C ×X. (2) Here 1 denotes a one-element set, which allows a process to
stop; hence, in addition to streams, one now also allows behaviours given by finite lists. (3) The
2 in 2 ×XC denotes a two-element set and the X → 2 part of the coalgebra expresses whether a
state is accepting or not; XC denotes the set of functions from C to X and X → XC calculates
the successor state from a current state and an input from C. (4) Comparing with (1) and (3),
P(C ×X) suggests to think of the labels in C as outputs and (PX)C of the labels as inputs, but
both are isomorphic. (5) The distribution functor DX maps X to the set of discrete probability

distributions. (6) Coalgebras X → 22X

are (in bijective correspondence to) predicate transformers
2X → 2X .

Bisimilarity The crucial observation that makes the coalgebraic point of view useful is that all
of these type constructors T are functors and that, therefore, T -coalgebras come equipped with a
canonical notion of behavioural equivalence or bisimilarity.

Let us explain this important point in more detail. To say that an operation T : Set → Set is a
functor means that T is not only defined on sets but also on functions, mapping f : X → Y to
Tf : TX → TY . Moreover, T is required to preserve identities idX : X → X, and composition,
T (f ◦ g) = Tf ◦ Tg. This allows us to define a morphism of coalgebras (X, ξ) → (Y, ν) as a map
f : X → Y such that Tf ◦ ξ = ν ◦ f :

X
ξ //

f

��

TX

Tf

��
Y

ν // TY

(4)

Coalgebraic bisimilarity , or behavioural equivalence, denoted ≃, is now the smallest equivalence
relation that is invariant under all morphisms: Define ≃ to be the smallest equivalence relation
containing all pairs x ≃ f(x) where f ranges over coalgebra morphisms and x over the domain of
f .2

2This definition is equivalent to the following one. Two states x, y in two coalgebras are bisimilar iff there are two

ACM SIGACT News 3 Vol. —, No. —

Coming back to our introductory example, P is a functor if we let Pf : PX → PY map a subset of
X to its direct image under f . It is now an instructive exercise to show that coalgebraic bisimilarity
agrees with the standard notion of bisimilarity for (unlabelled) transition systems. For this, one
shows that a map is a coalgebra morphism iff its graph is a bisimulation between the two transition
systems.

In examples of Table 1 we have the following. (1,2) Two processes are bisimilar iff their outputs
are the same. (3) Two states are bisimilar iff they accept the same language. (4) Here coalgebraic
bisimilarity is the one known from modal logic or process algebra and similarly for (5) and (6).

Final Coalgebras It is often possible to characterise bisimilarity by a single coalgebra, the
so-called final coalgebra. Formally, a coalgebra is final if from any other coalgebra there is a unique
morphism into the final coalgebras. It follows that two states in two coalgebras are bisimilar iff
they are identified by the unique morphisms into the final coalgebra. In other words, the final
coalgebra, if it exists, provides a canonical representative for each class of bisimilar states.

In many cases, apart from characterising bisimilarity, final coalgebras are interesting objects in
their own right. Recognising these structures as final coalgebras allows to reason about them,
sometimes to great advantage, using coinduction instead of induction. We will not pursue this
issue any further here but only mention some examples. In Table 1 the final coalgebra is in (1)
the coalgebra of streams over C, in (2) the coalgebra of finite and infinite lists over C, in (3) the
coalgebra of all languages (with successors given by language derivative). In our leading example
of P-coalgebras the final coalgebra is the universe of non-well founded sets.

1.2 Modal Logic

Let us now turn to logics for coalgebras. One would want such logics to respect bisimilarity, that is,
formulae should not distinguish bisimilar states. We call such logics modal because it can be argued
that invariance under bisimilarity is the main feature of modal logic. For example, a theorem of
van Benthem states that modal logic is precisely the fragment of first order logic that is invariant
under bisimilarity. Moreover, either by strengthening the logic allowing for infinite conjunctions
or be restricting the semantics to finitely branching transition systems, modal logic characterises
bisimilarity in the sense that for each two non-bisimilar states there is a formula distinguishing
them.

Let us first look at the usual modal logic for unlabelled transition systems, ie, P-coalgebras. It
consists of classical propositional logic extended by one unary operator 2. The interpretation of
2 is that of a restricted universal quantifier, more precisely, 2ϕ holds in state x iff ϕ holds in all
successors of x. We write this as

[[2ϕ]](X,R) = {x | xRy ⇒ y ∈ [[ϕ]](X,R)} (5)

Having seen a logic for P-coalgebras, can we generalise this to arbitrary functors T ?

Note first that, semantically, a modal operator transforms predicates into predicates. So we could
say that a modal operator is a suitable operation

2X → 2X

coalgebra morphisms f, g such that f(x) = g(y).

ACM SIGACT News 4 Vol. —, No. —

where 2X denotes again the set of functions X → 2, or equivalently, the set of subsets of X. But
we also want to capture that 2 says something about the immediate successors of a state, that is,
about a single transition step. We therefore identify (one-step) modalities 2 for T with so-called
predicate liftings3

22X : 2X → 2TX (6)

which give the semantics of a modal operator 2 wrt a coalgebra (X, ξ) via

2X 2TX
ξ−1

oo 2X
22Xoo (7)

that is, dropping the subscripts,
[[2ϕ]] = ξ−1 ◦ 22[[ϕ]]. (8)

To recover (5) as a special case of (8), one defines the corresponding predicate lifting as 22Y =
{Z ⊆ X | Z ⊆ Y } for Y ∈ 2X .

How do we guarantee that modal logics for coalgebras given by predicate liftings are invariant
under bisimilarity? Simply by requiring that predicate liftings 22X : 2X → 2TX are natural trans-
formations. Spelling out the definition of a natural transformation this means that in the following
diagram the right-hand square commutes (for all f : X → Y)

2X 2TX
ξ−1

oo 2X
22Xoo

2Y

f−1

OO

2TY
ν−1

oo

(Tf)−1

OO

2Y
22Yoo

f−1

OO (9)

If, moreover, f : (X, ξ) → (Y, ν) is a coalgebra morphism, then also the left-hand square commutes
and, therefore, the outer rectangle as well. The proof of invariance of the logic under bisimilarity
(p. 3) is now a routine induction on the structure of the formulae, where the case of modal operators
2 is taken care of by Diagram (9).

