11 research outputs found

    Fractional Integrals and Derivatives for Sumudu Transform on Distribution Spaces

    Get PDF
    We propose, in the present paper, the investigation of the Sumudu transformation for certain distribution spaces with regard to the fractional integral and differential operators of the transform. This paper is organized in two sections, first of which gives an abriged text on fractional operators and the Sumudu transform (which is less discussed and reserached). Basic concept in analysing the investigation is initiated by the fact that the Riemann-Liouville fractional integral can be expressed as one of the appropriate forms of the Abel integral equation, which is the second section of this paper

    On The Generalized Natural Transform

    Get PDF
    In this paper, we introduce the Natural transform in the generalized sense with the help of distribution theory. Inversion, Uniqueness theorems and some properties of generalized in¬tegral transform are proved

    APPLICATIONS OF GENERALIZED SUMUDU TRANSFORM

    Get PDF
    Objective: To solve Cauchy Problem for the Wave Equation in One Dimensional Space using the generalized Sumudu transform. Materials and Methods: We use the new integral transform called the Sumudu transform for the extension to a generalized space and we use the method for extension followed by Zemanian[29]. Results and Conclusion: In this paper, I have established the application of generalized Sumudu transform. To illustrate the applications of generalized Sumudu transform, I have applied it to solve the cauchy problem for the wave equation in one dimensional space where the initial conditions are generalized functions

    Fractional Tarig transform and Mittag - Leffler function

    Full text link

    New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus

    Get PDF
    This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention

    Fractional Calculus Operators and the Mittag-Leffler Function

    Get PDF
    This book focuses on applications of the theory of fractional calculus in numerical analysis and various fields of physics and engineering. Inequalities involving fractional calculus operators containing the Mittag–Leffler function in their kernels are of particular interest. Special attention is given to dynamical models, magnetization, hypergeometric series, initial and boundary value problems, and fractional differential equations, among others

    On the Solution of Distributional Abel Integral Equation by Distributional Sumudu Transform

    Get PDF
    Solution of the Abel integral equation is obtained using the Sumudu transform and further, distributional Sumudu transform, and, distributional Abel equation are established

    Special Functions: Fractional Calculus and the Pathway for Entropy

    Get PDF
    Historically, the notion of entropy emerged in conceptually very distinct contexts. This book deals with the connection between entropy, probability, and fractional dynamics as they appeared, for example, in solar neutrino astrophysics since the 1970's (Mathai and Rathie 1975, Mathai and Pederzoli 1977, Mathai and Saxena 1978, Mathai, Saxena, and Haubold 2010). The original solar neutrino problem, experimentally and theoretically, was resolved through the discovery of neutrino oscillations and was recently enriched by neutrino entanglement entropy. To reconsider possible new physics of solar neutrinos, diffusion entropy analysis, utilizing Boltzmann entropy, and standard deviation analysis was undertaken with Super-Kamiokande solar neutrino data. This analysis revealed a non-Gaussian signal with harmonic content. The Hurst exponent is different from the scaling exponent of the probability density function and both Hurst exponent and scaling exponent of the Super-Kamiokande data deviate considerably from the value of ½, which indicates that the statistics of the underlying phenomenon is anomalous. Here experiment may provide guidance about the generalization of theory of Boltzmann statistical mechanics. Arguments in the so-called Boltzmann-Planck-Einstein discussion related to Planck's discovery of the black-body radiation law are recapitulated mathematically and statistically and emphasize from this discussion is pursued that a meaningful implementation of the complex ‘entropy-probability-dynamics’ may offer two ways for explaining the results of diffusion entropy analysis and standard deviation analysis. One way is to consider an anomalous diffusion process that needs to use the fractional space-time diffusion equation (Gorenflo and Mainardi) and the other way is to consider a generalized Boltzmann entropy by assuming a power law probability density function. Here new mathematical framework, invented by sheer thought, may provide guidance for the generalization of Boltzmann statistical mechanics. In this book Boltzmann entropy, generalized by Tsallis and Mathai, is considered. The second one contains a varying parameter that is used to construct an entropic pathway covering generalized type-1 beta, type-2 beta, and gamma families of densities. Similarly, pathways for respective distributions and differential equations can be developed. Mathai's entropy is optimized under various conditions reproducing the well-known Boltzmann distribution, Raleigh distribution, and other distributions used in physics. Properties of the entropy measure for the generalized entropy are examined. In this process the role of special functions of mathematical physics, particularly the H-function, is highlighted

    Applied Mathematics and Fractional Calculus

    Get PDF
    In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia
    corecore