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Preface to “Special Functions: Fractional Calculus and 
the Pathway for Entropy” 

To commemorate the eightieth birthday of A. M. Mathai, we invited colleagues and former students 
to prepare special papers that meet Mathai’s academic interests as well as research and teaching 
achievements in one way or another. The papers of this Special Issue of Axioms bear evidence to Mathai’s 
everlasting and fundamental contributions to the development of mathematics, statistics, and their 
applications in natural sciences. 

We wish to thank all contributors to this Special Issue of Axioms for the care they exercised in the 
composition of their papers. With the broad spectrum from fractional calculus and special functions of 
mathematical physics to Mathai’s entropic pathway and solar neutrinos, we hope that this Festschrift will 
be useful and exciting for fellow colleagues and future students working in the eld related to entropy, 
probability, and fractional dynamics as provided by mathematics, physics, and statistics. None of this 
would have been possible without the help and support of Axioms sta, particularly Qiang Liu and Luna 
Shen. We would like to thank all of them for their professional editing and handling of the papers and this 
volume as a whole, as well as their patience in long-term and long-distance international cooperation that 
also has been made possible by mechanisms of the United Nations. 

A.M. Mathai (Figure 1) was born on 28 April 1935 in Arnakulam, near Palai, in the Idukki district of 
Kerala, India, as the eldest son of Aley and Arakaparampil Mathai. After completing his high school 
education in 1953 at St. Thomas High School, Palai, he joined St. Thomas College, Palai, with record 
marks and obtained his B.Sc. degree in mathematics in 1957. In 1959 he completed his Master’s degree in 
statistics at the University of Kerala, Thiruvananthapuram, Kerala, India; he achieved the university 
degree First Class, First Rank and Gold Medal. Then he joined St. Thomas College, Palai, University of 
Kerala, as a Lecturer in Statistics and served there until 1961. He obtained a Canadian Commonwealth 
scholarship in 1961 and went to the University of Toronto, Canada to complete his M.A. degree in 
mathematics in 1962. He was awarded a Ph.D. from the University of Toronto, Canada, in 1964. Mathai 
joined McGill University, Montreal, Canada, as an Assistant Professor until 1968. From 1968 to 1978 he 
was an Associate Professor there. He became a Full Professor at McGill University in 1979 (at this occasion 
also contributing to the anniversary of Albert Einstein’s birthday) and served the Department of 
Mathematics and Statistics until 2000. Mathai is the founder of the Canadian Journal of Statistics and the 
Statistical Society of Canada. As of this date, A.M. Mathai is an Emeritus Professor of Mathematics and 
Statistics at McGill University, Canada, and Director of the Centre for Mathematical and Statistical 
Sciences, India. He has published over 400 research papers and more than 47 books on topics in 
mathematics, statistics, (astro)physics, chemistry, and biology. He is a Fellow of the Institute of 
Mathematical Statistics, National Academy of Sciences of India, served as President of the Mathematical 
Society of India, and a Member of the International Statistical Institute. At several occasions he has been 
honored by the United Nations for his services to the international scientific community in terms of 
education and research in mathematics, statistics, and natural sciences. 



Figure 1. Professor A.M. Mathai, Director of the Centre for Mathematical and Statistical Sciences in a
typical pose when engaging visitors in technical discussions at the Centre.

Figure 2. The famous painting of Evert Collier (1640-1708) showing ’The Wise Scholar’ in research
spirit engaged in thinking, reading, and scrippling, more than 350 years before Mathai appeared in a
similar situation as shown in Figure 1 (Private Collection Haubold, Vienna and New York).

Outline of Mathai’s Long-Term Research Programme: From Neutrinos, Entropy, and Probability

to Fractional Dynamics (reaction and diffusion)

This Festschrift is a collection of independent essays illustrating elements of Mathai’s research
programme in mathematics and statistics applied to selected problems in physics, particularly the
relations between entropy, probability, and fractional dynamics as they appeared in solar neutrino
astrophysics since the 1970’s. The very original research programme was published in three
monographs (Mathai and Rathie 1975, Mathai and Pederzoli 1977, Mathai and Saxena 1978). An
update of Mathai’s research programme and selected results achieved since the 1970’s is contained in
Mathai et al. (1988, 2010).

Boltzmann’s derivation of the second law of thermodynamics was based on mechanics arguments.
In his paper of 1872, Boltzmann considered the dynamics of binary collisions and stated that "One
has therefore rigorously proved that, whatever the distribution of the kinetic energy at the initial time
might have been, it will, after a very long time, always necessarily approach that found by Maxwell"
(Boltzmann 1872). Boltzmann’s Stosszahlansatz, i.e. the assumption of molecular chaos used in his
equation, was a statistical assumption which had no dynamical basis. His equally famous relation
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between entropy and probability, S ∼ logW, in his paper "On the relation between the second law of
the mechanical theory of heat and probability theory with respect to the laws of thermal equilibrium"
(Boltzmann 1877) was not based on dynamics either. At that time Boltzmann’s Stosszahlansatz was
heavily criticized by Loschmidt’s reversibility paradox (Boltzmann 1877) and Zermelo’s recurrence
paradox (Boltzmann 1896, 1897).

In the remarkable year 1900 for physics, Planck elaborated on the connection between entropy and
probability based on the universality of the second law of thermodynamics and the established laws of
probability and put in writing the final form of the relation between entropy S and permutability P ∼ W
in its definitive form S = klogW. He called k Boltzmann’s constant and came to the conclusion that in
every finite region of phase space the thermodynamic probability has a finite magnitude limited by h,
representing Planck’s constant. At this point Planck introduced his quantum hypothesis (Schoepf 1978).
Concerning Planck’s hypothesis of light quanta he strictly preserved Maxwell’s theory in vacuum and
applied the quantum hypothesis only to matter that interacts with radiation (Planck 1907).

In 1911 at the first Solvay Conference, Einstein literally put it as an requirement that one needs
a fundamental theory of dynamics to make sense of Boltzmann’s connection between entropy and
probability, even in the case of Planck’s use of Boltzmann’s formula in the process of discovery of
the quantum of action. Einstein’s immediate reaction to Planck’s extensive report at the first Solvay
Congress was (Eucken 1914):

"What I find strange about the way Mr. Planck applies Boltzmann’s equation is that he
introduces a state probability W without giving this quantity a physical definition. If one
proceeds in such a way, then, to begin with, Boltzmann’s equation does not have a physical
meaning. The circumstance that W is equated to the number of complexions belonging to a
state does not change anything here; for there is no indication of what is supposed to be
meant by the statement that two complexions are equally probable. Even if it were possible
to define the complexions in such a manner that the S obtained from Boltzmann’s equation
agrees with experience, it seems to me that with this conception of Boltzmann’s principle it
is not possible to draw any conclusions about the admissibility of any fundamental theory
whatsoever on the basis of the empirically known thermodynamic properties of a system."

Recently, Brush (2015) commented on the above Boltzmann-Planck-Einstein dispute from a
historical point of view on how the interaction of theory and experiment in physics with available
applicable mathematics and statistics lead to established theories and subsequently to predictions and
explanations of natural phenomena. He perceives Planck’s derivation of an equation for black-body
radiation that this equation, when explored with Boltzmann’s formula for entropy, implied that
radiation is composed of particles. Planck, as a strong supporter of the wave theory of electromagnetic
radiation, could not believe what the mathematics was telling him. Similarly, Kuhn (1978) pointed out
that Planck did not propose a physical quantum theory but he used quantization only as a convenient
method of approximation.

Following the above reasoning of Boltzmann, Planck, and Einstein, the Mathai programme
turned to neutrino radiation and utilized the statistical methodology developed by Scafetta (2010) by
evaluating the scaling exponent of the probability density function, through Boltzmann’s entropy, of
the diffusion process generated by complex fluctuations in the measurements of the solar neutrino
flux in the Super-Kamiokande experiment (Yoo et al. 2003, Cravens et al. 2008, Sakaurai 2014,
Haubold et al. 2014). This turn was justified by earlier explorations of possible solutions to the
so-called solar neutrino problem, established in Davis’ Homestake experiment (Treder 1974, Haubold
and John 1978, Haubold and Gerth 1985). Scafetta’s method does focus on the scaling properties of the
Super-Kamiokande time series (see Figure 3) generated by a supposedly unknown complex dynamical
phenomenon. By summing the terms of such a time series one gets a trajectory and this trajectory
can be used to generate a diffusion process. The method is thus based upon the evaluation of the
Boltzmann entropy of the probability density function of a diffusion process. The numerical result of
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diffusion entropy analysis of the solar neutrino data from Super-Kamiokande is shown in Figure 4.

Figure 3. Super-Kamiokande I (1996–2001: 1496 days), II (2002-2005: 791 days), III, and IV solar
neutrino data (Y. Takeuchi 2017), http://vietnam.in2p3.fr/2017/neutrinos/program.php.

Figure 4. Diffusion Entropy Analysis and Standard Deviation Analysis of the Super-Kamiokande I and
II solar neutrino data (Haubold et al. 2014).
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In principle, one can perceive the graphical result in Figure 4 of the diffusion entropy analysis (and
standard deviation analysis for comparison) of solar neutrino radiation similar to Planck’s analysis
of black body radiation. What physical meaning this carries remains to be seen. Assuming that the
solar neutrino signal is governed by a probability density function (pdf) with scaling given by the
asymptotic time evolution of a pdf, obeying the property:

p(x, t) =
1
tδ

F(
x
tδ
),

where δ denotes the scaling exponent of the pdf. The scaling exponent δ can be expressed in terms of
respective parameters introduced in generalized entropies (Tsallis 2009, Mathai et al. 2010).

Todays perception of the quantum mechanics of neutrino flavour oscillations can be analyzd in
a variety of ways in physics. There are treatments of this oscillation phenomenon based on plane
waves, on wave packets, and on quantum field theory. These treatments have yielded the standard
expression for the probability of oscillations. Neutrinos have been detected in three distinct flavours
which interact in particular ways with electrons, muons, and tau leptons, respectively. Flavour
oscillations occur because the flavour states are distinct from the neutrino mass states. In particular,
a given flavour state may be represented as a coherent superposition of different mass states. In the
recent MINOS experiment it was discovered that the phenomenon of neutrino oscillations violates
the Leggett-Garg inequality, an analogue of Bell’s inequality, involving correlations of measurements
on neutrino oscillations at different times (Formaggio et al. 2017). The MINOS experiment analysis
did show a violation of the classical limits imposed by the Leggett-Garg inequality. This provided
evidence for the existence of the quantum effect of entanglement between the mass eigenstates which
make up a flavour state. The entropy of entanglement (Liu et al. 2017) is an entanglement measure
for a many-body quantum state and the question arises if the results shown in Figure 4 may find an
interpretation in terms of the evolution of an entanglement entropy over time.

Back to Figure 4, it shows a phenomenon that follows certain scaling laws. This Diffusion Entropy
Analysis (DEA) measures the correlated variations in the Super-Kamiokande solar neutrino time
series. The analysis is based on the diffusion process generated by the time series and measures the
time evolution of the Boltzmann entropy of the probability density function of this diffusion process,
possibly a quantum diffusion phenomenon. Similar to Brownian motion trajectories, the value of a
time series is intepreted as the steps of a diffusion process. The trajectories of this process are defined
by the cumulative sum of these steps and obtain a different trajectory for each value of the time series
over the full period of time of measurements. Subsequently the probability density function p(x, t) is
evaluated that describes the probability that a given trajectory has a displacement of x after t steps.
For every particular t the temporal Boltzmann entropy of the probability density function p(x, t) at
time t is evaluated by S(t) = δlogt, where δ is the diffusion exponent. For a random uncorrelated
diffusion process with finite variance, the p(x, t) will converge according to the Central Limit Theorem
to a Gaussian pdf which exhibits δ = 1/2. Figure 4 shows clearly that all δ’s are different from the
value δ = 1/2. These diffusion exponents are non-Gaussian and exhibit diffusive fluctuations that
cannot be modeled by random Gaussian diffusion processes.

To evaluate the Boltzmann entropy of the diffusion process at time t, Scafetta (2010) defined S(t) as:

S(t) = −
∫ +∞

−∞
dx p(x, t) ln p(x, t)

and with the previous p(x, t), one has:

S(t) = A + δ ln(t), A = −
∫ +∞

−∞
dyF(y) ln F(y).

The scaling exponent, δ, is the slope of the entropy against the logarithmic time scale. The slope
is visible in Figures 4 for the Super-Kamiokande data I and II measured for the solar neutrino fluxes
generated in 8B and hep nuclear reactions in the gravitationally stabilized solar fusion reactor. The

xiii



Hurst exponents of the Standard Deviation Analysis (SDA) of the same time series are H = 0.66 and
H = 0.36 for 8B and hep, respectively, shown in Figure 4. The pdf scaling exponents for DEA are
δ = 0.88 and δ = 0.80 for 8B and hep, respectively. The values for both SDA and DEA indicate a
deviation from Gaussian behavior, which would require that H = δ = 1/2

One of the well known random walk models is the Continuous Time Random Walk (CTRW)
introduced by Montroll and Weiss (Oppenheim et al. 1977). It describes a large class of random
walks, both normal and anomalous, and can be described as follows. Suppose a particle performs a
random walk in such a way that the individual jump x in space is governed by a probability density
function and that all jumps are independent and identically distributed. The characteristic function
of the position of the particle relative to the origin after n jumps is f n(k), where f ∗(k) is the Fourier
transform of f (x). Unlike discrete time random walks, the CTRW describes a situation where the
waiting time t between jumps is not a constant. Rather, the waiting time is governed by the pdf ψ(t)
and all waiting times are mutually independent and identically distributed. Thus, the number of
jumps n is a random variable. Let p(x, t) be the Green function of the CTRW, the Montroll–Weiss
equation yields this function in Fourier–Laplace (k, u) space:

p (k, u) =
1 − ψ(u)

u
1

1 − f ∗ (k)ψ (u)
.

All along the above the convention was used that the arguments in the parenthesis define the
space we are working in, thus ψ(u) is the Laplace transform of ψ(t). Properties of p(x, t) based on the
Fourier–Laplace inversion of the previous equation are well investigated, see Mainardi et al. (2001).
In particular, it is well known that the asymptotic behavior of p (x, t) depends on the long time
behavior of ψ(t). An important assumption made in the derivation of the previous equation is
that the random walk begun at time t = 0. More precisely, it is assumed that the pdf of the first
waiting time, i.e., the time elapsing between start of the process at t = 0 and the first jump event
is ψ(t). Thus the Montroll-Weiss CTRW approach describes a particular choice of initial conditions,
called non-equilibrium initial conditions.

The following diffusion model utilizes fractional-order spatial and fractional-order temporal
derivatives (Naik and Haubold 2016)

0Dβ
t p(x, t) = η xDα

θ p(x, t),

with the initial conditions 0Dβ−1
t p(x, 0) = σ(x), 0 ≤ β ≤ 1, limx→±∞ p(x, t) = 0, where η is a diffusion

constant; η, t > 0, x ∈ R; α, θ, β are real parameters with the constraints 0 < α ≤ 2, |θ| ≤ min(α, 2 − α),
and δ(x) is the Dirac-delta function. Then for the fundamental solution of the previous fractional
differential equation with initial conditions, there holds the formula

p(x, t) =
tβ−1

α|x| H2,1
3,3

[ |x|
(ηtβ)1/α

∣∣∣(1,1/α),(β,β/α),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]
, α > 0

where ρ = α−θ
2α , in terms of Fox’s H-function. The following special cases of the previous fractional

differential equation are of special interest for fractional diffusion models:
(i) For α = β, the corresponding solution of the fractional differential equation, denoted by pθ

α,
can be expressed in terms of the H-function and can be defined for x > 0:
Non-diffusion: 0 < α = β < 2; θ ≤ min {α, 2 − α} ,

pθ
α(x, t) =

tα−1

α|x| H2,1
3,3

[ |x|
tη1/α

∣∣∣(1,1/α),(α,1),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]
, ρ =

α − θ

2α
.
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(ii) When β = 1, 0 < α ≤ 2; θ ≤ min {α, 2 − α}, then the previous fractional differential equation
reduces to the space-fractional diffusion equation, which is the fundamental solution of the following
space-time fractional diffusion model:

∂p(x, t)
∂t

= η xDα
θ p(x, t), η > 0, x ∈ R,

with the initial conditions p(x, t = 0) = σ(x), lim
x→±∞

p(x, t) = 0, where η is a diffusion constant and

σ(x) is the Dirac-delta function. Hence for the solution of the previous fractional differential equation
there holds the formula

pθ
α(x, t) =

1
α(ηt)1/α

H1,1
2,2

[
(ηt)1/α

|x|
∣∣∣∣(1,1),(ρ,ρ)
( 1

α , 1
α ),(ρ,ρ)

]
, 0 < α < 1, |θ| ≤ α,

where ρ = α−θ
2α . The density represented by the above expression is known as α-stable Lévy density.

Another form of this density is given by

pθ
α(x, t) =

1
α(ηt)1/α

H1,1
2,2

[ |x|
(ηt)1/α

∣∣∣∣(1− 1
α , 1

α ),(1−ρ,ρ)
(0,1),(1−ρ,ρ)

]
, 1 < α < 2, |θ| ≤ 2 − α.

(iii) If one takes α = 2, 0 < β < 2; θ = 0, then one obtains the time-fractional diffusion, which is
governed by the following time-fractional diffusion model:

∂β p(x, t)
∂tβ

= η
∂2

∂x2 p(x, t), η > 0, x ∈ R, 0 < β ≤ 2,

with the initial conditions
0Dβ−1

t p(x, 0) = σ(x),0 Dβ−2
t p(x, 0) = 0, for x ∈ r, limx→±∞ p(x, t) = 0, where η is a diffusion constant

and σ(x) is the Dirac-delta function, whose fundamental solution is given by the equation

p(x, t) =
tβ−1

2|x| H1,0
1,1

[ |x|
(ηtβ)1/2

∣∣∣(β,β/2)
(1,1)

]
.

(iv) If one sets α = 2, β = 1 and θ → 0, then for the fundamental solution of the standard
diffusion equation

∂

∂t
p(x, t) = η

∂2

∂x2 p(x, t),

with initial condition p(x, t = 0) = σ(x), limx→±∞ p(x, t) = 0, there holds the formula

p(x, t) =
1

2|x|H1,0
1,1

[ |x|
η1/2t1/2

∣∣∣(1,1/2)
(1,1)

]
= (4πηt)−1/2 exp[−|x|2

4ηt
],

which is the classical Gaussian density.
In a different way the above fractional differential equations for p(x, t) can also be written

(Pagnini 2012)
∂p(x, t)

∂t
=

2H
β

t2H−1 Dβ−1,1−β
2H/β

∂2 p(x, t)
∂x2 ,

where Dξ,μ
η is the Erdélyi–Kober fractional derivative with respect to t and then the process was

also referred to as Erdélyi–Kober fractional diffusion. Special cases of the previous equation are: the
classical diffusion (β = 2H = 1), the fractional Brownian motion master equation (β = 1), and the
time-fractional diffusion equation (β = 2H). A similar approach can be developed in the framework
of the space-time fractional diffusion equation, which includes all its special cases. Propagation of
neutrino radiation may put forward a new class of phenomena that nonequiilibrium quantum systems
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may exhibit as shown in Figure 2. This could be an Erdélyi-Kober fractional diffusion operator, a
mathematical operator that describes the evolution of the probability density function of the quantum
system, and the partition function which describes the statitiscal properties of the system in thermal
nonequilibrium with the environment. This will be worked out in future research.

History has seen a great relation between mathematics and statistics and their impact on physics:
Mathematical structures entered the development of theoretical physics or, vice versa, problems aising
in physics influenced strongly developments in mathematics and statistics. Famous nineteenth-century
and twentieth-century examples are Boltzmann’s statistical mechanics and the mathematical concept of
entropy, the role of Riemannian geometry in general relativity, and the influence of quantum mechanics
in the development of functional analysis. Einstein finalized general relativity in 1915 and quantum
feld theory has been an open problem since its foundation in 1927 by Dirac. Today there are three
fundamental theories in twenty-first century physics: statistical mechanics, general relativity, and
quantum field theory. These theories describe the same natural world on very different scales. General
relativity describes gravitation on an astronomical scale, quantum field theory describes the interaction
of elementary particles through electromagnetic, strong, and weak forces, and statistical mechanics
starts from appropriate microscopic laws (classical, relativistic, quantum) and by adequately using
probability theory, to ultimately arrive to the thermodynamical relations and laws. The unification
of such theories is pursued by mathematicians and physicists so far with no great success. Einstein
invented general reativity to resolve an inconsistency between special relativity and Newtonian gravity.
Quantum field theory was invented to reconcile Maxwell’s electromagnetism and special relativity with
nonrelativistic quantum mechanics. Einstein’s thought experiments guided the discovery of general
relativity based on the mathematics of Riemannian geometry. For quantum field theory experimental
results played the important role with no a priori mathematical model available. Boltzmann-Gibbs
entropy works perfectly but only within certain limits and if the physical system is out of equilibrium
or its component states depend strongly on one another a generalized entropy should be used.
Witten (1987) summarized this situation by saying that

"Experiment is not likely to provide detailed guidance about reconciliation of general
relativity with quantum field theory. One might, therefore, believe that the only hope
is to emulate the history of general relativity, inventing by sheer thought a new
mathematical framework which will generalize Riemannian geometry and will be capable
of encompassing quantum field theory. Many ambitious theoretical physicists have
aspiredto do such a thing, but little has come of such efforts."

In the above sense, Mathai’s research programme is analysing data of solar neutrino experiments to
better understand the theory of ’entropy, probability, and fractional dynamics’.

 Hans J. Haubold 
Special Issue Editor 

Office for Outer Space Affairs, United Nations, Austria 
Centre for Mathematical and Statistical Sciences, India
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Abstract: Boltzmann introduced in the 1870s a logarithmic measure for the connection between
the thermodynamical entropy and the probabilities of the microscopic configurations of the
system. His celebrated entropic functional for classical systems was then extended by Gibbs to
the entire phase space of a many-body system and by von Neumann in order to cover quantum
systems, as well. Finally, it was used by Shannon within the theory of information. The simplest
expression of this functional corresponds to a discrete set of W microscopic possibilities and is
given by SBG = −k ∑W

i=1 pi ln pi (k is a positive universal constant; BG stands for Boltzmann–Gibbs).
This relation enables the construction of BGstatistical mechanics, which, together with the Maxwell
equations and classical, quantum and relativistic mechanics, constitutes one of the pillars of
contemporary physics. The BG theory has provided uncountable important applications in physics,
chemistry, computational sciences, economics, biology, networks and others. As argued in the
textbooks, its application in physical systems is legitimate whenever the hypothesis of ergodicity is
satisfied, i.e., when ensemble and time averages coincide. However, what can we do when ergodicity
and similar simple hypotheses are violated, which indeed happens in very many natural, artificial
and social complex systems. The possibility of generalizing BG statistical mechanics through a

family of non-additive entropies was advanced in 1988, namely Sq = k 1−∑W
i=1 pq

i
q−1 , which recovers

the additive SBG entropy in the q → 1 limit. The index q is to be determined from mechanical
first principles, corresponding to complexity universality classes. Along three decades, this idea
intensively evolved world-wide (see the Bibliography in http://tsallis.cat.cbpf.br/biblio.htm) and
led to a plethora of predictions, verifications and applications in physical systems and elsewhere.
As expected, whenever a paradigm shift is explored, some controversy naturally emerged, as well,
in the community. The present status of the general picture is here described, starting from its
dynamical and thermodynamical foundations and ending with its most recent physical applications.

Keywords: complex systems; statistical mechanics; non-additive entropies; ergodicity breakdown

1. Introduction

In light of contemporary physics, the qualitative and quantitative study of nature may be done
at various levels, which here we refer to as microcosmos, mesocosmos and macrocosmos. At the
macroscopic level, we have thermodynamics; at the microscopic level, we have mechanics (classical,
quantum, relativistic mechanics, quantum chromodynamics) and the laws of electromagnetism,
which enable in principle the full description of all of the degrees of freedom of the system;
at the mesoscopic level, we focus on the degrees of freedom of a typical particle, representing,
in one way or another, the behavior of most of the degrees of freedom of the system. The laws that
govern the microcosmos together with theory of probabilities are the basic constituents of statistical
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mechanics, a theory, which then establishes the connections between these three levels of description
of nature. At the microscopic level, we typically address classical or quantum equations of evolution
with time, trajectories in phase space, Hamiltonians, Lagrangians, among other mathematical objects.
At the mesoscopic level, we address Langevin-like, master-like and Fokker–Planck-like equations.
Finally, at the macroscopic level, we address the laws of thermodynamics with its concomitant
Legendre transformations between the appropriate variables.

In all of these theoretical approaches, the thermodynamical entropy S, introduced by Clausius
in 1865 [1] and its corresponding entropic functional S({pi}) play a central role. In a stroke of genius,
the first adequate entropic functional was introduced (for what we nowadays call classical systems)
by Boltzmann in the 1870s [2,3] for a one-body phase space and was later on extended by Gibbs [4]
to the entire many-body phase space. Half a century later, in 1932, von Neumann [5] extended the
Boltzmann–Gibbs (BG) entropic functional to quantum systems. Finally, in 1942, Shannon showed [6]
the crucial role that this functional plays in the theory of communication. The simplest expression of
this functional is that corresponding to a single discrete random variable admitting W possibilities
with nonvanishing probabilities {pi}, namely:

SBG = −k
W

∑
i=1

pi ln pi

( W

∑
i=1

pi = 1
)

(1)

where k is a conventional positive constant (in physics, typically taken to be the Boltzmann constant kB).
This expression enables, as is well known, the construction of what is usually referred to as (BG)
statistical mechanics, a theory that is notoriously consistent with thermodynamics. To be more precise,
what is well established is that the BG thermostatistics is sufficient for satisfying the principles and
structure of thermodynamics. Whether it is or not also necessary is a most important question that
we shall address later on in the present paper. This crucial issue and its interconnections with the
Boltzmann and the Einstein viewpoints have been emphatically addressed by E.G.D. Cohen in his
acceptance lecture of the 2004 Boltzmann Award [7].

On various occasions, generalizations of the expression (1) have been advanced and studied in
the realm of information theory. In 1988, [8] (see also [9,10]) the generalization of the BG statistical
mechanics itself was proposed through the expression:

Sq = k
1−∑W

i=1 pq
i

q− 1
= k

W

∑
i=1

pi lnq
1
pi

( W

∑
i=1

pi = 1; q ∈ R; S1 = SBG

)
(2)

where the q-logarithmic function is defined through lnq z ≡ z1−q−1
1−q (ln1 z = ln z). Its inverse function is

defined as ez
q ≡ [1+ (1− q)z]

1
1−q (ez

1 = ez). Various predecessors of Sq, q-exponentials and q-Gaussians
abound in the literature within specific historical contexts (see, for instance, [11] for a list with
brief comments).

2. Additive Entropy versus Extensive Entropy

2.1. Definitions

An entropic functional S({pi}) is said to be additive (we are adopting Oliver
Penrose’s definition [12]) if, for any two probabilistically independent systems A and B
(i.e., pA+B

i,j = pA
i pB

j , ∀(i, j)),

S(A + B) = S(A) + S(B) [S(A + B) ≡ S({pA+B
i,j }); S(A) ≡ S({pA

i }); S(B) ≡ S({pB
j })] (3)

2
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It can be straightforwardly proven that Sq satisfies:

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1− q)
Sq(A)

k
Sq(B)

k
(4)

Consequently, SBG = S1 is additive, whereas Sq is non-additive for q 	= 1.
The definition of extensivity is much more subtle and follows thermodynamics. A specific entropic

functional S({pi}) of a specific system (or a specific class of systems, with its N elements with their
corresponding correlations) is said to be extensive if:

0 < lim
N→∞

S(N)

N
< ∞ (5)

i.e., if S(N) grows like N for N >> 1, where N ∝ Ld, d being the integer or fractal dimension of the
system, and L its linear size.

Let us emphasize that determining whether an entropic functional is additive is a very simple
mathematical task (due to the hypothesis of independence), whereas determining if it is extensive for
a specific system can be a very heavy one, sometimes even intractable.

2.2. Probabilistic Illustrations

If all nonzero-probability events of a system constituted by N elements are equally probable,
we have pi = 1/W(N), ∀i.

In that case, SBG(N) = k ln W(N) and Sq(N) = k lnq W(N).
Therefore, if the system satisfies W(N) ∝ μN (μ > 1; N → ∞) (e.g., for independent coins,

we have W(N) = 2N), referred to as the exponential class, we have that the additive entropy SBG is
also extensive. Indeed, SBG(N) ∝ N. For all other values of q 	= 1, we have that the non-additive
entropy Sq is nonextensive.

However, if we have instead a system such that W(N) ∝ Nρ (ρ > 0; N → ∞), referred to as the
power-law class, we have that the non-additive entropy Sq is extensive for:

q = 1− 1
ρ

(ρ > 0) (6)

Indeed, S1−1/ρ(N) ∝ N. For all other values of q (including q = 1), we have that Sq is nonextensive
for this class; the extensive entropy corresponding to the limit ρ→ ∞ precisely is the additive SBG.

Let us now mention another, more subtle, case where the nonzero probabilities are not equal [13].
We consider a triangle of N (N = 2, 3, 4, ...) correlated binary random variables, say n heads and
(N− n) tails (n = 0, 1, 2, ..., N). The probabilities pN,n (∑N

n=0 pN,n = 1 , ∀N) are different from zero only
within a strip of width d (more precisely, for n = 0, 1, 2, ..., d)) and vanish everywhere else. This specific
probabilistic model is asymptotically scale-invariant (i.e., it satisfies the so-called Leibniz triangle rule
for N → ∞): see [13] for full details. For this strongly-correlated model, the non-additive entropy Sq is
extensive for a unique value of q, namely:

q = 1− 1
d

(d = 1, 2, 3, ...) (7)

We see that the extensive entropy corresponding to the limit d→ ∞ precisely is the additive SBG.
These examples transparently show the important difference between entropic additivity and

entropic extensivity. What has historically occurred is that, during 140 years, most physicists have
been focusing on systems that belong to the exponential class, typically either non-interacting
systems (ideal gas, ideal paramagnet) or short-range-interacting ones (e.g., d-dimensional Ising,
XY and Heisenberg ferromagnets with first-neighbor interactions). Since for this class, but not so for
many others, the additive BG entropic functional is also extensive, a frequent confusion has emerged

3
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in the understanding of very many people and textbooks, which has led, and is unfortunately still
leading, to somehow considering additive and extensive as synonyms, which is definitively false
(this error is so easy to make, such that, by inadvertence, the book [14] by Gell-Mann and myself was
entitled Nonextensive Entropy, whereas it should have been entitled Non-additive Entropy; obviously,
we definitively regret this misnomer).

Further classes of systems do exist, for example the stretched exponential one, for which other
entropic functionals (e.g., Sδ [15]) are necessary in order to achieve extensivity. Indeed, no value of q
exists such that Sq(N) ∝ N for this class. In fact, a plethora of entropic functionals are now available in
the information-theory literature (see, for instance, [16–29]).

2.3. Physical Illustrations

The entropic index q is to be determined from first principles, namely from the time evolution
(in phase space, Hilbert space and analogous) of the state of the full system. This typically is
an analytically hard task. Nevertheless, this task has been accomplished in some few cases. Let us
briefly review some of them:

1. The logistic map at its Feigenbaum point;
2. The entropy of a subsystem of a (1 + 1)-dimensional system characterized by a central charge c at

its quantum critical point;
3. The entropy of a subsystem of a (1+ 1)-dimensional generalized isotropic Lipkin–Meshkov–Glick

model at its quantum critical point.

For the logistic map xt+1 = 1− ax2
t (0 < a < 2; t = 0, 1, 2, ...; xt ∈ [−1, 1], we have that a value

of q exists, such that Sq asymptotically increases linearly with time, where the value of q is dictated
by the Lyapunov exponent being positive or zero, which in turn depends on the value of the external
parameter a. To be more precise, we assume the interval [−1, 1] of x divided into W tiny intervals
(identified with i = 1, 2, ..., W); we then place in one of those intervals many M initial conditions
(with M >> W); and finally, we iterate the map for each of these initial conditions. The number
of points Mi(t) that are located at the i-th interval satisfy ∑W

i=1 Mi(t) = M , ∀t. We define next the

probabilities pi(t) ≡ Mi(t)/M, which enable the evaluation of the entropy Sq(t)/k =
1−∑W

i=1[pi(t)]q

q−1 .

It can be shown that a unique value of q exists such that Kq ≡ limt→∞ limW→∞ limM→∞
Sq(t)/k

t is finite.
For any value of q above this special one, the ratio Kq vanishes, and for any value of q below this
special one, the ratio Kq diverges.

For all values of a such that the Lyapunov exponent λ1 is positive (i.e., in the presence of strong
chaos, where the sensitivity to the initial conditions ξ ≡ limΔx(0)→0

Δx(t)
Δx(0) increases exponentially with

time, ξ = eλ1 t), we have that q = 1, and the ratio precisely equals the Lyapunov exponent (i.e., K1 = λ1;
Pesin-like identity).

In contrast, at the edge of chaos, i.e., for the value of a where successive bifurcations accumulate
(sometimes referred to as the Feigenbaum point), i.e., a = 1.401155189092..., we have that the Lyapunov
exponent vanishes, and consistently [30,31],

q = 0.244487701341282066198... (8)

(in fact, 1018 exact digits are numerically known nowadays [32]; see [11] for full details). At such

special values of a, we verify that ξ = e
λq t
q , where a q-generalized version of the Pesin-like identity

has been rigorously established [31]. The edge of chaos of logistic-like maps provides a remarkable
connection of q-statistics with multifractals [30]. This is particularly welcome because the postulate
of the entropy Sq in order to have a basis for generalizing BG statistics was inspired precisely by the
structure of multifractals. The present status of our knowledge strongly suggests that a BG system
typically “lives” in a smoothly-occupied phase-space, whereas the systems obeying q-statistics “live”
in hierarchically-occupied phase-spaces.

4
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Let us now address the entropy of an L-sized block of an N-sized quantum system at its
quantum critical point, belonging to the universality class, which is characterized by a central charge c
(e.g., the universality classes of the short-range Ising and the short-range isotropic XY ferromagnets
correspond respectively to c = 1/2 and c = 1). It has been shown [33] that Sq is extensive for:

q =

√
9 + c2 − 3

c
(9)

We verify that c→ ∞ yields q = 1 (BG).
Finally, let us address the generalized isotropic Lipkin–Meshkov–Glick model [34], characterized

by (m, k), where m is the number of states of the model (e.g., if the system is constituted by s-sized
spins, we have m = 2s, s = 1/2, 1, 3/2, ...), and k (k = 0, 1, 2, ...) is the number of vanishing magnon
densities. The entropy Sq is extensive for:

q = 1− 2
m− k

= 1− 2
2s− k

(m− k = 2s− k ≥ 3; q ≥ 1/3) (10)

Notice that, in the limit s→ ∞, q = 1 (BG).
Numerical results are available as well in the literature. For example, for a random antiferromagnet

with s-sized spins, we have [35]:

q � 1− 1.67
ln(2s + 1)

(11)

Before we proceed with analyzing thermodynamical aspects, let us stress that we have addressed
here two different types of linearities, the thermodynamical one (i.e., Sq(N) ∝ N) and the dynamical
one (i.e., Sq(t) ∝ t). Although the nature of these linearities is different and even the values of q,
which guarantee them, may be different (although possibly related), there are reasons to expect both
to be satisfied on similar grounds: this question was in fact (preliminarily) addressed in [36] and
elsewhere.

2.4. Renyi Entropy versus q-Entropy

Let us address here a question that frequently appears in the literature, generating some degree
of confusion. We refer to the discussion of Renyi entropy versus q-entropy on thermodynamical and
dynamical grounds. The Renyi entropy [16] is defined as:

SR
q ≡

ln ∑W
i=1 pq

i
1− q

( W

∑
i=1

pi = 1; q ∈ R; SR
1 = SBG

)
(12)

hence:

SR
q =

ln[1 + (1− q)Sq/k]
1− q

(13)

It is straightforward to verify that SR
q (Sq) is a monotonic function of Sq, ∀q. Consequently,

under the same constraints, the extremization of SR
q yields precisely the same distribution as the

extremization of Sq (in total analogy with the trivial fact that maximizing, under the same constraints,
SBG or say [SBG]

3 yields one and the same BG exponential weight). This mathematical triviality is at
the basis of sensible confusion in the minds of some members of the community. Thermodynamics and
statistical mechanics is much more than a mere probability distribution, and the reader has surely never
seen, and this for more than one good reason, constructing a successful theory such as thermodynamics
by using say [SBG]

3 instead of SBG.
To make things more precise, let us list now several important differences between Sq and SR

q
(see, for instance, [11] and the references therein).

5
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(i) Additivity: If A and B are two arbitrary probabilistically-independent systems, SR
q is additive,

∀q, whereas Sq satisfies the non-additive property in Equation (4).
(ii) Concavity: Sq({pi}) is concave for all q > 0, whereas SR

q ({pi}) is concave only for 0 < q ≤ 1.
Both Sq and SR

q are convex for q < 0. These properties have consequences for characterizing the
thermodynamic stability of the system.

(iii) Lesche stability: Sq is Lesche-stable ∀q > 0, whereas SR
q is Lesche-stable only for q = 1.

Lesche stability characterizes the experimental reproducibility of the entropy of a system.
(iv) Pesin-like identity: For many physically important low-dimensional conservative or dissipative

nonlinear dynamical systems with zero Lyapunov exponent, it is verified that, in the t → ∞
limit, Sq(t) ∝ t for a unique special value of q 	= 1. This linearity property for t >> 1 is lost for
SR

q (t); indeed, for those systems, it can be easily verified that SR
q (t) ∝ ln t (∀q). No dynamical

systems are yet known for which SR
q (t) is linear for q 	= 1. This linearity enables, ∀q, a natural

connection with the coefficient (Lyapunov exponent for the q = 1 systems), which characterizes
the dynamically meaningful sensitivity to the initial conditions.

(v) Thermodynamical extensivity: For various N-sized quantum systems, it can be shown that
a fixed value of q 	= 1 exists, such that, in the N → ∞ limit, Sq(N) ∝ N, thus satisfying the
necessary thermodynamic extensivity for the entropy. For those systems, SR

q (N) ∝ ln N (∀q),
which violates thermodynamics. For this statement, we have of course assumed that a (physically
meaningful) limit q 	= 1 exists in the N → ∞ limit. Various papers exist in the literature that
focus on situations such that a phenomenological index q can be defined, which depends on N
(see, for instance, [37,38] and the references therein), but they remain out of the present scope,
since their N → ∞ limit yields q = 1.

(vi) The likelihood function that satisfies Einstein’s requirement of factorizability coincides with
the function, which extremizes the entropic functional of the system (currently, the inverse
function of the generalized logarithm, which characterizes that precise entropic functional:
For q = 1 systems, the factorizable likelihood function is well known to be W ∝ eSBG/k, the
exponential function being the inverse of SBG/k = ln W (for equal probabilities), and for

appropriate constraints, it maximizes the entropy SBG. For q 	= 1, we have [39] W ∝ e
Sq/k
q ,

where the q-exponential function precisely is the inverse of Sq/k = lnq W (for equal probabilities),
and for appropriate constraints, it extremizes the entropy Sq. In contrast with this property,

the factorizable likelihood function for the Renyi entropy is eSR
q , where the exponential function

is the inverse of SR
q = ln W (for equal probabilities), but it differs from the q-exponential function,

which is the one that extremizes SR
q . These properties plausibly have consequences for the large

deviation theory of these systems (see the discussion about this theory below).