1.3 Logics as Algebras

After having explained the basic notions of coalgebras and their logics, in the remainder of the
article, I will sketch a deeper analysis of the situation. It is based on the insight that logics for
coalgebras are in fact algebras and, moreover, that a logic perfectly captures the coalgebras if the
algebras and coalgebras are related by Stone duality.

Observe that the modal logics discussed above come in two stages. First, for any coalgebra (X, ξ) we
have the Boolean algebra 2X , which corresponds to propositional logic. This logic is then extended
by modal operators 2X → 2X . Traditionally, these algebras, called Boolean algebras with operators
or modal algebras, are thought of as given by a carrier A plus boolean operators ⊥,¬,∧,∨ plus
(possibly more than one) modal operator 2. For example, the modal logic for P-coalgebras can be
given by one unary modal operator 2 that preserves top (true) and conjunction

2⊤ = ⊤ 2(a ∧ b) = 2a ∧ 2b (10)

This example shows clearly the relationship between algebras and modal calculi. On the one hand,
(10) is the equational definition of the class of modal algebras. On the other hand, (10) plus

3‘Predicate lifting’ because 22 lifts a predicate on X to a predicate on TX.

ACM SIGACT News 5 Vol. —, No. —

equational logic provides a calculus for modal logic. Since modal logics are more commonly given
by Hilbert calculi, we indicate briefly that both calculi are equivalent in a rather straightforward
way.

The usual Hilbert calculus of the modal logic for P-coalgebras, denoted K, has as axioms all
propositional tautologies and 2(p → q) → (2p → 2q); rules are modus ponens, substitution, and
necessitation ‘from ϕ derive 2ϕ’. To compare K with the equational calculus given by (10), we
write ⊢K ϕ and ⊢EL ϕ = ψ for formulae derivable in K and equations derivable in equational logic.
One then shows that ⊢K ϕ ⇔ ⊢EL ϕ = ⊤ and ⊢EL ϕ = ψ ⇔ ⊢K ϕ↔ ψ. For example, the
necessitation rule is simulated on the equational side by the congruence rule of equational logic and
the first of the axioms (10).

Up to now we have only seen standard material from modal logic. It will now be shown that modal
algebras are algebras for a functor. Since algebras for a functor are, in a precise sense, dual to
coalgebras this will allow us to relate modal algebras (and hence modal calculi) in a uniform way
to their coalgebraic semantics.

We start by observing that the two-stage process of building a modal algebra can be made more
explicit by saying that a modal algebra is a Boolean algebra A with a finite-meet preserving map
2 : A ⇀ A. From a technical point of view, it is inconvenient that A is a Boolean algebra but 2

is only a meet-semi-lattice morphism, which does not preserve all of the Boolean structure. This
is easily rectified: Modal algebras are in one-to-one correspondence to algebras for the functor L
where

LA is the free Boolean algebra over A considered as a meet-semi-lattice. (11)

This means that LA is determined by the property that for each finite-meet preserving function
A ⇀ B there is a unique Boolean algebra morphism LA→ B such that

LA // B

A

O =
{

{
{

{
{

{
{

{

(12)

commutes. It follows that Boolean algebra morphisms LA → A are in one-to-one correspondence
with semi-lattice morphisms A ⇀ A.

LA→ A is an algebra for the functor L. This notion of an algebra for a functor dualises the notion
of a coalgebra, the arrows going in opposite directions: into the carrier for algebras and out of the
carrier for coalgebras (the appendix gives a more formal statement of this duality).

Let us summarise the relationship between logics and algebras in our example. Boolean algebras
correspond to classical propositional logic. A functor L specifies an extension of propositional logic
with modal operators. The algebras for this modal logic are the algebras for the functor L.

class BA of Boolean algebras classical propositional logic

functor L : BA → BA modal operators + axioms

class Alg(L) of modal algebras modal logic

ACM SIGACT News 6 Vol. —, No. —

1.4 Relating Algebras and Coalgebras via Stone Duality

We have explained so far the two horizontal lines of the picture (1), namely systems as coalgebras
and logics as algebras. We now come to Stone duality, relating the two.

We start by remarking that finitary modal logic does not describe P-coalgebras perfectly in the
following sense. First, finitary logics cannot characterise bisimilarity, that is, they are not strong
enough to distinguish all non-bisimilar states. Furthermore, there are consistent modal logics that
are incomplete in the sense that there are no P-coalgebras satisfying them.4 There are two ways
to rectify this mismatch.

The first is based on the observation that 2X is not only a Boolean algebra but also has infinitary
intersections, or algebraically speaking, 2X is a complete atomic Boolean algebra. This suggests
that a perfect description of transition system requires infinitary propositional logic. This is well-
known in process algebra: For infinitely branching transition systems Hennessy-Milner logic only
characterises bisimilarity if one allows infinite conjunctions.

Alternatively, instead of strengthening the logic by infinitary constructs, one can modify the se-
mantics to take the weaker expressivity of the logic into account: One equips transition systems
with a notion of ‘admissible’ or ‘observable’ predicate. For this, one usually lets carriers consist
not of sets but topological spaces (X,OX). The topology OX is a subset of 2X encoding which
predicates on X can be expressed by the logic.5

In the first case, the algebras in Diagram 2 are complete atomic Boolean algebras, so Diagram 2
becomes

Set

P --
CABA ,

S

kk

where PX = 2X and S maps an algebra to its set of atoms.6

In the second case, the algebras are Boolean algebras. The corresponding spaces are known as
Stone spaces and Diagram 2 becomes

Stone

P ,,
BA .

S

mm

Both diagrams are dual equivalences, so from an abstract point of view they share exactly the same
(or rather dual) properties. But the categories on the right-hand side are categories of algebras
that come with an equational logic. Lifting such a basic duality to a duality of coalgebras and
modal algebras, as indicated in Diagram 3, will provide modal logics for coalgebras.

1.5 Notes

References to Stone duality will be given in the next section. The standard reference for systems
and coalgebras is Rutten [61]. The duality of algebras/coalgebras and induction/coinduction are

4This phenomenon appears if the proposition letters of the modal axioms are interpreted as ranging over all
subsets of the carrier of the model (Kripke frame semantics). It does not happen if proposition letters receive a fixed
interpretation (Kripke model semantics).