3. Why Must the Entropic Extensivity Be Preserved in All Circumstances?

Since we are ready to permit the entropic functional to be non-additive, should we not also allow
for possible entropic nonextensivity? This question surely is a most interesting one, but to the best of
our understanding, the answer is no. Indeed, there exist at least two important reasons for always
demanding the physical (thermodynamical) entropy of a given system to be extensive. One of them is
based on the Legendre transformations structure of thermodynamics; the other one is so suggested
by the large deviations in some anomalous probabilistic models where the limiting distributions
are q-Gaussians.

3.1. Thermodynamics

This argument has been developed in [11] and more recently in [15] (which we follow
now). We briefly review this argument here. Let us first write a general Legendre transformation

6
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form of a thermodynamical energy G of a generic d-dimensional system (d being an integer or
fractal dimension):

G(V, T, p, μ, H, . . . ) = U(V, T, p, μ, H, . . . )− TS(V, T, p, μ, H, . . . ) (14)

+pV − μN(V, T, p, μ, H, . . . )− HM(V, T, p, μ, H, . . . )− · · · (15)

where T, p, μ, H are the temperature, pressure, chemical potential and external magnetic field
and U, S, V, N, M are the internal energy, entropy, volume, number of particles and magnetization.
We may identify three types of variables, namely: (i) those that are expected to always be extensive
(S, V, N, M, . . .), i.e., scaling with V ∝ Ld, where L is a characteristic linear dimension of the system
(notice the presence of N itself within this class); (ii) those that characterize the external conditions
under which the system is placed (T, p, μ, H, . . .), scaling with Lθ ; and (iii) those that represent energies
(G, U), scaling with Lε. Ordinary thermodynamical systems are those with θ = 0 and ε = d;
therefore, both the energies and the generically extensive variables scale with Ld, and there is no
difference between Type (i) and (iii) variables, all of them being extensive in this case. There are,
however, physical systems where ε = θ + d with θ 	= 0. Let us divide Equation (15) by Lθ+d, namely,

G
Lθ+d =

U
Lθ+d −

T
Lθ

S
Ld +

p
Lθ

V
Ld −

μ

Lθ

N
Ld −

H
Lθ

M
Ld − · · · (16)

If we consider now the thermodynamical L→ ∞ limit, we obtain:

g̃ = ũ− T̃s + p̃v− μ̃ n− H̃m− · · · (17)

where, using a compact notation, (g̃, ũ) ≡ limL→∞(G, U)/Lθ+d represent the energies,
(s, v, n, m) ≡ limL→∞(S, V, N, M)/Ld represent the usual extensive variables and (T̃, p̃, μ̃, H̃) ≡
limL→∞(T, p, μ, H)/Lθ correspond to the usually intensive ones. For a standard thermodynamical
system (e.g., a real gas ruled by a Lennard–Jones short-ranged potential, a simple metal, etc.) we have
θ = 0 (hence, (T̃, p̃, μ̃, H̃) = (T, p, μ, H), i.e., the usual intensive variables), and ε = d (hence,
(g̃, ũ) = (g, u), i.e., the usual extensive variables); this is of course the case found in the textbooks of
thermodynamics.

The thermodynamic relations (15) and (16) put on an equal footing the entropy S, the volume V
and the number of elements N, and the extensivity of the latter two variables is guaranteed by
definition. In fact, a similar analysis can be performed using N instead of V since V ∝ N.

An example of a nonstandard system with θ 	= 0 is the classical Hamiltonian discussed in
what follows. We consider two-body interactions decaying with distance r like 1/rα (α ≥ 0).
For this system, we have θ = d− α whenever 0 ≤ α < d (see, for example, Figure 1 of [40]). This
peculiar scaling occurs because the potential is not integrable, i.e., the integral

∫ ∞
constant dr rd−1 r−α

diverges for 0 ≤ α ≤ d; therefore, the Boltzmann–Gibbs canonical partition function itself diverges.
Gibbs was aware of this kind of problem and has pointed out [4] that whenever the partition
function diverges, the BG theory cannot be used because, in his words, “the law of distribution
becomes illusory”. The divergence of the total potential energy occurs for α ≤ d, which is referred
to as long-range interactions. If α > d, which is the case of the d = 3 Lennard–Jones potential,
whose attractive part corresponds to α = 6, the integral does not diverge, and we recover the standard
behavior of short-range-interacting systems with the θ = 0 scaling. Nevertheless, it is worth recalling
that nonstandard thermodynamical behavior is not necessarily associated with long-range interactions
in the classical sense just discussed. A meaningful description would then be long-range correlations
(spatial or temporal), because for strongly quantum-entangled systems, correlations are not necessarily
connected with the interaction range. However, the picture of long- versus short-range interactions
in the classical sense, directly related to the distance r, has the advantage of illustrating clearly the
thermodynamic relations (15) and (16) for the different scaling regimes, as shown in Figure 1.
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0  1 α/d(long−range interactions) (short−range interactions)

Intensive, e.g., T, p, μ, H ∝ L0

Extensive, e.g., G, U, S, N, V, M ∝ Ld

(θ ≠ 0) (θ = 0)

Pseudo−intensive, e.g., T, p, μ, H ∝ L θ

Extensive, e.g., S, N, V, M ∝ Ld

Pseudo−extensive, e.g., G, U ∝ L d+θ

Figure 1. Representation of the different scaling regimes of Equation (16) for classical
d-dimensional systems. For attractive long-range interactions (i.e., 0 ≤ α/d ≤ 1, α characterizing the
interaction range in a potential with the form 1/rα), we may distinguish three classes of thermodynamic
variables, namely, those scaling with Lθ , named pseudo-intensive (L is a characteristic linear length;
θ is a system-dependent parameter), those scaling with Ld+θ , the pseudo-extensive ones (the energies),
and those scaling with Ld (which are always extensive). For short-range interactions (i.e., α > d),
we have θ = 0, and the energies recover their standard Ld extensive scaling, falling in the same
class of S, N, V, etc., whereas the previous pseudo-intensive variables become truly intensive ones
(independent of L); this is the region with two classes of variables that is covered by the traditional
textbooks of thermodynamics. From [15].

To summarize this crucial subsection, we may insist that what is thermodynamically relevant
is that the entropy of a given system must be extensive, not that the entropic functional ought
to be additive. This is consistent with the fact that Einstein’s principle for the factorizability of the
likelihood function is satisfied not only for the additive BG entropic functional, but also for nonadditive
ones [39,41].

3.2. Large Deviation Theory

The so-called large deviation theory (LDT) [42] constitutes the mathematical counterpart
of the heart of BG statistical mechanics, namely the famous canonical-ensemble BG factor
e−βH(N) = e−N[βh(N)] with h(N) ≡ H(N)/N. Since, for short-range interactions, βh(N) is a
thermodynamically-intensive quantity in the limit N → ∞, we see that the BG weight represents an
exponential decay with N. This exponential dependence is to be associated [42–46] with the LDT
probability P(N; x) � e−N r1(x), where Subindex 1 in the rate function r1(x) will soon become clear.
Since r1(x) is directly related to a relative entropy per particle (see, for instance, [43]), the quantity
Nr1(x) plays the role of an extensive entropy.

If we focus now on, say, a d-dimensional classical system involving two- body interactions
whose potential asymptotically decays at long distance r like −A/rα (A > 0; α ≥ 0), the canonical
BG partition function converges whenever the potential is integrable, i.e., for α/d > 1 (short-range
interactions), and diverges whenever it is non-integrable, i.e., for 0 ≤ α/d ≤ 1 (long-range interactions).
The use of the BG weight becomes unjustified (“illusory” in Gibbs words [4] for, say, Newtonian
gravitation, which in the present notation corresponds to (α, d) = (1, 3); hence, α/d = 1/3) in the
later case because of the divergence of the BG partition function. We might therefore expect the
emergence of some function f (HN) different from the exponential one, in order to describe some
specific stationary (or quasi-stationary) states differing from thermal equilibrium. The Hamiltonian
HN generically scales like NÑ with Ñ ≡ N1−α/d−1

1−α/d ≡ lnα/d N (with the q-logarithmic function defined

as lnq z ≡ z1−q−1
1−q ; z > 0; ln1 z = ln z). Notice that (N → ∞) Ñ ∼ N1−α/d/(1− α/d) for 1 ≤ α/d < 1,

Ñ ∼ ln N for α/d = 1 and Ñ ∼ 1/(α/d− 1) for α/d > 1. The particular case α = 0 yields Ñ ∼ N,

8
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thus recovering the usual prefactor of mean field theories. The quantity βHN can be rewritten
as [(βÑ)HN /(NÑ)]N = [β̃HN/(NÑ)]N, where β̃ ≡ βÑ ≡ 1/kBT̃ = Ñ/kBT plays the role of
an intensive variable. The correctness of all of these scalings has been profusely verified in various
kinds of thermal, diffusive and geometrical (percolation) systems (see [11,45]). We see that, not only
for the usual case of short-range interactions, but also for long-range ones, [β̃HN/(NÑ)] plays a role

analogous to an intensive variable. The q-exponential function ez
q ≡ [1 + (1 − q)z]

1
1−q (ez

1 = ez)
(and its associated q-Gaussian) has already emerged, in a considerable amount of nonextensive
and similar systems, as the appropriate generalization of the exponential one (and its associated
Gaussian). Therefore, it appears as rather natural to conjecture that, in some sense that remains to
be precisely defined, the LDT expression e−r1 N becomes generalized into something close to e

−rq N
q

(q ∈ R), where the generalized rate function rq is expected to be some generalized entropic quantity

per particle. As shown in Figures 2 and 3 (see the details in [45]), it is precisely this e
−rq N
q behavior that

emerges in a strongly correlated nontrivial model [43,45]. Since, as for the q = 1 case, rqN appears to
play the role of a total entropy, this specific illustration is consistent with an extensive entropy.

Figure 2. Comparison of the numerical data (dots) of [45] with a(x)e−rq N
q , where (a(x), rq(x)) are

positive quantities. From [45].

Figure 3. The same data of Figure 2 in (q-log)-linear representation. Let us stress that the unique
asymptotically-power-law function, which provides straight lines at all scales of a (q-log)-linear
representation, is the q-exponential function. The inset shows the results corresponding to N up
to 50. From [45].
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4. Further Applications and Final Words

A regularly-updated bibliography on the present subject can be found at [47]. At the same site,
a selected list of theoretical, experimental, observational and computational papers can be found,
as well. From these very many papers, let us briefly mention here a few recent ones.

For those systems that may be well described by a specific class of nonlinear homogeneous d = 1
Fokker–Planck equations, a prediction was advanced [48] in 1966, namely the scaling μ = 2/(3− q),
where μ is the exponent that characterizes the scaling between space and time (specifically the
fact that x2 scales like tμ) and q is the index of the q-Gaussian, which describes the paradigmatic
solution of the equation. Notice that q = 1 yields the well-known Einstein 1905 result μ = 1 for
Brownian motion. The prediction was experimentally verified (within a 2% precision along an entire
experimental decade), in 2015 [49], for confined granular material. It would be surely interesting to
also verify, for higher-dimension confined granular matter, the d-dimensional generalization of that
scaling, namely μ = 2

2+d(1−q) [50]; hence, once again μ = 1 for q = 1.
For an area-preserving two-dimensional map, namely the standard map, it was neatly shown [51]

how q-statistics, or BG statistics, or even a combination of both emerges as a function of the unique
external parameter (K) of the map. This and various other emergencies of q-Gaussian and q-exponential
distributions in many natural, artificial and social complex systems are most probably connected with
q-generalizations of the central limit theorem (see, for instance, [52–63]).

Another q-statistical connection that certainly is interesting is the one with the so-called
(asymptotically) scale-free networks. Indeed, their degree distribution has been shown in many
cases to be given by p(k) ∝ e−k/κ

q (k being the number of links joining a given node), which plays the
role of the Boltzmann–Gibbs factor for short-range-interacting Hamiltonian systems. This connection
was already established in the literature since one decade ago (see, for instance, [64,65]). Moreover,
it has been recently shown [66] that neither q nor κ depend independently on the dimensionality d and
from the exponent α characterizing the range of the interaction, but, interestingly enough, only depend
on the ratio α/d. Very many papers focus on the degree distributions of (asymptotically) scale-free
networks from a variety of standpoints. For example, an interesting exactly solvable master-equation
approach is available in [67]. The novelty that we remind about in this mini-review is that the
q-exponential degree distribution is here obtained from a simple entropic variational principle (under
a constraint where the average degree plays the role of the internal energy in statistical mechanics).

High-energy physics has also been a field of many applications of q-statistics and related
approaches, such as Beck–Cohen superstatistics [68] and Mathai’s pathways (see [69–73] and the
references therein). For example, a focus on the solar neutrino problem started long ago by Quarati
and collaborators [74–77] and has been revisited in several occasions, even recently [78,79]. In the
area of particle high-energy collisions, an intensive activity is currently in progress. It usually
concerns experiments performed at LHC/CERN (ALICE, ATLAS, CMS and LHCb Collaborations) and
RHIC/Brookhaven (STAR and PHENIX Collaborations). As typical illustrations of such measurements
and their possible theoretical interpretations, let us mention [80–98]. A rich discussion about the
thermodynamical admissibility of the possible constraints under which the entropic functional can be
optimized is also present in the literature (see, for instance, [10,11,83,99–101]).

Many other systems (e.g., related to those mentioned in [102–105]) are awaiting for approaches
along the above and similar lines. They would be very welcome. Even so, we may say that the
present status of the theory described herein is at a reasonably satisfactory stage of physical and
mathematical understanding.
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Abstract: We consider the renewal counting number process N = N(t) as a forward march over the
non-negative integers with independent identically distributed waiting times. We embed the values
of the counting numbers N in a “pseudo-spatial” non-negative half-line x ≥ 0 and observe that for
physical time likewise we have t ≥ 0. Thus we apply the Laplace transform with respect to both
variables x and t. Applying then a modification of the Montroll-Weiss-Cox formalism of continuous
time random walk we obtain the essential characteristics of a renewal process in the transform
domain and, if we are lucky, also in the physical domain. The process t = t(N) of accumulation of
waiting times is inverse to the counting number process, in honour of the Danish mathematician
and telecommunication engineer A.K. Erlang we call it the Erlang process. It yields the probability
of exactly n renewal events in the interval (0, t]. We apply our Laplace-Laplace formalism to the
fractional Poisson process whose waiting times are of Mittag-Leffler type and to a renewal process
whose waiting times are of Wright type. The process of Mittag-Leffler type includes as a limiting case
the classical Poisson process, the process of Wright type represents the discretized stable subordinator
and a re-scaled version of it was used in our method of parametric subordination of time-space
fractional diffusion processes. Properly rescaling the counting number process N(t) and the Erlang
process t(N) yields as diffusion limits the inverse stable and the stable subordinator, respectively.

Keywords: renewal process; Continuous Time Random Walk; erlang process; Mittag-Leffler function;
wright function; fractional Poisson process; stable distributions; stable and inverse stable subordinator;
diffusion limit

1. Introduction

Serious studies of the fractional generalization of the Poisson process—replacement of the
exponential waiting time distribution by a distribution given via a Mittag-Leffler function with
modified argument—have been started around the turn of the millenium, and since then many papers
on its various aspects have appeared. There are in the literature many papers on this generalization
where the authors have outlined a number of aspects and definitions, see e.g., Repin and Saichev
(2000) [1], Wang et al. (2003,2006) [2,3], Laskin (2003,2009) [4,5], Mainardi et al. (2004) [6], Uchaikin et
al. (2008) [7], Beghin and Orsingher (2009) [8], Cahoy et al. (2010) [9], Meerschaert et al. (2011) [10],
Politi et al. (2011) [11], Kochubei (2012) [12], so that it seems impossible to list them all exhaustively.
However, in effect this generalization was used already in 1995: Hilfer and Anton [13] (without saying
it in our words) showed that the Fractional Kolmogorov-Feller equation (replacement of the first order
time derivative by a fractional derivative of order between 0 and 1) requires the underlying random
walk to be subordinated to a renewal process with Mittag-Leffler waiting time.
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Here we will present our formalism for obtaining the essential characteristics of a generic renewal
process and apply it to get those of the fractional Poisson counting process and its inverse, the fractional
Erlang process. Both of these comprise as limiting cases the corresponding well-known non-fractional
processes that are based on exponential waiting time. Then we will analyze an alternative renewal
process, that we call the “Wright process”, investigated by Mainardi et al. (2000,2005,2007) [14–16],
a process arising by discretization of the stable subordinator. In it the so-called M-Wright function
plays the essential role. A scaled version of this process has been used by Barkai (2002) [17] for
approximating the time-fractional diffusion process directly by a random walk subordinated to it
(executing this scaled version in natural time), and he has found rather poor convergence in refinement.
In Gorenflo et al. (2007) [18] we have modified the way of using this discretized stable subordinator.
By appropriate discretization of the relevant spatial stable process we have then obtained a simulation
method equivalent to the solution of a pair of Langevin equations, see Fogedby (1994) [19] and
Kleinhans and Friedrich (2007) [20]. For simulation of space-time fractional diffusion one so obtains
a sequence of precise snapshots of a true particle trajectory, see for details Gorenflo et al. (2007) [18],
and also Gorenflo and Mainardi (2011, 2012) [21,22].

However, we should note that already in the Sixties of the past century, Gnedenko and
Kovalenko (1968) [23] obtained in disguised form the fractional Poisson process by properly rescaled
infinite thinning (rarefaction) of a renewal process with power law waiting time. By “disguised” we
mean that they found the Laplace transform of the Mittag-Leffler waiting time density, but being
ignorant of the Mittag-Leffler function they only presented this Laplace transform. The same ignorance
of the Mittag-Leffler function we again meet in a 1985 paper by Balakrishnan [24], who exhibited the
Mittag-Leffler waiting time density in Laplace disguise as essential for approximating time-fractional
diffusion for which he used the description in form of a fractional integro-differential equation. We have
shown that the Mittag-Leffler waiting time density in a certain sense is asymptotically universal for
power law renewal processes, see Gorenflo and Mainardi (2008) [25], Gorenflo (2010) [26].

The structure of our paper is as follows. In Section 2 we discuss the elements of the general
renewal theory and the CTRW concept. In Section 3 we introduce the Poisson process and its fractional
generalization then, in Section 4, the so-called Wright process related to the stable subordinator and
its discretization. For both processes we consider the corresponding inverse processes, the Erlang
processes. In Section 5 we briefly discuss the diffusion limit for all the above processes. Section 6 is
devoted to conclusions. We have collected in Appendix A notations and terminology, in particular the
basics on operators, integral transforms and special functions required for understanding our analysis.
Finally, we provide in Appendix B an overview on the essential results.

For related aspects of subordination we refer the readers to our papers [18,21,22,25,27] and to
papers by Bazhlekova [28], by Merschaert’s team [10,29,30], and by Umarov [31].

2. Elements of Renewal Theory and CTRW

For the reader’s convenience let us here present a brief introduction to renewal theory including
the basics of continuous time random walk (CTRW).

2.1. The General Renewal Process

By a renewal process we mean an infinite sequence 0 = t0 < t1 < t2 < · · · of events separated by
i.i.d. (independent and identically distributed) random waiting times Tj = tj − tj−1, whose probability
density φ(t) is given as a function or generalized function in the sense of Gel’fand and Shilov [32]
(interpretable as a measure) with support on the positive real axis t ≥ 0, non-negative: φ(t) ≥ 0,
and normalized:

∫ ∞
0 φ(t) dt = 1, but not having a delta peak at the origin t = 0. The instant t0 = 0 is

not counted as an event. An important global characteristic of a renewal process is its mean waiting
time 〈T〉 = ∫ ∞

0 tφ(t) dt. It may be finite or infinite. In any renewal process we can distinguish two
processes, namely the counting number process and the process inverse to it, that we call the Erlang
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process. The instants t1, t2, t3, · · · are often called renewals. In fact renewal theory is relevant in practice
of maintenance or required exchange of failed parts, e.g., light bulbs.

2.2. The Counting Number Process and Its Inverse

We are interested in the counting number process x = N = N(t)

N(t) := max{n|tn ≤ t} = nfortn ≤ t < tn+1 , n = 0, 1, 2, · · · (2.1)

where in particular N(0) = 0. We ask for the counting number probabilities in n, evolving in t,

pn(t) := P [N(t) = n] , n = 0, 1, 2, · · · (2.2)

We denote by p(x, t) the sojourn density for the counting number having the value x. For this process
the expectation is

m(t) := 〈N(t)〉 =
∞

∑
n=0

n pn(t) =
∫ ∞

0
x p(x, t) dx (2.3)

[since p(x, t) =
∞
∑

n=0
pn(t) δ(x− n), see (2.12)] It provides the mean number of events in the half-open

interval (0, t], and is called the renewal function, see e.g., [33]. We also will look at the process
t = t(N), the inverse to the process N = N(t), that we call the Erlang process in honour of the Danish
telecommunication engineer A.K. Erlang (1878–1929), see Brockmeyer et al. (1948) [34]. It gives the
value of time t = tN of the N-th renewal. We ask for the Erlang probability densities

qn(t) = q(t, n) , n = 0, 1, 2, . . . (2.4)

For every n the function qn(t) = q(t, n) is a density in the variable of time having value t in the instant
of the n-th event. Clearly, this event occurs after n (original) waiting times have passed, so that

qn(t) = φ∗n(t)withLaplacetransformq̃n(s) =
(
φ̃(s)n

)
(2.5)

In other words the function qn(t) = q(t, n) is a probability density in the variable t ≥ 0 evolving in the
variable x = n = 0, 1, 2, ....

2.3. The Continuous time Random Walk

A continuous time random walk (CTRW) is given by an infinite sequence of spatial positions
0 = x0, x1, x2, · · · , separated by (i.i.d.) random jumps Xj = xj − xj−1, whose probability density
function w(x) is given as a non-negative function or generalized function (interpretable as a measure)
with support on the real axis −∞ < x < +∞ and normalized:

∫ ∞
0 w(x) dx = 1, this random walk being

subordinated to a renewal process so that we have a random process x = x(t) on the real axis with the
property x(t) = xn for tn ≤ t < tn+1, n = 0, 1, 2, · · · .

We ask for the sojourn probability density u(x, t) of a particle wandering according to the random
process x = x(t) being in point x at instant t.

Let us define the following cumulative probabilities related to the probability density function φ(t)

Φ(t) =
∫ t+

0
φ
(
t′
)

dt′ , Ψ(t) =
∫ ∞

t+
φ
(
t′
)

dt′ = 1−Φ(t) (2.6)

For definiteness, we take Φ(t) as right-continuous, Ψ(t) as left-continuous. When the non-negative
random variable represents the lifetime of a technical system, it is common to call Φ(t) := P(T ≤ t)
the failure probability and Ψ(t) := P(T > t) the survival probability, because Φ(t) and Ψ(t) are the
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respective probabilities that the system does or does not fail in (0, t]. These terms, however, are
commonly adopted for any renewal process.

In the Fourier-Laplace domain we have

Ψ̃(s) =
1− φ̃(s)

s
(2.7)

and the famous Montroll-Weiss solution formula for a CTRW, see [35,36]

ˆ̃u(κ, s) =
1− φ̃(s)

s

∞

∑
n=0

(
φ̃(s) ŵ(κ)

)n
=

1− φ̃(s)
s

1
1− φ̃(s) ŵ(κ)

(2.8)

In our special situation the jump density has support only on the positive semi-axis x ≥ 0 and thus,
by replacing the space-Fourier transform ŵ(κ) with the space-Laplace transform w̃(κ), we obtain
from (2.8) the Laplace-Laplace solution that we re-write as a new equation

˜̃u(κ, s) =
1− φ̃(s)

s

∞

∑
n=0

(
φ̃(s) w̃(κ)

)n
=

1− φ̃(s)
s

1
1− φ̃(s) w̃(κ)

(2.9)

Recalling from Appendix the definition of convolutions, in the physical domain we have for the
solution u(x, t) the Cox-Weiss series, see [36,37],

u(x, t) =

(
Ψ ∗

∞

∑
n=0

φ∗n w∗n
)
(x, t) (2.10)

This formula has an intuitive meaning: Up to and including instant t, there have occurred 0 jumps,
or 1 jump, or 2 jumps, or · · · , and if the last jump has occurred at instant t′ < t, the wanderer is resting
there for a duration t− t′.

From the rich literature on the concept of CTRW and its applications we recommend to study the
surveys by Metzler and Klafter [38,39] and the original article by Chechkin, Hofmann and Sokolov [40].

2.4. Renewal Process as a Special CTRW

The essential trick of what follows consists in a rather non-conventional use of the CTRW concept.
We treat renewal processes as continuous time random walks with waiting time density φ(t) and
special jump density w(x) = δ(x− 1) corresponding to the fact that the counting number N(t)
increases by 1 at each positive event instant tn. We then have w̃(κ) = exp (−κ) and get for the counting
number process N(t) the sojourn density in the transform domain (s ≥ 0, κ ≥ 0),

˜̃p(κ, s) =
1− φ̃(s)

s

∞

∑
n=0

(
φ̃(s)

)n
e−nκ =

1− φ̃(s)
s

1
1− φ̃(s) e−κ

(2.11)

From this formula we can find formulas for the renewal function m(t) and the probabilities
pn(t) = P{N(t) = n}. Because N(t) assumes as values only the non-negative integers, the sojourn
density p(x, t) vanishes if x is not equal to one of these, but has a delta peak of height pn(t) for x = n
(n = 0, 1, 2, 3, · · · ). Hence

p(x, t) =
∞

∑
n=0

pn(t) δ(x− n) (2.12)

Inverting (2.11) with respect to κ and s as

p(x, t) =
∞

∑
n=0

(Ψ ∗ φ∗n)(t) δ(x− n) (2.13)
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we identify
pn(t) = (Ψ ∗ φ∗n)(t) (2.14)

According to the theory of Laplace transform we conclude from Equations (2.2) and (2.12)

m(t) = − ∂

∂κ
p̃(κ, t)|κ=0 =

(
∞

∑
n=0

n pn(t) e−nκ

)∣∣∣∣∣
κ=0

=
∞

∑
n=0

n pn(t) (2.15)

a result naturally expected, and

m̃(s) =
∞

∑
n=0

n p̃n(s) = Ψ̃(s)
∞

∑
n=0

n
(
φ̃(s)

)n
=

φ̃(s)

s
(

1− φ̃(s)
) (2.16)

thereby using the identity
∞

∑
n=0

nzn =
z

(1− z)2 , |z| < 1

Thus we have found in the Laplace domain the reciprocal pair of relationships

m̃(s) =
φ̃(s)

s
(

1− φ̃(s)
) , φ̃(s) =

s m̃(s)
1 + s m̃ (s))

(2.17)

saying that the waiting time density and the renewal function mutually determine each other uniquely.
The first formula of Equation (2.17) can also be obtained as the value at κ = 0 of the negative derivative
for κ = 0 of the last expression in Equation (2.11). Equation (2.17) implies the reciprocal pair of
relationships in the physical domain

m(t) =
∫ t

0

[
1 + m

(
t− t′

)]
φ
(
t′
)

dt′ , m′(t) =
∫ t

0

[
1 + m′

(
t− t′

)]
φ
(
t′
)

dt′ (2.18)

The first of these equations usually is called the renewal equation.
Considering, formally, the counting number process N = N(t) as CTRW (with jumps fixed to unit

jumps 1), N running increasingly through the non-negative integers x = 0, 1, 2, ..., happening in natural
time t ∈ [0, ∞), we note that in the Erlang process t = t(N), the roles of N and t are interchanged.
The new “waiting time density” now is w(x) = δ(x− 1), the new “jump density” is φ(t).

It is illuminating to consciously perceive the relationships for t ≥ 0, n = 0, 1, 2, . . ., between
the counting number probabilities pn(t) and the Erlang densities qn(t). For Equation (2.5) we have
qn(t) = φ∗n(t), and then by (2.14)

pn(t) = (Ψ ∗ qn)(t) =
∫ t

0

(
qn
(
t′
)− qn+1(t)

)
dt′ (2.19)

We can also express the qn in another way by the pn. Introducing the cumulative probabilities
Qn(t) =

∫ t
0 qn(t′) dt′, we have

Qn(t) = P
(

n

∑
k=1

Tk ≤ t

)
= P(N(t) ≥ n) =

∞

∑
k=n

pk(t) (2.20)

finally

qn(t) =
d
dt

Qn(t) =
d
dt

∞

∑
k=n

pk(t) (2.21)

All this is true for n = 0 as‘well, by the empty sum convention
n
∑

k=1
Tk = 0 for n = 0.
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3. The Poisson Process and Its Fractional Generalization

The most popular renewal process is the Poisson process. It is (uniquely) characterized by its
mean waiting time 1/λ (equivalently by its intensity λ), which is a given positive number, and by its
residual waiting time Ψ(t) = exp (−λt) for t ≥ 0, which corresponds to the waiting time density
φ(t) = λ exp (−λt). With λ = 1 we have what we call the standard Poisson process. The general Poisson
process arises from the standard one by rescaling the time variable t.

We generalize the standard Poisson process by replacing the exponential function by a function of
Mittag-Leffler type. With t ≥ 0 and a parameter β ∈ (0, 1] we take{

Ψ(t) = Eβ

(−tβ
)

,
φ(t) = − d

dt Eβ

(−tβ
)
= βtβ−1E′β

(−tβ
)
= tβ−1 Eβ,β

(−tβ
) (3.1)

The functions Ψ(t) and φ(t) are plotted versus time for some values of β in Figure 1.

Figure 1. The functions Ψ(t) (left) and φ(t) (right) versus t (10−2 < t < 102) for the renewal processes
of Mittag-Leffler type with β = 0.25, 0.50, 0.75, 1.

We call this renewal process of Mittag-Leffler type the fractional Poisson process,
see e.g., [1,4,6,8–11,27,41,42], and [7,43], or the Mittag-Leffler renewal process or the Mittag-Leffler
waiting time process. To analyze it we go into the Laplace domain where we have

Ψ̃(s) =
sβ−1

1 + sβ
, φ̃(s) =

1
1 + sβ

(3.2)

If there is no danger of misunderstanding we will not decorate Ψ and φ with the index β. The special
choice β = 1 gives us the standard Poisson process with Ψ1(t) = φ1(t) = exp (−t).

Whereas the Poisson process has finite mean waiting time (that of its standard version is equal to
1), the fractional Poisson process (0 < β < 1 ) does not have this property. In fact,

〈T〉=
∫ ∞

0
tφ(t) dt = β

sβ−1

(1 + sβ)2

∣∣∣∣∣
s=0

=

{
1 , β = 1 ,
∞ , 0 < β < 1 .

(3.3)

Let us calculate the renewal function m(t). Inserting φ̃(s) = 1/
(
1 + sβ

)
into Equation (2.11) and

taking w(x) = δ(x− 1) as in Section 2, we find for the sojourn density of the counting function N(t)
the expressions ˜̃p(κ, s) =

sβ−1

1 + sβ − e−κ
=

sβ−1

1 + sβ
∞

∑
n=0

e−nκ

(1 + sβ)n (3.4)
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and
p̃(κ, t) = Eβ

(
−(1− e−κ

)
tβ
)

(3.5)

and then
m(t) = − ∂

∂κ
p̃(κ, t)|κ=0 = e−κtβE′β

(
−(1− e−κ

)
tβ
)∣∣∣

κ=0
(3.6)

Using E′β(0) = 1/Γ(1 + β) now yields

m(t) =

{
t , β = 1

tβ
Γ(1+β)

, 0 < β < 1
(3.7)

This result can also be obtained by plugging φ̃(s) = 1/
(
1 + sβ

)
into the first equation in (2.17) which

yields m̃(s) = 1/sβ+1 and then by Laplace inversion Equation (3.7).
Using general Taylor expansion

Eβ(z) =
∞

∑
n=0

E(n)
β

n!
(z− b)n (3.8)

in Equation (3.5) with b = −tβ we get

p̃(κ, t) =
∞
∑

n=0

tnβ

n! E(n)
β

(−tβ
)

e−nκ

p(x, t) =
∞
∑

n=0

tnβ

n! E(n)
β

(−tβ
)
δ(x− n)

(3.9)

and, by comparison with Equation (2.12), the counting number probabilities

pn(t) = P{N(t) = n} = tnβ

n!
E(n)
β

(
−tβ

)
(3.10)

Observing from Equation (3.4)

˜̃p(κ, s) =
sβ−1

1 + sβ
∞

∑
n=0

e−nκ

(1 + sβ)n (3.11)

and inverting with respect to κ,

p̃(x, s) =
sβ−1

1 + sβ
∞

∑
n=0

δ(x− n)
(1 + sβ)n (3.12)

we finally identify

p̃n(s) =
sβ−1

(1 + sβ)n+1 ÷
tnβ

n!
E(n)
β

(
−tβ

)
= pn(t) (3.13)

En passant we have proved an often cited special case of an inversion formula by Podlubny (1999) [44],
Equation (1.80).

For the Poisson process with intensity λ > 0 we have a well-known infinite system of ordinary
differential equations (for t ≥ 0), see e.g., Khintchine [45,46],

p0(t) = e−λt ,
d
dt

pn(t) = λ(pn−1(t)− pn(t)) , n ≥ 1 (3.14)
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with initial conditions pn(0) = 0, n = 1, 2, · · · , which sometimes even is used to define the Poisson
process. We have an analogous system of fractional differential equations for the fractional Poisson
process. In fact, from Equation (3.13) we have

(
1 + sβ

)
p̃n(s) =

sβ−1

(1 + sβ)n = p̃n−1(s) (3.15)

Hence
sβ p̃n(s) = p̃n−1(s)− p̃n(s) (3.16)

so in the time domain

p0(t) = Eβ

(
−tβ

)
, ∗Dβ

t pn(t) = pn−1(t)− pn(t) , n ≥ 1 (3.17)

with initial conditions pn(0) = 0, n = 1, 2, · · · , where ∗Dβ
t denotes the time-fractional derivative of

Caputo type of order β, see Appendix A. It is also possible to introduce and define the fractional
Poisson process by this difference-differential system.

Let us note that by solving the system (3.17), Beghin and Orsingher in [8] introduce what they call
the “first form of the fractional Poisson process”, and in [10] Meerschaert et al. show that this process
is a renewal process with Mittag-Leffler waiting time density as in (3.1), hence is identical with the
fractional Poisson process.

Up to now we have investigated the fractional Poisson counting process N = N(t) and found its
probabilities pn(t) in Equation (3.10). To get the corresponding Erlang probability densities qn(t) = q(t, n),
densities in t, evolving in n = 0, 1, 2 . . ., we find by Equation (2.21) via telescope summation

qn(t) = β
tnβ−1

(n− 1)!
E(n)
β

(
−tβ

)
, 0 < β ≤ 1 (3.18)

We leave it as an exercise to the readers to show that in Equation (3.9) interchange of differentiation
and summation is allowed.

Remark: With β = 1 we get the corresponding well-known results for the standard Poisson
process. The counting number probabilities are

pn(t) =
tn

n!
e−t , n = 0, 1, 2, . . . , t ≥ 0 (3.19)

and the Erlang densities

qn(t) =
tn−1

(n− 1)!
e−t , n = 1, 2, 3, . . . , , t ≥ 0 (3.20)

By rescalation of time we obtain

pn(t) =
(λt)n

n!
e−λt , n = 0, 1, 2, . . . , , t ≥ 0 (3.21)

for the classical Poisson process with intensity λ and

qn(t) = λ
(λt)n−1

(n− 1)!
e−λt , n = 1, 2, 3, . . . , , t ≥ 0 (3.22)

for the corresponding Erlang process.
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4. The Stable Subordinator and the Wright Process

Let us denote by gβ(t) the extremal Lévy stable density of order β ∈ (0, 1] and support in t ≥ 0
whose Laplace transform is g̃β(s) = exp

(−sβ
)
, that is

t ≥ 0 , gβ(t) ÷ exp
(
−sβ

)
, Re(s) ≥ 0 , 0 < β ≤ 1 (4.1)

The topic of Lévy stable distributions is treated in several books on probability and stochastic processes,
see e.g., Feller (1971) [47], Sato (1999) [48]; an overview of the analytical and graphical aspects of the
corresponding densities is found in Mainardi et al. (2001) [49], where an ad hoc notation is used.

From the Laplace transform correspondence (4.1) it is easy to derive the analytical expressions for
β = 1/2 (the so-called Lévy-Smirmov density), g1/2(t) = 1

2
√

π
t−3/2 exp (−1/(4t)) and for the limiting

case β = 1 (the time drift), g1(t) = δ(t− 1), where δ denotes the Dirac generalized function.
We note that the stable density (4.1) can be expressed in terms of a function of the Wright type.

In fact, with the M-Wright function from Appendix A of this paper (see Appendix F of Mainardi’s
book [50] for more details), we have

gβ(t) =
β

tβ+1 Mβ

(
t−β
)

(4.2)

The renewal process with waiting time density

φ(t) = gβ(t) (4.3)

was considered in detail by Mainardi et al. (2000,2005,2007) [14–16]. We call this process the Wright
renewal process because the corresponding survival function Ψ(t) and the waiting time density φ(t) are
expressed in terms of certain Wright functions. So we distinguish it from the so called Mittag-Leffler
renewal process, treated in the previous Section as fractional Poisson process. More precisely, recalling the
Wright functions from the Appendix A, we have for t ≥ 0,

Ψ(t) =

{
1−W−β,1

(
− 1

tβ

)
, 0 < β < 1,

Θ(t)−Θ(t− 1),
(4.4)

φ(t) =

{
1
t W−β,0

(
− 1

tβ

)
, 0 < β < 1,

δ(t− 1),
(4.5)

where Θ denotes the unit step Heaviside function. The functions Ψ(t) and φ(t) are plotted versus time
for some values of β in Figure 2.
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Figure 2. The functions Ψ(t) (left) and φ(t) (right) versus t (10−2 < t < 102) for the renewal processes
of Wright type with β = 0.25, 0.50, 0.75, 1. For β = 1 the reader would recognize the Box function
(extended up to t = 1) at left and the delta function (centred in t = 1) at right.

It is relevant to note the Laplace transform connecting the two transcendental functions Mβ

and Eβ

Mβ(t) ÷ Eβ(−s) , 0 < β ≤ 1 (4.6)

By the stable subordinator of order β ∈ (0, 1] we mean the stochastic process t = t(x) that has
sojourn density in t ≥ 0, evolving in x ≥ 0 provided by the Laplace transform correspondence,

f̃ (s, x) = e−xsβ ÷ f (t, x) = x−1/β gβ
(

x−1/β t
)
=

β

tβ+1 x1+1/β Mβ

(
xt−β

)
(4.7)

This process is monotonically increasing: for this reason it is used in the context of time change and
subordination in fractional diffusion processes.

We discretize the process t = t(x) by restricting x to run through the integers n = 0, 1, 2, . . .. The
resulting discretized version is a renewal process happening in pseudo-time x ≥ 0 with jumps in
pseudo-space t ≥ 0 having density gβ(t). Inverting this discretized stable subordinator we obtain a
counting number process x = N = N(t) with waiting time density and jump density

φ(t) = gβ(t) , w(x) = δ(x− 1) (4.8)

Because here the waiting time density is given by a function of Wright type we call this process the
Wright renewal process, or simply the Wright process. Immediately we get its Erlang densities (in t ≥ 0,
evolving in x = n = 0, 1, 2, . . .)

qn(t) = φ∗n(t) ÷ e−nsβ (4.9)

so that, in view of (4.7) with x = n,

qn(t) = f (t, n) = n−1/β gβ
(

n−1/β t
)

(4.10)

In the special case β = 1 we have qn(t) = δ(t− n).
We observe that this counting process gives us precise snapshots at x = 0, 1, 2, of the stable

subordinator t = t(x).
Using (4.9) in (2.14) we find the counting number probabilities in time and Laplace domain

pn(t) = (Ψ ∗ φ∗n)(t) ÷ p̃n(s) =
1− e−sβ

s
e−nsβ =

e−nsβ − e−(n+1)sβ

s
(4.11)
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hence

pn(t) =
∫ t

0

(
qn
(
t′
)− qn+1

(
t′
))

dt′ (4.12)

according to (2.19).
With the probability distribution function

Gβ(t) =
∫ t

0
gβ
(
t′
)

dt′ (4.13)

we get
pn(t) = Gβ

(
n−1/βt

)
− Gβ

(
(n + 1)−1/βt

)
(4.14)

In the limiting case β = 1 we have

G1(t) =
∫ t

0
δ
(
t′ − 1

)
dt′ =

{
0 for t < 1
1 for t ≥ 1

(4.15)

as a function continuous from the right, and we calculate

pn(t) =

{
0 for 0 < t < n , andfor t ≥ n + 1
1 for n ≤ t < n + 1

(4.16)

For the renewal function we obtain its Laplace transform from (2.17)

m̃(s) =
e−sβ

s
(

1− e−sβ
) =

1
s

∞

∑
n=1

e−nsβ (4.17)

so that

m(t) =
∞

∑
n=1

∫ t

0
qn
(
t′
)

dt′ =
∞

∑
n=1

Gβ

(
n−1/βt

)
(4.18)

We do not know an explicit expression for this sum if 0 < β < 1. However, in the limiting case β = 1
we obtain

m(t) = [t] = N(t) (4.19)

Using (4.17) we investigate the asymptotic behaviour of m(t) for t→ ∞ . We have for s→ 0
m̃(s) ∼ 1/s1+β and thus, by Tauber theory, see e.g., Feller (1971) [47],

m(t) ∼ tβ

Γ(1 + β)
for t→ ∞ (4.20)

Remember, for the fractional Poisson process, we had found

m(t) =
tβ

Γ(1 + β)
forall t ≥ 0 (4.21) (4.21)

Remark: A rescaled version of the discretized stable subordinator can be used for producing closely
spaced precise snapshots of a true particle trajectory of a space-time fractional diffusion process,
see e.g., the recent chapter by Gorenflo and Mainardi (2011) [22] on parametric subordination.

5. The Diffusion Limits for the Fractional Poisson and the Wright Processes

In a CTRW we can, with positive scaling factor h and τ, replace the jumps X by jumps Xh = h X, the
waiting times T by waiting times Tτ = τ T. This leads to the rescaled jump density wh(x) = w(x/h)/h
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and the rescaled waiting time density φτ(t) = φ(t/τ)/τ and correspondingly to the transforms
ŵh(κ) = ŵ(hκ), φ̃τ(s) = φ̃(τs).

For the sojourn density uh,τ(x, t), density in x evolving in t, we obtain from (2.9) in the
transform domain

ˆ̃uh,τ(κ, s) =
1− φ̃(τs)

s
1

1− φ̃(τs) ŵ(hκ)
(5.1)

where, if w(x) has support on x ≥ 0 we can work with the Laplace transform instead of the Fourier
transform (replace the ˆ by ˜ ). If there exists between h and τ a scaling relationR (to be introduced
later) under which u(x, t) tends for h→ 0 , τ→ 0 to a meaningful limit v(x, t) = u0,0(x, t), then we
call the process x = x(t) with this sojourn density a diffusion limit. We find it via

ˆ̃v(κ, s) = lim
h,τ→0(R)

ˆ̃uh,τ(κ, s) (5.2)

and Fourier-Laplace (or Laplace-Laplace) inversion.
Remark: This diffusion limit is a limit in the weak sense (convergence in distribution of the

CTRW to the diffusion limit). The mathematical background consists in the application of the Fourier
(or Laplace) continuity theorem of probability theory for fixed time t.

We will now find that the counting numbers of the fractional Poisson process and the Wright
process have the same diffusion limit, namely the inverse stable subordinator. The two corresponding
Erlang processes have the same diffusion limit, namely the stable subordinator. For t→ ∞ the renewal
functions have the same asymptotic behaviour, namely m(t) ∼ tβ/Γ(1 + β). Here, in the case of the
fractional Poisson process, we can replace the sign ∼ of asymptotics by the sign = of equality for all
t ≥ 0.

To prove these statements we need the Laplace transform of the relevant functions φ(t) and w(x).
For the fractional Poisson process we have

φ(t) =
d
dt

Eβ

(
−tβ

)
÷ φ̃(s) =

1
1 + sβ

, w(x) = δ(x− 1) ÷ w̃(κ) = exp (−κ)

For the Wright process we have

φ(t) = gβ(t) ÷ φ̃(s) = exp
(
−sβ

)
, w(x) = δ(x− 1) ÷ w̃(κ) = exp (−κ)

In all cases we have, for fixed s and κ

φ̃(τs) ∼ 1− (τs)β as τ→ 0 , w̃(hκ) ∼ 1− (hκ) as h→ 0 ,

and straightforwardly we obtain for the sojourn densities in both cases, by use of (5.1) with p in place
of u and ˆ replaced by ˜

˜̃ph,τ(κ, s) ∼ τβ sβ−1

τβ sβ + h κ
, for τ→ 0 , h→ 0 (5.3)

Using the scaling relationR
h = τβ (5.4)

we obtain ˜̃p0,0(κ, s) =
sβ−1

sβ + κ
(5.5)

By partial Laplace inversions we get two equivalent representations

p0,0(x, t) = L−1
κ

{
Eβ

(
−κtβ

)}
= L−1

s

{
sβ−1 exp

(
−xsβ

)}
(5.6)
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leading to the density of the inverse stable subordinator

p0,0(x, t) = t−β Mβ

(
x/tβ

)
= J1−β

t f (t, x) (5.7)

where Mβ and J1−β
t denote respectively the M-Wright function and the Riemann-Liouville fractional

integral introduced in Appendix A, and f (t, x) the stable subordinator given by Equation (4.7).
Remark: In (4.7) and (5.7) the densities of the stable and the inverse stable subordinator are both

represented via the M-Wright function.

The Diffusion Limit for the Erlang Process

In the Erlang process the roles of space and time, likewise of jumps and waiting times,
are interchanged. In other words we treat x ≥ 0 as a pseudo-time variable and t ≥ 0 as a pseudo-space
variable. For the resulting sojourn density q(t, x), we have from interchanging in (5.1) for h→ 0 and
τ→ 0 , ˜̃qh,τ(s, κ) =

1− w̃(hκ)
k

1
1− w̃(hκ) φ̃(τs)

∼ h

hκ+ (τs)β
(5.8)

Again using the scaling relationR in Equation (5.4) we find

˜̃q0,0(s, κ) =
1

κ+ sβ
, (5.5´)

which is the Laplace-Laplace transform of the density of stable subordinator of Section 4. In fact,
by partial Laplace inversion,

q̃0,0(s, x) = exp
(
−xsβ

)
= f̃ (s, x) , (5.9)

and it follows that
q0,0(t, x) = f (t, x) , x ≥ 0 , t ≥ 0 . (5.10)

See (4.7) for its explicit representation as a rescaled stable density expressed via a M-Wright function.
We get the same result by continualization of the discretized stable subordinator. Replace in

Equations (4.9) and (4.10) the discrete variable n by the continuous variable x.

6. Conclusions

The fractional Poisson process and the Wright process (as discretization of the stable subordinator)
along with their diffusion limits play eminent roles in theory and simulation of fractional diffusion
processes. Here we have analyzed these two processes, concretely the corresponding counting
number and Erlang processes, the latter being the processes inverse to the former. Furthermore
we have obtained the diffusion limits of all these processes by well-scaled refinement of waiting times
and jumps.
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Appendix : Operators, Transforms and Special Functions

For the reader’s convenience here we present a brief introduction to the basic notions required for
the presentation and analysis of the renewal processes to be treated, including essentials on fractional
calculus and special functions of Mittag-Leffler and Wright type.

Thereby we follow our earlier papers concerning related topics, see [6,18,21,22,25–27,49,51–56],
and our recent monograph on Mittag-Leffler Functions and Related Topics [57].

For more details on general aspects the interested reader may consult the treatises, listed in
order of publication time, by Podlubny [44], Kilbas and Saigo [58], Kilbas, Srivastava and Trujillo [59],
Mathai and Haubold [60], Mathai, Saxena and Haubold [61], Mainardi [50], Diethelm [62], Baleanu,
Diethelm, Scalas and Trujillo [41], Uchaikin [43], Atanacković, Pilipovíc, Stanković and Zorica [63].

A.1. Fourier and Laplace Transforms

By R
(
R+,R+

0
)
) we mean the set of all (positive, non-negative) real numbers, and by C the set of

complex numbers. It is known that the Fourier transform is applied to functions defined in L1(R )

whereas the Laplace transform is applied to functions defined in Lloc(R
+). In our cases the arguments

of the original function are the space–coordinate x (x ∈ R or x ∈ R
+
0 ) and the time–coordinate t

(t ∈ R
+
0 ). We use the symbol ÷ for the juxtaposition of a function with its Fourier or Laplace transform.

A look at the superscript ˆ for the Fourier transform, ˜ for the Laplace transform reveals their relevant
juxtaposition. We use x as argument (associated to real κ) for functions Fourier transformed, and x or t
as argument (associated to complex κ or s, respectively) for functions Laplace transformed.

f (x) ÷ f̂ (κ) :=
∫ +∞

−∞
eiκx f (x) dx , Fouriertransform.

f (x) ÷ f̃ (κ) :=
∫ ∞

0
e−κx f (x) dx , space-Laplacetransform.

f (t) ÷ f̃ (s) :=
∫ ∞

0
e−st f (t) dx , time-Laplacetransform

A.2. Convolutions

(u ∗ v)(x) :=
∫ +∞

−∞
u
(

x− x′
)

v
(

x′
)

dx′ , Fourierconvolution

(u ∗ v)(t) :=
∫ t

0
u
(
t− t′

)
v
(
t′
)

dt′ , Laplaceconvolution

The meaning of the connective * will be clear from the context. For convolution powers we have:

u∗0(x) = δ(x) , u∗1(x) = u(x) , u∗(n+1)(x) = (u∗n ∗ u)(x)

u∗0(t) = δ(t) , u∗1(t) = u(t) , u∗(n+1)(t) = (u∗n ∗ u)(t)

where δ denotes the Dirac generalized function.

A.3. Fractional Integral

The Riemann-Liouville fractional integral of order α > 0, for a sufficiently well-behaved function
f (t) (t ≥ 0), is defined as

Jαt f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ) dτ ,α > 0
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by convention as f (t) for α = 0. Well known are the semi-group property

Jαt Jβt = Jα+β
t = Jβt Jαt ,α , β ≥ 0

and the Laplace transform pair

Jαt f (t)÷ f̃ (s)
sα

,α ≥ 0

A.4. Fractional Derivatives

The Riemann-Liouville fractional derivative operator of order α > 0, Dα
t , is defined as the left

inverse operator of the corresponding fractional integral Jαt . Limiting ourselves to fractional derivatives
of order α ∈ (0, 1) we have, for a sufficiently well-behaved function f (t) (t ≥ 0),

Dα
t f (t) := D1

t J1−α
t f (t) =

1
Γ(1− α)

d
dt

∫ t

0

f (τ)
(t− τ)α

dτ , 0 < α < 1

while the corresponding Caputo derivative is

∗Dα
t f (t) := J1−α

t D1
t f (t)= 1

Γ(1−α)

∫ t
0

f (1)(τ)
(t−τ)α dτ

=Dα
t f (t)− f (0+) t−α

Γ(1−α)
=

Both derivatives yield the ordinary first derivative as α→ 1− but for α→ 0+ we have

D0
t f (t) = f (t) , ∗D0

t f (t) = f (t)− f
(
0+
)

We point out the major utility of the Caputo fractional derivative in treating initial-value problems
with Laplace transform. We have

L[ ∗Dα
t f (t); s] = sα f̃ (s)− sα−1 f

(
0+
)

, 0 < α ≤ 1

In contrast the Laplace transform of the Riemann-Liouville fractional derivative needs the limit at
zero of a fractional integral of the function f (t).

Note that both types of fractional derivative may exhibit singular behaviour at the origin t = 0+.

A.5. Mittag-Leffler and Wright Functions

The Mittag-Leffler function of parameter α is defined as

Eα(z) :=
∞

∑
n=0

zn

Γ(αn + 1)
,α > 0 , z ∈ C

It is entire of order 1/α. Let us note the trivial cases{
E1(±z) = exp (±z)

E2
(
+z2) = cosh (z) , E2

(−z2) = cos (z)

Without changing the order 1/α the Mittag-Leffler function can be generalized by introducing an
additional (arbitrary) parameter β.

The Mittag-Leffler function of parameters α,β is defined as

Eα,β(z) :=
∞

∑
n=0

zn

Γ(αn + β)
,α > 0 ,β, z ∈ C

Laplace transforms of Mittag-Leffler functions
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For our purposes we need, with 0 < ν ≤ 1 and t ≥ 0, the Laplace transform pairs{
Ψ(t)=Eβ(−tν) ÷ Ψ̃(s) = sν−1

1+sν

φ(t)=− d
dt Eν(−tν) = tν−1 Eν,ν(−tν) ÷ φ̃(s)= 1

1+sν

Of high relevance is the algebraic decay of Ψ(t) and φ(t) as t→ ∞ :{
Ψ(t) ∼ sin(νπ)

π
Γ(ν)

tν ,
φ(t) ∼ sin(νπ)

π
Γ(ν+1)

tν+1 ,
t→ +∞

Furthermore Ψ(t) = Eν(−tν) is the solution of the fractional relaxation equation with the Caputo
derivative

∗Dν
t u(t) = −u(t) , t ≥ 0 , u

(
0+
)
= 1

whereas φ(t) = − d
dt Eν(−tν) is the solution of the fractional relaxation equation with the

Riemann-Liouville derivative

Dν
t u(t) = −u(t) , t ≥ 0 , lim

t→0+
J1−ν
t u(t) = 1

We refer to the survey paper by Haubold, Mathai and Saxena [64], to our recent monograph [57]
and to our papers [21,22,25–27,51] for the relevance of Mittag-Leffler functions in probability theory
and stochastic processes with particular regard to theory of continuous time random walk and
space-time fractional diffusion, and in power law asymptotics. Particularly worth to be mentioned is
the pioneering paper by Hilfer and Anton [13]. They show that for transforming a general evolution
equation for continuous time random walk into the time fractional version of the Kolmogorov-Feller
equation a waiting time law expressible via a Mittag-Leffler type function is required.

The Wright function is defined as

Wλ,μ(z) :=
∞

∑
n=0

zn

n! Γ(λn + μ)
, λ > −1 , μ ∈ C

We distinguish the Wright functions of first kind (λ ≥ 0) and second kind (−1 < λ < 0). The case
λ = 0 is trivial since W0,μ(z) = e z/Γ(μ) . The Wright function is entire of order 1/(1 + λ) hence of
exponential type only if λ ≥ 0.

Laplace transforms of the Wright functions
For the Wright function of the first kind, being entire of exponential type, the Laplace transform

can be obtained by transforming the power series term by term:

Wλ,μ(t) ÷ 1
s

Eλ,μ

(
1
s

)
, λ ≥ 0

For the Wright function of the second kind, denoting ν =|λ|∈ (0, 1) we have with μ > 0 for simplicity,
we have

W−ν,μ(−t) ÷ Eν,μ+ν(−s) , 0 < ν < 1

We note the minus sign in the argument in order to ensure the the existence of the Laplace
transform thanks to the Wright asymptotic formula valid in a certain sector symmetric to and including
the negative real axis.

Stretched Exponentials as Laplace transforms of Wright functions We outline the following
Laplace transform pairs related to the stretched exponentials in the transform domain, useful for
our purposes,

1
t

W−ν,0

(
− 1

tν

)
÷ e−sν
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W−ν,1−ν
(
− 1

tν

)
÷ e−sν

s1−ν

W−ν,1

(
− 1

tν

)
÷ e−sν

s

For ν = 1/2 we have the three sister functions related to the diffusion equation available in most
Laplace transform handbooks

1
2
√

π
t−3/2 e−1/(4t) ÷ e−s1/2

1√
π

t−1/2 e−1/(4t) ÷ e−s1/2

s1/2

erfc
(

1
2t1/2

)
÷ e−s1/2

s

Among the Wright functions of the second kind a fundamental role in fractional diffusion
equations is played by the so called M-Wright function, see e.g., [49,50,54].

The M-Wright function is defined as

Mν(z) :=W−ν,1−ν(−z)=
∞

∑
n=0

(−z)n

n!Γ[−νn + (1− ν)]
=

1
π

∞

∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn)

with z ∈ C

and 0 < ν < 1. Special cases are

M1/2(z)=
1√
π

exp
(
− z2/4

)
, M1/3(z)=32/3Ai

(
z/31/3

)
where Ai denotes the Airy function, see e.g., [65].

The asymptotic representation of the M-Wright function
Choosing as a variable t/ν rather than t, the computation of the asymptotic representation as

t→ ∞ by the saddle-point approximation yields:

Mν(t/ν) ∼ a(ν) t(ν−1/2)/(1−ν) exp
[
−b(ν) t1/(1−ν)

]
where

a(ν) =
1√

2π (1− ν)
> 0 , b(ν) =

1− ν

ν
> 0

Mittag-Leffler function as Laplace transforms of M-Wright function

Mν(t) ÷ Eν(−s) , 0 < ν < 1 , t ≥ 0 , s ≥ 0

Stretched Exponentials as Laplace transforms of M-Wright functions

ν

tν+1 Mν(1/tν) ÷ e−sν , 0 < ν < 1 , t ≥ 0 , s ≥ 0

1
tν

Mν(1/tν) ÷ e−sν

s1−ν , 0 < ν < 1 , t ≥ 0 , s ≥ 0

Note that exp (−sν) is the Laplace transform of the extremal (unilateral) stable density L−νν (t), which
vanishes for t < 0, so that, introducing the Riemann-Liouville fractional integral, we have

1
tν

Mν(1/tν) = J1−ν
t
{

L−νν (t)
}
= J1−ν

t

{ ν

tν+1 Mν(1/tν)
}

31



Axioms 2015, 4, 321–344

Appendix : Collection of Results

B.1. General Renewal Process

Waiting time density: φ(t); Survival function: Ψ(t) =
∫ ∞

t φ(t′) dt′

(a) The counting number process x = N(t) has probability density function (density in x ≥ 0 and
evolving in t ≥ 0):

p(x, t) =
∞

∑
n=0

pn(t) δ(x− n) ,

and counting probabilities
pn(t) = (Ψ ∗ φ∗n)(t) .

(b) The Erlang process t = t(n), inverse to the counting process has probability density function
(density in t, evolving in n = 0, 1, 2, · · · )

qn(t) = q(t, n) = φ∗n(t) ,

with

qn(t) =
d
dt

Qn(t) , Qn(t) =
∞

∑
k=n

pk(t) ,

where qn(t), Qn(t) are the Erlang densities and probability distribution functions, respectively. Note
that pn(t) = (Ψ ∗ qn)(t).

B.2. Special Cases

(α) The fractional Poisson process

φ(t) = − d
dt

Eβ

(
−tβ

)
÷ φ̃(s) =

1
1 + sβ

,

pn(t) =
tnβ

n!
E(n)
β

(
−tβ

)
.

The Erlang densities are

qn(t) = β
tnβ−1

(n− 1)!
E(n)
β

(
−tβ

)
.

(β) The Wright process

φ(t) = gβ(t) ÷ g̃β(s) = exp
(
−sβ

)
,

pn(t) = Gβ

(
n−1/βt

)
− Gβ

(
(n + 1)−1/βt

)
.

The Erlang densities are
qn(t) = n−1/β gβ

(
n−1/β t

)
.
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Abstract: Pathway idea is a switching mechanism by which one can go from one functional form to
another, and to yet another. It is shown that through a parameter α, called the pathway parameter,
one can connect generalized type-1 beta family of densities, generalized type-2 beta family of densities,
and generalized gamma family of densities, in the scalar as well as the matrix cases, also in the real
and complex domains. It is shown that when the model is applied to physical situations then the
current hot topics of Tsallis statistics and superstatistics in statistical mechanics become special cases
of the pathway model, and the model is capable of capturing many stable situations as well as the
unstable or chaotic neighborhoods of the stable situations and transitional stages. The pathway model
is shown to be connected to generalized information measures or entropies, power law, likelihood
ratio criterion or λ−criterion in multivariate statistical analysis, generalized Dirichlet densities,
fractional calculus, Mittag-Leffler stochastic process, Krätzel integral in applied analysis, and many
other topics in different disciplines. The pathway model enables one to extend the current results on
quadratic and bilinear forms, when the samples come from Gaussian populations, to wider classes of
populations.

Keywords: pathway model; entropy measure; superstatistics; Tsallis statistics; beta family;
generalized gamma; Dirichlet densities; λ-criterion; H- function; quadratic forms

MSC: 85A99; 82B31; 60E05; 62C10; 33C60; 44A15

1. Introduction

The pathway idea was originally prepared by Mathai in the 1970’s in connection with population
models, and later rephrased and extended, Mathai [1], to cover scalar as well as matrix cases as made
suitable for modelling data from statistical and physical situations. For practical purposes of analyzing
data of physical experiments and in building up models in statistics, we frequently select a member
from a parametric family of distributions. But it is often found that the model requires a distribution
with a thicker or thinner tail than the ones available from the parametric family, or a situation of right
tail cut-off. The experimental data reveal that the underlying distribution is in between two parametric
families of distributions. In order to create a pathway from one functional form to another, a pathway
parameter is introduced and a pathway model is created in Mathai [1]. The main idea behind the
derivation of this model is the switching properties of going from one family of functions to another
and yet another family of functions. The model enables one to proceed from a generalized type-1
beta model to a generalized type-2 beta model to a generalized gamma model when the variable is
restricted to be positive. Thus the pathway parameter α takes one to three different functional forms.
This is the distributional pathway. More families are available when the variable is allowed to vary
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over the real line. Mathai [1] deals mainly with rectangular matrix-variate distributions and the scalar
case is a particular case there. For the real scalar case the pathway model is the following:

f1(x) = c1xγ−1[1− a(1− α)xδ]
η

1−α (1)

a > 0, δ > 0, 1− a(1− α)xδ > 0, γ > 0, η > 0 where c1 =
δ(a(1−α))

γ
δ Γ( η

1−α +1+ γ
δ )

Γ( γ
δ )Γ(

η
1−α +1)

for α < 1, is the

normalizing constant if a statistical density is needed and α is the pathway parameter. For α < 1 the
model remains as a generalized type-1 beta model in the real case. Other cases available are the regular
type-1 beta density, Pareto density, power function, triangular and related models. Observe that
Equation (1) is a model with the right tail cut off. When α > 1 we may write 1− α = −(α− 1), α > 1
so that f (x) assumes the form,

f2(x) = c2xγ−1[1 + a(α− 1)xδ]−
η

α−1 , x > 0 (2)

which is a generalized type-2 beta model for real x and c2 =
δ(a(α−1))

γ
δ Γ( η

α−1 )

Γ( γ
δ )Γ(

η
α−1− γ

δ )
for α > 1, is the

normalizing constant, if a statistical density is required. Beck and Cohen’s superstatistics belong to
this case Equation (2) (for more details see, [2,3]). Again, dozens of published papers are available on
the topic of superstatistics in statistical mechanics. For γ = 1, a = 1, δ = 1 we have Tsallis statistics for
α > 1 from Equation (2) (for more details [4,5]). Other standard distributions coming from this model
are the regular type-2 beta, the F-distribution, Lévi models and related models. When α→ 1, the forms
in Equations (1) and (2) reduce to

f (x) = cxγ−1e−bxffi
, x > 0, b = aη (3)

where c = δb
γ
δ

Γ( γ
δ )

, is the normalizing constant. This includes generalized gamma, gamma, exponential,

chisquare, Weibull, Maxwell-Boltzmann, Rayleigh, and related models (for more details see, [6,7]).
If x is replaced by |x| in Equation (1) then more families of distributions are covered in Equation (1).
The behavior of the pathway model for various values of the pathway parameter α can be seen from
the following figures.

From the Figure 1(Left) we can see that, as α moves away from 1 the function f2(x) moves away
from the origin and it becomes thicker tailed and less peaked. From the path created by α we note that
we obtain densities with thicker or thinner tail compared to generalized gamma density. From Figure
1 (Right) we can see that when α moves from −∞ to 1, the curve becomes thicker tailed and less
peaked, see ([8,9]). Note that α is the most important parameter here for enabling one to more than one
family of functions. The other parameters are the usual parameters within each family of functions.
The following is a list of some particular cases and the transformations are listed to go from the
extended versions to the regular cases.
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Figure 1. (Left) The graph of f1(x), for γ = η = a = 1, δ = 2 and for various values of α.
(Right) The graph of f2(x), for γ = η = a = 1, δ = 2 and for various values of α.

α = 1, γ = 1, a = 1, δ = 1 Gaussian or normal density for ∞ < x < ∞

α = 1, γ− 1 = 3
4 , a = 1, δ = 1 Maxwell-Boltzmann density

α = 1, γ− 1 = 1
2 , a = 1, δ = 1 Rayleigh density

α = 1, γ = n
2 , a = 1, δ = 1 Hermert density

α = 0, γ = 1, η = 1, δ = 1 U-shaped density

α = 2, γ = 1, η = ν+1
2 a = 1

ν , δ = 1 Student-t for ν degrees of freedom, −∞ < x < ∞

α = 2, η = 1, a = 1, δ = 1 Caushy density for −∞ < x < ∞

α < 1, a(1− α) = 1, δ = 1 Standard type-1 beta density
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α > 1, a(1− α) = 1, δ = 1 Standard type-2 beta density

γ− 1 = 1
2 , η = 1, a = 1, δ = 1 Tsallis statistics in Astrophysics,

Power law, q-binomial density

α = 0, γ− 1 = 1
2 , η = 1, δ = 1 Triangular density

α = 2, γ− 1
2 = m

2 , a = m
n η = m+1

2 , δ = 1 F-density

α = 1, γ− 1 = 1
2 , a = 1, η =

mg
KT , δ = 1 Helley’s density in physics

α = 1, a = 1, δ = 1 Gamma density

α = 1, a = 1, γ− 1
2 = ν

2 , η = 1
2 , δ = 1 Chisquare density for ν degrees of freedom

α = 1, a = 1 γ− 1 = 1
2 , δ = 1 Exponential density (Laplace density

with x = |z|, −∞ < z < ∞)

α = 1, a = 1 Generalized gamma density

α = 1, a = 1, γ− 1 = 1
2 Weibull density

α = 2, a = 1, γ− 1 = 1
2 , η = 2, δ = 1, x = ey Logistic density for −∞ < y < ∞

α = 2, a = 1, γ = 1, η = 1, δ = 1, x = eε+μy, ε 	= 0, μ > 0, Fermi-Dirac density, 0 ≤ y < ∞

1.1. Pathway Model from Mathai’s Entropy Measure

In physical situations when an appropriate density is selected, one procedure is the maximization
of entropy. Mathai and Rathie [10] consider various generalizations of Shannon entropy measure and
describe various properties including additivity, characterization theorem etc. Mathai and Haubold
([11]) introduced a new generalized entropy measure which is a generalization of the Shannon entropy
measure. For a multinomial population P = (p1, . . . , pk), pi > 0, i = 1, . . . , k, p1 + p2 + · · ·+ pk = 1,
the Mathai’s entropy measure is given by the relation

Mk,α(P) =

k

∑
i=1

p2−α
i − 1

α− 1
, α 	= 1, −∞ < α < 2. (discrete case)

Mα( f ) =
1

α− 1

[∫ ∞

−∞
[ f (x)]2−αdx− 1

]
, α 	= 1, α < 2 (continuous case)

By optimizing Mathai’s entropy measure, one can arrive at pathway model of Mathai [1], which
consists of many of the standard distributions in statistical literature as special cases. For fixed α,
consider the optimization of Mα( f ), which implies optimization of

∫
x[ f (x)]2−αdx, subject to the

following conditions:

(i) f (x) ≥ 0, for all x
(i)
∫

x f (x)dx < ∞
(i)
∫

x xρ(1−α) f (x)dx = fixed for all f
(i)
∫

x xρ(1−α)+δ f (x)dx = fixed for all f , where ρ and δ are fixed parameters

39



Axioms 2015, 4, 530–553

By using calculus of variation, one can obtain the Euler equation as

∂

∂ f
[ f 2−α − λ1xρ(1−α) f + λ2xρ(1−α)+δ f ] = 0

⇒ (2− α) f 1−α = λ1xρ(1−α)[1− λ2

λ1
xδ], α 	= 1, 2

⇒ f1 = c1xρ[1− a(1− α)xδ]
1

1−α (4)

for λ2
λ1

= a(1− α) for some a > 0. For more details see ([12,13]).
When α→ 1, the Mathai’s entropy measure Mα( f ) goes to the Shannon entropy measure and this

is a variant of Havrda-Charvát entropy, and the variant form therein is Tsallis entropy. Then when α

increases from 1, Mα( f ) moves away from Shannon entropy. Thus α creates a pathway moving from
one function to another, through the generalized entropy also. This is the entropic pathway. One can
derive Tsallis statistics and superstatistics (for more details see, [2–5]) by using Mathai’s entropy.

The pathway parameter α offers the differential pathway also. Let us consider

g(x) =
f1(x)

c1
= xβ[1− a(1− α)xδ]

1
1−α , x > 0, β = γ− 1, η = 1

d
dx

g(x) =
β

x
g(x)− aδxδ−1+(1−α)γ[g(x)]α

= −a[g(x)]α for β = 0, δ = 1 (5)

This is the power law. When η = 1 then the differential equation satisfied by g3 = f
c of Equation (3)

is given by

d
dx

g3(x) =
β

x
− aδxδ−1g3(x)

= −a[g3(x)] for β = γ− 1 = 0, δ = 1 (6)

Thus when α moves to 1 the differential pathway is from the power law in Equation (5) to the
maxwell-Boltzmann in Equation (6).

1.2. Laplacian Density and Stochastic Processes

The real scalar case of the pathway model in Equation (1), when x is replaced by |x| and α→ 1,
takes the form

f3(x) = c3|x|γ−1e−a|x|δ ,−∞ < x < ∞, a > 0 (7)

The density in Equation (7) for γ = 1, δ = 1 is the simple Laplace density. For γ = 1 we have the
symmetric Laplace density. A general Laplace density is associated with the concept of Laplacianness
of quadratic and bilinear forms. For the concept of Laplacianness of bilinear forms, corresponding
to the chisquaredness of quadratic forms, and for other details see [14,15]. Laplace density is also
connected to input-output type models. Such models can describe many of the phenomena in nature.
When two particles react with each other and energy is produced, part of it may be consumed or
converted or lost and what is usually measured is the residual effect. The water storage in a dam is the
residual effect of the water flowing into the dam minus the amount taken out of the dam. Grain storage
in a sylo is the input minus the grain taken out. It is shown in Mathai ([16]) that when we have
gamma type input and gamma type output the residual part z = x− y, x = input variable, y = output
variable, then the special cases of the density of z is a Laplace density. In this case one can also obtain
the asymmetric Laplace and generalized Laplace densities, which are currently used very frequently
in stochastic processes, as special cases of the input-output model. Some aspects of the matrix version
of the input-output model is also described in [16].
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1.3. Mittag-Leffler Density and Processes

Recently there is renewed interest in Mittag-Leffler function as a model in many applied areas
due to many reasons, one being that it gives a thicker tail compared to the exponential model.
Fractional differential equations often lead to Mittag-Leffler functions and their generalizations as
solutions, especially when dealing with fractional equations in reaction-diffusion problems. A large
number of such situations are illustrated in [13,17,18]. The Mittag-Leffler density, associated with a
3-parameter Mittag-Leffler function is the following:

f (x) =
xαβ−1

δβ

∞

∑
k=0

(β)k
k!

(−xα)k

δkΓ(αk + αβ)
, 0 ≤ x < ∞, δ > 0, β > 0 (8)

It has the Laplace transform

L f (t) = [1 + δtα]−β, 1 + δtα > 0 (9)

If δ is replaced by δ(q − 1) and β by β
(q−1) , q > 1 and if we consider q approaching to 1 then

we have
lim
q→1

L f (t) = lim
q→1

[1 + δ(q− 1)tα]
− β

q−1 = e−δβtα
(10)

But this is the Laplace transform of a constant multiple of a positive Lévy variable with parameter
α, 0 < α ≤ 1, with the multiplicative constant being (δβ)

1
α , and thus the limiting form of a Mittag-Leffler

distribution is a Lévy distribution. A connection of pathway model to Mittag-Leffler function is given
in [19,20]. There is vast literature on Mittag-Leffler stochastic processes, see for example [21,22].

1.4. Laplace Transform of the Pathway Model

Let L f2(t) be the Laplace transform of the pathway model f2(x) of Euqation (2). That is

L f2(t) = c2

∫ ∞

0
e−txxγ−1[1 + a(α− 1)xδ]−

η
α−1 dx, a > 0, b > 0, δ > 0,

η > 0, α > 1 (11)

Here the integrand can be taken as a product of positive integrable functions and then we
can apply Mellin transform and inverse Mellin transform technique to evaluate the above integral.
The integral in Equation (11) can be looked upon as the Mellin convolution of exponential density and
superstatistics. Let us transform x1 and x2 to u = x1

x2
and v = x2, then we can see that the marginal

density of u obtained is actually the Laplace transform that we want to evaluate. Since the density is
unique, in whatever way we evaluate the density we should get the same function or the functions
will be identical. We can evaluate the density of u by the method of inverse Mellin transform, see [9].
Comparing the density obtained in these two different methods, we will get the Laplace transform of
the pathway model given in Equation (2) as an H-function

L f2(t) =
1

Γ( γ
δ )Γ(

η
α−1 − γ

δ )
H2,1

1,2

[
t

a
1
δ (α− 1)

1
δ

∣∣∣∣(1−
γ
δ

1
δ )

(0,1),( η
α−1− γ

δ− 1
δ , 1

δ )

]
, (12)

for �(γ) > 0, �( η
α−1 − γ

δ ) > 0, α > 1, where H− function is defined as

Hm,n
p,q
[
z
∣∣(a1,α1),...,(ap ,αp)

(b1,β1),,...,(bq ,βq)

]
=

1
2πi

∫
L

φ(s) z−sds (13)
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where

φ(s) =

{
∏m

j=1 Γ(bj + β js)
} {

∏n
j=1 Γ(1− aj − αjs)

}{
∏

q
j=m+1 Γ(1− bj − β js)

} {
∏

p
j=n+1 Γ(aj + αjs)

}
where αj, j = 1, 2, ..., p and β j, j = 1, 2, ..., q are real positive numbers, aj, j = 1, 2, ..., p and bj, j=1,2,...,q
are complex numbers, L is a contour separating the poles of Γ(bj + β js), j = 1, 2, ..., m from those of
Γ(1− aj − αjs), j = 1, 2, ..., n. When α1 = 1 = · · · = αp = β1 = 1 = · · · = βq, then the H−function
reduces to Meijer’s G− function, for more details see [18]. In a similar way we can evaluate the Laplace
transform of the pathway model for α < 1 and is given by

L f1(t) = c1

∫ [ 1
a(1−α)

] 1
δ

0
e−txxγ1 [1− a(1− α)xδ]

η
1−α dx

=
Γ(1 + η

1−α + γ
δ )

Γ( γ
δ )

H1,1
1,2

[
t

a
1
δ (1− α)

1
δ

∣∣∣∣(1−
γ
δ , 1

δ )

(0,1),(− η
1−α− γ

δ , 1
δ )

]
, �(γ) > 0 (14)

THEOREM 1. For �(γ) > 0, �( η
α−1 − γ

δ ) > 0, δ > 0, η > 0, x > 0, α > 1, the Laplace transform (or the
corresponding moment generating function) of the pathway model of the form f2(x), given in Euqation (12)
goes to the Laplace transform (moment generating function) of the generalized gamma density given in Euqation
(15) when α→ 1+.

THEOREM 2. For �(γ) > 0, δ > 0, η > 0, x > 0, α < 1, the Laplace transform (or the corresponding
moment generating function) of the pathway model of the form f2(x), given in Euqation (14) goes to the Laplace
transform (moment generating function) of the generalized gamma density given in Euqation (15) when α→ 1−.

The limiting case is given by

L f (t) = c
∫ ∞

0
e−txxγe−bxδ

dx

=
1

Γ( γ
δ )

H1,1
1,1

[
t

b
1
δ

∣∣∣∣(1−
γ
δ , 1

δ )

(0,1)

]
(15)

The Laplace transform of this density also provides the moment generating function of the
extended gamma density thereby the moment generating functions of extended form of Weibull,
chisquare, Reyleigh, Maxwell-Boltzmann, exponential and other densities in this general class.
Usually we do not find the moment generating function or Laplace transform and the characteristic
function of the generalized gamma density in the literature when δ 	= 1. Here we obtained the Laplace
transform of the generalized gamma density, besides giving an extension to this density.

1.5. Multivariate Generalizations

One generalization of the model in Euqation (1) for one scalar case is given by

f1(x1, x2, · · · , xn) = Kxγ1−1
1 xγ2−1

2 · · · xγn−1
n

×[1− (1− α)(a1xδ1
1 + a2xδ2

2 + · · ·+ anxδn
n )]

η
1−α (16)

α < 1, η > 0, ai > 0, δj > 0, i = 1, 2, · · · , n, 1− (1− α)∑n
i=1 aix

δi
i > 0. We can see that Equation (16)

is the Dirichlet family of densities. For α < 1, Equation (16) stays in the type-1 Dirichlet form and for
α > 1 it stays as a type-2 Dirichlet form. This multivariate analogue can also produce multivariate
extensions to Tsallis statistics and superstatistics. Here the variables are not independently distributed,
but when α→ 1 we have a surprising result that x1, x2, · · · , xn will become independently distributed
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generalized gamma variables. Various generalizations of the pathway model are considered by Mathai
and associates. The normalizing constants can be obtained by integrating out the variables one at a
time, starting from xn an going to x1 (see [23]).