5For example, consider the modal logic K and a P-coalgebra that is a tree with initial state x0 having branches of
any bounded length and one infinite branch. The subset of states reachable in bounded branches is not admissible.
This corresponds to the fact that having an infinite branch is not expressible in the finitary logic K.

6a is an atom if ⊥ < a and ⊥ < b ≤ a ⇒ b = a.

ACM SIGACT News 7 Vol. —, No. —

explained in detail in the tutorial by Jacobs and Rutten [32]. Further introductions are provided
by the course notes of Gumm [27], Pattinson [55], and Kurz [46] and the forthcoming book by
Jacobs [29].

Coalgebras Motivated by Milner’s CCS (4 in Table 1), Aczel [5] introduced the idea of coalgebras
for a functor T as a generalisation of transition systems. He also made three crucial observations:
(1) coalgebras come with a canonical notion of bisimilarity; (2) this notion generalises the notion
from computer science and modal logic; (3) any ‘domain equation’ X ∼= TX has a canonical solution
(in sets or classes), namely the final coalgebra, which is fully abstract wrt behavioural equivalence.

This idea of a type of dynamic systems being represented by a functor T and an individual system
being an T -coalgebra, led Rutten [61] to the theory of universal coalgebra which, parameterised by
T , applies in a uniform way to a large class of different types of systems. In particular, final seman-
tics and the associated proof principle of coinduction (which are dual to initial algebra semantics
and induction) find their natural place here.

The following references provide details on the examples in Table 1. Stream coalgebras have been
studied by Rutten in a number of papers, see e.g. [63]. For the example of deterministic automata
as coalgebras see Rutten [60]. Probabilistic transition system as coalgebras go back to Rutten and
de Vink [21]. Coalgebras for the double contravariant powerset functor are investigated in Kupke
and Hansen [28].

The idea of systems as coalgebras and the paradigm of final semantics—together with its associated
principles of coinduction—has been applied to such different topics as, for example, automata theory
[60], combinatorics [62], control theory [39], denotational semantics of π-calculus [23, 66], process
calculi and GSOS-formats [69, 8, 37], probabilistic transition systems [9, 18, 51], component-based
software development [6, 7], and the solution of recursive program schemes [49]. Modelling classes
in object-oriented programming as coalgebras [57, 30] led to new verification tools (LOOP-Tool
[70], CCSL [59], CoCasl [52]) which also incorporate reasoning with modal logics based on the
research on coalgebras and modal logic described below.

Coalgebras and Modal Logic For background on modal logic the reader is referred to Blackburn,
de Rijke, Venema [10] (Thm 2.68 shows that modal logic is the bisimulation invariant fragment
of first-order logic, Chapter 5 is on modal algebras, Thm 4.49 gives an example of an incomplete
modal logic). Further material can be found in Venema [72]. Modal algebras as algebras for a
functor and their duality to coalgebras for a functor was first presented in Abramsky [1].

Research into coalgebras and modal logic started with Moss [50]. The logic of [50] is uniform7 in
the functor T , but it does not provide the linguistic means to decompose the structure of T which is
needed to allow for a flexible specification language. To address this issue, [47, 58] (independently)
proposed to restrict attention to specific classes of functors and presented a suitable, but ad hoc,
modal logic. This work was generalised by Jacobs [31]. Pattinson showed that these languages with
their ad hoc modalities arise from modal operators given by predicate liftings. He gives conditions
under which logics given by predicate liftings are sound and complete [54] and expressive [56].
Schröder [64] and Klin [38] show that for any finitary functor T on Set there is a modal logic given
by predicate liftings that characterises bisimilarity.

From a semantical point of view, modal logic can be considered as dual to equational logic [45,
44]. [48] goes further and shows that coalgebras can be specified—in the same (or dual) way as
algebras—by operations and equations; moreover, the dual of the algebraic operations turn out to

7The restrictions are that T is on Set and has to preserve weak pullbacks.

ACM SIGACT News 8 Vol. —, No. —

be bisimilarity preserving predicate transformers, that is, modal formulae. The results following
from this approach work for all functors but the logics need to be strong enough to express all
possible behaviours. This needs, in general, infinite conjunctions in the logics. To study finitary
logics, Jacobs [31] covers some ground towards a duality for coalgebras/generalised BAOs and
Goldblatt [26] develops a notion of ultrapower for coalgebras. Both approaches are restricted again
to specific classes of functors. In this paper we argue that, based on Stone duality, it is possible to
develop a uniform account.

2 Stone Duality

We will treat Stone duality for Boolean algebras as an illustrative example and then remark on
how it generalises to other cases.

2.1 The Representation Theorem for Boolean Algebras

The axioms of a Boolean algebra relating ⊥,¬,∧,∨ are the abstract essence of the set-theoretic
operations of empty set, complement, intersection and union. But how can one show that the axioms
of Boolean algebra are indeed complete? We have to exhibit, for each non-derivable equation, an
algebra of subsets violating that equation.

Suppose ϕ = ψ is not derivable from the axioms of Boolean algebra. By completeness of equational
logic, there is a Boolean algebra A such that A /|= ϕ = ψ. To conclude that there is a Boolean
algebra of subsets (a field of sets) that refutes ϕ = ψ it is enough to find a set SA and an injective
Boolean algebra morphism

A→ PSA

where P denotes here the operation mapping a set to the Boolean algebra of its subsets. Indeed, if
A /|= ϕ = ψ, then by injectivity PSA /|= ϕ = ψ, yielding a counterexample for ϕ = ψ in an algebra
where all the Boolean operations are interpreted by their set-theoretic counterparts.

How does one get the points of the space SA? Similarly to defining real numbers as certain
collections of intervals, a point will be a certain collection of elements of A, or, equivalently, a
function A → 2. Which of these functions should be points? Observing that 2 is not only a set,
but also a Boolean algebra 2, we define SA = BA(A, 2) where the notation BA(A,B) denotes the
set of Boolean algebra morphisms A → B. Detailing the definition of an algebra morphism, it is
straightforward to verify that the requirement that p : A→ 2 be an algebra morphism says that p
is a maximal and consistent collection of elements of A. With the canonical map A → PSA, we
can now state Stone’s representation theorem for Boolean algebras. Note that with the definition
below, the statement that a point p satisfies the predicate a expresses itself as p ∈ â.