2. Connections to Astrophysics and Statistical Mechanics

2.1. Superstatistics Consideration and Pathway Model

Beck and Cohen [3] developed the concept of superstatistics in statistical mechanics. From
a statistical point of view, the procedure is equivalent to starting with a conditional density for a
random variable x at a given value of a parameter θ. Then assume the parameter θ has a prior density.
Consider the conditional density of the form

fx|θ(x|θ) = k1xγe−θxδ
, γ + 1 > 0, θ > 0, δ > 0, x > 0 (17)

where k1 = δθ
γ+1

δ

Γ( γ+1
δ )

. Suppose that θ has an exponential density given by fθ(θ) = λe−λθ ,

λ > 0, θ > 0. Then the unconditional density of x is given by

fx(x) =
∫

θ
fx|θ(x|θ) fθ(θ)dθ

=
δΓ( γ+1

δ + 1)xγ[1 + xδ

λ ]−(
γ+1

δ +1)

λ
γ+1

δ Γ( γ+1
δ )

(18)

(see [2,3,11,18,24,25]). Equation (18) is the superstatistics of Beck and Cohen [3], in the sense of
superimposing another distribution or the distribution of x with superimposed distribution of the
parameter θ. In a physical problem the parameter θ may be something like temperature having its own
distribution. Several physical interpretations of superstatistics are available from the papers of Beck

and others. The factor [1 + xδ

λ ]−(
γ+1

δ +1) written as [1 + (α− 1)xδ]−
1

α−1 , α > 1 is the foundation for the
current hot topic of Tsallis statistics in non-extensive statistical mechanics. Observe that only a form

of the type [1 + xδ

λ ]−(
γ+1

δ +1) where 1 + xδ

λ > 0, λ > 0, xδ > 0, γ+1
δ + 1 > 0, that is, only a type-2 beta

form can come from such a consideration. In other words a type-1 beta form cannot come because for
the convergence of the integral in Euqation (18), a + xδ must be positive with λ > 0 and xδ > 0. It is to
be pointed out here that the superstatistics of Beck and Cohen [2] and Beck [3] are available from the
procedure given above. It goes without saying that only type-2 beta form as given in Euqation (2) is
available from superstatistics considerations, see [26]. The conditional density of the random variable
θ, given x is the posterior probability density of θ and is given by

fθ|x(θ|x) =
fθ(θ) fx|θ(x|θ)

fx(x)

=
λ

γ+1
δ +1[1 + xδ

λ ]
γ+1

δ +1

Γ( γ+1
δ + 1)

e−θ(λ+xδ)θ
γ+1

δ , θ > 0 (19)

With the help of Euqation (19) we can obtain the Bayes’ estimate of the parameter θ. To this extent, let

Φ(x) = Eθ|x(θ|x) =
∫ ∞

0
θ fθ|x(θ|x)dθ

=
γ+1

δ + 1
λ + xδ

(20)

Superstatistics and Tsallis statistics in statistical mechanics are given interpretations in terms of
Bayesian statistical analysis. Subsequently superstatistics is extended by replacing each component of
the conditional and marginal densities by Mathai’s pathway model and further both components are
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replaced by Mathai’s pathway model. This produces a wide class of mathematically and statistically
interesting functions for prospective applications in statistical physics, see [19]. The same procedure
can be used to look at the extended forms. Let the conditional density of x, given θ, be of the form

fαx|θ (x|θ) = k2xγ[1 + θ(α− 1)xδ]−
1

α−1 , x > 0, θ > 0, α > 1, δ > 0 (21)

where k2 =
δ(θ(α−1))

γ+1
δ Γ( 1

α−1 )

Γ( γ+1
δ )Γ( 1

α−1− γ+1
δ )

and assume that the parameter θ has a prior density fθ(θ) = λe−λθ , λ >

0, θ > 0. Then the unconditional density of x is given by

fαx (x) =
λδx−(δ+1)

(α− 1)Γ( γ+1
δ )Γ( 1

α−1 − γ+1
δ )

G2,1
1,2

[
λ

xδ(α− 1)

∣∣∣∣−
γ+1

δ

0, 1
α−1− γ+1

δ −1

]
, x > 0 (22)

where G2,1
1,2(·) is a G−function. For the theory and application of the functions see Mathai [7].

The posterior probability density is given by

fαθ|x (θ|x) = c−1
4 (α− 1)

γ+1
δ +1xγ+δ+1Γ(

1
α− 1

)θ
γ+1

δ e−λθ [1 + θ(α− 1)xδ]−
1

α−1 (23)

where c4 = G2,1
1,2

[
λ

xδ(α−1)

∣∣∣∣−
γ+1

δ

0, 1
α−1− γ+1

δ −1

]
. Then the Bayes’ estimate of θ, at given x, defined by Φα(x),

is given by the following:

Φα(x) = Eαθ|x (θ|x) =
c−1

4
(α− 1)xδ

G2,1
1,2

[
λ

xδ(α− 1)

∣∣∣∣−1− γ+1
δ

0, 1
α−1− γ+1

δ −2

]
(24)

LEMMA 1. Let the conditional density of x given θ be fx|θ(x|θ) as in Equation (17) and assume that the
parameter θ has a prior density fθ(θ) = λe−λθ , λ > 0, θ > 0. Then the Bayes’ estimate of θ is given by Φ(x)
in Equation (20).

THEOREM 3. Let the conditional density of x given θ be fαx|θ (x|θ) as in Equation (21) and assume
that the parameter θ has a prior density fθ(θ) = λe−λθ , λ > 0, θ > 0. Then the Bayes’ estimate of θ is given
by Φα(x) in Equation (24).

Thus, the popular superstatistics in statistical mechanics can be considered as a special case of the
pathway model in Equation (18) for η = 1 and δ = 1.

2.2. α-gamma Models Associated with Bessel Function

Sebastian [27] deals with a new family of statistical distributions associated with Bessel function
which gives an extension of the gamma density, which will connect the fractional calculus and statistical
distribution theory through the special function. The idea is motivated by the fact that a non-central
chi-square density is associated with a Bessel function. In order to make thicker or thinner tails in a
gamma density we consider a density function of the following type:

fx|a(x|a) = ρ a
γ
ρ e− δ

a

Γ( γ
ρ )

xγ−1e−axρ

0F1( ;
γ

ρ
; δxρ); 0 < x < ∞ (25)

where 0F1( ; b; x) = ∑∞
k=0

(x)k

(b)k k! , (b)k is the Pochhammer symbol, (b)m = b(b + 1) · · · (b + m − 1),
b 	= 0, (b)0 = 1. When δ = 0 the Equation (25) reduces to generalized gamma density. Note that
this is the generalization of some standard statistical densities such as gamma, Weibull, exponential,
Maxwell-Boltzmann, Rayleigh and many more. When δ = 0, ρ = 2, Equation (25) reduces to folded
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standard normal density. We can extend the generalized gamma model associated with Bessel function
in Equation (25) by using the pathway model of Mathai [1], when α < 1 we get the extended function as

gα(x) = k1xγ−1[1− a(1− α)xρ]
1

1−α 0F1( ;
γ

ρ
; δxρ); α < 1,

a > 0, ρ > 0, 1− a(1− α)xρ > 0, x > 0 (26)

where k1 is the normalizing constant. Note that gα(x) is a generalized type-1 beta model associated
with Bessel function. Observe that for α > 1, writing 1− α = −(α− 1) in Equation (25) produces
extended type-2 beta form which is given by

fα(x) = k2xγ−1[1 + a(α− 1)xρ]−
1

α−1 0F1( ;
γ

ρ
; δxρ); α > 1, a > 0, ρ > 0 (27)

where k2 is the normalizing constant. Note that in both the cases, when α→ 1, we have Equation (25)
and hence it can be considered to be an extended form of Equation (25). This model has wide potential
applications in the discipline physical science especially in statistical mechanics, see [27,28]. For fixed
values of γ = 2, ρ = 1.2 and a = 1, we can look at the graphs for δ = −0.5, q < 1, δ = 0.5, q < 1 as well
as for δ = −0.5, q > 1, δ = 0.5, q > 1. From the Figures 2, we can see that when q moves from −∞ to 1,
the curve becomes less peaked. Similarly from Figure 3, we can see that when q moves from 1 to ∞,
the curve becomes less peaked. It is also observed that when δ > 0 the right tail of the density becomes
thicker and thicker. Similarly when δ < 0 the right tail gets thinner and thinner. Densities exhibiting
thicker or thinner tail occur frequently in many different areas of science. For practical purposes of
analyzing data from physical experiments and in building up models in statistics, we frequently select
a member from a parametric family of distributions.

Figure 2. (Left) α gamma bessel model for δ = 0.5, α < 1; (Right) α gamma bessel model for
δ = −0.5, α < 1.
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Figure 3. (Left) α gamma bessel model for δ = 0.5, α > 1; (Right) α gamma bessel model for
δ = −0.5, α > 1.

2.3. Tsallis Statistics

Model Equation (1) for γ = 1, δ = 1, a = 1, η = 1 is Tsallis statistics, which is the foundation
for the newly created hot topic of non-extensive statistical mechanics. It is stated that over three
thousand papers are written on Tsallis statistics so far. With α replaced in −α in Model Equation (1),
with γ = 0, a = 1, η = 1, δ = 1, one has an extension of the exponential function, known as
q-exponential function [The parameter q is used instead of α and hence q-exponential]. The basis for
the current hot topic of q-calculus is this q-exponential function. When γ = 1, a = 1, η = 1, δ = 1 one
has the following property if the resulting function of f (x) is divided by the resulting normalizing
factor c and obtain the function g(x), that is, g(x) = f (x)

c . Then

dg(x)
dx

= −[g(x)]α.

This is the power law in physics literature. Thus, power function law is a special case of the pathway
model of Equations (1) and (2) for γ = 1, δ = 1, a = 1, η = 1 and exactly the normalizing constants
c1 and c2. Also Tsallis statistics can be looked upon as a special case of Equations (1) and (2) for
γ = 1, δ = 1, a = 1, η = 1.

2.4. Extension of Thermonuclear Functions through Pathway Model

Nuclear reactions govern major aspects of the chemical evolution of the universe. A proper
understanding of the nuclear reactions that are going on in hot cosmic plasmas, and those in the
laboratories as well, requires a sound theory of nuclear-reaction dynamics. The reaction probability
integral is the probability per unit time that two particles, confined to a unit volume, will react with
each other. Practically all applications of fusion plasmas are controlled in some way or other by the
theory of thermonuclear reaction rates under specific circumstances. After several decades of effort,
a systematic and complete theory of thermonuclear reaction rates has been developed [29–32].

The standard thermonuclear function in the Maxwell-Boltzmann case in the theory of nuclear
reactions, is given by the following ([31,33]):
Nonresonant Case with Depleted Tail:

I1 =
∫ ∞

0
xγ−1e−axδ−bx−ρ

dx, a > 0, b > 0, δ > 0, ρ > 0 (28)

Nonresonant case with depleted tail and high energy cut-off:

I2 =
∫ d

0
xγ−1e−axδ−bx−ρ

dx, a > 0, b > 0, δ > 0, ρ > 0, d < ∞ (29)
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Note that if δ = 1 is taken as the standard Maxwell-Boltzmannian behavior, then for δ > 1 the right
tail will deplete faster and if δ < 1 then the depletion will be slower in Equation (29). We can extend
the thermonuclear functions given in Equations (28) and (29) to more general classes by replacing

e−bx−ρ
by a binomial factor [1− b(1− α)x−ρ]

1
1−α ([13,34,35]). Thus we consider the general class of

reaction rate integrals

I1α =
∫ ∞

0
xγ−1e−axδ

[1 + b(α− 1)x−ρ]−
1

α−1 dx, a > 0, b > 0, δ > 0, ρ > 0, α > 1 (30)

I2α =
∫ d

0
xγ−1e−axδ

[1− b(1− α)x−ρ]
1

1−α dx, a > 0, b > 0, δ > 0, ρ > 0, α < 1 (31)

We can evaluate these extended integrals by using Mellin convolution property. Equation (30) can be
looked upon as the Mellin convolution of two real positive scalar independently distributed random
variables x1 and x2, where x1 has a generalized gamma density and x2 has an extended form of
stretched exponential function. Make the transformation u = x1x2 and v = x1, and then proceed as in
the case of the evaluation of the Laplace transform of the pathway model, we can arrive at the value of
the extended reaction rate integral as

I1α =
∫ ∞

0
e−axδ

xγ−1[1 + b(α− 1)x−ρ]−
1

α−1 dx

=
1

ρμa
γ
δ Γ( 1

α−1 )
H2,1

1,2

[
a

1
δ (b(α− 1))

1
ρ

∣∣∣∣(1−
1

α−1 , 1
ρ )

(0, 1
ρ ),(

γ
δ , 1

δ )

]
, b = uρ (32)

Similarly we can evaluate Equation (31) by considering it as the Mellin convolution of exponential
density and pathway model for α < 1. When we take the limit as α→ 1, in Equation (32), we will get
the value of the reaction rate integral given in Equations (28) and (29), as an H- function.

2.4.1. Inverse Gaussian as a Particular Case of the Pathway Model

Note that one form of the inverse Gaussian probability density function is given by

g(x) = kx−
3
2 e
− λ

2 (
x

μ2 +
1
x ), μ 	= 0, x > 0, λ > 0

where k is the normalizing constant (see [7]). Put γ = − 5
2 , δ = 1, ρ = 1, a = λ

2μ2 , b = λ
2 in

Equation (28), we can see that the inverse Gaussian density is the integrand in I1. Hence I1 in
Equation (28) can be used to evaluate the moments of inverse Gaussian density. Hence the integrand
in the extended integral I1α can be considered as the extended form of the inverse Gaussian density.

2.4.2. An Interpretation of the Pathway Parameter α

Let us start with the pathway density in Equation (1) with η = 1. For this to remain a density we
need the condition 1− a(1− α)xδ > 0 or when x is positive then 0 < x < 1

[a(1−α)]
1
δ

, α < 1, or if we

have the model in Equation (31) then

− 1

[a(1− α)]
1
δ

< x <
1

[a(1− α)]
1
δ

, α < 1

Outside this range, the density is zero. Thus for x > 0 the right tail of the density is cut-off at
1

[a(1−α)]
1
δ

. If d is this cut-off on the right then

d =
1

[a(1− α)]
1
δ

⇒ α = 1− 1
adδ

, for α < 1 (33)
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As α moves closer to 1 then the cut-off point d moves farther out and eventually when α → 1
then d→ ∞. In this case α is computed easily from the cut-off. Also the pathway parameter α can be
estimated in terms of arbitrary moments, see for example [12].

3. Pathway Model and Fractional Calculus

When solving certain problems in reaction-diffusion, relaxation-oscillations, it is observed that
the solution is obtained in terms of exponential function, see [33,36]. But if a fractional integration is
under consideration then the residual reaction equation is given by

N(t) = N0 − cν
0Dt
−νN(t), ν > 0 (34)

where 0Dt
−ν is the standard Riemann-Louville fractional integral operator, where N(t) is the number

density of the reacting particles and Equation (34) has the solution in terms of generalized Mittag-Leffler
function. While fitting such a model, Mittag-leffler function will provide a better fit as compared to
exponential function. If we consider the residual rate of change c, in Equation (34) is a random variable
having a gamma type density

g(c) =
wμ

Γ(μ)
cμ−1e−wc, w > 0, 0 < c < ∞ (35)

where μ > 0, w, μ are known and μ
w is the mean value of c. The residual rate of change may have small

probabilities of it being too large or too small and the maximum probability may be for a medium
range of values for the residual rate of change c. Equation (34) is the situation where the residual
rate of change is such that the production rate dominates so that we have the form −cν, ν > 0, c > 0.
If the destruction rate dominates then the constant will be of the form cν, ν > 0, c > 0. By solving
Equation (34), we have the unconditional number density of the following form:

N(t) =
N0

Γ(μ)
tμ−1(1 +

tν

wν
)−(γ+1), 0 < t < ∞, w > 0 (36)

If we make the substitution γ + 1 = 1
α−1 , α > 1 ⇒ γ = α−2

α−1 and w−ν = b(α − 1), b > 0.
Then we have

N(t) =
N0

Γ(μ)
tμ−1[1 + b(α− 1)tν]−

1
α−1 (37)

for α > 1, t > 0, b > 0, μ > 0. For general values of μ and α > 1 such that 1
α−1 − μ

ν > 0, Euqation (37)
corresponds to the pathway model of Mathai as well as the superstatistics of Beck and Cohen [3]. As an
application of pathway model in fractional calculus, a general pathway fractional integral operator is
introduced in [37], which generalizes the classical Riemann-Liouville fractional integration operator,
see Section 4.5.

3.1. P-Transform

Consider the generalized Krätzel function Dν,α
ρ,β(x), dealt with in [38], given by

Dν,α
ρ,β(x) =

∫ ∞

0
yν−1[1 + a(α− 1)yρ]−

1
α−1 e−xy−β

dy, x > 0 (38)

with γ ∈ C, β > 0, α > 1. The generalized Krätzel function is obtained by using the pathway model
introduced by Mathai [1]. The P-transform or pathway transform introduced in [39] by using the
pathway idea is defined as

(Pρ,β,α
ν f )(x) =

∫ ∞

0
Dν,α

ρ,β(xt) f (t)dt, x > 0 (39)
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where Dν,α
ρ,β(x) denotes the function given in Equation (38). The P-transform is defined in the space

Lν,r consisting of the lebesgue measurable complex valued functions f for which

‖ f ‖ν,r =

{∫ ∞

0
|tν f (t)|r dt

t

} 1
r
< ∞, (40)

for 1 ≤ r < ∞, ν ∈ R. When β = 1, a = 1 and α→ 1 the P-transform reduces to the Krätzel tranform,
introduced by Krätzel [40], which is given by

K(ρ)
ν f (x) =

∫ ∞

0
Zν

ρ(xt) f (t)dt, x > 0 (41)

where
Zν

ρ(x) =
∫ ∞

0
yν−1e−yρ−xy−1

dy (42)

The P-transform reduces to the Meijer transform when ρ = 1 and α → 1. When a = 1, β = 1
and α → 1, then the generalized Krätzel function defined in Equation (38) reduces to the modified
Bessel function of the third kind or McDonald function ([38,41,42]) have considered Equation (38) for
β = 1 and established its composition with fractional operators and represented it in terms of various
generalized special functions. The Krätzel function defined in Equation (42) for any real ρ, was studied
by [43] and established its representations in terms of H-function and extended the function from
positive x > 0 to complex z. Here we establishe connection between generalized Krätzel function and
P-transform with generalized special functions.

The particular case of the kernel of the P-transform given in Equation (38) is the extended
non-resonant thermonuclear function used in Astrophysics which is already discussed. As α→ 1 we
get the standard reaction rate probability integral in the Maxwell-Boltzmann case. The behavior of
the generalized Krätzel function Equation (38) can be studied from the following graphs. We take
a = 1, β = 1, ν = 2, ρ = 3 and a = 1, β = 1, ν = 2, ρ = 5 for example and investigate the behavior of
D2,α

3,1 (x) and D2,α
5,1 (x) for various values of α > 1 and α→ 1. The graphs of these functions D2,α

3,1 (x) and

D2,α
5,1 (x) at α = 1, α = 1.25, α = 1.5, α = 1.8 are given in Figure 4a,b, respectively. From these graphs

we observe that if the value of the parameter α increases then the curves move away from the limiting
situation for α→ 1.

Figure 4. (Left) Behaviour of D2,α
3,1 (x) for various values of α > 1 and α → 1; (Right) Behaviour of

D2,α
5,1 (x) for various values of α > 1 and α→ 1.
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4. A Matrix Variate Pathway Model

Let X = (xij), i = 1, . . . , p, j = 1, . . . , q, q ≥ p, of rank p and of real scalar variables x′ijs for all i
and j, subject to the condition that the rank of X is p, having the density f (X), where f (X) is a scalar
function of X is given by

f (X) = C|A 1
2 (X−M)B(X−M)′A

1
2 |γ|I − a(1− α)A

1
2 (X−M)B(X−M)′A

1
2 | η

1−α (43)

where C is the normalizing constant, A = A′ > 0, B = B′ > 0, A is p × p, B is q × q, A and B are
constant positive definite matrices, and M is a p× q constant matrix. A

1
2 denotes the positive definite

square root of A, a > 0 and α is the pathway parameter. For keeping non-negativity of the determinant
in Equation (43) we need the condition

I − a(1− α)A
1
2 (X−M)B(X−M)′A

1
2 > 0

where, for example, the notation A < Y < B ⇒ A = A′ > 0, B = B′ > 0, Y = Y′ > 0, Y − A >

0, B− Y > 0. In Equation (43) the constant matrix M can act as a relocation matrix or as the mean
value matrix so that E(X) = M where E denotes the expected value.

4.1. The Normalizing Constants

This requires certain transformations and the knowledge of the corresponding Jacobians. Here we
will use a few multi-linear and some nonlinear transformations and the corresponding Jacobians.
The details of the derivations of these Jacobians are available from [44]. Put

Y = A
1
2 (X−M)B

1
2 ⇒ dY = |A| q2 |B| p

2 dX

where |(·)| denotes the determinant of (·), dX is defined as the following wedge product of differentials:

dX = dx11 ∧ dx12 ∧ · · · ∧ dx1q ∧ dx22 ∧ · · · ∧ dx2q ∧ · · · ∧ dxpq

see [44] for the Jacobian. Since f (X) is assumed to be a density,

1 =
∫

X
f (X)dX = C|A|− q

2 |B|− p
2

∫
Y
|YY′|γ|I − a(1− α)YY′| η

1−α dY

Now, make suitable transformations and integrating out over the Stiefel manifold (for details, see [1])
we have

1 =
∫

X
f (X)dX

= C|A|− q
2 |B|− p

2
π

pq
2

Γp(
q
2 )

∫
Z
|Z|γ+ q

2− p+1
2 |I − a(1− α)Z| η

1−α dZ (44)

where, for example,

Γp(β) = π
p(p−1

4 Γ(β)Γ(β− 1
2
)...Γ(β− p− 1

2
),�(β) >

p− 1
2

(45)

is the real matrix-variate gamma and �(·) denotes the real part of (·).

Further evaluation of the integral in Equation (44) depends on the value of α. If α < 1 then
Equation (44) belongs to the real matrix-variate type-1 beta. Then integrating out with the help of a
matrix variate type-1 beta integral we get, for q ≥ p, α < 1,
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C = |A| q2 |B| p
2 [a(1− α)]p(γ+

q
2 )

Γp(
q
2 )Γp(γ + q

2 + η
1−α + p+1

2 )

π
pq
2 Γp(γ + q

2 )Γp(
η

1−α + p+1
2 )

(46)

for α < 1, η > 0, a > 0,�(γ + q
2 ) >

p−1
2 , q ≥ p, p, q = 1, 2, ..., A = A′ > 0, B = B′ > 0. For α > 1, write

1− α = −(α− 1), α > 1 then the integral in Equation (44) goes into a type-2 beta form. Then integrating
out with the help of a real matrix-variate type-2 beta integral we have for α > 1,

C =
|A| q2 |B| p

2 [a(α− 1)]p(γ+
q
2 )Γp(

q
2 )Γp(

η
α−1 )

π
pq
2 Γp(γ + q

2 )Γp(
η

α−1 − γ− q
2 )

(47)

for α > 1,�(γ + q
2 ) >

p−1
2 ,�( η

α−1 − γ− q
2 ) >

p−1
2 , a > 0, η > 0, A = A′ > 0, B = B′ > 0. When α→ 1

we have
lim
α→1
|I − a(1− α)Z| η

1−α = e−aη tr(Z)

and hence, evaluating with the help of a real matrix-variate gamma integral, we will get C for α→ 1,

C =
|A| q2 |B| p

2 (aη)p(γ+ q
2 )Γp(

q
2 )

π
pq
2 Γp(γ + q

2 )
(48)

for �(γ + q
2 ) >

p−1
2 , a > 0, η > 0.

A model corresponding to Equation (43) in the complex domain, along with its properties and
connections to various other fields, is studied in [23].

4.2. Density of the Volume Content

The squared volume of the p-parallelotope in the q-space,

v2 = |A 1
2 (X−M)B(X−M)′A

1
2 | (49)

The density of u = v2 in Equation (49) can be evaluated by looking at the h-th moment of v2 for
an arbitrary h. That is, the expected value of (v2)h, is given by

E(v2)h =
∫

X
(v2)h f5(X)dX

This is available from the normalizing constants in Equations (46)–(48) by observing that the only
change is that the parameter γ is changed to γ + h. Hence from Equation (46) for α < 1,

E(v2)h = [a(1− α)]−ph Γp(γ + q
2 + h)

Γp(γ + q
2 )

Γp(γ + q
2 + η

1−α + p+1
2 )

Γp(γ + q
2 + η

1−α + p+1
2 + h)

(50)

for α < 1,�(γ + q
2 ) >

p−1
2 ,�(γ + q

2 + h) > p−1
2 , η > 0, a > 0. Let u1 = [a(1− α)]pv2. Then

E(uh
1) =

p

∏
j=1

Γ(γ + q
2 − j−1

2 + h)

Γ(γ + q
2 − j−1

2 )

Γ(γ + q
2 + η

1−α + p+1
2 − j−1

2 )

Γ(γ + q
2 + η

1−α + p+1
2 − j−1

2 + h)
(51)

= E(vh
1)E(vh

2)...E(v
h
p)

where vj is a real scalar type-1 beta random variable with the parameters (γ + q
2 − j−1

2 , η
1−α + p+1

2 ),
j = 1, ..., p, and further, v1, ..., vp are statistically independently distributed. Hence structurally

u1 = v1v2...vp (52)
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and the density of u1 is that of v1...vp. This is available by treating Equation (51) as coming from the
Mellin transform of the density g1(u1) of u1. Even though the density g1(u1) is unknown, its Mellin
transform is available from Equation (51) for h = s− 1. Hence from the unique inverse Mellin transform

g1(u1) = u−1
1

1
2πi

∫
L
[E(uh

1)]u
−h
1 dh

where i =
√−1, L is a suitable contour and E(uh

1) is given in Equation (51). But the structure in
Equation (51) is that of a Mellin transform of a G-function of the type Gp,0

p,p(·). Hence

g1(u1) = u−1
1

[
p

∏
j=1

Γ(γ + q
2 + η

1−α + p+1
2 − j−1

2

Γ(γ + q
2 − j−1

2 )

]

× Gp,0
p,p

[∣∣ η
1−α +

p+1
2 ,j=1,...,p

γ+
q
2− j−1

2 ,j=1,...,p

]
, 0 < u1 < 1 (53)

For α > 1, from Equation (47), u2 = [a(α− 1)]pv2 is a product of p statistically independently
distributed real scalar type-2 beta random variables and hence the density of u2 can be written in terms
of a G-function of the type Gp,p

p,p(·).
Similarly for α → 1, u3 = (aη)pv2 is structurally a product of p statistically independently

distributed real gamma random variables and the density of u3 can be written in terms of a G-function
of the type Gp,0

0,p(·).
A form such as the one in Equation (52) is connected to the λ−criterion in the likelihood ratio

principle of testing statistical hypothesis on the parameters of one or more multivariate Gaussian
populations. The pathway model for α < 1 can be structurally identified with a constant multiple of
the one-to-one function of the λ−criterion in many situations in multivariate statistical analogues.

4.3. Connection to Likelihood Ratio Criteria

Consider the case α < 1.
From Equations (51) and (52) one can see a structural representation in the form of a product of p

statistically independently distributed type-1 beta random variables. Such a structure can also arise
from a determinant of the type

λ =
|G1|

|G1 + G2| (54)

where G1 and G2 are independently distributed real matrix-variate gamma variables with the same
scale parameter matrix. Such matrix representations are recently examined in [45]. A particular
case of a real matrix-variate gamma matrix is a Wishart matrix. When G1 and G2 are independently
distributed Wishart matrices λ in Equation (54) corresponds to the likelihood ratio test criterion or a
one-to-one function of it in multivariate statistical analysis. A large number of test criteria based on
the principle of maximum likelihood have the structure in Equation (54), with a representation as in
Equation (52) in the null case or when the statistical hypothesis is true. Distribution of the test statistic,
when the null hypothesis is true, is known as the null distribution. Thus, a large number of null
distributions, associated with the tests of hypotheses on the parameters of one or more multivariate
normal populations, have the structure in Equation (54) and thus a large number of cases are covered
by our discussion above. Hence a direct link can be established between the volume of a random
p-parallelotope and the λ-criterion in Equation (54).

Various types of generalizations of the Dirichlet distribution are recently studied by [46–48].
In these papers there are several theorems characterizing or uniquely determining these generalized
Dirichlet models through a product of independently distributed real scalar type-1 beta random
variables. In all these cases one can establish a direct link from Equation (52) to Equation (54) providing
explicit representations of the densities in terms of generalized Dirichlet integrals. As byproducts,
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these can also produce several results connecting G-functions and Dirichlet integrals. One such
characterization theorem is recently explored by [49].

4.4. Quadratic Forms

For p = 1 and q > 1, Equation (49) gives

Q = (X−M)B(X−M)′ (55)

the quadratic form.
Current theory of quadratic form in random variables is based on the assumption of a multivariate

Gaussian population. But from Equation (43) we have a generalized quadratic form in X, where X
has the density in Equation (43), and the density of Q is available from the step in Equation (44)
to Equation (53). The theory of quadratic form in random variables can be extended to the samples
from the density in Equation (43), rather than confining the study to Gaussian population. For the
study of quadratic and bilinear forms see [15,23]. When p = 1 the quadratic form in Equation (55)
can be given many interpretations. Let B = V−1 where V is the covariance matrix in X, that is,
V = cov(X) = E[(X − μ)′(X − μ)] where X − μ is 1 × q, q > 1. Since Y = V− 1

2 (X − μ)′ is the
standardized X, YY′ = y2

1 + ... + y2
q = (X− μ)V−1(X− μ)′ is the square of the generalized distance

between X and μ. Also (X − μ)V−1(X − μ)′ = c > 0 is the ellipsoid of concentration in X or a
scalar measure of the extent of dispersion in X − μ. The components in X can be given physical
interpretations. Consider a growing and moving rain droplet in a tropical cloud. Then x1 could
be the surface area, x2 could be the energy content, x3 the velocity in a certain direction and so on.
The components in this case have joint variations. When p = 1 one can derive the pathway density in
Equation (43) through an optimization of a certain measure of entropy also.

4.5. Pathway Fractional Integral

Recently, an extension of classical fractional integral operators of scalar functions of scalar
variables to the matrix-variate cases has been given by [50]. Real-valued scalar functions of matrix
argument, where the argument matrix is real and positive definite, are used in the extensions. In this
regard, a matrix-variate pathway fractional integral operator is introduced, see [51] which may
be regarded as a generalization of matrix-variate Riemann-Liouville fractional integral operator.
Moreover, from this operator one can figure out all the matrix-variate fractional integrals and almost
all the extended densities for the pathway parameter α < 1 and α→ 1. Through this new fractional
integral operator, one can go to matrix-variate gamma to matrix-variate Gaussian or normal density
with appropriate parametric values. In the present paper we bring out the idea of matrix-variate
pathway to the corresponding fractional integral transform. Consequently a scalar version of pathway
fractional integral operator can also be deduced, which generalizes the classical Reimann-Liouville
fractional integration operator. The pathway fractional integral operator has found applications
in reaction-diffusion problems, non-extensive statistical mechanics, non-linear waves, fractional
differential equations, non-stable neighborhoods of physical system etc.

The following definition and notation is given for the matrix-variate pathway fractional integral:

(P(η,α)
O+ f )(X) = |X|η− p+1

2

∫
T
|I − a(1− α)X−

1
2 TX−

1
2 |

η
(1−α)

− p+1
2 f (T)dT (56)

where O stands for a null matrix, and T = T′ > 0 and O are p× p matrices and f (T) is a real-valued
integrable scalar function of T and dT is the wedge product of differentials. Also a, α scalars, η ∈ C
a > 0, I− a(1− α)X− 1

2 TX− 1
2 > 0 (positive definite) and α is the pathway parameter, α < 1. It is hoped

that the matrix-variate extensions of the operator will enable researchers working in physical, chemical
and engineering sciences to extend their theories to the corresponding matrix-variate situations.
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When α → 1−, |I − a(1 − α)X− 1
2 TX− 1

2 |
η

(1−α)
− P+1

2 → e−aη tr[X−
1
2 TX−

1
2 ]. This follows from the

following facts: Since X− 1
2 TX− 1

2 is real symmetric there exists an orthogonal matrix Q such that
Q′X− 1

2 TX− 1
2 Q will be a diagonal matrix with eigenvalues being the diagonal elements. Then when

the limit is applied, each factor goes to the exponent and sum up to equate to the trace. Thus the
operator will become

(P(η,1)
O+ f )(X) = |X|η− P+1

2

∫
T=T′>0

e−tr[aηX−1T] f (T) dT = |X|η− P+1
2 L f (aηX−1)

When α = 0, a = 1 in Equation (56), the integral will become,

(P(η,0)
O+ f )(X) = |X|η− P+1

2

∫
O<T<X

|I − X−
1
2 TX−

1
2 |η− P+1

2 f (T)dT, �(η) > p− 1
2

=
∫

O<T<X
|X− T|η− P+1

2 f (T)dT = Γp(η) OD−η
X f (57)

where OD−η
X is the matrix-variate extension of the standard left-sided Reimann-Liouville fractional

integral and is defined as

OD−η
X f =

1
Γp(η)

∫
O<T<X

|X− T|η− P+1
2 f (T)dT, �(η) > p− 1

2
(58)

When p = 1 in Equation (56), one can obtain the scalar version of the pathway fractional integral
operator, see [37] and is defined by the following:

Let f (x) ∈ L(a, b), η ∈ C, �(η) > 0, a > 0 and α < 1, then

(P(η,α)
0+ f )(x) = xη−1

∫ [ x
a(1−α)

]

0
[1− a(1− α)t

x
]

η
(1−α)

−1 f (t)dt (59)

where α is the pathway parameter and f (t) is an arbitrary function. In [37], it is shown that as α→ 1−,
Equation (59) takes the form of Laplace transform of the arbitrary function f (t). Again when α = 0,
a = 1, Equation (59) reduces to the left-sided Reimann-Liouville fractional integral operator. By the way
an idea of thicker or thinner tail model associated with Mittag-Leffler function is obtained. As a result,
generalized gamma Mittag-Leffler density can be obtained as a limiting case of pathway operator. It is
also shown that under the conditions α = 0, a = 1 and as f (t) changes to 2F1(η + β, − γ; η; 1− t

x ) f (t),
Equation (59) yields the Saigo fractional integral operator. Thus we can obtain all the generalizations,
like [41,52,53], of left-sided fractional integrals by suitable substitutions, so that we call it the pathway
fractional operator, a path through α, leading to the above known fractional operators.

The importance of the operator is that a connection is established to wide classes of statistical
distributions, to several types of situations in physics, chemistry, to the input-output situations in
social sciences, in reaction-diffusion problems etc. The pathway parameter α establishes a path of
going from one family of distributions to another family and to different classes of distributions.
Thus, the pathway fractional operator, will enable us to derive a number of results covering wide range
of distributions. The “fractional integration” nature of the operator will then extend the corresponding
results to wider ranges, where when the pathway parameter α goes to 1 the corresponding results on
generalized gamma type functions are obtained.

5. Open Problem

The main idea to introduce the pathway model is the switching property of the binomial function
to the corresponding exponential function. That is

lim
α→1

1F0

(
1

1− α
; ;−a(1− α)xδ

)
= lim

α→1

(
1 + a(1− α)xδ

)− 1
1−α

= e−axδ
, a > 0 (60)
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Similar to Equation (60) we can develop a pathway connecting Bessel to exponential,
as given below,

lim
α→1

0F1

(
;

1
1− α

;− axδ

(1− α)

)
= 0F0

(
; ;−axδ

)
= e−axδ

, a > 0

Thus α can provide a pathway between Bessel functions and exponential functions. Thus, in all
types of applications where Bessel functions are used, one can extend the scope of applications into
an exponential form. In a physical system, if the exponential form gives the stable situation, then the
parameter α will provide a pathway between stable and chaotic situations. So far, this area which
offers a wide scope of possibilities, has yet to be explored.
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1. Introduction

In the literature, many different kinds of the time-, space, and time- and space-fractional diffusion
equations have been already introduced and analyzed. The fractional derivatives contained in the
fractional diffusion equations are defined in the Riemann-Liouville, Weyl, Caputo, Riez, or Riesz-Feller
sense to mention only some of the most used types of the fractional derivatives. From the mathematical
viewpoint, all of these fractional diffusion equations can be seen as generalizations of the conventional
diffusion equation and thus are worth to be investigated. On the other hand, it is not clear at all,
what kinds of the fractional diffusion equations could/should be employed as mathematical models,
say, for describing the phenomena of the anomalous diffusion (see, e.g., the recent survey paper [1] for
about three hundred references to the relevant works). Usually, the anomalous diffusion processes are
defined as those that do not longer follow the Gaussian statistics on the long time intervals. Especially,
the linear time dependence of the mean squared displacement of the diffusing particles does not
hold any more and has to be either replaced with a different (mainly power-law) dependence or the
mean squared displacement does not exist at all. As a rule, the stochastic processes governed by
different kinds of the fractional diffusion equations are non Gaussian and thus can be seen as potential
candidates for the role of mathematical models for anomalous diffusion processes.

One more important characteristic of the diffusion processes is their entropy and the entropy
production rate. The concept of entropy was first introduced in the macroscopic thermodynamics
and then extended for description of some phenomena in statistical mechanics, information theory,
ergodic theory of dynamical systems, etc. Historically, many definitions of entropy were proposed and
applied in different knowledge areas. In this paper, we employ the statistical concept of entropy that
goes back to Shannon and was introduced by him in the theory of communication and transmission of
information (see [2]). The entropy of the processes governed by the time- and space-fractional diffusion
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equations has been discussed in [3–6], respectively. It is worth mentioning that according to [3,5] the
entropy production rates for the time- and the space-fractional diffusion equations depend on the
derivative order α of the time- or space-fractional derivative, respectively, and increase with increasing
of α from 1 (diffusion) to 2 (wave propagation) that results in the so called entropy production paradox.
In [7], entropy behavior of solutions to the one-dimensional neutral-fractional equation that contains
fractional derivatives of the same order α, 1 ≤ α ≤ 2 both in space and in time, has been considered.
It was shown in [7] that the entropy production rate of solutions to the neutral-fractional equation does
not depend on the equation order α and is twice as much as the entropy production rate of solutions to
the conventional diffusion equation. In this paper, we show that the entropy production rate of the
fundamental solution to the α-fractional diffusion equation is exactly the same as in the case of the
conventional diffusion equation. Thus the α-fractional diffusion equation combines the properties of
the anomalous diffusion (the mean squared displacement of the diffusing particles does not exists)
and of the conventional diffusion (the same entropy production rate) and could be considered to be a
kind of a “natural fractionalization” of the diffusion equation. In this paper we restrict ourselves to
the classical Shannon entropy, other kinds of generalized entropies (see e.g., [8–10] and the references
therein) will be considered elsewhere.

From the mathematical viewpoint, the α-fractional diffusion equation is a particular case of
the one-dimensional space-time fractional diffusion equation that has been considered in [11] in
detail. The equation studied in [11] contains the Riesz-Feller derivative of order α ∈ (0, 2] and
skewness θ and the Caputo fractional derivative of order β ∈ (0, 2]. In particular, it was shown
in [11] that the fundamental solution to the space-time fractional diffusion equation can be interpreted
as a spatial probability density function evolving in time if {0 < α ≤ 2} ∩ {0 < β ≤ 1} or if
{1 < β ≤ α ≤ 2}. The α-fractional diffusion equation we deal with in this paper corresponds to the
case α = 2β, 0 ≤ β ≤ 1, θ = 0 in the space-time fractional diffusion equation considered in [11] and
possesses some remarkable properties that do not hold true for solutions of the general equation.

The rest of the paper is organized as follows. In the 2nd section, the basic definitions, problem
formulation, and some analytical results for the initial-value problems for the one-dimensional
α-fractional equation are presented. Among other things, the Mellin-Barnes integral representation
of the fundamental solution as well as its series representation and asymptotics are given. The last
section is devoted to a probabilistic interpretation of the fundamental solution to the one-dimensional
α-fractional diffusion equation. In particular, the Shannon entropy and the entropy production rate
are calculated. The entropy production rate of the stochastic process governed by the α-fractional
diffusion equation is shown to be independent on the equation order α and is exactly the same as the
entropy production rate of the conventional diffusion process.

2. Alpha-Fractional Diffusion Equation

2.1. Problem Formulation

In this paper, we deal with the one-dimensional α-fractional diffusion equation in the form

Dα
t u(x, t) = − (−Δ)αu(x, t), x ∈ IR , t ∈ IR+, 0 < α ≤ 1. (1)

In the Equation (1), Dα
t is the Caputo time-fractional derivative of order α defined by

(Dα f )(t) = (In−α f (n))(t), n− 1 < α ≤ n, n ∈ IN, (2)

Iα, α ≥ 0 being the Riemann-Liouville fractional integral

(Iα f )(t) =

⎧⎨⎩ 1
Γ(α)

∫ t
0 (t− τ)α−1 f (τ) dτ, α > 0,

f (t), α = 0,
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and Γ the Euler gamma function. For α = n, n ∈ IN, the Caputo fractional derivative coincides by
definition with the derivative of order n.

For a sufficiently well-behaved function f , the Riesz fractional derivative −(−Δ)α is defined as a
pseudo-differential operator with the symbol −|κ|2α (see e.g., [11–14]):

(F − (−Δ)α f )(κ) = −|κ|2α(F f )(κ), (3)

F being the Fourier transform of a function f defined by the formula

(F f )(κ) = f̂ (κ) =
∫ +∞

−∞
f (x)eixκ dx.

The Riesz fractional derivative (3) can be represented as a hypersingular integral under the
condition 0 < α < 1 (see [14] for the case α 	= 1

2 and [12] for the general case)

− (−Δ)α f (x) =
1
π

Γ(1 + 2α) sin(απ)
∫ ∞

0

f (x + ξ)− 2 f (x) + f (x− ξ)

ξ2α+1 dξ. (4)

For α = 1
2 , the relation (4) can be interpreted in terms of the Hilbert transform

−(−Δ)
1
2 f (x) = − 1

π

d
dx

∫ +∞

−∞

f (ξ)
x− ξ

dξ,

where the integral is understood in the sense of the Cauchy principal value as first noted in [15] and
then revisited and stated more precisely in [12,16].

Let us note that the Riesz fractional derivative is a symmetric operator with respect to the space
variable x. Because of the relation −|κ|2α = −(κ2)α it can be formally interpreted as

d2α

d|x|2α
= −

(
− d2

dx2

)α

,

i.e., as a power of the self-adjoint and positive definite operator − d2

dx2 .
For α = 1, Equation (1) is reduced to the one-dimensional diffusion equation. In what follows, we

focus on the case 0 ≤ α < 1 because the case α = 1 (diffusion equation) is well studied in the literature.
In the rest of the paper, we consider the initial-value problem

u(x, 0) = ϕ(x) , x ∈ IR (5)

for the Equation (1). In doing so, we are mostly interested in behavior and properties of the fundamental
solution (Green function) Gα = Gα(x, t) of the Equation (1), i.e., in its solution with the initial condition
ϕ(x) = δ(x), δ being the Dirac delta function.

2.2. Fundamental Solution of the Alpha-Fractional Diffusion Equation

In this subsection, we follow the derivations presented in [11] for the more general case of the
one-dimensional time-space fractional diffusion equation with some minor modifications. To determine
the fundamental solution Gα let us apply the Fourier transform to the Equation (1) and to the initial
conditions (5) with ϕ(x) = δ(x). Using definition of the Riesz fractional derivative, for the Fourier
transform Ĝα we get then the initial-value problem

Ĝ(κ, 0) = 1 (6)

60



Axioms 2016, 5, 6

for the fractional differential equation

(DαĜα)(t) + |κ|2αĜα(κ, t) = 0. (7)

The unique solution of (6), (7) is given by the expression (see e.g., [17,18])

Ĝα(κ, t) = Eα(−|κ|2αtα) (8)

in terms of the Mittag-Leffler function Eα that is defined as an convergent power series

Eα(z) =
∞

∑
k=0

zk

Γ(1 + αk)
, α > 0. (9)

As follows from the well-known asymptotic formula

Eα(−x) = −
m

∑
k=1

(−x)−k

Γ(1− αk)
+ O(x−1−m), m ∈ IN, x → +∞, 0 < α < 2,

the Fourier transform Ĝα belongs to L1(IR) with respect to κ under the condition α > 1
2 . In the

further discussions we suppose that this conditions holds true. Then we can apply the inverse Fourier
transform and get the representation

Gα(x, t) =
1

2π

∫ +∞

−∞
e−iκx Eα(−|κ|2αtα) dκ, x ∈ IR, t > 0 (10)

that can be rewritten as the cos-Fourier transform:

Gα(x, t) =
1
π

∫ ∞

0
cos(κx) Eα(−κ2αtα) dκ, x ∈ IR, t > 0. (11)

Now we are going to apply the technique of the Mellin integral transform to deduce the
Mellin-Barnes representation of the fundamental solution. For the reader’s convenience, some basic
elements of the Mellin integral transform theory are presented below.

The Mellin integral transform of a function f is defined by the formula

f ∗(s) = (M f )(s) =
∫ ∞

0
f (t) ts−1 dt, γ1 < �(s) < γ2, (12)

and the inverse Mellin integral transform by the formula

f (t) = (M−1 f ∗)(t) = 1
2πi

∫ γ+i∞

γ−i∞
f ∗(s) t−sds, t > 0, �(s) = γ, γ1 < γ < γ2. (13)

The Mellin integral transform and its inversion exist under the following sufficient conditions
(see e.g., [19]): Let f ∈ Lc(ε, E) , 0 < ε < E < ∞ be a function continuous on the intervals (0, ε] and
[E, ∞) , and let | f (r)| ≤ M r−γ1 for 0 < r < ε , | f (r)| ≤ M r−γ2 for r > E , where M is a constant.
If γ1 < γ2, then the Mellin transform (12) of the function f exists and is analytic in the vertical strip
γ1 < γ = �(s) < γ2 .

If f is piecewise differentiable and f (r) rγ−1 ∈ Lc(0, ∞) , then the Formula (13) holds true in all
points where f is continuous. The integral in (13) must be understood in the sense of the Cauchy
principal value.
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Let us denote by M↔ the juxtaposition of a function f with its Mellin transform f ∗. With this
notation the convolution theorem for the Mellin convolution reads as follows:

∞∫
0

g(κ) f (y/κ)
dκ

κ

M↔ g∗(s) f ∗(s). (14)

Now let us return back to the integral representation (11) of the fundamental solution Gα and
consider the cases a) x = 0 and b) x 	= 0.

(a) For x = 0, the integral at the right-hand side of (11) can be interpreted as the Mellin integral
transform of the Mittag-Leffler function at the point s = 1

2α . It converges under the condition α > 1
2

and its value is given by the formula (see e.g., [19])

1
π

∫ ∞

0
Eα(−κ2αtα) dκ =

1
2πα
√

t

∫ ∞

0
Eα(−u)u

1
2α−1 du

=
1

2πα
√

t

Γ
(

1
2α

)
Γ
(

1− 1
2α

)
Γ
(

1− α 1
2α

) =
1

α
√

4πt sin
(

π
2α

) , t > 0.

For α = 1, the Green function Gα is a time-dependent Gaussian distribution
G1(x, t) = 1√

4πt
exp
(
− x2

4t

)
and thus G1(0, t) = 1√

4πt
that is in accordance with the above formula for

the value of Gα(0, t).
(b) In the case x 	= 0, we recognize that the integral at the right-hand side of (11) can be interpreted

as the Mellin convolution of the functions

g(κ) = Eα(−κ2αtα) and f (κ) =
1

π|x|κ cos
(

1
κ

)
at the point y = 1

|x| .
Using the known Mellin integral transforms of the cos-function and the Mittag-Leffler function as

well as some elementary properties of the Mellin integral transform (see [19,20]) we get the formulas:

g∗(s) = 1

2αt
s
2

Γ
( s

2α

)
Γ
(
1− s

2α

)
Γ
(
1− s

2
) , 0 < �(s) < 2α,

f ∗(s) = 1√
π|x|2s

Γ
(

1
2 − s

2

)
Γ
( s

2
) , 0 < �(s) < 1.

These formulas together with the convolution theorem and the inverse Mellin integral transform
lead to the following Mellin-Barnes representation of the fundamental solution Gα:

Gα(x, t) = 1
2α
√

π|x|
1

2πi
∫ γ+i∞

γ−i∞
Γ( 1

2− s
2 )Γ( s

2α )Γ(1− s
2α )

Γ( s
2 )Γ(1− s

2 )

(
2
√

t
|x|
)−s

ds, 0 < γ < min{1, 2α}. (15)

The linear variables substitution s → 2s in the integral at the right-hand side of (15) leads to
the representation

Gα(x, t) =
1

α
√

π|x|
1

2πi

∫ γ+i∞

γ−i∞

Γ
(

1
2 − s

)
Γ
( s

α

)
Γ
(
1− s

α

)
Γ (s) Γ (1− s)

(
4t
x2

)−s
ds, 0 < γ < min{1/2, α} (16)

and then to the formula

Gα(x, t) =
1

α
√

π|x|
1

2πi

∫ γ+i∞

γ−i∞
Γ
(

1
2
− s
)

sin(πs)
sin(πs/α)

(
4t
x2

)−s
ds, 0 < γ < min{1/2, α} (17)
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by using the reflection formulas for the gamma function.
In the next section, we need one more Mellin-Barnes integral representation of the fundamental

solution Gα that is obtained from the Formula (16) using the linear variables substitution s→ −s:

Gα(x, t) =
1

α
√

π|x|
1

2πi

∫ γ+i∞

γ−i∞

Γ
(

1
2 + s

)
Γ
(− s

α

)
Γ
(
1 + s

α

)
Γ (−s) Γ (1 + s)

(
x2

4t

)−s

ds, −min{1/2, α} < γ < 0.

(18)
From Equation (18), a useful representation

Gα(x, t) =
1
|x| Lα

(
x2

4t

)
, x 	= 0, t > 0 (19)

of the fundamental solution Gα in terms of an auxiliary function Lα defined by its Mellin-Barnes
representation

Lα(τ) =
1

α
√

π

1
2πi

∫ γ+i∞

γ−i∞

Γ
(

1
2 + s

)
Γ
(− s

α

)
Γ
(
1 + s

α

)
Γ (−s) Γ (1 + s)

τ−s ds, −min{1/2, α} < γ < 0 (20)

can be obtained.
Because the auxiliary function Lα is defined in Equation (20) as an inverse Mellin transform,

its Mellin transform is given by the formula

L∗α(s) =
∫ ∞

0
Lα(τ) τs−1 dτ =

1
α
√

π

Γ
(

1
2 + s

)
Γ
(− s

α

)
Γ
(
1 + s

α

)
Γ (−s) Γ (1 + s)

, −min{1/2, α} < �(s) < 0. (21)

Now we derive a series representation of the fundamental solution Gα by employing the
Formula (16) and the general theory of the Mellin-Barnes integrals ([19]). To arrive at a series
representation, the contour of integration in the integral at the right-hand side of (16) has to
be transformed to the infinite loop L+∞ starting and ending at +∞ and encircling all poles
sk = 1/2 + k, k = 0, 1, 2, . . . of the gamma function Γ

(
1
2 − s

)
and all poles sk = α + αk, k = 0, 1, 2, . . .

of the gamma function Γ
(
1− s

α

)
.

For the sake of simplicity let us restrict ourselves to the case of the simple poles, i.e., we suppose
that the conditions 1/2+ k 	= α + αn are fulfilled for all k, n ∈ IN, i.e., that the derivative order α cannot
be represented in the form α = 1/2+k

1+n , k, n ∈ IN. In particular, evidently it is the case if α is not a
rational number or a rational number in the form α = p

2q+1 , p, q ∈ IN.
Taking into account the known formula

ress=−kΓ(s) =
(−1)k

k!
, k = 0, 1, 2, . . . ,

the Jordan lemma and the Cauchy residue theorem provide us with the desired series representation
of Gα:

Gα(x, t) =
1

α
√

π|x| (Σ1(y) + Σ2(y)) , y =
4t
x2 , (22)

where

Σ1(y) =
∞

∑
k=0

(−1)k

k!

Γ
(

1
2+k

α

)
Γ
(

1− 1
2+k

α

)
Γ
(

1
2 + k

)
Γ
(

1− ( 1
2 + k)

)y−k− 1
2 ,

Σ2(y) = α
∞

∑
k=0

(−1)k

k!

Γ
(

1
2 − α(k + 1)

)
Γ(k + 1)

Γ (α(k + 1)) Γ (1− α(k + 1))
y−α(k+1).
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Using the reflection formula for the gamma function and some elementary trigonometric formulas,
the series for Σ1 and Σ2 can be represented in the following shorter form:

Σ1(y) = y−
1
2

∞

∑
k=0

sin(π(1/2 + k))
sin(π(1/2 + k)/α))

(−y)−k

k!
= y−

1
2

∞

∑
k=0

1
sin(π(1/2 + k)/α))

y−k

k!

Σ2(y) = αy−α
∞

∑
k=0

tan(πα(k + 1))
Γ(1/2 + α(k + 1))

(−yα)−k.

In the case α = 1, we get

Σ1(y) = y−
1
2

∞

∑
k=0

(y)−k

(−1)kk!
= y−

1
2 exp(−1/y), Σ2(y) ≡ 0

and thus the well-known formula

G1(x, t) =
1√
π|x| (Σ1(y) + Σ2(y)) =

1√
π|x|y

− 1
2 exp(−1/y) =

1√
4πt

exp
(
− x2

4t

)
for the fundamental solution of the one-dimensional diffusion equation.

Let us now introduce another auxiliary variable, namely, z = 1
y = x2

4t . Then the formulas from
above can be rewritten in the following form:

Gα(x, t) =
1

α
√

π|x| (Σ3(z) + Σ4(z)) , z =
x2

4t
, (23)

where

Σ3(z) = z
1
2

∞

∑
k=0

1
sin(π(1/2 + k)/α))

zk

k!
,

Σ4(z) = αzα
∞

∑
k=0

tan(πα(k + 1))
Γ(1/2 + α(k + 1))

(−zα)k.

It follows from the last formula that the asymptotic behavior of Gα as z→ 0 (e.g., as x → 0 with a
fixed t > 0 or t→ +∞ with a fixed x 	= 0) is of a power law type:

Gα(x, t) ≈ 1
α
√

4π sin
(

π
2α

) t−
1
2 +

tan(πα)

4α
√

πΓ(1/2 + α)
t−α |x|2α−1. (24)

We remember the readers that all derivations above are valid only under the condition α > 1/2
that we assumed to hold true.

To get the asymptotic behavior of the fundamental solution Gα as z → +∞ (e.g., as |x| → +∞
with a fixed t > 0 or t→ 0 with a fixed x 	= 0) we again employ the Mellin-Barnes representation (16).
This time, the contour of integration in the integral at the right-hand side of (16) has to be transformed
to the infinite loop L−∞ starting and ending at −∞ and encircling all poles sk = −αk, k = 0, 1, 2, . . . of
the gamma function Γ

( s
α

)
.

In doing so we first get an asymptotic series

Gα(x, t) ≈ − 1

π
3
2 |x|

∞

∑
k=1

Γ
(

1
2
+ αk

)
sin(παk)

(
−
(

1
z

)α)k

, z→ +∞
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and then the asymptotic formula

Gα(x, t) ≈
Γ
(

1
2 + α

)
sin(πα)

4−απ
3
2

tα |x|−2α−1,
x2

4t
→ ∞. (25)

3. Entropy Production Rate of the Alpha-Fractional Diffusion Process

For α = 1, the fundamental solution Gα is a Gaussian probability density function evolving
in time:

G1(x, t) =
1√
4πt

exp
(
− x2

4t

)
.

As has been shown in [11], the fundamental solution Gα to the α-fractional diffusion Equation (1)
can be interpreted as a probability density function evolving in time for all values of α between 0
and 1, too. Let us mention that it follows from the asymptotic Formula (25) that the second spatial
moment of the probability density function Gα does not exist and the mean squared displacement of
the diffusing particles in the framework of the diffusion process that is governed by the α-fractional
diffusion Equation (1) is not finite. Thus the α-fractional diffusion Equation (1) describes a kind of
an anomalous diffusion. Still, we show in this section that the entropy production rate of a diffusion
process that is governed by the α-fractional diffusion Equation (1) is exactly the same as the one of the
conventional diffusion process.

Let us start with some definitions and examples. In the case of a one-dimensional continuous
random variable with the probability density function p(x), x ∈ X ⊆ IR, we adopt the Shannon
definition of the entropy:

S(p) = −k
∫ ∞

−∞
p(x) ln(p(x)) dx, (26)

where the constant k can be set to be equal to one without loss of the generality. The Shannon
entropy (26) is a special case of the more general definitions by Mathai, Tsallis or Rényi and these
entropies will be considered elsewhere.

Let us mention that the Shannon entropy of a Gaussian random variable defined by the probability
density function

N (μ; σ2) =
1√

2πσ2
exp
(
− (x− μ)2

2σ2

)
has the form

S(N (μ; σ2)) =
1
2
(1 + ln(2πσ2)). (27)

Thus the entropy increases with the width σ2 of the probability density function N (μ; σ2),
i.e., the broader the distribution (uncertainty of the event), the larger the entropy, so that the Shannon
entropy can be interpreted as a measure of uncertainty of an event that is governed by a probability
density function p(x).

When a probability density function is time-dependent, the entropy (26) depends on time, too:

S(p, t) = −
∫ ∞

−∞
p(x, t) ln(p(x, t)) dx. (28)

For such time-dependent random processes, the entropy production rate R defined by

R(p, t) =
d
dt

S(p, t)

is a very important characteristic that can be interpreted as a natural measure of the irreversibility of
a process. Say, in the case of a diffusion process that is described by the one-dimensional diffusion
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equation with the diffusion coefficient taken to be equal to one and that is therefore governed by the
Gaussian distribution N (0; 2t), the Formula (27) leads to the following result:

R(N (0; 2t)) =
d
dt

S(N (0; 2t)) =
1
2t

, (29)

i.e., the entropy production rate is strictly positive for t > 0 and the diffusion process can be classified
as an irreversible process.

Otherwise, a wave propagation described by the wave equation is a reversible process with the
entropy production rate equal to zero for t > 0.

It is worth mentioning that the entropy production rates for the time- and the space-fractional
diffusion equations that were calculated in [3] and [5], respectively, depend on the derivative order
α and increase with increasing of α from 1 (diffusion) to 2 (wave propagation) that results in the so
called entropy production paradox (see [3,5] for attempts of resolving this paradox).

To calculate the entropy of the process governed by the one-dimensional α-fractional diffusion
Equation (1), let us employ the representation (19) of its fundamental solution in terms of the auxiliary
function Lα. Substituting (19) into (28) and after some elementary transformations, we get the following
chain of equalities:

S(α, t) = −
∫ ∞

−∞

1
|x| Lα

(
x2

4t

)
ln
(

1
|x| Lα

(
x2

4t

))
dx = (30)

−
∫ ∞

0

2
x

Lα

(
x2

4t

)
ln
(

1
x

Lα

(
x2

4t

))
dx = −

∫ ∞

0

1
τ

Lα (τ) ln
(

1
2

t−
1
2 τ−

1
2 Lα (τ)

)
dτ =

−
∫ ∞

0

1
τ

Lα (τ)

(
−1

2
ln(t) + ln

(
1
2

τ−
1
2 Lα (τ)

))
dτ = Aα ln(t) + Bα,

where

Aα =
1
2

∫ ∞

0
Lα(τ) τ−1 dτ, Bα = −

∫ ∞

0

Lα(τ)

τ
ln
(

1
2

τ−
1
2 Lα (τ)

)
dτ. (31)

To determine the entropy production rate of Gα, the constant Aα is determined in explicit form.
The integral that defines Aα can be interpreted as the Mellin transform of the auxiliary function Lα

at the point s = 0. Because the Formula (21) for the Mellin transform of Lα was derived under the
condition −min{1/2, α} < �(s) < 0, the Mellin transform of Lα at the point s = 0 will be calculated
as the limit of the right-hand side of (21) as s→ 0. Thus we get the following chain of equalities:

Aα =
1
2

∫ ∞

0
Lα(τ) τ−1 dτ =

1
2

lim
s→0

1
α
√

π

Γ
(

1
2 + s

)
Γ
(− s

α

)
Γ
(
1 + s

α

)
Γ (−s) Γ (1 + s)

=

1
2α
√

π
lim
s→0

Γ
(

1
2
+ s
)

sin(πs)
sin(πs/α)

=
Γ
(

1
2

)
2α
√

π
lim
s→0

πs
πs/α

=
1
2

.

This formula along with the Formula (30) leads to the following expression for the entropy
production rate R(t) of the α-fractional diffusion process described by the Equation (1):

R(t) =
d
dt

S(α, t) =
1
2t

. (32)

This formula shows that R(t) does not depend on the equation order α and is exactly the same as
the entropy production rate of the conventional one-dimensional diffusion equation.

4. Conclusions

In this paper, a special case of the time- and space-fractional diffusion equation has been
considered, namely, the case when the quotient of the orders of the time- and space-fractional
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derivatives is equal to one half as it is the case in the conventional diffusion equation. This special choice
of the derivative orders leads to several important consequences. On the one hand, the fundamental
solution to the α-fractional equation can be expressed via an auxiliary function of the argument x2

4t
like in the case of the conventional diffusion equation. Another important property of the α-fractional
diffusion equation is that its entropy production rate is exactly the same as the one of the diffusion
process. Thus the α-fractional diffusion equation can be considered to be a "natural fractionalization"
of the diffusion equation. On the other hand, the mean squared displacement of the diffusing
particles governed by the α-fractional diffusion equation is infinite and thus this equation describes an
anomalous diffusion process.
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Abstract: Motivated by statistical mechanics contexts, we study the properties of the q-Laplace
transform, which is an extension of the well-known Laplace transform. In many circumstances,
the kernel function to evaluate certain integral forms has been studied. In this article, we establish
relationships between q-exponential and other well-known functional forms, such as Mittag–Leffler
functions, hypergeometric and H-function, by means of the kernel function of the integral.
Traditionally, we have been applying the Laplace transform method to solve differential equations
and boundary value problems. Here, we propose an alternative, the q-Laplace transform method, to
solve differential equations, such as as the fractional space-time diffusion equation, the generalized
kinetic equation and the time fractional heat equation.

Keywords: convolution property; G-transform; Gauss hypergeometric function; generalized kinetic
equation; Laplace transform; Mittag–Leffler function; versatile integral

1. Introduction

The classical Laplace, Fourier and Mellin transforms have been widely used in mathematical
physics and applied mathematics. The theory of the Laplace transform is well-known [1], and its
generalization was considered by many authors [2–6]. Various existence conditions and detailed
study about the range and invertibility were studied by Rooney [7]. The Laplace transform and
Mellin transform are widely used together to solve the fractional kinetic equations and thermonuclear
equations [8,9]. Different types of integral transforms, like the Hankel transform, Erdély–Kober type
fractional integration operators, the Gauss hypergeometric function as a kernel, the Bessel-type integral
transform, etc. [10], are introduced in the literature to solve the boundary value problems for models
of ordinary and partial differential equations. In some situations, the solutions of the differential
equation cannot be tractable using the classical integral transforms, but may be characterized by many
integral transforms with various special functions as kernels. Many of the integral transforms can be
interpreted in terms of the G-transform and H-transform [11–16].

In physical situations when an appropriate density is selected, the best practice is to maximize
the entropy. Mathai and Rathie [17] considered various generalizations of the Shannon entropy
measure and describe various properties, including additivity, the characterization theorem, etc.
Mathai and Haubold [18] introduced a new generalized entropy measure, which is a generalization

Axioms 2016, 5, 24 69 www.mdpi.com/journal/axioms
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of the Shannon entropy measure. For a multinomial population P = (p1, . . . , pk), pi ≥ 0,
i = 1, . . . , k, p1 + p2 + · · ·+ pk = 1, the Mathai’s entropy measure (discrete case) is given by the relation:

Mk,α(P) =

k

∑
i=1

p2−α
i − 1

α− 1
, α 	= 1, −∞ < α < 2.

When α → 1, the above measure goes to the Shannon entropy measure, and this is a
variant of Havrda–Charvat entropy and Tsallis entropy. One can derive Tsallis statistics and
superstatistics [19–22] by using Mathai’s entropy. By optimizing Mathai’s entropy measure, a new
pathway model, which consists of many of the standard distributions in the statistical literature as
special cases (see [23]), is derived. The main idea behind the derivation of this model is the switching
properties of the special functions, like 1F1 and 1F0, which means the binomial to exponential function.

Thus, the pathway between the exponential function e−cx and the binomial function [1− c(1− α)x]
1

1−α

can be created with the parameter α named as the pathway parameter. For the real scalar case, the
pathway density can be written in the form:

f1(x) = c|x|γ[1− a(1− α)|x|δ] η
1−α , a > 0, 1− a(1− α)|x|δ ≥ 0, η > 0, α < 1

where c is the normalizing constants. One can assume the Type 2 model by replacing (1− α) by
−(α− 1). These distributions include Type 1 beta, Type 2 beta, gamma, Weibull, Gaussian, Cauchy,
exponential, Rayleigh, Student t, Fermi–Dirac, chi-square, logistic, etc. The corresponding asymmetric
generalization was introduced and studied in the paper [24]. By representing the entropy function in
terms of a density function f (·) for the continuous case and giving the suitable constraints therein, the
generalized entropy is maximized. There are restrictions, such as the [(γ− 1)(1− α)]-th moment, and
the [(γ− 1)(1− α) + δ]-th moments are constants for fixed γ > 0 and δ > 0. Maximizing Mathai’s
entropy by using the calculus of variations, we get the basic function of the model, and when the range
of x is restricted over the positive real line and by evaluating the normalizing constant, we get the
pathway model introduced by Mathai [23]. As q→ 1, f1(x) tend to f2(x), which is the generalized
gamma distribution, where f2(x) is given by:

f2(x) =
δ(aβ)

α
δ

2Γ
(

α
δ

) | x |α−1 exp(−aβ | x |δ); −∞ < x < ∞; a, α, β, δ > 0. (1)

For different values of parameters in the pathway model, we get different distributions like
Weibull, gamma, beta Type 1, beta Type 2, etc. By taking δ = α, β = 1, a = λα in f1(x),
the pathway model reduces to the q-Weibull distribution, which facilitates a transition to the Weibull
distribution [25]. The connection of pathway models and Tsallis statistics with the q-extended versions
of various functions is also considered. To this extent, we generalize the Laplace transform using
the switching property of 0F0 to 0F1. Here, the q-exponential function is the kernel, and we call the
extension as the q-Laplace transform; as q approaches to unity, we get the Laplace transform of the
original function.

The article is organized as follows. In Section 2, we introduce the q-Laplace transform and the
obtained various properties of the transform. Section 3 deals with the q-Laplace transform
of some basic functions, which includes special functions, like the hypergeometric function,
the Mittag–Leffler function and the H-function. In Section 4, this transform is connected to other
known integral transforms, like the Mellin transform, the G-transform and the Henkel transforms.
In Section 5, we obtain the solution of the fractional space-time diffusion equation, the generalized
kinetic equation and the time fractional heat equation through the q-Laplace transform in terms of the
Mittag–Leffler function.
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2. The q-Laplace Transform and Basic Properties

The Laplace transform L of a function f (·) is given by:

L[ f (x)](s) ≡
∫ ∞

0
f (x) e−sx dx

where f (x) is defined over the positive real line and s ∈ C,�(s) > 0, �(·) denotes the real part of (·).
This Laplace transform plays a major role in pure and applied analysis, especially in solving differential
equations. Now, we define the extended Laplace transform concept, namely the q-Laplace transform
of a function, which will play a similar role in mathematical analysis, as well as mathematical physics.
Instead of the exponential function, here, we consider the e−sx

q the q-exponential defined as:

e−x
q ≡ c

⎧⎨⎩ [1− (1− q)x]
1

1−q for 0 < x < 1
1−q , q < 1

[1 + (q− 1)x]−
1

q−1 for x ≥ 0, q > 1
(2)

with ex
1 ≡ ex and c is the normalizing constant. More precisely, for given function f (·) and for s ∈ C

with support over (0, ∞), we define its q-Laplace transform as:

Lq[ f (x)](s) =
∫ ∞

0
[e−sx

q ] f (x)dx for ,�(s) > 0 (3)

where e−x
q is defined as in Equation (2). This Laplace transform can be written in the form,

Lq[ f (x)](s) =

⎧⎨⎩
∫ 1

(1−q)s
0 [1− (1− q)sx]

1
1−q f (x)dx for �(1− (1− q)sx) > 0,�(s) > 0∫ ∞

0 [1 + (q− 1)xs]−
1

q−1 f (x)dx for �(s) > 0.

The q-Laplace transform of a function f (·) is valid at every point at which f (·) is continuous provided
that the function is defined in (0, ∞), is piecewise continuous and of bounded variation in every finite
subinterval in (0, ∞), and the integral is finite. Some basic properties of the q-Laplace transform are
given below.

1. Scaling: For a real constant k, Lq[k f (x)](s) = kLq[ f (x)](s).
2. Linearity : Lq[m f (x) + ng(x)](s) = mLq[ f (x)](s) + nLq[g(x)](s), where m, n ∈ �.
3. Transform of derivatives: For �(s) > 0, Lq[

d
dx f (x)](s) = sLq( f )(sq) for all q ∈ �/{1}.

Proof. Let g(x) = d
dx f (x). Then:

Lq [g(x)] (s) =
∫ ∞

0
[1 + (q− 1)xs]−

1
q−1

d
dx

[ f (x)]dx.

By applying integration by parts, we get:

∫ ∞

0
[1 + (q− 1)xs]−

1
q−1

d
dx

[ f (x)]dx = f (x)[1 + (q− 1)xs]−
1

q−1

∣∣∣∣∞
0
−∫ ∞

0
f (x)(−s)[1 + (q− 1)xs]−

1
q−1−1dx

which implies:
Lq[g(x)] = − f (0) + sL 2q−1

q
( f )(sq).
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As a consequence, we get:

Dn{Lq [ f (x)] (s)} = snLq [ f (x)] (sAn(q))−
n

∑
j=1

sn−jDj f (0) (4)

where An(q) = ∏n
j=1(j + (j− 1)q), for q > 1, D = d

dx f (x).

4. Derivatives of transforms: The nth derivative of the q-Laplace transform is given by
Dn [Lq( f )(s)

]
= An−1(q){Lq

[
(−x)n

n A−1(q) f (x n A−1)
]
(s)} where n A−1 is the reciprocal of

the nth term of An(q).

Proof. For q > 1:

D2(e−sx
q ) = qx2[e−sx

q ]1−2q

D3(e−sx
q ) = q(1− 2q)(−x3)[e−sx

q ]2−3q

...

Dn(e−sx
q ) =

n−1

∏
j=1

Aj

∫ ∞

0
(−x)ne−s n A−1(q)x

q f (n A−1(q)x)dx

= An−1(q){Lq

[
(−x)n

n A−1(q) f (x n A−1)
]
}(s).

5. Transforms of integrals: For �(s) > 0, Lq
[∫ x

0 f (t)dt
]
(s) = 1

s Lq( f )(s).

Proof. For q > 1, we have:

Lq

[∫ x

0
f (t)dt

]
(s) =

∫ ∞

0
[e−sx

q ]{
∫ x

0
f (t)dt}dx

= −1
s

∫ ∞

0
{
∫ x

0
f (t)dt} d

dx
[e−s(2−q)x

q ]dx

= −1
s

{∫ x

0
f (t)dt[e−s(2−q)x

q ]

∣∣∣∣∞
0
−
∫ ∞

0
f (x)e−sx

q dx
}

=
1
s

Lq( f )(s) for �(s) > 0.

6. Convolution property: Let f1(x) and f2(x) be two positive real scalar functions of x, and let g1(t)
and g2(t) be their q-Laplace transform. Then,

Lq[ f1(x) ∗ f2(x)](s) = g1(x)g2(x)

where f1(x) ∗ f2(x) =
∫ x

0 f1(t) f2(x− t)dt.

Proof.

Lq[ f1(x) ∗ f2(x)](s) =
∫ ∞

0
e−sx

q

{∫ x

0
f1(t) f2(x− t)dt

}
dx

=
∫ ∞

0

∫ x

0
[1 + (q− 1)xs]−

1
q−1 f1(t) f2(x− t)dtdx

=
∫ ∞

t=0
f1(t)

{∫ ∞

x=t
[1 + (q− 1)xs]−

1
q−1 f2(x− t)dx

}
dt.
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Now, let us consider the integral I =
∫ ∞

x=t[1 + (q− 1)xs]−
1

q−1 f2(x − t)dt. Substitute x − t = u,
and manipulate the integral; we get:

I = [1 + (q− 1)ts]−
1

q−1
∫ ∞

x=0 [1 + (q− 1)us]−
1

q−1 [1 + (q− 1)ts]
1

q−1 [1 + (q− 1)us]
1

q−1

× [1 + (q− 1)(t + u)s]−
1

q−1 f2(u)du.

Let [1 + (q− 1)ts]
1

q−1 [1 + (q− 1)us]
1

q−1 [1 + (q− 1)(t + u)s]−
1

q−1 f2(u) = f ∗2 (u), then f2(x− t) =

[1 + (q− 1)ts]−
1

q−1 [1 + (q− 1)(x− t)s]−
1

q−1 [1 + (q− 1)xs]
1

q−1 f ∗2 (x− t). Then:

Lq[ f1(x) ∗ f2(x)](s) =
∫ ∞

t=0
[1 + (q− 1)ts]−

1
q−1 f1(t){∫ ∞

x=t
[1 + (q− 1)(x− t)s]−

1
q−1 f ∗2 (x− t)dx

}
dt.

On substituting x− t = u, the integral can be separated, and hence, we have:

Lq[ f1(x) ∗ f2(x)](s) = Lq[ f1(x)]Lq[ f ∗2 (x)].

3. The q-Laplace Transform of Some Basic Functions

Let us introduce a new notation, Γ(q)(α), such that:

Γ(q)(α) =
∫ 1

1−q

0
xα−1[1− (1− q)x]

1
1−q dx for �(α) > 0, q < 1.

If we replace (1− q) by −(q− 1), then the function assumes the form:

Γ(q)(α) =
∫ ∞

0
xα−1[1 + (q− 1)x]−

1
q−1 dx for �(α) > 0, q > 1

and for q = 1 in the sense q→ 1, the q-gamma function is the usual classical gamma function defined as

Γ(α) =
∫ ∞

0
xα−1e−xdx.

Now, the q-gamma function can be explicitly written as:

Γ(q)(α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

(1−q)α

Γ(α) Γ( 1
1−q +1)

Γ( 1
1−q +α+1)

for q < 1

Γ(α) for q = 1

1
(q−1)α

Γ(α) Γ( 1
q−1−α)

Γ( 1
q−1 )

for q > 1, 1
q−1 − α > 0

(5)

for �(α) > 0. Here, q = 1 in the sense q→ 1 the q-gamma function Γ(q)(·)→ Γ(·), which can be easily
proven using the asymptotic expansion of the gamma function:

Γ(z + a) ≈
√

2πzz+a− 1
2 e−z.

Mathai [26] introduced a general class of integrals, known as the versatile integrals, which are
connected to the reaction rate in kinetic theory. The integral is in the form:

I =
∫ ∞

0
xγ−1[1 + zδ

1(α− 1)xδ]−
1

α−1 [1 + zδ
2(β− 1)x−ρ]

− 1
β−1 (6)
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for α, β > 1, z1, z2 ≥ 0, δ, ρ > 0,�(γ + 1) > 0,�( 1
α−1 − γ+1

δ ) > 0,�( 1
β−1 − 1

ρ ) > 0, and the solution is
obtained in terms of the H-function as follows:

I = c H2,2
2,2

⎡⎣z1z2(α− 1)
1
δ (β− 1)

1
ρ

∣∣∣∣(1−
1

α−1+
γ
δ , 1

δ ),(1− 1
β−1 , 1

ρ )

( γ
δ , 1

δ ),(0, 1
ρ )

⎤⎦
where c = δρzγ

1 (α− 1)
γ
δ and Hm,n

p,r is a H-function. Here, we provide the definition of H-function as
follows:

Hm,n
p,q

[
z
∣∣(a1,α1),(a2,α2),··· ,(ak ,αk)

(b1,β1),(b2,β2),··· ,(bq ,βq)

]
=

1
2πi

∫
L

h(s)z−sds

where:

h(s) =

{
m

∏
j=1

Γ(bj + β js)

}{
n

∏
j=1

Γ(1− aj − αjs)

}
{

q

∏
j=m+1

Γ(1− bj − β js)

}{
p

∏
j=n+1

Γ(aj + αjs)

}

and L is a suitable path. An empty product is interpreted as unity, and it is assumed that the
poles of Γ(bj + β js), j = 1, 2, . . . , m are separated from the poles of Γ(1 − aj − αjs), j = 1, 2, . . . , n.
Here, a1, a2, . . . , ap; b1, b2, . . . , bq are complex numbers and α1, α2, . . . , αp, β1, β2, . . . , βq are positive real

numbers. The poles of Γ(bj + β js), j = 1, 2, . . . , m are at the points s = − bj+ν

β j
where j = 1, 2, . . . , m,

ν = 0, 1, . . ., and the poles of Γ(1− aj − αjs), j = 1, 2, . . . , n are at s = 1−ak+λ
αk

where k = 1, 2, . . . , n,
λ = 0, 1, . . .. For more details about the theory and applications, refer to [27]. This integral includes the
q-Laplace transform of gamma function and q-gamma function as special cases. Now, as q→ 1 in any

of the functions [1 + zδ
1(α− 1)xδ]−

1
α−1 or [1 + zδ

2(β− 1)x−ρ]
− 1

β−1 , we get the q-Laplace transform of
some basic functions. The following table gives the q-Laplace transform of some basic functions with
q > 1, which are special cases of the above integral. The results are obtained in terms of hypergeometric
function. The Gaussian hyper geometric function is defined as:

mFn

[
a1,a2,··· ,am
b1,b2,··· ,bn

∣∣∣∣x] = ∞

∑
k=0

(a1)k(a2)k · · · (am)k
(b1)k(b2)k · · · (bn)k

xk

k!

where (a)m denotes the Pochhammer symbol expressed in the form:

(a)m = a(a + 1)...(a + m− 1), a 	= 0, m = 1, 2... (7)

Lemma 1. For α, s ∈ C, �(s) > 0 and for q 	= 1, the q- Laplace transform of xα−1 is given by Lq[xα−1](s) =
Γq(α)

sα for q 	= 1.

Proof. For q > 1,

Lq[xα−1](s) =
∫ ∞

0
xα−1e−sx

q dx

=
∫ ∞

0
xα−1[1 + (q− 1)sx]−

1
q−1 dx.

Now, substitute (q− 1)sx = t, and dx = 1
s(q−1)du. Then:

Lq[xα−1](s) =
Γq(α)

sα
, α, s ∈ C,�(s) > 0.
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Lemma 2. For s ∈ C, �(s) > 0, there holds the formula:

Lq[e−ax](s) =
1

(2− q)s 1F1

[
1;

2q− 3
q− 1

;
a

s(q− 1)

]
for a > 0, 3

2 < q < 2.

Proof. For q > 1,

Lq[e−ax](s) =
∫ ∞

0
[1 + (q− 1)sx]−

1
q−1 e−axdx

=
∞

∑
k=0

(−a)k

k!

∫ ∞

0
xk[1 + (q− 1)sx]−

1
q−1 dx

=
1
s

∞

∑
k=0

(− a
s )

k

k!

Γ(q)(k + 1)

sk+1 ,�( 1
q− 1

− k− 1) > 0

=
1

s(2− q) 1F1

[
1;

2q− 3
q− 1

;
a

s(q− 1)

]
for

3
2
< q < 2,�(s) > 0, a > 0.

Lemma 3. For a ∈ �,�(s) > 0, the q-Laplace transform of the function e−ax
q is given by Lq[e−ax

q ](s) =

1
(s+a)(2−q) 2F1

[
1, 1

2 ; 2q−3
q−1 ;− 4as

(a+s)2

]
for 3

2 < q < 2,
∣∣∣∣ 4as
(a+s)2

∣∣∣∣ < 1.

Proof. For q > 1, the q-Laplace transform of the q-exponential function is given by:

Lq[e−ax
q ](s) =

∫ ∞

0
[1 + (q− 1)sx]−

1
q−1 [1 + (q− 1)ax]−

1
q−1 dx

=
∫ ∞

0
{[1 + (q− 1)sx][1 + (q− 1)ax]}− 1

q−1 dx

=
∫ ∞

0

[
1 + (q− 1)sx + (q− 1)ax + (q− 1)2asx2

]− 1
q−1 dx

=
1

(s + a)(2− q) 2F1

[
1,

1
2

;
2q− 3
q− 1

;− 4as
(a + s)2

]
provided

3
2
< q < 2,

∣∣∣∣ 4as
(a + s)2

∣∣∣∣ < 1.