Theorem 2.1. The map

(̂·) : A −→ PSA (13)

a 7→ â = {p ∈ SA | p(a) = 1} (14)

is an injective Boolean algebra morphism.

ACM SIGACT News 9 Vol. —, No. —

2.2 Stone Duality for Boolean Algebras

The representation theorem works by associating a space to an algebra (via S) and then, vice versa,
an algebra to a space (via P). What precisely are the spaces that correspond to algebras?

In a first instance, we can say that a space (X,A) consists of a set X and a Boolean algebra of
subsets A ⊆ 2X such that (1) any two different points in X are separated by elements of A and (2)
(X,A) is compact, that is, every collection C of elements of A with the finite intersection property 8

has non-empty intersection. The two properties capture that the points of the space are determined
by the algebra in the following sense. (1) says that there are not more points than can be separated
by predicates and (2) that there are enough points to realise every consistent collection of predicates
from A.

Further, one notices that a space (X,A) can be considered as the topological space (X,OX) with
OX being the topology generated by A, that is, the closure of A under arbitrary unions. One
recovers the Boolean algebra A from OX as the collection of all compact opens. Since in a compact
Hausdorff space a subset is compact iff it is closed, one can replace compact open by clopen (which
is brief for closed and open). To summarise:

Definition 2.2. A Stone space is a topological space that (1) is T0, (2) compact, and (3) the
clopens are a basis for the topology.

Stone spaces with continuous maps form the category Stone. From the representation theorem and
the definition of Stone we obtain two operations S and P

Stone

P **
BA

S

ll

where SA is the topological space with points BA(A, 2) and the topology generated by {â | a ∈ A}
as in (14); PX = Stone(X, 2) is now the Boolean algebra of clopens (instead of the full powerset).
We speak of a duality here because both operations are functors that act on morphism by reversing
the arrows, namely, mapping a morphism f to inverse image f−1. Moreover, Stone and BA are
dually equivalent, that is we have isomorphisms

A ∼= PSA (15)

X ∼= SPX (16)

(16) is injective because X is T0 and surjective because X is compact. (15) is surjective by con-
struction and injective by the Representation Theorem 2.1. To summarise:

Theorem 2.3. The categories BA and Stone are dually equivalent.

From our presentation, one could get the impression that topologies come in here accidentally
and the logical content of the duality is completely contained in the representation theorem. I
would reply the following. First, Stone spaces arise here from logical considerations but they are
of independent interest. A well-known example is the Cantor middle-third space. In fact, all
complete ultrametric spaces are Stone spaces. Second, the dual equivalence is nice to have; for
example, we then have that the dual of an initial algebra is the final coalgebra; this will be used in
the next section to show that that modal logics characterise bisimilarity. Third, topologies often
have an interesting computational perspective arising from the idea that observable properties are
closed under arbitrary unions but not intersections [65, 73, 22]. Finally, the topological perspective
suggests and unifies many generalisations, some of which we briefly review now.

8C has the finite-intersection property if all finite subset of C have non-empty intersection.

ACM SIGACT News 10 Vol. —, No. —

2.3 A Sketch of the General Picture

The variations of Stone duality relevant for the present purposes fit the following picture. We start
with a class A of distributive lattices and X of topological spaces (assumed to be T0). Think of
algebras A ∈ A as propositional theories and of spaces X ∈ X as models of propositional theories
with the opens (or compact opens for finitary logics) interpreting the propositions. There is an
operation P : X → A, mapping a space to its algebra of predicates. And an operation S : A → X
mapping an algebra to its ‘canonical model’.

X
P ++

A .
S

jj (17)

Moreover, in the examples of the table below, PX = X (X, 2) and SA = A(A, 2) where 2 denotes
the appropriate two-element topological space or two-element algebra. We speak of a duality, since
P and S work contravariantly on morphisms, mapping a morphism (that is, algebra morphism or
continuous map) f to f−1. Moreover, there are morphisms

̺A : A→ PSA σX : X → SPX

and (17) is a dual equivalence if they are bijective. Logically, this means the following. As we have
explained in Section 2.1, ̺A injective means completeness (and it will, in general, be surjective by
definition of S and P). σX is injective means, together with X being T0, that the logic is expressive
in the sense that different points are separated by some predicate. If σX is not surjective, then
SPX has points not available in X; thus the logic is not strong enough to make these additional
points inconsistent.

We conclude with a table of some relevant examples.

X A spaces/algebras propositional logic

Set CABA sets/complete atomic Boolean algebras infinitary classical

Stone BA Stone spaces/Boolean algebras classical

Spec DL spectral spaces/bounded distributive lattices negation free

Poset CDL posets/complete distributive lattices infinitary negation free

Sob Frm sober spaces/frames geometric

In the two last examples, ̺A is injective for free algebras A but not for all algebras. Logically, this
corresponds to having completeness but not strong completeness. This also happens for proposi-
tional logic with countable conjunctions.

2.4 Notes

Three introductory textbooks on Stone duality are Vickers [73], Davey and Priestley [19], Brink
and Rewitzky [16].

Stone duality was introduced by Stone [67, 68]. The main reference for Stone duality is Johnstone’s
book on Stone Spaces [33] which also provides detailed historical information. The handbook
article [4] covers the topic from the point of view of domain theory. Both texts also provide many

ACM SIGACT News 11 Vol. —, No. —

more examples of Stone dualities. Topological dualities beyond sober spaces, e.g., for completely
distributive lattices and posets, are treated by Bonsangue et al [11, 15]. The representation theorem
for propositional logic with countable conjunctions can be found in Karp [36]. For applications of
complete ultrametric spaces to control flow semantics see de Bakker and de Vink [20].

3 Logics of Coalgebras

The previous section discussed dual equivalences (17) between categories X of topological spaces
and categories A of distributive lattices. In this section, we extend this picture to T -coalgebras.
Starting with a diagram as in (17) and a functor T on X , we dualise T to a functor L on A. The
duality of X/A and T/L lifts to a duality of coalgebras and algebras.