Lemma 4. For �(s) > 0 and for 3
2 < q < 2, a ∈ �, there holds the formula, Lq[cos(ax)](s) =

1
s(2−q) 1F2

(
1; 2q−3

2(q−1) , 3q−4
2(q−1) ;− a2

[2s(q−1)]2

)
.

Proof. For q > 1 , �(s) > 0, a ∈ �, the q-Laplace transform of the trigonometric function cos(ax) is
given by:

Lq[cos(ax)](s) =
∫ ∞

0
[1 + (q− 1)sx]−

1
q−1 cos(ax)dx

=
∞

∑
k=0

(−1)k a2k

(2k)!

∫ ∞

0
x2k[1 + (q− 1)sx]−

1
q−1 dx
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=
1

s(2− q)

∞

∑
k=0

(a2)k

[4(q− 1)2s2]k
(1)k

k!
(

2q−3
2(q−1)

)
k

(
3q−4

2(q−1)

)
k

for q >
3
2

.

By applying the properties of the beta function and integral evaluations, we get:

Lq[cos(ax)](s) =
1

s(2− q) 1F2

(
1;

2q− 3
2(q− 1)

,
3q− 4

2(q− 1)
;− a2

[2s(q− 1)]2

)
,

for
3
2
< q < 2, q > 1,�(s) > 0, a ∈ �.

One can easily check that as q→ 1, the above function gives a direct connection to the Laplace
transforms of the original function simply by applying Sterling’s approximation for the gamma
function involved in the hypergeometric function involved in the equation.

Lemma 5. The q-Laplace transform of the Gauss hypergeometric function is given by:

Lq[mFn](s) =
1

s(2− q) m+1Fn+1

[
a1,a2,··· ,am ,1
b1,b2,··· ,bn , 2q−3

q−1

∣∣∣∣ 1
(q− 1)s

]

for �(s) > 0, 3
2 < q < 2.

Proof. For q > 1, the q-Laplace transform of the Gauss hyper geometric function is given by:

Lq[mFn](s) =
∞

∑
k=0

(a1)k(a2)k · · · (am)k
(b1)k(b2)k · · · (bn)k

1
k!

∫ ∞

0
xk[1 + (q− 1)sx]−

1
q−1

=
1

(2− q)s

∞

∑
k=0

(a1)k(a2)k · · · (am)k, (1)k

(b1)k(b2)k · · · (bn)k, ( 2q−3
q−1 )k

( 1
(q−1)s )

k

k!

=
1

s(2− q) m+1Fn+1

[
a1,a2,··· ,am ,1
b1,b2,··· ,bn , 2q−3

q−1

∣∣∣∣ 1
(q− 1)s

]
for �(s) > 0,

3
2
< q < 2.

Corollary: When m = n = 0, we get the exponential function, and the q-Laplace transform is the
confluent hypergeometric function 1F1.

3.1. The q-Laplace Transform of the Mittag–Leffler Function

The single parameter Mittag–Leffler function is defined as follows:

Eα(z) =
∞

∑
k=0

zk

Γ(1 + αk)
, for α ∈ C,�(α) > 0.

Lemma 6. For q > 1,�(s) > 0, the q-Laplace transform of Eα(xα) is given by:

Lq[Eα(xα)](s) =
1

s(q− 1)Γ( 1
q−1 )

H2 1
1 2

⎡⎣ 1
sα(q− 1)α

∣∣∣∣(0,1)

(0,1),( 2−q
q−1 ,α)

⎤⎦
with suitable restrictions for the existence of Mittag–Leffler function.
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Proof. For q > 1,�(s) > 0, the q-Laplace transform of the Mittag–Leffler function is given by:

Lq[Eα(xα)](s) =
∞

∑
k=o

1
Γ(1 + αk)

∫ ∞

0
xαk[1 + (q− 1)sx]−

1
q−1 dx

=
∞

∑
k=o

Γ
(

2−q
q−1 − αk

)
Γ( 1

q−1 )

(
1

s(q− 1)

)αk+1

=
1

s(q− 1)Γ( 1
q−1 )

H2 1
1 2

⎡⎣ 1
sα(q− 1)α

∣∣∣∣(0,1)

(0,1),( 2−q
q−1 ,α)

⎤⎦ .

The generalized Mittag–Leffler function introduced by Prabhakar is defined as follows:

Eδ
β,γ(z) =

∞

∑
k=0

(δ)nzk

Γ(βk + γ)
, for β, γ, δ ∈ C,�(γ) > 0,�(δ) > 0.

Lemma 7. Let β, γ, δ ∈ C,�(β) > 0,�(γ) > 0,�(δ) > 0,�( 1
q−1 − γ) > 0, and for 1 < q < 2, there holds

the formula:

Lq[Eδ
β,γ(axβ)](s) =

1
sγ(q− 1)γΓ(δ)Γ( 1

q−1 )
H2 1

1 2

[
(1−δ,1)
(0,1),( 1

q−1−γ,β)

∣∣∣∣ 1
sβ(q− 1)β

]

for 1 < q < 2,�(β) > 0,�(γ) > 0,�(δ) > 0,�( 1
q−1 − γ) > 0.

The proof is similar to Lemma (7).
The details of the existence conditions, various properties and applications of H-functions are

available in [27].

3.2. The q-Laplace Transform of the Fox H Function

Lemma 8. For q < 1, consider the following restrictions. Let a∗ = ∑n
i=1 ai − ∑

p
i=n+1 αi + ∑m

j=1 β j −
∑r

j=m+1 β j, Δ = ∑r
j=1 β j − ∑

p
i=1 αi and μ = ∑r

j=1 bj − ∑
p
i=1 ai +

p−r
2 from the basic definition of the

H-function.

If either a∗ > 0, a∗ = 0,�(μ) < −1, min
1≤j≤m

�(bj)

β j
> −1

when a∗ > 0, a∗ = 0, Δ ≥ 0, min
1≤j≤m

[
�(bj)

β j
,
�(μ) + 1

2
Δ

]
> −1

when a∗ = 0, Δ < 0, then for 1 < q < 2, the q-Laplace transform of the H-function exists, and the formula:

Lq[Hm,n
p,r ](s) =

1
s(q− 1)Γ( 1

q−1 )
Hm+1,n+1

p+1,r+1

[
1

s(q− 1)

∣∣(a1,α1),(a2,α2),··· ,(ak ,αk),(0,1)

(b1,β1),(b2,β2),··· ,(br ,βr),(
2−q
q−1 ,1)

]

holds for s ∈ C,�(s) > 0.

Proof. For q > 1,

Lq[Hm,n
p,r ](s) =

1
2πi

∫
L

h(t)
∫ ∞

0
x−t[1 + (q− 1)sx]−

1
q−1 dx ∧ dt

=
1

s(q− 1)Γ( 1
q−1 )

1
2πi

∫
L

h(t) Γ(1− t) Γ
(

2− q
q− 1

+ t
)

dt
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=
1

s(q− 1)Γ( 1
q−1 )

Hm+1,n+1
p+1,r+1

[
1

s(q− 1)

∣∣(a1,α1),(a2,α2),··· ,(ak ,αk),(0,1)

(b1,β1),(b2,β2),··· ,(br ,βr),(
2−q
q−1 ,1)

]

with suitable existing conditions.

4. Connection to Other Integral Transforms

In this section, we consider connections of the q-Laplace transform of a function f (·) to other
integral transforms. The following theorem gives a relation between the Mellin transform of the
q-Laplace transform of a function, where the Mellin transform of the function f (x) for x > 0 is defined
by (M f )(t) =

∫ ∞
0 xt−1 f (x)dx, t ∈ C.

Theorem 1. For t ∈ C, �(t) < 1
q−1 , q > 1, the Mellin transform Lq[xγ−1 f (x)](s) is given by:

M(Lq(xγ−1 f ); t) =
Γ(t)Γ( 1

q−1 − t)

(q− 1)tΓ( 1
q−1 )

M( f ; γ− t).

Proof. For q > 1:

MLq[xγ−1 f (x)](s) =
∫ ∞

0
st−1

∫ ∞

0
xγ−1e−sx

q f (x)dx

=
∫ ∞

0
xγ−1 f (x)

1
(q− 1)txt

Γ(t)Γ( 1
q−1 − t)

Γ( 1
q−1 )

; �( 1
q− 1

− t) > 0

=
Γ(t)Γ( 1

q−1 − t)

Γ( 1
q−1 )

M( f ; γ− t); �(t) < 1
q− 1

hence the result.

Remark 1. For γ = 1 and t ∈ C, it directly implies that the Mellin transform of the q-Laplace transform is
given by:

M(Lq( f ); t) =
Γ(t)Γ( 1

q−1 − t)

(q− 1)tΓ( 1
q−1 )

M( f ; 1− t) for q > 1,�(t) < 1
q− 1

.

The G-transform of the function f (x) is given in the form:

(G f )(t) =
∫ ∞

0
Gm,n

p,r

[
xt
∣∣(ai)1,p
(bi)1,r

]
f (x)dx

where the Meijers G-function is considered as the kernel, with suitable existence conditions.
The following theorem helps to evaluate the G-transform of Lq( f (x)).

Theorem 2. The G-transform of Lq( f (x)) is given by the following relation:

G
m,n
p,r {Lq[ f (x)]}(t) =

1
(q− 1)Γ( 1

q−1 )
G

m+1,n+1
p+1,r+1 [ f (x)](t)

with suitable existing conditions.

Proof.

G
m,n
p,r {Lq[ f (x)]}(t) =

∫ ∞

0
Gm,n

p,r

[
st
∣∣∣∣(ai)1,p

(bj)1,r

]
f (s)ds
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=
1

2πi

∫
L

∫ ∞

0
h(ω)(st)−ω Lq[ f (x)](s)dsdω

=
1

2πi

∫
L

∫ ∞

0

∫ ∞

0
h(ω)(st)−ω [1 + (q− 1)sx]−

1
q−1 f (x)dxdsdω

=
1

2πi

∫
L

∫ ∞

0
h(ω)xω−1

Γ(1−ω)Γ( 1
q−1 − 1 + ω)

[x(q− 1)]1−ωΓ( 1
q−1 )

f (x)dxdω

=
1

(q− 1)Γ( 1
q−1 )

∫ ∞

0
Gm+1,n+1

p+1,r+1

⎡⎣st
∣∣∣∣(ai)1,p , 1

q−1

(bj)1,r ,1

⎤⎦ f (s)ds

=
1

(q− 1)Γ( 1
q−1 )

G
m+1,n+1
p+1,r+1 [ f (x)](t).

Remark 2. The q-Laplace transform can be converted in terms of the G-transform in the sense that the

q-exponential can be converted as 1
Γ( 1

q−1 )
G1,0

0,1
[−(q− 1)sx

∣∣1− 1
q−1
]

for |(q− 1)sx| ≤ 1. That is:

Lq[ f (x)](s) =
∫ ∞

0
G1,0

0,1
[−(q− 1)sx

∣∣1− 1
q−1

0
]

f (x)dx for s > 0, |(q− 1)sx| ≤ 1. (8)

Now, the integral transforms is of the form:

(H f )(t) =
∫ ∞

0
Hm,n

p,r

[
xt
∣∣(ai ,αi)1,p
(bi ,βi)1,r

]
f (x)dx

which is known as the H-transform with suitable existence conditions.

The Hankel transform of a function f (x) for x > 0 is defined by:

(Hn f )(t) =
∫ ∞

0
(xt)

1
2 Jn(xt) f (x)dx

where Jn(z) is the Bessel function of the first kind of order η ∈ C, such that �(η) > −1, which is given
by:

Jn(z) =
∞

∑
k=0

(−1)k

Γ(η + k + 1)k!

( z
2

)2k+η
.

Theorem 3. The Hankel transform of the q-Laplace transform (HnLq( f ))(t) can be expressed in terms of the
H-transform.

Proof. The integral transform with the Hankel kernel, which is operated on the q-Laplace transform,
is given by:

HnLq( f )(t) =
∫ ∞

0
(st)

1
2 Jn(st)

∫ ∞

0
e−sx

q f (x)dxds

=
∫ ∞

0
t

1
2

∞

∑
k=0

(−1)k

Γ(η + k + 1)k!

(
t
2

)2k+η Γ(2k + η + 3
2 )Γ(

1
q−1 − 2k− η − 3

2 )

[(q− 1)x]2k+η+ 3
2 Γ( 1

q−1 )
f (x)dx

=
tη+ 1

2

2η(q− 1)η+ 3
2 Γ( 1

q−1 )

∫ ∞

0
H2 1

1 3

⎡⎣( t
2(q− 1)x

)2 ∣∣∣∣(0,1),( 1
q−1−η− 3

2 ),(η,1)

(−η− 1
2 ,2)

⎤⎦ x−η− 3
2 f (x)dx
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which is the H-transform of x−η− 3
2 f (x).

Remark 3. The q-Laplace transform of f (·) for q < 1 can be considered as a general case of the
Riemann–Liouville integral operator, since for q = 0 and for x = u

t , we get the general form of the
Riemann–Liouville operator.

Remark 4. We can extend the q-Laplace transform to its generalized version by considering the function f (·)
with support over (0, ∞) with:

Lq[ f (x)](s) =
∫ ∞

0
(xs)−α[e−sx

q ] f (x)dx for �(s) > 0,�(α) > 0 (9)

where e−x
q is defined as in 2. Now, as q→ 1, we get the generalized Laplace transform of the function f , with

support over the positive real line defined as:

(L f )(t) =
∫ ∞

0
(xt)−αe−(tx)k

f (x)dx

that has interesting application in various fields.

5. Differential Equations by Means of the q-Laplace Transform

In this section, we apply the properties of the q-Laplace transform to solve the fractional space-time
diffusion equation, the kinetic equation and the time-fractional heat equation.

5.1. Fractional Space-Time Diffusion: Laplace Transform and H-Function

We consider the following diffusion model with fractional-order spatial and temporal derivatives:

0Dβ
t N(x, t) = η xDα

θ N(x, t), (10)

with the initial conditions 0Dβ−1
t N(x, 0) = σ(x), 0 ≤ β ≤ 1, limx→±∞ N(x, t) = 0, where η is a

diffusion constant; η, t > 0, x ∈ R; α, θ, β are real parameters with the constraints:

0 < α ≤ 2, |θ| ≤ min(α, 2− α),

and δ(x) is the Dirac-delta function. Then, for the fundamental solution of (1) with initial conditions,
there holds the formula:

N(x, t) =
tβ−1

α|x| H
2,1
3,3

[ |x|
(ηtβ)1/α

∣∣∣(1,1/α),(β,β/α),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]
, α > 0 (11)

where ρ = α−θ
2α . The following special cases of (1) are of special interest for fractional diffusion models:

(i) For α = β, the corresponding solution of (1), denoted by Nθ
α , can be expressed in terms of the

H-function as given below and can be defined for x > 0:

Non-diffusion: 0 < α = β < 2; θ ≤ min {α, 2− α} ,

Nθ
α(x) =

tα−1

α|x| H
2,1
3,3

[ |x|
tη1/α

∣∣∣(1,1/α),(α,1),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]
, ρ =

α− θ

2α
. (12)
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(ii) When β = 1, 0 < α ≤ 2; θ ≤ min {α, 2− α}, then (1) reduces to the space-fractional diffusion
equation, which is the fundamental solution of the following space-time fractional diffusion model:

∂N(x, t)
∂t

= η xDα
θ N(x, t), η > 0, x ∈ R, (13)

with the initial conditions N(x, t = 0) = σ(x), lim
x→±∞

N(x, t) = 0, where η is a diffusion constant and

σ(x) is the Dirac-delta function. Hence, for the solution of (1), there holds the formula:

Lθ
α(x) =

1
α(ηt)1/α

H1,1
2,2

[
(ηt)1/α

|x|
∣∣∣∣(1,1),(ρ,ρ)
( 1

α , 1
α ),(ρ,ρ)

]
, 0 < α < 1, |θ| ≤ α, (14)

where ρ = α−θ
2α . The density represented by the above expression is known as α-stable Lévy density.

Another form of this density is given by:

Lθ
α(x) =

1
α(ηt)1/α

H1,1
2,2

[ |x|
(ηt)1/α

∣∣∣∣(1− 1
α , 1

α ),(1−ρ,ρ)
(0,1),(1−ρ,ρ)

]
, 1 < α < 2, |θ| ≤ 2− α. (15)

(iii) Next, if we take α = 2, 0 < β < 2; θ = 0, then we obtain the time-fractional diffusion, which is
governed by the following time-fractional diffusion model:

∂βN(x, t)
∂tβ

= η
∂2

∂x2 N(x, t), η > 0, x ∈ R, 0 < β ≤ 2, (16)

with the initial conditions 0Dβ−1
t N(x, 0) = σ(x),0 Dβ−2

t N(x, 0) = 0, for x ∈ r,
limx→±∞ N(x, t) = 0, where η is a diffusion constant and σ(x) is the Dirac-delta function, whose
fundamental solution is given by the equation:

N(x, t) =
tβ−1

2|x| H1,0
1,1

[ |x|
(ηtβ)1/2

∣∣∣(β,β/2)
(1,1)

]
. (17)

(iv) If we set α = 2, β = 1 and θ → 0, then for the fundamental solution of the standard
diffusion equation:

∂

∂t
N(x, t) = η

∂2

∂x2 N(x, t), (18)

with initial condition:
N(x, t = 0) = σ(x), lim

x→±∞
N(x, t) = 0, (19)

there holds the formula:

N(x, t) =
1

2|x|H
1,0
1,1

[ |x|
η1/2t1/2

∣∣∣(1,1/2)
(1,1)

]
= (4πηt)−1/2 exp[−|x|

2

4ηt
], (20)

which is the classical Gaussian density.

5.2. Solution of the Generalized Kinetic Equation

Consider the generalized kinetic equation derived by Haubold and Mathai [8],

N(t)− N0 = −c0 0D−α
t N(t) for α > 0, (21)

where 0D−α
t N(t) is the Riemann–Liouville integral operator, in the form:

0D−α
t N(t) =

1
Γ(α)

∫ t

0
(t− u)α−1 f (u)du

81



Axioms 2016, 5, 24

with the assumption that aD0
t g(t) = g(t).

Lemma 9. The solution of the kinetic Equation (21) is given by:

N(t) =
N(0)
2− q

Eα

(
c0Γ(q)(α)tα

Γ(α)(2− q)

)

where Eα(·) represents the two parameter Mittag–Leffler function.

Proof. The q-Laplace transform of the Riemann–Liouville integral operator is given by

Lq[ f (s)] =
Γ(q)(α) f̃ (u)
sα(2−q)Γ(α) using the convolution property of the q-Laplace transform, and f̃ (u) is the

q-Laplace transform of f (u). Now, by applying the q-Laplace transform on both sides of (21), we get:

Ñ(t)− N(0)
s(2− q)

= −c0
Γ(q)(α)

sα(2− q)Γ(α)
Ñ(t)

where Ñ(t) = Lq[N(t)], the q-Laplace transform of N(t). Simplifying the equation we get

Ñ(t) =
N(0)

s(2− q)

{
1 +

c0Γ(q)(α)

sα(2− q)Γ(α)

}−1

This can be expanded as an infinite sum, and on finding the inverse q-Laplace transform, we get:

N(t) =
N(0)
(2− q)

∞

∑
k=0

[
c0Γ(q)(α)

Γ(α)(2− q)

]k
tαk

Γ(αk + 1)

=
N(0)
2− q

Eα

(
c0Γ(q)(α)tα

Γ(α)(2− q)

)

for
∣∣∣∣ c0Γ(q)(α)

Γ(α)(2−q)

∣∣∣∣ < 1 where Eα(·) represents the two-parameter Mittag–Leffler function.

5.3. Solution of the Time-Fractional Heat Equation

The standard heat equation is:
∂u(x, t)

∂t
=

∂2u(x, t)
∂x2

where u(x, t) represents the temperature, which is a function of time t and space x. Let us write the
equation in terms of the derivative operator D, such as:

Dt(u) = D2
x(u) (22)

where u = u(x, t). Then, for t ≥ 0, the boundary conditions are that u(t, 0) = u(t, L) = 0 where L
represents the length of a heating rod and an initial condition:

u(0, x) = − 4a
L2 x2 +

4a
L

x
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where a = u(0, L
2 ). The general solution for Equation (22) assumed to be in the form

u(t, x) = w(t)v(x) yields:

D(w(t))v(x) = w(t)D2(v(x))⇒ Dt(w(t))
w(t)

=
D2

x(v(x))
w(x)

= K(say)

obtained from the general Equation (22). Let θ be the temperature decaying rate, and let K = −θ2 for
θ ∈ �; then, the ordinary differential equations D(w(t)) = −θ2w(t) and D2(v(x)) = −θ2v(x) provide
the general solution of Equation (22) of the form:

u(t, x) = K1 cos(θx)e−θ2t + K2 sin(θx)e−θ2t.

Now, let us consider the time fractional heat equation of the form:

Dα
t (u) = D2

x(u) 0 ≤ α < 2. (23)

By considering similar steps as in the general solution and using the Laplace transform method
to solve the differential equation Dα

t (w(t)) = −θ2w(t), this yields the Mittag–Leffler function
(similar steps as in Section 5.) as in the form:

w(t) =
∞

∑
k=0

(−θ2tα)k

Γ(αk + 1)
. (24)

Now, motivated from the same, we apply the q-Laplace transform for Equation (23) to obtain the
solution for Dα

t (w(t)) = −θ2w(t). The solution turns out to be:

w(t) =
1

(2− q)

∞

∑
k=0

[ −θ2Γ(q)(α)

Γ(α)(2− q)

]k
tαk

Γ(αk + 1)
=

1
2− q

Eα

(−θ2Γ(q)(α)tα

Γ(α)(2− q)

)
(25)

and hence, the general solution can be derived accordingly. Throughout the derivation, we consider
the Laplace transformation for q > 1. Similar derivation exists, when q < 1.

6. Conclusions

In this article, we have proposed the q-Laplace transform as a suitable extension of the well-known
Laplace transform. Despite the fact that it is difficult to evaluate some of the H-function numerically
due to the constraints, the proposed method is an improvement over the regular practice of evaluating
the Laplace transform within boundary values. The numerical illustration is not incorporated in this
article; however, the methodology proposed here would be to generalize the result obtained in the
regular sense of the Laplace transform. Another enhancement in this theory is that we applied the
method of q-Laplace transforms in the generalized functional forms, such as Mittag–Leffler, hyper
geometric, etc., so that applicability for particular functions, such as exponential, gamma, etc., can be
easily deductible. The natural extension of the existing methodology explained in this article would
further be considered for its generalized form, and it is an avenue for further research that could flow
from this work.
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Abstract: A method for the solution of linear differential equations (DE) of non-integer order
and of partial differential equations (PDE) by means of inverse differential operators is proposed.
The solutions of non-integer order ordinary differential equations are obtained with recourse to the
integral transforms and the exponent operators. The generalized forms of Laguerre and Hermite
orthogonal polynomials as members of more general Appèl polynomial family are used to find the
solutions. Operational definitions of these polynomials are used in the context of the operational
approach. Special functions are employed to write solutions of DE in convolution form. Some linear
partial differential equations (PDE) are also explored by the operational method. The Schrödinger
and the Black–Scholes-like evolution equations and solved with the help of the operational technique.
Examples of the solution of DE of non-integer order and of PDE are considered with various initial
functions, such as polynomial, exponential, and their combinations.

Keywords: inverse operator; derivative; differential equation; special functions; Hermite and
Laguerre polynomials

PACS: 02.30 Gp; Hq; Jr; Mv; Nw; Tb; Uu; Vv; Zz; 41.85.Ja; 03.65.Db; 05.60.Cd

1. Introduction

Differential equations (DE) play an important role in pure mathematics and physics. They describe
a broad range of physical processes and finding their solutions is of great importance. Only a few types
of DE allow explicit analytical solutions. A vast literature is dedicated to the topic, and the contribution
of scientists such as A.M. Mathai can hardly be overestimated (see, for example, [1,2]). Fractional calculus
has rapidly drawn increasing attention from researchers in the last decade. They study the solutions
of fractional reaction-diffusion, statistical, and other equations (see, for example, [3–6]. In many cases,
expansion in series of orthogonal polynomials and their generalized forms with many indexes and
variables as well as the usage of integral transforms are the most common tools to analytically solve DE.

The method of operational solution of DE demonstrated in [7–10] is applicable to a wide spectrum
of physical problems, described by linear partial differential equations (PDE), such as propagation and
radiation from charged particles [11–19], heat diffusion [20–22], including processes not described by
Fourier law, and others [23–25]. In the context of the operational approach, the operational definitions
for the polynomials through the operational exponent are very useful [26].The operational exponent is
also applied when describing the fundamentals of structures in nature, including elementary particles
and quarks [27–29]; such modern mathematical instruments are also used for the theoretical study of

Axioms 2016, 5, 29 85 www.mdpi.com/journal/axioms
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neutrino mixing [30–32] and for analysis of relevant experimental data [33–35]. The obtained solutions
were formulated in terms of series of generalized forms of orthogonal polynomials of Hermite,
Laguerre, more general Appèl, and some other polynomials [36,37], special functions of hyperbolic,
elliptic Weierstrass and Jacobi-type, cylindrical Bessel-type, and generalized Airy-type functions.

While the role of various parameters in the solutions of DE and their physical meaning is most clear
in the analytical form of the solutions, this last is not always available. Modern computer methods
help to solve DE. The numerical approach is widely applied nowadays due to the revolutionary
breakthrough in computational technique and technical support. Advanced numerical methods for
the solution of fractional differential equations, formulated, for example, in [38–41], can be effectively
executed with modern computers. In this context we note also semi-analytical models and numerical
simulations of relaxation of hot electrons and holes [42], the diffusion of charge carriers, and the energy
relaxation and transfer with respect to the electron excited states in crystals [43,44].

Different from these numerical computations, analytical solutions, when available, give clearer
insight into the underlying physical processes. In the following we will apply the operational method to
obtain exact solutions for some linear ordinary DE with non-integer derivatives and for evolution-type
PDE, giving examples of solutions of Schrödinger-type and Black–Scholes-type equations, and their
generalized forms with the Laguerre derivative operator.

The structure of the manuscript is as follows. In the first section we will explore generalized
Hermite and Laguerre polynomials, the inverse derivative operator, the Laguerre derivative, and the
relations between them; we will also touch on the Appèl polynomials. In the second section we will
apply the orthogonal polynomials and inverse differential operators to find the solution of some
non-integer order DE. In the third section we will construct convolution forms of solutions for DE
with the help of special functions and integral transforms. In the fourth section we will consider the
operational solutions for some PDE; in particular, we will consider the evolution partial differential
equations of Schrödinger and Black–Scholes types. In every section we will consider examples of
solutions with various initial functions, such as the functions f (x) = xn, f (x) = ∑n cnxn, f (x) = e−x2

,
f (x) = e−γx, f (x) = ∑k xkeγx, f (x) = W0(−x2, 2). Eventually, we will provide the results and
the conclusions.

2. Operational Approach and Orthogonal Polynomials

First of all, we note that an inverse function is one that undoes another function: For f (x) = y
the inverse is g(y) = x, g( f (x)) = x. The differential operators can be treated similarly. For the DE
ψ(D)F(x) = f (x), where ψ(D) is a differential operator, the inverse differential operator (ψ(D))−1 is
defined, which undoes ψ(D), ψ(D)(ψ(D))−1 f (x) = f (x), so that F(x) = (ψ(D))−1 f (x). Consider a
common differential operator dx: F′(x) = f (x). Its inverse is dx

−1 f (x) = F(x), which is an integral
operator

∫
f (x) = F(x) + C, where C is the integration constant. The inverse derivative operator of

the n-th order acts according to its definition:

D−n
x f (x) =

1
(n− 1)!

x∫
0

(x− ξ)n−1 f (ξ)dξ, (n ∈ N = {1, 2, 3, ...}), (1)

which is complemented by the definition for its zeroth order action:

D0
x f (x) = f (x) (2)

and its action on the unity gives

D−n
x 1 =

xn

n!
, (n ∈ N0 = N ∪ {0}). (3)
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It is elementary to demonstrate that, for example, the DE ψ(D)F(x) = eαx has the following
particular integral F(x) = (ψ(D))−1eαx = eαx(ψ(α))−1, and to prove the following identity:

(ψ(D))−1eαx f (x) = eαx(ψ(D + α))−1 f (x). (4)

With the help of the above identity the action of the shifted inverse differential operator
(ψ(D + α))−1 on f (x) can be expressed via the inverse differential operator (ψ(D))−1, as follows:

F(x) = (ψ(D + α))−1 f (x) = e−αx(ψ(D))−1eαx f (x). (5)

Equation (5) might seem trivial, but it is particularly useful for the solution of a broad class of DE
with shifted differential operators.

Traditionally, polynomial families are defined by their expansion in series. However, they can be
defined operationally through the relationship with the exponential differential operators. We recall
that, in general, an exponential of an operator can be viewed as the series expansion eÂ = ∑∞

n=0 Ân/n!.
The Hermite polynomials of two variables [45], if considered in the context of the operational
approach [37], can be explicitly defined by the following operational rule [36] in addition to their series
expansion [46]:

H(m)
n (x, y) = ey ∂m

∂xm [xn], H(m)
n (x, y) = n!

[n/m]

∑
r=0

xn−mr yr

(n−mr)! r!
. (6)

For the first-order polynomial we obtain simply

Hn
(1)(x, y) = (x + y)n, (7)

and for the second-order polynomial we have the two-variable Hermite polynomials Hn(x, y):

Hn
(2)(x, y) = Hn(x, y) = ey ∂2

∂x2 [xn], Hn(x, y) = n!
[n/2]

∑
r=0

xn−2r yr

(n− 2r)! r!
. (8)

Thus, the Hermite polynomials of two variables are defined through the action of the heat operator Ŝ:

Ŝ = et∂2
x (9)

on the monomial xn. The heat operator (9) was thoroughly studied, for example, in [47]. The Hermite
polynomials of two variables have the following generating function:

ext+yt2
=

∞

∑
n=0

tn

n!
Hn(x, y) (10)

and they actually represent another form of the common Hermite polynomials of one variable:

Hn(x, y) = (−i)nyn/2Hn

(
ix

2
√

y

)
= in(2y)n/2Hen

(
x

i
√

2y

)
. (11)

Direct application of the operational definition (8) to the Hermite polynomials yields the
following identity:

et ∂2

∂x2 Hn(x, y) = Hn(x, y + t), (12)

which consists of a shift in the y variable.
With the help of the following relation for Hermite polynomials:

znHn(x, y) = Hn(xz, yz2) (13)
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and with the operational identity:

ey ∂m
∂xm f (x) = f

(
x + my

∂m−1

∂xm−1

)
{1}, (14)

applied together with the operational rule (5), we obtain for the action of the heat diffusion operator Ŝ
on the polynomial-exponential function the following result:

ey∂2
x xkeαx = e(αx+α2y)Hk(x + 2αy, y). (15)

The Hermite, Laguerre, and some other polynomials belong to a more general family of Appèl
polynomials [48], if viewed in the framework of the operational approach. For example, the two-
variable Hermite polynomials belong to the family of Appèl polynomials an(x), which can be defined
through the following generating function [47]:

∞

∑
n=0

tn

n!
an(x) = A(t)ext, (16)

where it is assumed that a finite region of t exists, in which A(t) is expandable in Taylor series and this
expansion converges. Then, with the help of the obvious identity: text = D̂xext, D̂x = d/dx, we can
rewrite Equation (16) in the following operational form:

∞

∑
n=0

tn

n!
an(x) = A(D̂x)ext. (17)

Now, expanding the exponential in Equation (17) in series and equating the terms on the right-
and left-hand sides of (17), we obtain the following definition for an(x):

an(x) = A
(

D̂x
)

xn, (18)

where A
(
D̂x
)

is the Appèl operator. In the case of the two-variable Hermite polynomials, the identity (18)
becomes the operational definition (8) and Appèl operator for Hermite polynomials is realized by
the exponential

A(D̂x)
∣∣
an(x)=Hn(x,y) = eyD̂2

x . (19)

Let us assume that the inverse of the Appèl operator
[
A
(

D̂x
)]−1 can be defined as[

A(D̂x)
]−1 A(D̂x) = 1̂. The main properties of the Appèl polynomials arise from the operational

definition (18). For example, if the operators A
(

D̂x
)

and D̂x commute:
[
A(D̂x), D̂x

]
= 0, then, by

acting with D̂x on both sides of (18), we obtain the following relation for an(x) and an−1(x):

D̂xan(x) = nan−1(x). (20)

Moreover, it follows from (18) that an+1(x) and an(x) are related to each other as follows:

an+1(x) =
[
A(D̂x)x

]
xn. (21)

This allows us to introduce the multiplicative operator M̂ for Appèl polynomials:

an+1 = M̂an(x), (22)

where M̂ is given by the Appèl operator as follows:

M̂ = A
(

D̂x
)

xA
(

D̂x
)−1, (23)
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and on account of
[

f (D̂x), x
]
= f ′(D̂x), where f ′ is the derivative of f, we write:

M̂ = x +
[
A(D̂x)

]−1 A′(D̂x). (24)

For the Appèl polynomials an(x) the operators M̂ and D̂x stand for the multiplicative and
derivative operators and this set of operators: M̂, D̂, 1̂, realizes the Weyl–Heisenberg algebra. From the
following relation for Appèl polynomials:

M̂D̂xan(x) = nan(x) (25)

it is easy to derive the following differential equation for Appèl polynomials:

xD̂xan(x) +
A′(D̂x)

A(D̂x)
D̂xan(x) = nan(x), (26)

where A′ is the derivative of A. This equation is valid for all of the polynomials belonging to the Appèl
family. Moreover, it is easy to recognize that Appèl polynomials satisfy the following recurrence:

an+1(x) =
(

x +
A′(D̂x)

A(D̂x)

)
an(x). (27)

In the context of the Appèl polynomial family we obtain for the Hermite polynomials the following
multiplicative operator M̂:

M̂ = x + 2yD̂x. (28)

The differential equation for the Hermite polynomials as part of the Appèl polynomial family
reads as follows:

2yD̂2
x Hn(x, y) + xD̂x Hn(x, y) = nHn(x, y). (29)

The Laguerre polynomials of two variables can be defined in the operational way or as a finite sum:

Ln(x, y) = e−y ∂
∂x x ∂

∂x

[
(−x)n

n!

]
= n!

n

∑
r=0

(−1)ryn−rxr

(n− r)!(r!)2 . (30)

The Laguerre polynomials of two variables, as well as the Hermite polynomials of two variables,
are just another way for writing proper polynomials of one variable [47]:

Ln(x, y) = yn Ln

(
x
y

)
, Ln(x) = y−n Ln(xy, y) = Ln(x, 1). (31)

However, there is more than just another notation behind the introduction of this form with
two variables in Hermite and Laguerre polynomials. It allows us to consider proper polynomials as
solutions of partial differential equations (PDE) with proper initial conditions:

∂yLn(x, y) = −(∂xx∂x) Ln(x, y) with Ln(x, 0) =
(−x)n

n!
(32)

for Laguerre polynomials Ln(x, y) and

∂y Hn(x, y) = ∂2
x Hn(x, y) with Hn(x, 0) = xn (33)
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for Hermite polynomials Hn(x, y). We introduce the Laguerre derivative LDx and then the two variable
Laguerre polynomials can be operationally defined as follows:

Ln(x, y) = eyLD̂x

[
(−x)n

n!

]
, LD̂x = −D̂xxD̂x. (34)

This operational definition is equivalent to the summation definition (30), which can be easily
proved by direct execution of the action of LD̂x on (−x)n/n! :

LD̂x

[
(−x)n

n!

]
= n

[
(−x)n−1

(n− 1)!

]
. (35)

The differential and multiplicative operators are formed by the operators

LDx = ∂xx∂x = −P̂ and M̂ = y− D−1
x , (36)

which do not commute: [
LDx, D−1

x

]
= −1. (37)

Moreover, in the framework of the inverse derivative (see (1)) the following operational relationship
exists between them 10:

LDx =
∂

∂D−1
x

, (38)

which immediately raises associations with the relationship between the momentum and the coordinate
in quantum mechanics. This relationship allows us to solve operationally the differential equations
with the Laguerre derivative operator ∂xx∂x, as we will demonstrate in what follows. Directly from
(36) and (38) we conclude that the Laguerre polynomials Ln(x, y), (30) and (34), can be expressed in
terms of the inverse derivative operator (1) as follows:

Ln(x, y) = n!
n

∑
k=0

(−x)kyn−k

(n− k)!(k!)2 = (y− D−1
x )

n{1}. (39)

This relation is also particularly useful for solution of some types of DE, involving the Laguerre
derivative. Moreover, the operational definition (34) and the relations (38) and (39) yield the following
operational rule for the Laguerre polynomials:

exp
(

α
∂

∂D−1
x

)
Ln(x, y) = Ln(x, y− α). (40)

Framing classical polynomials in the Appèl family should be done with some caution.
Strictly speaking, the two-variable Laguerre polynomials can be considered members of the Appèl
family with respect to the y variable only. Indeed, they are not Appèl polynomials with respect to x.
However, the Laguerre polynomial family can be introduced in the context of the Appèl family in
a way similar to (16) and (18) by the following substitution:

xn → (−x)n

n!
, D̂x → LD̂x . (41)

In this way we obtain the following formula:

ln(x) = A
(

LD̂x
)[ (−x)n

n!

]
. (42)
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With respect to the y variable, the Laguerre polynomials, as defined in (30), certainly belong the
Appèl family as they can be given by the following operational rule:

Ln(x, y) = C0
(

xD̂y
)
[yn], Cn(x) =

∞

∑
r=0

(−1)rxr

r!(r + n)!
= x−

n
2 Jn
(
2
√

x
)
. (43)

Moreover, a hybrid family of polynomials exists, defined by the Appèl operator C0(xD̂2
y) or,

alternatively, defined by the following sum:

Pn(x, y) = n!
[n/2]

∑
r=0

(−1)rxryn−2r

(r!)2(n− 2r)!
. (44)

Further study of their properties is beyond the scope of the present paper, but they are quite
interesting, being in between those of Laguerre and Hermite polynomials. Moreover, for x = 1− y2/4
these polynomials reduce to the Legendre family. Studies of these and relevant polynomials were
recently performed in [49–51].

Eventually, let us note that umbral calculus can provide a common framework for known and
new identities for orthogonal polynomials. Let us recall the identity [52]

1
n + 1

=
n

∑
m=0

(−1)m

(
n
m

)
1

m + 1
, (45)

which, after defining the umbral variable â 53, reads in its terms as follows:

âm 1 =
1

m + 1
, â0 = 1. (46)

Therefore, as a consequence of the binomial theorem and of definition (46), we can write Equation (45)
in the following useful form:

1
n + 1

= (1− â)n 1. (47)

Now with the help of identity (47), it is easy to generate new identities, such as the obvious
consequence of Equation (47):

1
2n + 1

= (1− â)2n 1 = (1− â)n (1− â)n 1 ==
n

∑
r=0

(−1)r

(
n
r

)
âr

n

∑
s=0

(−1)s

(
n
s

)
âs 1, (48)

which, together with

âs âr 1 = âs+r 1 =
1

s + r + 1
, (49)

yields the relation
1

2n + 1
=

n

∑
r=0

(−1)r

(
n
r

)
n

∑
s=0

(−1)s 1
s + r + 1

. (50)

Moreover, from (50) and (47) more identities follow:

1
m + n + 1

=
m

∑
p=0

(−1)p

(
m
p

)
n

∑
s=0

(−1)s

(
n
s

)
1

p + s + 1
, (51)

1
m n + 1

=
n

∑
sm=0

(−1)sm

(
n
sm

)
...

n

∑
s1=0

(−1)s1

(
n
s1

)
1

1 +
m
∑

r=1
sr

, m ∈ Z ∪ m > 0. (52)
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We can define the operator of umbral derivative Δ̂a [53] by the following rule:

Δ̂a ân = n ân−1, (53)

which, together with the multiplication condition:

â · ân = ân+1 (54)

yields the following result for the commutator of the two operators [53]:[
Δ̂a, â

]
= Δ̂a â− â Δ̂a = 1, (55)

Equation (55) allows us to use Weyl–Heisenberg algebra when needed. We can define the associated
Hermite polynomials of two variables, with the operator â as one of the variables, and thus we come to
the following sum:

Hn(â, y)1 = n!
[ n

2 ]

∑
r=0

ân−2 ryr

(n− 2r)!r!
1 = n!

[ n
2 ]

∑
r=0

yr

(n− 2r)!(n− 2r + 1)r!
. (56)

The multiplication condition (54) does not define any new polynomial family and such Hermite
polynomials Hn(â, y) satisfy the following relation

Hn(â, y) 1 =
1

n + 1
Hn+1(1, y)− y[

n+1
2 ], (57)

and the following recurrences:

(Δ̂aHn(â, y)) 1 = nHn−1(â, y) 1, (58)

(∂y Hn(â, y)) 1 = Δ̂2
a Hn(â, y) 1, (59)

which are direct generalizations of the relevant terms for the two-variable Hermite polynomials
Hn(x, y) equations. Indeed, Equation (59) is the umbral heat equation—the direct generalization of the
heat Equation (33). It can be used to define the associated polynomials (56) in terms of the following
operational equation:

Hn(â, y) 1 = eyΔ̂2
a ân 1, (60)

which is the generalization of definition (8). Further study of this topic represents stand-alone research;
it will be addressed elsewhere.

3. Operational Solution of Some Non-Integer Ordinary DE

Let us consider a differential equation where ν is not necessarily an integer, shifted by the constant
α derivative dx: (

β2 − D̃2
)ν

F(x) = f (x), D̃ ≡ dx + α, α, β = constant. (61)

Its particular integral formally reads

F(x) =
(

β2 − D̃2
)−ν

f (x), (62)

and it can be found in the form of the integral if the well-known operational identity [26,47] is applied:

q̂−ν =
1

Γ(ν)

∞∫
0

e−q̂ttν−1dt, min{Re(q), Re(ν)} > 0. (63)
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For q̂ = β2 − D̃2 we obtain the following particular solution, involving the integrated weighted
action of the operator etD̃2

on the initial function f (x):

F(x) =
(

β2 − D̃2
)−ν

f (x) =
1

Γ(ν)

∞∫
0

e−β2ttν−1etD̃2
f (x)dt. (64)

Example 1. It is inviting to choose the initial function for Equation (61) in the form of the monomial f (x) = xn.
The action of the heat diffusion operator Ŝ on the monomial gives the Hermite polynomials according to their
operational definition (30); the action of Ŝ on the polynomial-exponential function is given in (15). With account
for the generating function (10), we directly write the particular integral (62) for f (x) = xn as follows:

F(x)| f (x)=xn =
(

β2 − (dx + α)2
)−ν

xn =
1

Γ(ν)

∞∫
0

e−t((β2−α2)tν−1Hn(x + 2αt, t)dt. (65)

The resulting function (65) with the Hermite polynomial of two variables is characterized by the
shift of the argument x→ x + 2αt . Evidently, for α = 0 we have Equation (66):(

β2 − d2
x

)ν
Q(x) = f (x), (66)

whose solution in the integral form is nothing but a particular case of (64) with D̃ → D :

Q(x) =
1

Γ(ν)

∞∫
0

e−β2ttν−1Ŝ f (x)dt (67)

and involves the action of the heat diffusion operator Ŝ = et∂2
x (9).

Example 2. Let us choose the Gaussian initial function f (x) = e−x2
. Then, by means of the operational rule 47,

Ŝ f (x) = ey∂2
x e−x2

= e−
x2

1+4y

/√
1 + 4y , (68)

we immediately get the desired solution:

Q(x)| f (x)=e−x2 =
1

Γ(ν)

∞∫
0

dt√
1 + 4t

e−β2ttν−1e−
x2

1+4t . (69)

Now, let us consider the following equation with the Laguerre derivative LDx, where ν is not
necessarily an integer:

(β − LDx)
νY(x) = f (x), ν ∈ Reals. (70)

Its operational solution is:

Y(x) = (β − LDx)
−ν f (x) =

1
Γ(ν)

∞∫
0

e−βttν−1etLDx f (x)dt. (71)
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The common change of variables t→ et in such cases transforms the solution of the fractional
Laguerre Equation (70) into

Y(x) = (β − LDx)
−ν f (x) =

1
Γ(ν)

∞∫
−∞

etνe−βet
eet

LDx f (x)dt, (72)

and in the particular case of β = 1, ν = 1 we obtain the Laplace transforms 1/(1− â) =
∫ ∞

0 e−s(1−â)ds
for the Laguerre derivative operator LDx, where the substitution a→ LDx has been performed.

Example 3. For Equation (71) with the initial monomial f (x) = xn the following particular integral arises:

Y(x)| f (x)=xn = (β − LDx)
−νxn =

(−1)nn!
Γ(ν)

∞∫
0

e−βttn+ν−1Ln(x/t)dt. (73)

Suppose the initial function f (x) is expandable in series of the Laguerre polynomials Ln(x):

f (x) =
∞

∑
n=0

cnLn(x). (74)

Then with the help of (40), we readily write the solution (71) of Equation (70) in the integral form:

Y(x)|
f (x)=

∞
∑

n=0
cn Ln(x)

=
1

Γ(ν)

∞∫
0

e−βttν−1
∞

∑
n=0

cnLn(x, 1− t)dt. (75)

Example 4. Let us consider the initial exponential function f (x) = e−γx. Then, the usage of the generalized
Gleisher operational rule 10,

e−tLDx e−γx = e−
γx

1−γt
/
(1− γt) , (76)

gives the solution:

Y(x) = (β − LDx)
−νe−γx =

1
Γ(ν)

∞∫
0

e−βttν−1e−
γx

1+γt
dt

1 + γt
. (77)

Now, let us consider an ordinary DE like (61), with shifted Laguerre derivative LDx instead of the
common derivative dx: (

β2 − (LDx + α)2
)ν

Z(x) = f (x). (78)

Let us choose the initial function for (78) in the form of the particular case of the Bessel–
Wright function:

f (x) = W0(−x2, 2), (79)

where

Wn(x, m) =
∞

∑
s

xs

s!(ms + n)!
, (80)

is the particular case of the Bessel–Wright function [47]. In complete analogy with (63) we readily write
the operational integral solution:

Z(x) =
(

β2 − LDx
2
)−ν

W0(−x2, 2) =
1

Γ(ν)

∞∫
0

e−β2ttν−1etLD2
x f (x)dt. (81)

94



Axioms 2016, 5, 29

Now we should compute the action of the heat operator with Laguerre derivative LDx on the initial
function f (x) = W0(−x2, 2). With the help of the operational definition of Laguerre polynomials (30)
and of the Gleisher operational rule [10],

eLD2
x W0(−x2, 2) = W0(−1/(1 + 4t), 2)

/√
1 + 4t , (82)

we obtain the particular integral as follows:

Z(x)| f (x)=W0(−x2,2) =
1

Γ(ν)

∞∫
0

e−β2ttν−1W0(−1/(1 + 4t), 2)
dt√

1 + 4t
. (83)

The operational definitions of the polynomials and relevant operational rules allow writing
solutions with ease for other types of equations too. For example, consider the following fractional
order DE:

(xd2
x + (α + 1)dx)

ν
V(x) = f (x) (84)

Usage of the operational rule (63) immediately yields the integral solution for (84):

V(x) = D−ν
x f (x) =

1
Γ(ν)

∞∫
0

e−βttν−1etDx f (x)dt, (85)

which involves the operational exponent action: etDx f (x), where we denoted the differential operator

Dx = xd2
x + (α + 1)dx. (86)

Consider the initial condition f (x) = xn. Direct application of the operational definition of the
generalized Laguerre polynomials L(α)

n (x, y),

L(α)
n (x, y) = exp

[−yDx
]{ (−x)n

n!

}
, (87)

immediately gives results in the particular integral of the generalized Laguerre polynomials with the
exponential power weight:

V(x)| f (x)=xn = D−ν
x xn =

(−1)nn!
Γ(ν)

∞∫
0

e−βttν−1L(α)
n (x,−t)dt. (88)

Now consider the other initial condition function: f (x) = e−γx. To obtain the solution we exploit
the generalized form of the Gleisher operational rule 47, which yields the solution

V(x)| f (x)=e−γx = D−ν
x e−γx =

1
Γ(ν)

∞∫
0

dt

(1 + γt)α+1 e−βttν−1e−
γx

1+γt . (89)

We have demonstrated that the usage of the inverse derivative, combined with the operational
formalism, provides a straightforward and easy way of solving some classes of linear DE. In what
follows we will demonstrate how this technique allows solutions of partial differential equations (PDE).

4. Convolution Forms for Solution of DE

In what follows, we will apply the inverse differential operators in order to obtain the convolution
forms of solution for Equation (61). The operational approach to the solution of Equation (61) involves
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the exponential operator technique, the inverse derivative formalism, and integral transforms. In general,
for solution of equations with D + α operational rule (5) can be applied, where

ψ−1(D) =
(

β2 − d2
x

)−ν
. (90)

We continue with account for (66), (67) and (9), and make use of the action of the heat diffusion
operator Ŝ (9) on eαxg(x) with the help of the following chain rule:

ey∂2
x eαxg(x) = eα xeα2y e2αy∂x ey∂2

x g(x), (91)

where y and α are the parameters. This results in the following particular solution for Equation (61),
expressed as the integral:

F(x) =
1

Γ(ν)

∞∫
0

tν−1e−(β2−α2)tΘ̂Ŝ f (x)dt, (92)

where Ŝ is the heat operator (9) and Θ̂ is the well-known operator of translation:

Θ̂ = e2αt∂x , Θ̂ f (x) = f (x + 2αt). (93)

The action of the operator Ŝ = et∂2
x can be written in the form of the Gaussian integral transform:

Ω(x, t) ≡ Ŝ f (x) =
1

2
√

πt

∞∫
−∞

exp

{
− (x− ξ)2

4t

}
f (ξ)dξ. (94)

Therefore, apart from the phase factor, the solution (92) of Equation (61) consists of the integrated
action of the heat operator Ŝ and in the consequent translation by Θ̂ of the initial function f (x):

F(x) =
1

Γ(ν)

∞∫
0

tν−1e−t(β2−α2)U(x, t)dt, (95)

where the integrand function U(x, t) is (94), shifted by Θ̂:

U(x, t) ≡ Θ̂Ŝ f (x) = Ω(x + 2αt, t) =
1

2
√

πt

∞∫
−∞

exp

{
− (x + 2αt− ξ)2

4t

}
f (ξ)dξ. (96)

Example 5. The example of the Gaussian initial condition f (x) = exp(−x2) can be the illustration of the
operational solution, described above. Accounting for (68), we directly write the solution of Equation (61),
which is in turn a Gaussian:

F(x)| f (x)=exp(−x2) =
1

Γ(ν)

∞∫
0

tν−1e−(β2−α2)t
√

1 + 4t
e−

(x+2αt)2
1+4t dt. (97)

Note that from the general form of the solution (92), using the operational definition of the
Hermite polynomials (8), we can directly obtain the solution (65) of the DE (61).

For the solution (64) of DE (61) with given initial function f (x) we have to calculate the action
of the exponential differential operator etD̃2

in the exponential. This can be performed in a number
of different ways. One of them consists in direct application of operational definitions, as we did
in the case of the initial monomial xn. However, this is a rare case. The exponential operator of the
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second-order derivative can be reduced to the exponential of the first-order derivative if we apply the
integral presentation for the exponential of a square of an operator q̂ [54]:

eq̂2
=

∞∫
−∞

e−ξ2+2ξ q̂dξ

/√
π , (98)

in our case q̂ =
√

tD̃. The above formula then reads as follows:

etD̃2
f (x) =

∞∫
−∞

e−ξ2+2ξ
√

tD̃ f (x)dξ

/√
π . (99)

Accounting for the action of the translation operator eη(∂x+α) f (x) = eηα f (x + η), we obtain the
following particular integral (62) for the DE on non-integer order (61):

F(x) =
1√

πΓ(ν)

∞∫
0

tν−1exp
(
(α2 − β2)t

) ∞∫
−∞

exp
(
−(ξ −√tα)

2)
f (x + 2ξ

√
t)dξdt (100)

Now, upon subject to the change of variables

η = x + 2ξ
√

t and t = τ2, (101)

we end up with the following form of the particular solution for Equation (61):

F(x) =
1√

πΓ(ν)

∞∫
0

τ2(ν−1)exp
(
−(βτ)2

) ∞∫
−∞

exp

(
−
(

η − x
2τ

)2
+ α(η − x)

)
f (η)dηdτ (102)

Several convolution forms are possible for the solution of (61). Indeed, for an arbitrary function
f (x) in the r.h.s. of (61) and the real values of α and ν > 0 we can involve the generating function for
Hermite polynomials (10) to disentangle two integrals in (102):

F(x) =
1√

πΓ(ν)

∞

∑
n=0

∞∫
0

τ2(ν−1)exp(−β2τ2)Hn

(
α,− 1

4τ2

)
dτ

1
n!

∞∫
−∞

(η − x)n f (η)dη (103)

It follows from Equation (103) that the solution of DE (61) can be written in the form of series

F(x) =
∞

∑
n=0

Cnφ(x), (104)

involving the convolution
∫ ∞
−∞ Φ(x− η) f (η)dη ≡ Φ(x) ∗ f (x), Φ(x− η) = (η − x)n with the

power kernel:
φ(x) = Φ(x) ∗ f (η), Φ(x) = xn. (105)

The respective coefficients in the series depend on the order of the equation, which can be
a non-integer, and on the constants α, β as follows:

Cn =
(−1)n

n!
√

πΓ(ν)

∞∫
0

τ2(ν−1)e−β2τ2
Hn

(
α,− 1

4τ2

)
dτ. (106)
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Other convolution forms with different kernels are possible. Among them the Gaussian frequency
kernel form is, perhaps, the most compact. Indeed, the integral form (102) of the solution of DE (61)
can be viewed as the integral of the following convolution:

F(x) =
1√

π Γ(ν)

∞∫
0

τ2(ν−1)e−(βτ)2
ϕ(x, τ)dτ =

1√
π Γ(ν)

∞∫
−∞

e2ντ−β2e2τ
ϕ(x, eτ)dτ, (107)

where ϕ =
∫ ∞
−∞ G(x− η) f (η)dη has the kernel

ϕ(x, τ) = G(x, τ) ∗ f (x), G(x, τ) = e−(x/2τ)2−αx. (108)

The above expression involves the convolution with the Gauss frequency function kernel.
Furthermore, the remaining integral can be taken, and it gives the Bessel function of the second
kind Kκ(x):

∞∫
0

τ2(ν−1)e−(βτ)2− (x−η)2

4τ2 dτ =

( |x− η|
2β

)ν−1/2
Kν− 1

2
(β|x− η|). (109)

Note that for the integer order of the equation, ν ∈ Z, we have semi-integer index of the Bessel
function of the second kind, Kn−1/2(x), the latter easily expressed in elementary functions, for example:

K1/2(x) =
√

π
2x e−x, etc.

Thus, we have obtained the particular solution F(x) =
(

β2 − (D + α)2
)−ν

f (x) for DE (61) in the
form of the integral, which appears in the form of the convolution with the initial function f (x):

F(x) = 1√
πΓ(ν)

∞∫
−∞

( |x−η|
2β

)ν−1/2
e−α(x−η)Kν− 1

2
(β|x− η|) f (η)dη

= 1√
πΓ(ν)

∞∫
−∞

χ(x− η) f (η)dη
(110)

with the kernel, containing the Bessel function of the second kind Kν−1/2, the exponential, and the n
power of x:

χ(x− η) =

( |x− η|
2β

)ν−1/2
e−α(x−η)Kν− 1

2
(β|x− η|) (111)

Finally can we write the compact convolution form of the solution of DE (61) as follows:

F(x) = 1√
πΓ(ν)χ ∗ f ,

χ =
( |x|

2β

)ν−1/2
e−αxKν− 1

2
(β|x|).

(112)

So far we have demonstrated that the usage of the inverse derivative and of the inverse differential
operators constitutes a straightforward and easy way to solve some classes of linear DE. In what follows
we will apply this concept to solve more complicated problems, formulated in terms of PDE.

5. Operational Solution for Evolution-Type Partial Differential Equations

The technique of the inverse differential and exponential operators is useful for finding solutions
to a broad range of mathematical and physical problems. In what follows we shall demonstrate
the solution of the evolution-type DE by the operational approach. Let us consider the Schrödinger
equation for an electric charge in a constant electric field in imaginary time. It effectively corresponds
to the case when the charge diffuses under a potential barrier in the electric field, so that the charge
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energy is lower than the height of the barrier. This process is governed by the Schrödinger equation
upon the t→ iτ, β→−β change:

∂tF(x, t) = α∂2
xF(x, t) + β x F(x, t), F(x, 0) = f (x), (113)

which is the common heat equation ∂tF(x, t) = ∂2
xF(x, t) with the linear term βx in the r.h.s. The solution

of DE (113) can be obtained operationally:

F(x, t) = eΦ(x,t;β) Θ̂Ŝ f (x) = eΦ(x,t;β) f (x + β t2, t),
Φ(x, t; β) = 1

3 αt(βt)2 + βtx,
(114)

and consists in the transform of the initial function F(x, 0) = f (x) by the operators Ŝ = eαt∂2
x and

Θ̂ = eαβt2∂x . Note that, although the solution for the Schrödinger equation in the electric field in real and
in imaginary time, i.e., over and under the barrier, has the same structure (114), there is a fundamental
difference between them. Indeed, the F(x, t) function for a particle in quantum mechanics is the
amplitude of the probability of finding it at point x at moment t: F(x, t) = Ψ(x, t). For the charge over
the barrier, the solution F(x, t)→ Ψ(x, τ) of the Schrödinger equation is complex due to the complex
phase Φ(x, τ; β); this does not trouble the probability |Ψ(x, τ)|2 over the barrier for t→ ∞ , which
regularly converges.

Example 6. Let us consider the initial polynomial f (x) = ∑n cnxn in the context of the Fourier heat conduction
of DE (113). The operational definition of the Hermite polynomials (8) gives ea∂x xn = Hn(x, a), and the operator
Θ̂ = eb∂x gives the shift: F(x) ∝ Hn(x + b, a). The solution immediately appears in terms of the sum of the
Hermite polynomials:

F(x, t) = eΦ∑
n

cnHn

(
x + αβt2, αt

)
. (115)

Example 7. Now let us choose the initial condition f (x) = ∑k xkeγx. This function for γ < 0 represents a pulse,
the shape of which depends on the values of k and γ, and varies from a sudden surge to a flat, smooth spatial wave.
This choice of the initial function allows for modeling heat pulses for experimental tests (see, for example, [55]).
Now applying the operational rule (15), where, in our case y→ αt , and the shift by the translation operator
Θ̂ = eαβt2∂x , we obtain the solution in the form of the Hermite polynomials

F(x, t) = eΦ+Δ1∑
k

Hk

(
x + 2tαγ + t2αβ, αt

)
(116)

with the common phase Φ written in the solution (114) and Δ1 = γ (x + γα t +αβt2) . For γ = 0 it immediately
returns the result (115). For pure Fourier heat conduction β = 0 and the solution further simplifies:

F(x, t)|β=0, f (x)=xkeγx = eγx+γ2αt∑
k

Hk(x + 2tαγ, αt). (117)

It is easy to follow its evolution in time: for t >> x/αγ the coordinate dependence fades out:
F(x, t)|t>>x/αγ

∼= Hk(2tαγ, αt)exp
{

γ2αt
}

, and the time dependence prevails. For relatively short
times of the evolution of the initial heat pulse f (x) = ∑k xkeγx, such that t << x/αγ, the solution
is approximated by F(x, t)|t<<x/αγ

∼= exγ
(
1 + tαγ2)Hk(x, αt) and for very short times αt→ 0 the

Hermite polynomials tend to Hk(x, 0) = xk, which is in perfect agreement with our initial condition
f (x) = xkeγx.

Deeper consideration of the above topic is beyond the scope of the present paper. In forthcoming
publications we will apply the operational method to explore and solve relativistic heat equations and
other non-local extensions of the heat conduction.
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Let us consider the following modification of the common Black–Scholes differential equation
with the Laguerre derivative (see (30) and (36)) and the initial function g(x) = A(x, 0):

1
ρ

∂

∂t
A(x, t) = (∂xx∂x)

2 A(x, t) + λ(∂xx∂x)A(x, t)− μA(x, t), A(x, 0) = g(x), (118)

where ρ, λ, and μ are constants. Equation (118) is in fact the general form of the equation, which unifies
the Laguerre heat equation and the matter diffusion equation with Laguerre derivative, as previously
explored in [10,37]. In order to solve Equation (118), we employ the operational method. As usually
in Black–Scholes DE, we distinguish the perfect square of the derivative, in this case of LDx = ∂xx∂x.
Then the solution takes the form of the exponential

A(x, t) = exp
{

ρt
(
(LDL + λ/2)2 − ε

)}
g(x), ε = μ + (λ/2)2. (119)

With the help of the operational identity (98), we reduce e(aLDx)
2

to the first-order Laguerre
derivative in the exponential and thus the following solution for A(x, t) arises:

A(x, t) = exp(−εα2)√
π

∞∫
−∞

exp
(−σ2 − σαλ− 2σαLDx

)
g(x)dσ,

α = α(t) =
√

ρt.
(120)

The above integral form of the solution, provided the integral converges, contains the exponential
Laguerre derivative, which acts on the initial function: e−aLDx g(x).

Example 8. Let us consider the example of the polynomial initial function A(x, 0) = g(x) = ∑n cnxn.
Following the operational definition of the Laguerre polynomials (30), we directly write the solution for DE (118):

A(x, t)|g(x)=∑n cnxn = ∑
n
(−1)n n!√

π
e−εα2/4

∞∫
−∞

e−σ2−σαλLn(x, 2σα)dσ. (121)

Consequent integration results in the finite sum, involving gamma function Γ and hypergeometric
function 1F1:

A(x, t)|g(x)=∑n cnxn = e−α2μ√
π ∑

n
(−1)n(n!)2 n

∑
r=0

(−x)r(2α)n−r

(n−r)!(r!)2 ×(
αλ
2

(
ei(n−r)π − 1

)
I + 1

2

(
ei(n−r)π + 1

)
J
)

,

I = Γ
(
1 + n−r

2
)

1F1

(
1−(n−r)

2 , 3
2 ,−
(

αλ
2

)2
)

,

J = Γ
(

1+n−r
2

)
1F1

(
− n−r

2 , 1
2 ,−
(

αλ
2

)2
)

.

(122)

Now suppose the initial function A(x, 0) can be expanded in series of the Laguerre polynomials:
g(x) = ∑n anLn(x). The operational relationships (40) and (31) in this case immediately propose the
solution of DE (118) in the following form:

A(x, t)|g(x)=∑n an Ln(x) =
1√
π

e−εα2/4∑
n

an

∞∫
−∞

e(−σ2−σαλ)Ln(x, 2σα + 1)dσ. (123)

Now let us consider the general case of the initial function A(x, 0) = g(x). Then the solution of
DE (118), A(x, t) can be obtained in the following steps. With the help of the operational definitions
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(36) and with the inverse derivative Formula (1), we write the solution in terms of the operator of the
inverse derivative D−1

x and of the function ϕ:

A(x, t) =
1√
π

e−εα2
∞∫
−∞

e−σ2−σαλe
−2σα ∂

∂D−1
x ϕ(D−1

x )1dσ, ϕ(D−1
x ) 1 = g(x), (124)

where ϕ is the image function, determined by the integral: ϕ(x) =
∫ ∞

0 exp(−κ)g(xκ)dκ. The exponential
of the Laguerre derivative, acting on the initial function, yields the solution of the Laguerre diffusion
equation 10:

∂t f (x, t) = −LDx f (x, t), f (x, 0) = g(x), f (x, t) = e−tLDx g(x). (125)

Hence, by applying the exponential differential operator to the function g(x) = ϕ
(

D−1
x
)
1:

e
−t ∂

∂D−1
x ϕ
(

D−1
x
)
1, we obtain the solution of the Laguerre diffusion equation:

f (x, t) = e
−t ∂

∂D−1
x g(x) = ϕ

(
D−1

x − t
)

1. (126)

With account for the above relation (126) the solution of DE (118) becomes:

A(x, t) =
1√
π

e−εα2
∞∫
−∞

e−σ2−σαλg(x, t)dσ, (127)

g(x, t) = ϕ(D−1
x − 2σα) 1 = e

−2σα ∂

∂D−1
x ϕ
(

D−1
x

)
1. (128)

Example 9. Let us consider the particular case of the Bessel–Wright function [47] Wn(x, m) =
∞
∑

r=0

xr

r!(mr+n)! ,

m ∈, n ∈0, for m = 2, n = 0 as the initial function: g(x) = W0(−x2, 2) =
∞
∑

r=0

(−1)r x2r

r!(2r)! . Its image is

ϕ(x) = e−x2
. The operational identity (98) and the function (128) together yield, in accordance with the

previously computed in [10], the result:

g(x, t) =
1√
π

∞∫
−∞

e−ξ2+4iσαξC0(2iξx)dξ (129)

where C0 is the particular case of the Bessel–Tricomi function [56]: Cn(x) =
∞
∑

r=0

(−x)r

r!(r+n)! , n ∈0. A relationship

with the Bessel functions exists: Cn(x) = x−n/2 Jn(2
√

x). Finally, we have obtained the solution of DE (118)
with the initial condition g(x) = W0(−x2, 2) in the form of the integral (127) of the exponentially weighted
function (129).

6. Results

We have obtained solutions for some ordinary DE of non-integer order with shifted derivatives.

In particular, we derived the integral form of the particular solution F(x) =
(

β2 − (∂x + α)2
)−ν

f (x) for

real values of ν. The integrand involves the operators of heat propagation Ŝ and translation Θ̂, which
act on the function f (x). Moreover, the convolution form of these solutions φ(x, τ) = G(x, τ) ∗ f (η)
and the integrals of other convolutions with several kernels different from each other are obtained.
The comprehensive solution with the kernel, involving the Bessel function of the second kind with
power-exponential weight, is obtained. Other integral forms of the solution with the convolutions

101



Axioms 2016, 5, 29

with the Gaussian frequency kernel and with the monomial kernel are also obtained. We considered
the examples of the Gaussian distribution f (x) = e−x2

and of the monomial f (x) = xk and found
explicit solutions for them in terms of integrals and series of Hermite polynomials. We operationally
solved the DE with Laguerre derivatives: (x∂2

x + (α + 1)∂x)
νF(x) = f (x) and demonstrated the

examples of solutions for the functions f (x) = exp(−γx), f (x) = xk and for the Bessel–Wright
function f (x) = W0

(−x2, 2
)
. The obtained operational solutions are expressed in terms of the integrals

of generalized Laguerre polynomials and Bessel functions.
The linear evolution-type PDEs were solved by the operational technique. In particular,

the Black–Scholes equation with the Laguerre derivative LDx = ∂xx∂x was solved operationally.
The example of the initial polynomial was considered. By using the operational definitions for Hermite
polynomials we obtained explicit solutions in the form of the polynomials of x with the coefficients,
given by Γ and 1F1 functions. The solution of the Black–Scholes type equation with Laguerre derivative

LDx for the Bessel–Wright function f (x) = W0
(−x2, 2

)
is obtained in the integral form, involving

Bessel–Tricomi function Cn(x). We have obtained the operational solution of a Fourier-type heat
equation with an additional term, describing the heat exchange with the environment, for the initial
distribution f (x) = ∑k xkeγx, which describes a heat pulse for γ < 0. We also obtained the solution
of the Schrödinger equation for a charge in electric field in real and in imaginary time, i.e., over and
under the potential barrier, and demonstrated that in real time, i.e. under the barrier, the solution
is purely real, contrary to that over the barrier. Thus |F|2 diverges for t→ ∞ in the case of the real
solution and β 	= 0, but converges otherwise, as a square of the amplitude |Ψ(x, t)|2 of the probability
function should behave (see also [57]).

7. Conclusions

In the present work we advocate the operational approach for solution of linear DE and the
use of inverse differential operators, which allow direct and straightforward finding of solutions.
The latter include the action of the operator of heat conduction and the operator of shift and dilatation.
The operational approach involves operational definitions for Hermite and Laguerre orthogonal
polynomials. In this way, we avoid cumbersome calculations and directly obtain the results of the
action of proper exponential differential operators on the initial functions. If the DE contains the
Laguerre derivatives, the commutation relationship between the inverse derivative operator and
the Laguerre derivative operator helps in solving DE. Complemented by the usage of the integral
transforms where needed, the operational technique yielded solutions of relatively complicated DE,
such as Black–Scholes-type DE with Laguerre derivative, etc. Thus, our research demonstrates that the
operational approach for solution of linear DEs is advantageous for its ease. The solutions are derived
directly based on the operational definitions and on commutation relationships. Operational study
of more complicated equations, describing heat propagation accounting for wave and ballistic heat
transfer and, for equations, modeling other physical processes, is possible. It will be performed in
forthcoming publications.
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Abstract: We studied physical problems related to heat transport and the corresponding differential
equations, which describe a wider range of physical processes. The operational method was employed
to construct particular solutions for them. Inverse differential operators and operational exponent as
well as operational definitions and operational rules for generalized orthogonal polynomials were
used together with integral transforms and special functions. Examples of an electric charge in a
constant electric field passing under a potential barrier and of heat diffusion were compared and
explored in two dimensions. Non-Fourier heat propagation models were studied and compared
with each other and with Fourier heat transfer. Exact analytical solutions for the hyperbolic heat
equation and for its extensions were explored. The exact analytical solution for the Guyer-Krumhansl
type heat equation was derived. Using the latter, the heat surge propagation and relaxation was
studied for the Guyer-Krumhansl heat transport model, for the Cattaneo and for the Fourier models.
The comparison between them was drawn. Space-time propagation of a power–exponential function
and of a periodic signal, obeying the Fourier law, the hyperbolic heat equation and its extended
Guyer-Krumhansl form were studied by the operational technique. The role of various terms in
the equations was explored and their influence on the solutions demonstrated. The accordance of
the solutions with maximum principle is discussed. The application of our theoretical study for
heat propagation in thin films is considered. The examples of the relaxation of the initial laser flash,
the wide heat spot, and the harmonic function are considered and solved analytically.

Keywords: Guyer-Krumhansl equation; Cattaneo equation; heat propagation; analytical solution;
inverse differential operator; Hermite polynomials

1. Introduction

The differential equations (DE) are of paramount importance both in pure mathematics and in
physics since they describe a very broad range of physical processes. Rapid development of computer
methods and machine calculations in the 21st century facilitated equation solving. A good description
of the major numerical methods is given, for example, in [1–6]. Here they allow numerical modelling
of complicated physical processes [7–19], including multidimensional heat transfer in rectangles and
cylinders [20–23]. However, proper understanding of the solutions and of the obtained results can be
best done when they are obtained in analytical form. Analytical studies generally are more suitable for
the analysis of the undergoing physical processes rather than numerical models, the latter giving precise
description of the performance of the devices and of the specific studied cases. Analytical solutions
are highly appreciated, but only a few types of DE allow explicit, if any, exact analytical solutions.
Recently some fractional ordinary DE and partial differential equations (PDE) were analyzed and
analytically solved in [24–37]. They benefit from the use of special functions [38–40]. The mathematical
instruments, used to solve DE, generally range from a variety of integral transforms [41,42] to expansion
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in a series of generalized orthogonal polynomials [43] with many variables and indices [44–46], which
arise naturally in studies of physical problems, such as the radiation and dynamics of beams of
charges [47–54], heat and mass transfer [55–59], etc. Moreover, exponential operators and matrices
are currently used also for description of such nature fundamentals as neutrino and quarks in
theoretical [60–65] and in experimental [66–68] frameworks. The method of inverse differential
and exponential operators has multiple applications for treating the above mentioned problems and
related processes; some examples of DE solution by the inverse derivative method with regard to the
heat equation, the diffusion equation, and their extensions, involving the Laguerre derivative, were
given in [46,69–73]. Orthogonal polynomials can be defined in forms through operational relations [74],
although we will also use their series presentations.

In what follows we treat the problem of heat conduction by the operational method in
the framework of classical thermodynamics. We obtain, compare, and explore exact solutions
for relevant DE in the framework of heat conduction models for Fourier [75], Cattaneo [76],
and Guyer-Krumhansl [77] heat laws.

2. Fourier Heat Equation and Its Operational Solution

Fourier’s law of heat propagation imposes a linear relation between the temperature gradient
and the heat flux. This is one of the most popular laws in continuum physics and it is in excellent
agreement with everyday life and with more than 90% experiments. Recently the Fourier heat equation
with a linear term

∂tF(x, t) =
(

α ∂2
x + β x

)
F(x, t) (1)

was studied operationally as a special case of the Schrödinger equation in imaginary time [70,73].
The solution of such DE with the initial condition F(x, 0) = f (x) is given by the Gauss transform:

F(x, t) = eΦ(x,t;α,β) Θ̂Ŝ f (x) = eΦ(x,t;α,β) f (x + αβ t2, t),

f (x + αβ t2, t) = 1
2
√

παt

∞∫
−∞

e−
(x+αβ t2−ξ)

2

4 tα f (ξ)dξ,
(2)

where Φ(x, t; α, β) = 1
3 αβ2t3 + β t x, Θ̂ = eαβt2∂x , Ŝ = eαt ∂2

x . The heat diffusion operator

Ŝ = et∂2
x (3)

was thoroughly explored by Srivastava in [78]. The exponential differential operator e∂2
x (3) reduces to

the exponential differential operator e∂x upon the application of the following integral presentation [41]:

ep̂2
=

1√
π

∞∫
−∞

e−ξ2+2ξ p̂dξ, (4)

where p̂ =
√

tD̃ in our case. Thus, the above formula reads as follows:

etD̃2
f (x) =

1√
π

∞∫
−∞

e−ξ2+2ξ
√

tD̃ f (x)dξ. (5)

The action of the operator of translation exp(ηD̃) for D̃ = D + α produces a shift

eη(D+α) f (x) = eηα f (x + η), (6)

The solution (2) consists of the action of the evolution operator on the initial condition
F(x, 0) = f (x), which is transformed by Ŝ and Θ̂. Interestingly, for the Airy initial condition
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f (x) = Ai
( x

C
)
= 1

π

∞∫
0

cos
(

1
3 ζ3 + x

C ζ
)

dζ the operational method readily yields the fading oscillating

solution without any spread [71], while the solution for the Gauss initial function demonstrates the
spread of the packet.

In direct analogy with (1) the following two dimensional DE

∂tF(x, y, t) =
{(

α∂2
x + γ∂2

y

)
+ bx + cy

}
F(x, y, t), min(α, β, γ) > 0, (7)

with the initial condition F(x, y, 0) = f (x, y) has the solution, which reads:

F(x, y, t) = eΨ Θ̂xΘ̂yŜxŜy f (x, y) ∝ f
(

x + t2αb , y + t2γc , t
)

, (8)

and it includes the phase Ψ = (αb2 + γc2)t3/3 + t(bx + cy). The solution consists of the
two-dimensional Gauss transform due to the action of the heat diffusion operators (3) ŜxŜy, and
of the consequent shift along both coordinates, executed by the translation operators Θ̂x = e t2(αb/2)∂x ,
Θ̂y = et2(γc/2)∂y .

In the context of the operational method the orthogonal polynomials are useful and their
operational definitions are necessary. Indeed, the action of the heat diffusion operator on the monomial
xn yields ea∂2

x xn = Hn(x, a) according to the operational definition of the Hermite polynomials of two
variables Hn(x, y) [74]

Hn(x, y) = ey ∂2

∂x2 xn = n!
[n/2]

∑
r=0

xn−2ryr

(n− 2r)!r!
, ext+yt2

=
∞

∑
n=0

tn

n!
Hn(x, y), (9)

and we obtain the solution of DE (1) F(x) ∝ Hn(x + ab, a), where a = αt, b = βt as follows:

F(x, t) = eΦ Hn

(
x + αβt2, αt

)
. (10)

It is easy to demonstrate that for the initial condition f (x) = xkeδ x the following operational
rule applies:

ey∂2
x xkeα x = e(α x+α2y)Hk(x + 2αy, y), (11)

so that we obtain Ŝ f (x) = eδ(x+δa)Hk(x + 2δa, a) = f (x, t), a = αt. The consequent action of the
translation operator Θ̂ yields the shift along the x argument and results in

F(x, t) = eΦ+Δ1 Hk

(
x + 2tαδ + t2αβ, αt

)
, (12)

where Δ1 = δ
(

x + δαt + αβt2).
Now we can easily solve the following extended heat equation:

∂tF(x, t) =
(

α∂2
x + 2δ∂x + βx + γ

)
F(x, t), F(x, 0) = f (x), (13)

which can be considered as the generalization of Equation (1) upon the substitution of the derivative
∂x → ∂x + δ/α . To address Equation (13) we note that if G(x, t) is the solution of Equation
ψ(∂x)G(x, t) = D̂(t)G(x, t) with the initial function g(x) = G(x, 0) = eλxF(x, 0) = eλx f (x), then
F(x, t) = e−λxG(x, t) is the solution of the equation ψ(∂x + λ)F(x, t) = D̂(t)F(x, t) with the initial
function f (x) = F(x, 0). Distinguishing the perfect square of the operator ∂x + δ/α, we come to the
solution of Equation (13) in the following form:

F(x, t) = et(γ− δ2
α )− xδ

α G(x, t), (14)
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where G(x, t) satisfies Equation (1) for G with the initial condition g(x) = G(x, 0) = eδ x/α f (x). Let us
set α = 1 without substantial loss of generality and choose the monomial f (x) = xk initial condition
for (13). Then g(x) = xkeδ x is the initial condition for the Equation ∂tG = (∂2

x + βx)G. Its solution
is given by (12) upon the substitution of F → G and we end up with the following solution of the
extended heat Equation (13)

F(x, t) = eΦ+Δ2 Hk

(
x + 2tδ + t2β, t

)
, (15)

where Δ2 = tγ + t2δβ is the additional phase. This solution reduces to (10) in the proper limiting case.

3. Propagation of a Heat Surge with Fourier Heat Diffusion Type Equation

In heat conduction experiments the relaxation of the instant point-like heat surge is the standard
technique, approved for thermal diffusivity measurements [79]. In practical terms it is executed with
the flash method—the standard engineering procedure for measuring thermal diffusivity with intense
and ultra-short laser heat pulses. The latter can be modelled by the initial δ-function space distribution.
Let us consider this example now: f (x, y) = δ(x, y). With the help of Equation (5) we immediately
obtain the action of the Ŝ operator on δ-function as follows:

Ŝ δ(x) ≡ et∂2
x δ(x) =

1
2
√

πt
e−

x2
4t . (16)

In two dimensions Equation (16) becomes f (x, y, t) = ŜxŜyδ(x, y) = e−(x2/α+y2/γ)/4t/4πtαγ.
Then the operators Θ̂x,y induce the space shift and yield the particular solution (8) for the initial
function f (x, y) = δ(x, y), which evolves in the Gaussian as follows:

F(x, y, t) = eΨ Θ̂xΘ̂yŜxŜyδ(x, y) =
eΨ

4πtαγ
e−

(x+t2αb)
2

α +
(y+t2γc)

2

γ
4t . (17)

One-dimensional solution for the initial flash condition f (x) = δ(x) simply reads

F(x, t) = eΨ e−
(x+abt2)

2

4tα

2
√

πtα
, and unsurprisingly resembles the solution F(x, t) = eΦ(x, t)√

1+4 t
e−

(x+β t2)
2

1+4 t [71] for

the initial Gaussian function f (x) = e−x2
.