Coalg(T)
P̃ --

��

Alg(L)

S̃

mm

��
XT

)) P
++
A

S

kk L

uu

(18)

And in the same way as the duality of X and A describes a logic for X , so the duality of Coalg(T)
and Alg(L) describes a logic for T -coalgebras.

3.1 Abstract Logics: Using the Duality

Given a duality as in (17) and a functor T on X , then PTS is the dual of T on A. In fact, we will
need a bit more liberty and say that L is dual to T if L is isomorphic to PTS. Or, equivalently, L
is dual to T if there is a natural isomorphism

δX : LPX → PTX (19)

Using δ we can associate to a T -coalgebra (X, ξ) its dual L-algebra

P̃ (X, ξ) = LPX
δX−→ PTX

Pξ
−→ PX

and similarly for S.

In algebraic logic, logics are described by operations and equations, and then properties of a logic
are studied by investigating the variety of the algebras for the given operations and equations. A
basic construction is that of the Lindenbaum algebra. Given a logic L, the Lindenbaum algebra
AL is obtained from quotienting the set of all terms by the smallest congruence derived from the
equations. Thus, the elements of the Lindenbaum algebra AL can be seen as ‘abstract propositions’,
or propositions up to interderivability. Among all algebras in the variety, the Lindenbaum algebra
is determined by the following property: for any algebra A there is a unique morphism AL → A,
that is, AL is the initial algebra. We turn this into a definition.

Definition 3.1. Denote by AL the initial L-algebra. The elements of AL are called propositions.
The semantics [[ϕ]](X,ξ) of a proposition ϕ wrt a coalgebra (X, ξ) ∈ Coalg(T) is given by the image
of ϕ under

AL −→ P̃ (X, ξ)

We write Coalg(T) |= (ϕ = ψ) if for all coalgebras (X, ξ) the equation ϕ = ψ is satisfied in P̃ (X, ξ).

ACM SIGACT News 12 Vol. —, No. —

We remark that Theorem 3.7 will explain precisely in what sense the initial L-algebra is a Linden-
baum algebra.

Theorem 3.2. Propositions are invariant under bisimilarity.

Proof. Recalling the definition of bisimilarity (p. 3), we have to show, given a coalgebra morphism
f : (X, ξ) → (X ′, ξ′) and x ∈ X, that x ∈ [[ϕ]](X,ξ) ⇔ f(x) ∈ [[ϕ]](X′,ξ′). This follows directly from
the fact that the diagram

P̃ (X, ξ)

AL

[[−]](X,ξ) 77ooooooo

[[−]](X′,ξ′)
''OOOOOOO

P̃ (X ′, ξ′)

P̃ f=Pf=f−1

OO

commutes due to AL being initial.

The essence of completeness wrt to the coalgebraic semantics is:

Theorem 3.3. Alg(L) |= (ϕ = ψ) ⇔ Coalg(T) |= (ϕ = ψ).

Proof. ‘ ⇒ ’ (soundness) is immediate from the definitions. ‘ ⇐ ’ (completeness) works as in
Theorem 2.1. Suppose AL /|= ϕ = ψ. By injectivity of AL → P̃ S̃AL we have P̃ S̃AL /|= ϕ = ψ. That
is, the coalgebra S̃AL does not satisfy ϕ = ψ.

We remark that, as apparent from the proof, it is the representation of the initial (or, more generally,
free algebras) which gives completeness. Since we have a dual equivalence, all algebras can be
represented and we obtain strong completeness (completeness wrt a set of assumptions).

Theorem 3.4. The logic characterises bisimilarity.

Proof. Without loss of generality, let us assume that x, x′ are two different elements of the final
coalgebra S̃AL. The two points can be distinguished by a proposition since AL → P̃ S̃AL is
surjective and S̃AL is a T0-space.

To summarise, we have seen how to obtain a logic that perfectly describes T -coalgebras: Just
consider as formulae the elements of the initial L-algebra9 where L is the dual of T . We called this
logic abstract since it is not explicitly built from modal operators and axioms. The next subsection
explains that modal operators and axioms are presentations of the functor L.

3.2 Concrete Logics: Presenting Algebras and Functors

Ultimately, we are interested in relating logical calculi to transition systems. We have motivated
to consider transition systems as coalgebras and used Stone duality to dualise coalgebras to alge-
bras. The particular benefit obtained from using Stone duality is that the algebras thus obtained
correspond to logical calculi. Let us take a closer look again at the guiding ideas, which have been:

9If T : Set → Set is powerset, then the initial L-algebra does not exist for reasons of size. But one can still define
a class of formulae using the initial algebra sequence of L. We ignore this slight complication for the purposes of
exposition.

ACM SIGACT News 13 Vol. —, No. —

category of algebras A propositional logic

algebra A in A propositional theory

functor L : A → A operations and equations for T -coalgebras

category Alg(L) modal logic for T -coalgebras

These correspondences are justified as follows. The categories A obtained from Stone duality can
be presented by a signature Σ of operations and equations E in the sense that A is (isomorphic to)
the class Alg(Σ, E) of algebras for the signature Σ satisfying E. The presentation 〈Σ, E〉 gives a
logical calculus, via equational logic. An algebra A ∈ A has a presentation 〈G,R〉 by generators and
relations if A is isomorphic to the quotient of the free algebra over G by the smallest congruence
containing R. In our context, this means that A is the propositional theory given by variables G
and additional axioms R, see the example below.

Presenting functors We emphasised above the point of view that a propositional logic is a
presentation of a category of algebras. Similarly, it is a presentation of L that gives rise to the
modal operators and its axioms.

Example. The functor L : BA → BA for P-coalgebras from (11) is presented by the unary operator
2 and the equations (10) in the following sense. For each A ∈ BA, the algebra LA is presented by
generators {2a | a ∈ A} and by relations {(2⊤,⊤)} ∪ {(2(a ∧ b),2a ∧ 2b) | a, b ∈ A}.

It is not a coincidence that the equations in this example are of a special format: Roughly speaking,
they do not allow nesting of modal operators. Such terms are called terms of rank 1:

Definition 3.5. Assume A ∼= Alg(Σ, E) and a signature Σ′ (with operation symbols disjoint from
Σ). A term in Σ + Σ′ is of rank 1 (wrt Σ′) if it is of the form t(2i(sij)) where t is an n-ary term in
Σ and the 2i, 0 ≤ i < n, are mi-ary operations in Σ′ and the sij, 0 ≤ j < mi are terms in Σ. An
equation t = s is of rank 1 if both terms are.

In our example, the equations (10) are of rank 1. In particular: ⊤ is a term of rank 1, because ⊤ is
a 0-ary term in the signature Σ of Boolean algebras; 2(a ∧ b) is a term of the form t(2(s)) where
t is a variable and s is a ∧ b. Terms like 2a → a and 2a → 22a are not of rank 1. We can now
define what it means to present a functor by operations and equations.

Definition 3.6. Assume A ∼= Alg(ΣA, EA), a signature ΣL and a set of equations EL that are of
rank 1 (wrt ΣL). 〈ΣL, EL〉 is a presentation of L : A → A if the algebras LA are presented by
〈GA, RA〉 where GA = {σ(ai) | σ ∈ ΣL, ai ∈ A} and RA consists of all substitution instances of
equations in EA ∪ EL obtained by replacing variables with elements from A.

Generalising the example above, it now follows that logics given by predicate liftings correspond to
functors L : BA → BA. Indeed, if Σ is a collection of predicate liftings (with arities possibly > 1),
then 〈Σ, ∅〉 presents some functor L. Moreover, it is not hard to see that the two semantics of the
modal operators given by (8) and Definition 3.1 coincide. This also means that, conversely, any
presentation of a functor corresponds to a collection of predicate liftings (given by ΣL) plus some
additional axioms.

The next theorem links the abstract logics from the previous section with concrete logical calculi.
In particular, it shows that the Lindenbaum algebra of the logic given by operations ΣA + ΣL and
equations EA + EL is the initial L-algebra. The proof that every L-algebra satisfies the equations
EL requires the restriction to rank 1.

ACM SIGACT News 14 Vol. —, No. —

Theorem 3.7. Assume A ∼= Alg(ΣA, EA) and L : A → A. If L has a presentation 〈ΣL, EL〉 then

Alg(L) ∼= Alg(ΣA + ΣL, EA + EL).

The theorem can be read in two directions. First, starting with T , we find a presentation for L and
obtain completeness results for modal calculi. Of course, finding a good such presentation for a
functor is usually not straightforward. It is therefore of interest to know whether arbitrary functors
L do have a presentation. This question has recently received a positive answer for finitary functors
on Boolean algebras and sifted colimits preserving functors on arbitrary varieties. I expect that
these results can be extended to show that modal calculi exist for all functors T on Set and related
categories.

Second, one can take a logical calculus and study the corresponding presented functor. For example,
the infinitary version of the modal calculus K presents the dual L : CABA → CABA of P : Set → Set.
We obtain the theorem mentioned in the introduction that infinitary modal logic characterises
bisimilarity. Moreover, we also get a strong completeness result for the infinitary version of the
modal calculus K. For K itself we obtain the corresponding results for the powerspace (also known
as Plotkin power domain or hyperspace) on Stone. Similarly, any modal logic of rank 1 is expressive
and strongly complete for some functor of Stone spaces (also this may not be intended semantics).
This methodology can be applied to all functors in Table 1 as presentations of their duals are known,
with the possible exception of the functors for probabilistic transition systems which deserve some
further attention.

3.3 Notes

The application of Stone duality to modal logic goes back to Jónsson and Tarski [34, 35] and then
Goldblatt [25]. The idea of relating type constructors on algebras (see the L above) and topological
spaces (see the T above) is from Abramsky’s Domain Theory in Logical Form [3, 2]. Compared to
[3, 2], the models we are interested in are not only solutions to recursive domain equations (final
coalgebras) but any coalgebras; moreover, their base category need not be a domain but can be a
more general topological space. Compared to [25], we use the duality of algebras and coalgebras
to lift the Stone duality from Boolean logic to modal logic. Our functors L (or their presentations)
are closely related to Cı̂rstea’s language and proof system constructors [17].

[42] studies coalgebras over Stone spaces to show that they capture the descriptive general frames
from modal logic and to present a different view on Jacobs many-sorted coalgebraic modal logic [31];
[53] applies this approach to give a coalgebraic analysis of positive modal logic; [12] proposes to
study logics for coalgebras via the dual functor and shows that powerspace can be treated in a
uniform way for different categories of topological spaces; [14] introduces the notion of a functor
presented by operations and equations; [40] shows that logics given by predicate liftings can be
described by functors L : BA → BA; [41] studies the relationship between Stone-coalgebras and
Set-coalgebras.

4 Outlook

The aim of this exposition was to give a principled explanation of coalgebras and their logics. It
cannot be denied that it took us some work in Section 2 to set up the necessary machinery. On the
other hand, we got paid back with short and easy proofs of Theorems 3.3 and 3.4. Notice that these
proofs of completeness and expressiveness do not involve any syntax. The interface between syntax

ACM SIGACT News 15 Vol. —, No. —

and semantics, so to speak, is provided by the notion of a presentation of a functor. This provides
an interesting way to reason about different modal logics in a uniform and syntax independent way.

One of the benefits of setting up the theory of coalgebras and their logics in a way uniform in
the functor is compositionality. For example, given presentations for L1 and L2, one obtains a
presentation of the composition L1L2. This allows us to not only build new types of coalgebras
from old ones, but to do the same for their associated logics (as done already in Abramsky [3]).
The power of this approach is exemplified by [13] which derives a logic for π-calculus: Using known
results and compositionality, a presentation for the functor of π-calculus is not difficult to find and
we can then apply the general results.

Let us conclude with some further topics.

The modal logic of a functor Our original question has been the following. If universal
coalgebra is a general theory of systems as proposed by Rutten [61], then what are the logics for
coalgebras? More specifically, can the theory of logics for T -coalgebras be developed uniformly in
the functor T ? The insight alone that, semantically, modal logic is dual to equational logic [44]
does not give a handle on relating coalgebras and their modal calculi. As shown here, this is where
Stone duality comes in. The solution to the original problem of associating a logic to a functor
T now looks in close reach: It will be shown that, under appropriate conditions, the dual of a
functor T has a presentation, which then provides a strongly complete modal logic characterising
bisimilarity. This should also allow to generalise Moss’s original work [50] and provide his logic
with a complete calculus.

Relating different Stone dualities Topology-based models arise either, as in this article, to
capture the expressivity of logics weaker than infinitary classical logic, or in situations, as in domain
theory, where a natural notion of observable predicate is given. In both cases, it would be interesting
to be able to treat the topology as a parameter. This would allow us to compare similar models
based on different categories of spaces and to study logics which involve two different Stone dualities,
e.g., the ones for BA and Set. Ongoing work is based on the idea to consider both dualities as arising
from different completions of one and the same simpler duality.

Logics with name binding The work on the logic of π-calculus [13] suggests that also other
logics with name binding and quantifiers can be usefully treated in the presented framework. This
needs still to be worked out.

Coalgebraic modal model theory In order to better appreciate the relationship between modal
logic and coalgebras, it would be good to understand in how far known results in modal logic can be
extended to coalgebras. Some work in this direction has been done on the Jónsson-Tarski-theorem
and ultrafilter extensions [41]. There are also new questions brought to modal logic from coalgebra,
for example, how to best deal with infinite parameters C in Table 1, see Friggens and Goldblatt [24].

Going beyond rank 1 The original motivation in using Stone dualities was to understand logics
of coalgebras for a functor T . We have seen that a logic for T only needs axioms of rank 1. From
this point of view, rank 1 is no restriction. And, of course, we can deal with axioms of rank > 1
in a trivial way: axioms of rank 1 determine a functor T and hence a category Coalg(T), whereas
the other axioms specify a subcategory of Coalg(T). So the question really is whether axioms not
of rank 1 can be treated in a uniform coalgebraic way.

Fixed-point logic It is straightforward to extend a basic logic derived from T by fixed-points as
in µ-calculus. But it is not clear at all whether a Stone duality based approach can help in better
understanding fixed-point logics. Venema [71] and Kupke and Venema [43] introduce the notion

ACM SIGACT News 16 Vol. —, No. —

of coalgebraic fixed point logic and show that µ-calculus interpreted over different data structures
such as words and trees can be treated uniformly in a coalgebraic framework.

A Some Notions of Category Theory

A category C consists of a class of objects and has, for any two objects A,B, a set C(A,B) of arrows
(or morphisms) from A to B. Furthermore, arrows f : A → B, g : B → C have a composition
g ◦ f and for each object A there is an identity arrow idA. Examples: The category Set with sets
as objects and functions as arrows; BA with Boolean algebras and their homomorphisms; further,
Coalg(T) and Alg(L).

An isomorphism is an arrow f : A→ B for which there is a g : B → A with f ◦g = idB, g◦f = idA.

A covariant functor between two categories F : C → D maps objects to objects and arrows
f : A → B to Ff : FA → FB, preserving identities and composition. Examples: the functors T
and L.

For each category C we have the dual category Cop obtained from reversing the arrows. Example:
Each functor F : C → C gives rise to a functor F op : Cop → Cop; the duality of algebras and
coalgebras can now be stated as Alg(F op) = Coalg(F)op.

A contravariant functor F : C → D is a covariant functor Cop → D or, equivalently, C → Dop,
that is, it reverses the direction of the arrows. Example: 2− : Set → BA maps f : X → Y to
2f = f−1 : 2Y → 2X .

Given functors F,G : C → D, a natural transformation τ : F → G consists of maps τA : FA→ GA,
A in C, such that for all f : A→ A′ we have Gf ◦ τA = τA′ ◦ f . Example: the predicate liftings (6).

Given two functors F : C → D and G : D → C, we say that C and D are equivalent if there are
natural isomorphisms τC : C → GFC and σD : D → FGD. C and D are dually equivalent if Cop

and D are equivalent.

References

[1] S. Abramsky. A Cook’s Tour of the Finitary Non-Well-Founded Sets. Invited Lecture at
BCTCS 1988.

[2] S. Abramsky. A domain equation for bisimulation. Information and Computation, 92, 1991.

[3] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic, 51, 1991.

[4] S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in Computer Science. OUP,
1994.

[5] P. Aczel. Non-Well-Founded Sets. CSLI, Stanford, 1988.

[6] F. Arbab and J. Rutten. A coinductive calculus of component connectors. In WADT’02, LNCS
2755, 2003.

[7] L. Barbosa. Towards a calculus of software components. J. Univ. Comp. Sci., 9, 2003.

[8] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD thesis,
Vrije Universiteit Amsterdam, 2004.

ACM SIGACT News 17 Vol. —, No. —

[9] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types. Theoret.

Comput. Sci., 327, 2004.

[10] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CUP, 2001.

[11] M. Bonsangue, B. Jacobs, and J. N. Kok. Duality beyond sober spaces: Topological spaces
and observation frames. Theoret. Comput. Sci., 151, 1995.

[12] M. Bonsangue and A. Kurz. Duality for logics of transition systems. In FoSSaCS’05, LNCS
3441, 2005.

[13] M. Bonsangue and A. Kurz. Pi-calculus in logical form. Draft, 2006.

[14] M. Bonsangue and A. Kurz. Presenting functors by operations and equations. In FoSSaCS’06,
LNCS 3921, 2006.

[15] M. M. Bonsangue. Topological Dualities in Semantics. PhD thesis, Vrije Universiteit Amster-
dam, 1996.

[16] C. Brink and I. M. Rewitzky. A Paradigm for Program Semantics: Power Structures and

Duality. Cambridge University Press, 2001.

[17] C. Cı̂rstea. On expressivity and compositionality in logics for coalgebras. In CMCS’03, ENTCS,
2003.

[18] C. Cı̂rstea and D. Pattinson. Modular construction of modal logics. In CONCUR’04, LNCS
3170, 2004.

[19] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990.

[20] J. de Bakker and E. de Vink. Control Flow Semantics. MIT Press, 1996.

[21] E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems: A coalgebraic
approach. Theoret. Comput. Sci., 221, 1999.

[22] M. Escardó. Synthetic topology of data types and classical spaces. ENTCS, 87, 2004.

[23] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the π-calculus. In LICS 96,
1996.

[24] D. Friggens and R. Goldblatt. A modal proof theory for final polynomial coalgebras. Theoret.

Comput. Sci. To appear.

[25] R. Goldblatt. Metamathematics of modal logic I. Reports on Mathematical Logic, 6, 1976.

[26] R. Goldblatt. Observational ultraproducts of polynomial coalgebras. Ann. Pure Appl. Logic,
123, 2003.

[27] H. P. Gumm. Elements of the general theory of coalgebras. LUATCS’99, 1999.

[28] H. Hansen and C. Kupke. A coalgebraic perspective on monotone modal logic. In CMCS’04,
ENTCS 106, 2004.

ACM SIGACT News 18 Vol. —, No. —

[29] B. Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observations. In
preparation, draft electronically available.

[30] B. Jacobs. Objects and classes, co-algebraically. In Object-Orientation with Parallelism and

Persistence. Kluwer, 1996.

[31] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform.

Appl., 35, 2001.

[32] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin, 62,
1997.

[33] P. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[34] B. Jónsson and A. Tarski. Boolean algebras with operators, part 1. Amer. J. Math., 73, 1951.

[35] B. Jónsson and A. Tarski. Boolean algebras with operators, part 2. American Journal of

Mathematics, 74, 1952.

[36] C. Karp. Languages with Expressions of Infinite Length. North-Holland, 1964.

[37] B. Klin. An Abstract Coalgebraic Approach to Process Equivalence for Well-Behaved Opera-

tional Semantics. PhD thesis, University of Aarhus, 2004.

[38] B. Klin. The least fibred lifting and the expressivity of coalgebraic modal logic. In CALCO’05,
2005.

[39] J. Komenda and J. van Schuppen. Decentralized supervisory control with coalgebra. In
ECC’03, 2003.

[40] C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. In CMCS’04,
ENTCS 106, 2004.

[41] C. Kupke, A. Kurz, and D. Pattinson. Ultrafilter extensions of coalgebras. In CALCO’05,
LNCS 3629, 2005.

[42] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoret. Comput. Sci., 327, 2004.

[43] C. Kupke and Y. Venema. Closure properties of coalgebra automata. In LICS’05, 2005.

[44] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis, LMU,
2000.

[45] A. Kurz. A co-variety-theorem for modal logic. In Advances in Modal Logic 2. CSLI, 2001.

[46] A. Kurz. Coalgebras and Modal Logic - Course Notes for ESSLLI 2001. University of Helsinki,
2001.

[47] A. Kurz. Specifying coalgebras with modal logic. Theoret. Comput. Sci., 260, 2001.

[48] A. Kurz and J. Rosický. Operations and equations for coalgebras. Math. Structures Comput.

Sci., 15, 2005.

[49] S. Milius and L. Moss. The category theoretic solution of recursive program schemes. 2006.
Draft.

ACM SIGACT News 19 Vol. —, No. —

[50] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96, 1999.

[51] L. Moss and I. Viglizzo. Final coalgebras for functors on measurable spaces. Inform. and

Comput. To appear.

[52] T. Mossakowski, H. Reichel, M. Roggenbach, and L. Schröder. Algebraic-coalgebraic specifi-
cation in CoCASL. In WADT’02, LNCS 2755, 2003.

[53] A. Palmigiano. A coalgebraic view on positive modal logic. Theoret. Comput. Sci., 327, 2004.

[54] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local
consequence. Theoret. Comput. Sci., 309, 2003.

[55] D. Pattinson. An introduction to the theory of coalgebras, 2003. Course Notes for NASSLLI
2003.

[56] D. Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame

Journal of Formal Logic, 45, 2004.

[57] H. Reichel. An approach to object semantics based on terminal co-algebras. Math. Structures

Comput. Sci., 5, 1995.

[58] M. Rößiger. From modal logic to terminal coalgebras. Theoret. Comput. Sci., 260, 2001.

[59] J. Rothe, H. Tews, and B. Jacobs. The coalgebraic class specification language CCSL. J. Univ.

Comp. Sci., 7, 2001.

[60] J. Rutten. Automata and coinduction - an exercise in coalgebra. In CONCUR’98, LNCS 1466,
1998.

[61] J. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput. Sci., 249, 2000.

[62] J. Rutten. Coinductive counting with weighted automata. J. Autom. Lang. Comb., 8, 2003.

[63] J. Rutten. A tutorial on coinductive stream calculus and signal flow graphs. Theoret. Comput.

Sci., 343, 2005.

[64] L. Schröder. Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In FoSSaCS’05,
LNCS 3441, 2005.

[65] M. Smyth. Topology. In Handbook of Logic in Computer Science. OUP, 1993.

[66] I. Stark. A fully-abstract domain model for the π-calculus. In LICS 96, 1996.

[67] M. H. Stone. The theory of representations for boolean algebras. Trans. Amer. Math. Soc, 40,
1936.

[68] M. H. Stone. Topological representation of distributive lattices and Brouwerian lattices.
Časopis pěst. mat. fys., 67, 1937.

[69] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In LICS’97, 1997.

[70] J. van den Berg and B. Jacobs. The loop compiler for java and jml. In TACAS’01, LNCS
2031, 2001.

ACM SIGACT News 20 Vol. —, No. —

[71] Y. Venema. Automata and fixed point logics: a coalgebraic perspective. Inform. and Comput.

To appear.

[72] Y. Venema. Handbook of Modal Logic, chapter Algebras and Coalgebras. To appear. Electron-
ically available.

[73] S. J. Vickers. Topology Via Logic. CUP, 1989.

ACM SIGACT News 21 Vol. —, No. —

	Chapman University
	Chapman University Digital Commons
	2006

	Coalgebras and Their Logics
	Alexander Kurz
	Recommended Citation

	Coalgebras and Their Logics
	Comments
	Copyright

	Introduction
	Systems as Coalgebras
	Modal Logic
	Logics as Algebras
	Relating Algebras and Coalgebras via Stone Duality
	Notes

	Stone Duality
	The Representation Theorem for Boolean Algebras
	Stone Duality for Boolean Algebras
	A Sketch of the General Picture
	Notes

	Logics of Coalgebras
	Abstract Logics: Using the Duality
	Concrete Logics: Presenting Algebras and Functors
	Notes

	Outlook
	Some Notions of Category Theory