Consider the Equation (13) for β = δ = 0, γ 	= 0. This case represents the Fourier heat propagation,
including heat exchange with the environment. Consider the flash initial condition f (x) = δ(x) for it.
The solution is shown in Figure 1 and it evidences significant spread of the initial function already for
the times t ∈ [10−3, 10−2].

The plot in Figure 1 is compiled for α = 1, γ = 1, which represents the Fourier heat solution with
some heat exchange with the environment. At the moment t = 0.001 we see the Gaussian as the result
of the evolution of the δ-function; at the moment t = 0.01 this Gaussian has faded and the contribution
of the heat exchange term γ is noticeable. The relaxed solution slowly grows due to non-zero heat
exchange with γ 	= 0.

109



Axioms 2016, 5, 28

-0.2

-0.1

0

0.1

0.2

x 0.002

0.004

0.006

0.008

0.01

t

0
2
4
6
8

F

2

-0.1

0

0.1x

Figure 1. Evolution of the initial δ(x) function as the solution of the Fourier Equation for α = γ = 1,
β = δ = 0, for the interval of time t ∈ [10−3, 10−2].

4. Operational Solution of the Hyperbolic Heat Conduction Equation

The Fourier heat law [75] has some shortcomings, noted by L. Onsager in 1931, who said [80]
that it “contradicts the principle of microscopic reversibility, but this contradiction is removed if
we recognize that it is only an approximate description of the process of conduction, neglecting the
time needed for acceleration of the heat flow”. The Fourier law does not properly describe heat
conduction at low temperature <25 K in dielectric crystals and in systems with reduced dimensions.
Moreover, it has some unphysical properties, such as lack of inertia. In other words, if an instant
temperature perturbation is applied at a point in the solid, it will be felt everywhere instantaneously.
This contradicts the phenomenon of the second sound, when the temperature perturbation propagates
like a wave with damping. To overcome these problems Cattaneo [76] proposed a time-dependent
relaxational model, which yielded the following equation: (τ ∂2

t + ∂t)T = DT∇2T, where DT is the
heat conductivity and the relaxation time τ in heat conduction is extremely small (τ ≈ 10−13 s) at room
temperature. This equation models the phenomenon of the second sound, first observed in liquid
helium [81]. With the development of the second sound theoretical background [77], it was then later
detected also in solid crystals [82–85]. In the relevant tests heat flash technology [79] was used for the
sensitive measurement of the thermal diffusivity.

The application of the operational method for solution of the second order PDE was given in [72].
The following PDE with initial conditions:(

∂2

∂t2 + ε̂(x)
∂

∂t

)
F(x, t) = D̂(x)F(x, t), F(x, 0) = f (x), F(x, ∞) = 0, (18)

where D̂(x) and ε̂(x) are differential operators, acting over the coordinate, dependently on the specific
form of the operators ε̂(x) and D̂(x), describes a variety of physical processes in thermodynamics,
electrodynamics etc. The particular fading with time solution of Equation (18) formally reads as
follows [72]:

F(x, t) = f (x)e−
tε̂(x)

2 e−
t
2

√
ε̂2(x)+4D̂(x), (19)

The other solution of Equation (18) has a positive sign in the exponential: F2 ∝ et, and does not
satisfy the requirement F(x, ∞) = 0, which otherwise can be formulated as F(x, ∞) < ∞, i.e., the
solution converges at infinite time. Both of these assumptions are reasonable for physical applications.
We perform the Laplace transforms [41] in (19):

e−t
√

V =
t

2
√

π

∞∫
0

dξ

ξ3/2 e−
t2
4ξ−ξV , t > 0, (20)
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and, provided the integral converges, we obtain for Equation (18) the following vanishing at infinite
time solution:

F(x, t) = e−
t
2 ε̂(x) t

4
√

π

∞∫
0

dξ

ξ
√

ξ
e−

t2
16ξ e−ξε̂2(x)e−4ξD̂(x) f (x) (21)

whose particular form depends on the differential operators D̂(x), ε̂(x) and on the initial condition
f (x). In what follows, we consider some examples.

Let us first of all consider ε̂(x) = ε = const and D̂(x) = α∂2
x + κ, keeping the linear term κ in the

r.h.s. of Equation (18). Then we end with the telegraph equation, also known as a hyperbolic heat
conduction equation (HHE):(

∂2
t + ε∂t

)
F(x, t) =

(
α∂2

x + κ
)

F(x, t), F(x, 0) = f (x), F(x, ∞) = 0. (22)

Its fading at t→ ∞ solution reads as follows:

F(x, t) = e−
εt
2

t
4
√

π

∞∫
0

dξ

ξ3/2 e−
t2

16ξ−ξ(ε2+4κ)Ŝ f (x), Ŝ f (x) = e−4αξ∂2
x f (x). (23)

The action of the heat diffusion operator Ŝ can be accomplished with the help of the identity (4),
resulting in

F(x, t) = e−
εt
2

t
4
√

π

∞∫
0

du
u3/2 e−

t2
16u−u(ε2+4κ) 1√

π

∞∫
−∞

e−v2
f
(

x + 2iv
√

ζ
)

dv, (24)

where ζ = 4uα. Consider an example of the initial function f (x) = eγxxn, which, is useful for the
description of heat pulses of a variety of shapes, custom modelled by the sum ∑n,γ eγxxn, γ < 0.
With the help of the operational identity (11) we obtain the exact form of the solution:

F(x, t) =
te− tε

2 +γx

4
√

π

∞∫
0

du
u3/2 e−

t2
16u−uδHn(x− 2γζ,−ζ) , δ = ε2 + 4

(
κ + αγ2

)
. (25)

We omit the bulky result of the above integration for arbitrary n ∈ Integers, γ ∈ Reals, which
can be computed with account for (9). In the particular case of given n and γ, for the example for
n = −γ = 1, we obtain

F(x, t)| f (x)=xe−x = e−x− tε
2 − t

2

√
4α+ε2

(
x +

2tα√
4α + ε2

)
. (26)

For n = 2, γ = −1, κ = 0 we have the following solution:

F(x, t)| f (x)=x2e−x = e−x− tε
2 − t

2

√
4α+ε2

(
4t2α2

4α + ε2 + x2 − 2tαε2

(4α + ε2)
3/2 +

4tαx√
4α + ε2

)
. (27)

The solution for the initial function f (x) = |x|3e−|x| is too bulky to be presented in its analytical
form; it describes the damped wave propagation as shown in Figure 2.
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Figure 2. Solution of the Cattaneo heat equation for μ = 0, α = 1, ε = 1 for the initial function
F(x, 0) = e−|x| |x|3.

By choosing α = ε = 5 in (22), i.e., DT = α/ε = 1, τ = 1/ε = 0.2, the influence of the second time
derivative ∂2

t in the Cattaneo equation is reduced, but the heat conductivity DT = α/ε = 1 remains
unchanged, as compared with the case α = ε = 1. The relaxation of the solution occurs much earlier
for α = ε = 5, than for α = ε = 1, as follows from the comparison of the plot in Figure 2 with that in
Figure 3; the reason is that the diffusive heat transfer in this case prevails over the wave heat transfer.

Figure 3. Solution of the Cattaneo heat equation for μ = 0, α = 5, ε = 5 for the initial function
F(x, 0) = e−|x| |x|3.

5. Propagation of a Heat Surge with the Hyperbolic Heat Conduction Equation

We now consider the example of initial δ-function f (x) = δ(x) for Equation (22). The action of the
operator Ŝ = e−4αξ∂2

x in our solution (23) can be accomplished with the help of Equation (16), where
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ν = −4αξ, as follows: Ŝ δ(x) = e
x2

16αξ

4
√

π|αξ| . Now the integration in (23) can be completed for the times

t > x/
√

α, where the solution exists:

F(x, t) = te−
εt
2

16πα1/2

∞∫
0

dξ
ξ2 e−ξ(ε2+4κ)− t2−x2/α

16ξ = te−
εt
2

2πα1/2

√
ω
υ K1

(√
ωυ
2

)
,

ω = ε2 + 4κ > 0, υ = t2 − x2/α > 0.
(28)

Physical meaning of the condition υ = t2 − x2/α > 0, i.e., t > x/
√

α is that the time, needed for
the initial δ(x) function to reach the point x in space, is exactly t0 = x/

√
α and before that the heat

surge is just not felt in the point x at all. The value
√

α is the velocity of the surge propagation, finite in
the Cattaneo model, contrary to the infinite signal propagation speed in the Fourier law. The solution
of Equation (22) for ε = 10, κ = 1, α = 100 for the initial function f (x) = δ(x) is shown in Figure 4 for
the moments of time t = 0.01 (light blue line), t = 0.1 (lilac line), t = 0.3 (pink line), t = 0.6 (blue line) and
t = 1.1 (yellow–green line). Differently from the Fourier law, the initial flash reaches the point x at the
moment t0 = x/

√
α and there is still no non-trivial solution in the point x before this moment of time.

The initial δ-function is not shown in Figure 4 because of its infinite amplitude.

10 5 0 5 10
x

10 4

0.01

1

100

F

Figure 4. Solution F(x, t) of hyperbolic heat equation with initial δ(x) function for α = 100, ε = 10, κ = 1
in the moments of time t = 0.01 (light blue line), t = 0.1 (lilac line), t = 0.3 (pink line), t = 0.6 (blue line)
and t = 1.1 (yellow–green line).

Higher values of α and ε reduce the contribution of the second order time-derivative ∂2
t in the

Cattaneo Equation respectively to the role of other terms in (22). The damping of the solution in
this case occurs sooner. We omit the proper plot for conciseness. Note that in the case of negative κ,
i.e., when positive κ is in the l.h.s. of the hyperbolic Equation (22), the integral in (28) converges for
ε2 > 4κ, κ < 0. Interestingly, despite the fact that the solution (28) was obtained for ω > 0 and υ > 0,
it holds true for any ω 	= 0 and υ 	= 0. For ω < 0 and υ < 0 we obtain positive values for F(x, t),
while for ω < 0 and υ > 0 as well as for ω > 0 and υ < 0 we obtain complex values for the resulting
function F(x, t). For ω → 0, υ 	= 0 we obtain F(x, t)|ω→0 = e− εt

2 t
2πα1/2

2
|υ| . For ω 	= 0, υ→ 0 the

solution (28) diverges.
Heat propagation in three spatial dimensions in the Cattaneo model is governed by the direct

three-dimensional generalization of (22) for κ = 0: ∇2T = 1
DT

∂T
∂t + τ

DT
∂2T
∂t2 , where DT is the heat

conductivity. The ratio C =
√

DT/τ has the dimension of velocity and it stands for the speed of
the heat wave propagation in the medium, τ is the material parameter, describing the time, needed
for the initiation of a heat flow after a temperature gradient was imposed at the boundary of the
domain. Thus, it determines the time lag for the appearance or disappearance of the heat flow after
the temperature gradient is imposed or removed. This relaxation time is associated in the framework
of the Cattaneo model with the linkage time of phonon-phonon collision and it measures the thermal
inertia of the medium through the time, needed for the heat flow to fade in or out. The role of the
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constant term in the HHE becomes clearer in the context of the signal propagation in long telephone
lines. We will consider it in what follows. At the moment we will keep for generality the constant term
in the three-dimensional telegraph equation, thus writing it as follows:(

τ∂2
t + ∂t

)
F(x, t) =

(
DT∇2 + μ

)
F(x, t), F(x, y, z, 0) = f (x, y, z), F(x, y, z, ∞) = 0, (29)

where DT = α/ε = k/cpρ is the thermal diffusivity, k is the thermal conductivity, ρ is the mass density,
cp is the specific heat capacity, τ = 1/ε is the relaxation time, often related to the speed of the second
sound C in media: τ = DT/C2. The operational solution of (29) includes the action of the heat diffusion
operators for each coordinate on the initial function:

F(x, y, z, t) = e−
εt
2

t
4
√

π

∞∫
0

dξ

ξ
√

ξ
e−

t2
16ξ−ξ(ε2+4κ)ŜxŜyŜz f (x, y, z), f (x, y, z) = F(x, y, z, 0) (30)

The action of ŜxŜyŜz f (x, y, z), where Ŝi = e−4α ξ ∂2
i f (i), i = x, y, z is easy to obtain: the result for

each coordinate heat operator action is given by the inner integral in (24) and then the integration over
dξ can be performed if the integral converges.

For experimental measurement of the thermal conductivity the flash technique is commonly
approved. For this reason we choose the initial function f (x, y, z) = δ(x, y, z), modelling an

intense instant point-like volume heating. The application of the heat operators Ŝi = e−4αξ∂2
xi

gives Ŝx Ŝy Ŝz δ(x, y, z) = e
x2+y2+z2

16αξ /16(π|αξ|)3/2 yields the following solution for HHE (29) with
f (x, y, z) = δ(x, y, z):

F(x, y, z, t) = e−
εt
2

t
64π2α3/2

∞∫
0

dξ

ξ3 e−ξ(ε2+4κ)− t2−(x2+y2+z2)/α
16ξ . (31)

The above integral converges for t >
√
(x2 + y2 + z2)/α and we obtain the following simple

analytical expression, involving modified Bessel functions K2:

F(x, y, z, t) = e− εt
2 t

32π2α3/2
ω
υ K2(2

√
ωυ),

ω = ε2 + 4κ > 0, υ = t2−(x2+y2+z2)/α
16 > 0.

(32)

Note, that the above solution also holds for ω 	= 0 and υ 	= 0. As well as in the one-dimensional
case (28) for ω < 0, υ < 0, that is for the times, inferior t0 =

√
(x2 + y2 + z2)/α, when the heat wave

reaches point x, we obtain positive values for the solution F(x, t) for negative κ, such that 4κ < −ε2.
For ω < 0, υ > 0 as well as for ω > 0, υ < 0 we obtain complex solution F(x, t). In the limiting case
of ω → 0, υ 	= 0 we obtain the finite limit for the solution: F(x, y, z, t)|ω→0 = e− εt

2 4t
π2α3/2

1
υ2 , but for

ω 	= 0, υ→ 0 the solution diverges.
Despite that the Cattaneo heat Equation (22) for κ = 0 is reversible on the time scale of the thermal

relaxation time τ, and despite that it predicts a finite value for the heat wave velocity C =
√

DT/τ,
its quantitative value disagrees with the experimental data at high frequencies and low temperatures.
However, the HHE is widely used in radio engineering.

6. Propagation of a Harmonic Signal with the Telegraph Equation

In the context of signal propagation in cable lines without radiation loss the HHE (22) is perfectly
usable for the description of the voltage and current 86. For this reason we choose the initial harmonic
function f (x) = einx. The action of the operator Ŝ with account for (5) yields Ŝeinx = eν ∂2

x einx = einx−n2ν,
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ν = −4αξ. Integration in (24) in turn yields the following solution for the telegraph Equation (22) for
F(x, 0) = f (x) = einx:

F(x, t) = einx− t
2 (ε+

√
V), V = ε2 + 4

(
κ − α n2

)
. (33)

The harmonic solution (33) is not spreading in space, but only fading in time. Its physical meaning
is clarified if we attribute the constants α, ε, κ in HHE (22) the values according to the schematic
diagram of the electric circuit in Figure 5, where the electric line with finite resistance, inductivity,
capacitance, and leakage is shown.

Figure 5. Schematic diagram of an electric cable line with leakage.

In terms of the resistance RL, inductivity L, capacitance C and leakage resistance RC the voltage
u(x, t) along the transmission line, shown in Figure 5, is described by the one-dimensional telegraph
equation [86]: (

∂2
t + (a + b)∂t

)
u(x, t) =

(
c2∂2

x − ab
)
u(x, t) ,

a = RC
C > 0, b = RL

L > 0, c2 = 1
LC > 0.

(34)

In our notations α = c2 = 1/LC, ε = (a + b) = RC/C + RL/L, κ = −ab = −RCRL/LC < 0,
V = (a− b)2 − (2cn)2 and ε2 + 4κ = a2 + b2 − 2ab = (a− b)2 = (RC/C− RL/L)2 ≥ 0. The
solutions (28) and (32) for the initial δ-surge are valid and converge also for Rc/C = RL/L provided
t 	= t0 =

√
(x2 + y2 + z2)/α.

For (RC/C− RL/L)2 ≥ 4n2/LC the periodic solution u(x, t) = einx− t
2 (ε+

√
V), V ≥ 0

(33) is realized; it fades without the space shift (see examples in Figure 6). In the case of
(RC/C− RL/L)2 < 4n2/LC the voltage behavior in the circuit has space shift and its time fading
depends exclusively on ε (see examples in Figure 7):

u(x, t) = ei(nx− t
2

√
|V|)− t

2 ε, V < 0. (35)

The essential difference between the plots in Figures 6 and 7 is in the time dependent spatial
phase shift, which is seen in Figure 7 for n = 4, 5 and is absent in Figure 6 for n = 2, 3.
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Figure 6. Space-time distribution of Re[u(x, t)] for n = 2, 3 harmonic f (x) = enix for RC = 7,
C = L = RL = 1.
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Figure 7. Space—time distribution of Re[u(x, t)] for n = 4, 5 harmonic f (x) = enix for RC = 7,
C = L = RL = 1.

Thus the first three harmonics for RC = 7, C = L = RL = 1 develop in time without the space
shift with decent fading (see examples for n = 2, 3 in Figure 6); for them the solution (33) is realized.
The harmonics with n ≥ 4 are governed by the solution (35), they have a time-dependent space shift
(see examples for n = 4, 5 in Figure 7). With increase of n the relaxation time of the harmonics also
increases, but from a certain harmonic, for which the space shift appears, the relaxation time stabilizes
and remains equal for all higher harmonics. In the context of heat conduction it means that the heat
conduction for higher harmonics is lower than the heat conduction for low harmonics. It may also
occur that, dependent on the values of the parameters in the HHE all harmonics have time-dependent
space shift, i.e., the solution (35) is realized for n ≥ 1. This frequency dependent heat conductivity is
typical for HHE and it is absent in the Fourier law.

Concluding the study of the hyperbolic heat Equation (22) we note that it can be easily
modified by adding non-commuting with ∂x terms and mixed derivatives over time and coordinate.
Such a modified hyperbolic equation can be solved with the help of the above developed
operational technique.

7. Operational Solution of Guyer-Krumhansl Type Heat Equation and Heat Conduction in
Thin Films

The Cattaneo hyperbolic equation gives a qualitatively correct description of the second sound
through the heat wave propagation at finite velocity, but numerical results do not match the experiment.
The predicted values for the speed of the heat wave in matter disagree with the data on ultrasonic
wave propagation in dilute gases. Neither the heat pulse propagation at very low temperature is
described correctly in non-metallic very pure crystals of Bi and Na F. In response to this disagreement,
further generalizations of the Fourier law were developed. Among them the Guyer-Krumhansl (GK)
equation [87] is distinguished for simplicity and coherence with observed data. In addition to the heat
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waves the GK model takes into consideration the so-called ballistic transport, which can be observed
when the mean free path of a particle significantly exceeds the dimension of the medium in which it
travels. The mean free path increases at low temperatures For example, for electrons in a medium with
negligible electrical resistance, their motion is altered by collisions with the walls. Ballistic conduction
applies also to phonons. It is typically observed in low dimensional structures, such as very thin films,
silicon nanowires, carbon nanotubes, graphene etc. (see, for example, [88–92]). When the bulk phonon
mean free path l is comparable to the structure size L, neither the Casimir phonon theory [93] nor
Fourier diffusion [75] describe the heat transfer well, which is affected by boundary as well as internal
scattering. The common rule that determines which type of transport dominates is the following: when
l << L, the heat diffusion prevails, but for l >> L, or when the temperature gradient becomes large,
the ballistic transport cannot be ignored. Recently the conditions for the transition region between the
ballistic heat transport and the diffusion were described in [92]. Whether the heat transfer is ballistic or
diffusive is also important for experimentalists, because the account for the ballistic phonon transport
requires the knowledge of the boundary quality, while the wave and diffusive transport constants
are intrinsic material properties [94–96]. The three dimensional Guyer-Krumhansl (GK) heat law was
derived from the solution of the linearized Boltzmann equation for a phonon field in dielectric crystals
at low temperature. It is good for the description of phonon gases in low temperature samples and
even for some heat propagation processes on the microscopic [97] and macroscopic [98–102] level at
room temperature [103–105]. The relaxation of the laser flash was shown to follow the GK law [106],
which was reconsidered in the framework of weakly non-local thermodynamics in [107]. Due to the
wide interest in the GK equation and its relatively good agreement with an array of experiments over a
broad temperature range, conducted in various materials, we will consider the GK equation solution for
propagation of spatial heat waves and flash pulses. To this end we will use the operational technique.

Let us choose the operators ε̂ = ε− δ∂2
x and D̂ = α∂2

x + κ in (18), which results in the following
GK type equation with mixed derivative:(

∂2
t + ε∂t − δ∂t∂

2
x
)

F(x, t) =
(
α∂2

x + κ
)

F(x, t) ,
with

F(x, 0) = f (x), F(x, ∞) = 0, α, ε, δ, κ = const .
(36)

The one-dimensional GK equation is essentially Equation (36) with κ = 0; we will keep κ 	= 0 for
the sake of generality. Its role is not indifferent and it will be discussed in what follows. Introducing
the operators Δ̂1 = ∂t − (α/ε)∂2

x and Δ̂2 = ∂t − δ∂2
x, we can rewrite (36) with positive coefficients

α, ε, δ > 0 in the following form: (
∂tΔ̂2 + εΔ̂1

)
F(x, t) = κF(x, t). (37)

Note that equations Δ̂1,2FF1,F2(x, t) = 0 represent Fourier law. If δ = α/ε and κ = 0, we have
Δ1 = Δ2, and, provided the Fourier Equation Δ̂1,2FF(x, t) = 0 is fulfilled, we have the particular case
of GK equation, which is Equation (37) with κ = 0, also satisfied by this solution F(x, t) = FF(x, t).
The form of the heat conduction equation Equation (36) with κ 	= 0 arises in the study of heat
propagation in a one-dimensional thin film with account for the phonon transport [108]. From (21),
where ε̂ = ε− δ∂2

x, D̂ = α∂2
x + κ, we write the solution of Equation (36) as follows:

F(x, t) = e−
t
2 ε t

4
√

π

∞∫
0

dξ

ξ
√

ξ
e−

t2
16ξ−ξ(ε2+4κ)+( t

2 δ+ξ(2εδ−4α))∂2
x e−ξδ2∂4

x f (x). (38)

By means of the integral presentation e−ξδ2∂4
x f (x) =

∫ ∞
−∞ e−ζ2+2iζδ

√
ξ ∂2

x f (x)dζ/
√

π

(see (5)) we obtain after grouping the 2nd order derivative terms in the exponential
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∫ ∞
−∞ e−ζ2+(tδ/2−4ξα+2ξεδ+2iζ

√
ξδ) ∂2

x f (x)dζ the particular bounded solution for the modified hyperbolic
heat conduction Equation (36) with initial function F(x, 0) = f (x) as follows:

F(x, t) =
e− t

2 εt
4π

∞∫
0

dξ

ξ
√

ξ
e−

t2
16ξ−ξ(ε2+4κ)

∞∫
−∞

e−ζ2
Ŝ f (x)dζ, (39)

where Ŝ = eν ∂2
x , ν = a + ibζ, a = tδ/2− 4ξα + 2ξεδ, b = 2

√
ξδ. Note, that the obtained integral

solution is valid also if the constant term in the r.h.s. of the Equation (36) is negative: κ < 0 and
ε > 2

√|κ|, which insures the integral convergence. Equations with negative sign of κ have sense and
they arise for ballistic heat propagation in thin films [108].

The application of the above solution is direct: it was demonstrated that heat propagation in thin
films obeys the extended form of GK Equation (36). In particular, the following equation for thin films
was proposed [108]: {

∂2

∂t
+ 2

∂

∂t
− 10Kn2

b
3

∂2

∂x2 − 3Kn2
b

∂3

∂x2∂t
+ 1

}
F(x, t) = 0, (40)

where F(x, t) is the ballistic component of the dimensionless energy (or quasi-temperature) and Kn is
the Knudsen number, describing the molecular and the boundary effects. Equation (40) is a GK type
Equation (36) with the following coefficients: α = 10

3 Kn2
b, ε = 2, δ = 3Kn2

b, κ = −1.
In what follows, we will consider some examples of heat pulse propagation.

8. Propagation of a Heat Surge with the Guyer-Krumhansl Heat Equation

Consider the example of the initial flash F(x, 0) = δ(x), corresponding to an intense and
instant laser point heating at x = 0 at the moment of time t = 0. From Equation (16) for

ν = a + ibζ, a = tδ/2 − 4ξα + 2ξεδ, b = 2
√

ξδ we obtain Ŝ δ(x) = e
− x2

4(a+ibζ)

2
√

π|a+ibζ| . Then from (39)

the analytical solution of GK type Equation (36) with f (x) = δ(x) follows:

F(x, t)| f (x)=δ(x) =
e− t

2 εt
8π3/2

∞∫
0

dξ

ξ
√

ξ
e−

t2
16ξ−ξ(ε2+4κ)Φ(x; a, b) , (41)

where we denote the special function

Φ(x; a, b) ≡
∞∫
−∞

e−ζ2− x2
4(a+ibζ) dζ√|a + ibζ| , a = tδ/2− 4ξα + 2ξεδ , b = 2δ

√
ξ. (42)

Function Φ(x; a, b) reduces for some particular values of a and b to the hypergeometric
function 0F2({β1, β2}; z), this last being the particular case of pFq

({
α1...αp

}
;
{

β1...βq
}

; z
)
. Moreover,

Φ(0; 0, b) = 1√
|b|Γ
(

1
4

)
and

∞∫
−∞

e
−ζ2− x2

4bζ dζ√
|ζ| =

⎛⎝ Γ
(

1
4

)
0
F2

(
;
{

1
2 , 3

4

}
;− x4

64b2

)
−√

π
b |x| 0F2

(
;
{ 3

4 , 5
4
}

;− x4

64b2

) ⎞⎠sgnb. The numerical

calculation of the double integral (41), taken with care around the point a = 0, corresponding to the
time t = 4ξ

(
2 α

δ − ε
)
, yields real values. The example of the solution (41) of the GK type Equation (36)

with α = δ = ε = κ = 1 for the initial flash f (x) = δ(x) is shown in Figure 8.
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Figure 8. Solution of the Guyer-Krumhansl equation with initial δ(x) function for α = ε = δ = κ = 1 in
the interval of time t ∈ [10−3, 10−2].

From the comparison of Figure 8 with Figure 1 we conclude that the solution of the Fourier heat
Equation (1) (see Figure 1) is more pronounced at short times, it has a higher peak, while the solution
of GK Equation (36) spreads faster (see Figure 8) when the additional terms ε = δ = 1 are comparable
with the others order.

In the context of heat conduction in thin films we solved the respective GK equation for Kn = 0.2
and for Kn = 1. The results for the ballistic dimensionless energy change after a laser pulse heating
of a thin film, modelled by the GK type Equation (40), are shown in Figure 9 for Knudsen number
Kn = 1 and in Figure 10 for Knudsen number Kn = 0.2. Their comparison confirms much faster heat
propagation in a thin film with Kn = 1, where the ballistic transport mechanism contributes noticeably,
as compared with the film with small value of Kn = 0.2.

Figure 9. Heat pulse propagation in the Guyer-Krumhansl model with Knudsen number Kn = 1.
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Figure 10. Heat pulse propagation in the Guyer-Krumhansl (GK) model with Knudsen number
Kn = 0.2.

9. Solution of the Guyer-Krumhansl Equation for the Exponential–Polynomial Initial Function

Interesting features of the heat conduction, governed by the Guyer-Krumhansl equation, arise
from consideration of the evolution of the power–exponential initial function F(x, 0) = eγxxn.
Consideration of such a function is useful not only because it allows better approximation of
experimental data than the usual polynomial xn and f (x) = eγxxn, γx < 0, but also as itself it represents
a pulse, and practically any solitary space wave or surge is easy to approximate by its sum f (x) = eγxxn.
The operational method allows the exact analytical solutions for these functions to be obtained. Indeed,
we make use of the operational identity (11) to obtain for Ŝ = eν ∂2

x , ν = tδ/2− 4ξα + 2ξεδ + i2
√

ξδζ,
Ŝ eγxxn = eγ x+γ2ν Hn(x + 2γν, ν). The solution for arbitrary values of n ∈ Integers, γ ∈ Reals can be
obtained upon the following integration:

F(x, t) =
e

t
2 (γ

2δ−ε)+γxt
4π

∞∫
0

dξ

ξ
√

ξ
e−

t2
16ξ−ξd

∞∫
−∞

e−ζ2+ibζγ2
Hn(x + 2γν, ν)dζ, (43)

where ν = a + ibζ, a = tδ/2− 4ξα + 2ξεδ, b = 2
√

ξδ, d = ε2 + 4κ + 2γ2(2α− εδ). The integration
can be done in elementary functions if we account for the series presentation Hn(x + 2γν, ν) =

n!
[n/2]
∑

r=0

(x+2γν)n−2rνr

(n−2r)!r! = (−i)n(a + ibζ)
n
2 Hn

(
i(x+2γ(a+ibζ))

2
√

a+ibζ

)
. We omit the final result for conciseness.

For example, in the simplest case of n = −γ = 1, i.e., f (x) = e−xx we obtain the following solution of
the GK equation:

F(x, t) = e−x+t(δ−ε)/2e−
t
2
√

q(x− δt + (2α + δ(δ− ε))t/
√

q), q = (δ− ε)2 + 4(κ + α). (44)

Let us now consider the initial smooth function F(x, 0) = (|x|+ 2)2e−|x|. By means of the
above developed operational technique we obtained the following exact analytical solution of the GK
equation in elementary functions:
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F(x, t) = e−|x|− t
2 (
√

r−δ+ε)×(
(2 + |x|)2 − tδ(3 + 2|x|) + 2(tδ)2 + 4tη

r

(
2√
r + t

)
+ tρ√

r (3 + 2|x| − 2tδ)
)

,

where
ρ = 2α + δ(δ− ε), η = α2 − αδε− δ2κ, r = 4(α + κ) + (ε− δ)2.

(45)

Direct substitution of the solution satisfies the GK equation. Earlier it was demonstrated that such
solutions can show bizarre behavior with local maximums and local minimums even with negative
values, occurring in the middle of the domain, so that theoretically for a certain set of parameters
of the GK equation the maximum principle can be violated [58]. However, for applications, such as
those in the thin films, modelled by the GK type Equation (40), there is no problem with the second
law of thermodynamics violation. Indeed, the propagation of the smooth spatial heat distribution
F(x, 0) = (|x|+ 2)2e−|x| in the range of the values of the Knudsen number between Kn = 0.05÷ 2
changes no more than three percent.

The difference between these plots is not distinguishable visually and we present here just one
example for Kn = 0.2 in Figure 11. It corresponds to the values α = 2

15 , δ = 0.12, ε = 2, κ = −1.
The behavior of the solution surprisingly resembles that for α ≈ ε ≈ δ ≈ 1, which we omit for brevity,
as well as that for Kn = 2, for which α = 13 1

3 , δ = 12, ε = 2, κ = −1.
To contrast it, we demonstrate the behavior of the solution of GK equation (see (36), κ = 0) for

relatively small contribution of the Cattaneo’s term: α = ε = δ = 10, which does not depend on the sign
and on the exact value of the constant term κ (we omit proper figures with κ 	= 0) for conciseness) and
it has bizarre non-Fourier behavior, shown in Figure 12.

The initial pulse rapidly decreases and assumes negative values, then it gradually approaches zero.
It maintains negative values in the whole space domain, but for the vicinity of x = 0. Around x = 0
the solution becomes positive: F(x ≈ 0, t > 0.8) > 0 and then it relaxes to zero: F(x, t→ ∞) = 0 .

In this case, based on the obtained exact vanishing analytical solution of the GK equation with the
initial function F(x, 0) = (|x|+ 2)2e−|x| and F(x, ∞) = 0, we conclude the minimum of the solution
over the time-space domain is in the middle of the domain (see Figure 12). The local maximum of the
solution may also occur in the middle of the domain (see [58,59]).

Figure 11. Solution of GK type equation for heat transport in thin films with Knudsen number Kn = 0.2
for the initial function F(x, 0) = (|x|+ 2)2e−|x|.
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Figure 12. Solution of GK equation with distinct ballistic transport: α = ε = δ = 10, κ = 0 for the initial
function F(x, 0) = (|x|+ 2)2e−|x|.

10. Harmonic Solution of Guyer-Krumhansl Equation and Temperature Distribution in
Thin Films

The other good example of a given initial temperature distribution, is given by a harmonic
function f (x) = exp(inx), which is necessary to consider approximations or expansion of the initial
function into the Fourier series to fit experimental data distributions. The action of the heat conduction
operator yields the following bounded at infinite times solution:

F(x, t) = einx e− t
2 (ε+n2δ)t

4π

∞∫
0

dξ

ξ
√

ξ
e−

t2
16ξ−ξ(ε2+4κ+2n2(−2α+εδ))

∞∫
−∞

e−ζ2
e−2iζn2δ

√
ξdζ. (46)

Upon integration we end up with the explicit solution of the GK Equations (36) and (37) for the
periodic initial function f (x) = exp(inx), expressed in elementary functions as follows:

F(x, t) = exp
(

inx− t
2
(ε + n2δ +

√
U)

)
, U = (ε + n2δ)

2
+ 4(κ − αn2). (47)

Interestingly, the solution (47) of GK type Equation (36) for the initial harmonic function
f (x) = exp(inx) repeats the solution of telegraph Equation (33) upon the substitution ε→ ε + n2δ ,
where δ > 0, ε > 0, in (33). In other words, the solution (47) of Equation GK type (36) for f (x) = einx is
also the solution of the HHE (22) with the harmonic dependent coefficient ε + n2δ for the first order
time derivative: (

∂2

∂t2 +
(

ε + n2δ
) ∂

∂t

)
F(x, t) =

(
α

∂2

∂x2 + κ

)
F(x, t) (48)

Thus, for the initial harmonic function f (x) = einx and same values of the coefficients
α, ε, κ, δ in Equations (36) and (48), these share identical particular solution (47). For the initial
function φ(x) = ∑n cnexp(inx), the solution of Equations (36) and (48) will be given by the series
Φ = ∑n cnF(x, t), where F(x, t) is the solution of (47). In this sense the GK type equation with the
harmonic initial function can be viewed as the telegraph equation with the harmonic dependent
coefficient for ∂/∂t: (ε + n2δ)∂/∂t and the GK equation for f (x) = einx is in fact the Cattaneo equation
for f (x) = einx with (ε + n2δ)∂t instead of ε∂t term. This radically changes the solution behavior.
Indeed, the relaxation time for all higher harmonics einx in the telegraph Equation (33) is the same;
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only low harmonics may fade out faster. On the contrary, the solution (47) of the GK type Equation (36)
for the harmonic function f (x) = einx and the solution of the equivalent telegraph equation with
ε→ ε + n2δ (48) for high harmonics show that these harmonics fade out faster than the fundamental
one eix (n = 1) and the higher the harmonic number n, the lower is its relaxation time. The examples
for n = 3, 5 are shown in Figure 13.

Figure 13. Solution of GK type Equation: Re[F(x, t)] for α = 0.5, ε = 1, κ = 5, δ = 1 for f (x) = e3ix

(n = 3) left, and for f (x) = e5ix (n = 5) right.

Compare Figure 13 with the solution of the telegraph Equation (22) (see Figures 6 and 7).
High harmonics of the telegraph equation, shown in Figure 7, fade out slower than the low harmonics,
shown in Figure 6. For the GK type equation or the HHE with ε→ ε + n2δ on the contrary, high
harmonics fade out faster than the fundamental and the low ones, as evidenced in Figure 13.
The effective thermal conductivity in the common telegraph Equation (22) is constant for higher
harmonics and in certain cases even for all n. On the contrary, in the GK type Equation (36), which
is HHE with ε→ ε + n2δ for f (x) = exp(inx) (see (48)), the thermal conductivity for the harmonic
function f (x) = einx rises with increase of the harmonic number n.

In the context of the heat conduction in thin films, for Kn = 1 we plotted the bounded solutions
of Equation (40), for f (x) = einx, n = 1, 3, in Figures 14 and 15 respectively. High harmonics fade out
rapidly as follows from their comparison with teach other. For Kn = 0.2 we present the solutions in
Figures 16 and 17 for n = 1, 3 respectively. The comparison with Figure 14, Figure 15 shows that the
solutions for Kn = 0.2 relax much slower than those for Kn = 1.

Figure 14. The behavior of the 1st harmonic (n = 1) of the GK type Equation (36) solution for Kn = 1.
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Figure 15. The behavior of the 3rd harmonic (n = 3) of the GK type Equation (36) solution for Kn = 1.

Figure 16. The behavior of the 1st harmonic (n = 1) of the GK type Equation (36) solution for Kn = 0.2.

Figure 17. The behavior of the 3rd harmonic (n = 3) of the GK type Equation (36) solution for Kn = 0.2.
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This means that high values of the Knudsen number provide the ballistic transport
contribution to the heat conduction, and the latter increases in the GK model, in particular,
for high harmonics. The proper relaxation times for the first harmonic f (x) = eix read as
follows: n=1τKn=1 ≈ 0.5 and n=1τKn=0.2 ≈ 2.5; for the third harmonic f (x) = e3ix the relaxation
times are n=3τKn=1 ≈ 0.2 and n=3τKn=0.2 ≈ 3. The ratios of proper relaxation times are

n=1τKn=1/n=1τKn=0.2 = 1/5 and n=3τKn=1/n=3τKn=0.2 = 1/15. The heat conduction is evidently
better for Kn = 1 than for Kn = 0.2.

11. Conclusions

We obtained exact analytical solutions for heat conduction in the Fourier, Cattaneo, and
Guyer-Krumhansl heat transport models. Extended forms of these equations with additional constant
terms were solved by the operational method. The obtained solutions directly satisfy the considered
equations. The initial functions, modelling various types of pulses and signals were considered.
The power–exponential pulse and the flash heat pulse were considered, modelling the laser heat pulse
experimental technique, common for thermal conductivity measurements.

The analytical solutions were compared with each other. The finite speed of the heat propagation
in the Cattaneo model was demonstrated. By reducing the effect of the second time derivative in the
equation for α = ε = 10, maintaining the heat conductivity unchanged, we obtain faster fading of the
solution. In this case diffusive heat conduction prevails over the wave-like propagation process. On the
contrary, for α = ε = 0.1 the wave-like propagation of the initial function dominates. For α = ε = 1,
both heat transport mechanisms contribute; the wave propagates at a constant speed, accompanied
by fading.

The exact analytical solution of HHE in three space dimensions for initial flash f = δ(x, y, z) was
obtained in terms of modified Bessel functions. The HHE was solved with the harmonic initial function
f = einx. The obtained solution fades in time exponentially and does not spread. The space phase shift
of the solution depends on the sign of the linear term in HHE.

The GK type heat equation with linear term was solved operationally; the solution was written
in terms of integrals and special functions. The propagation of the initial heat flash was studied and
demonstrated for the model of heat conduction in thin films. Small values of Knudsen number result
in slower relaxation of the initial heat surge; for Kn ≈ 1 the ballistic heat transport contributes and the
heat surge fades out much faster. An exact solution for the evolution of the exponential-monomial
function F(x, 0) = xne−γx in the GK equation was obtained. This allows not only the propagation
of a surge with power rise, followed by the common exponential fade, to be studied but also the
result for the initial function to be obtained, which can be expanded in the series f (x) = ∑n,γ cneγxn

or approximated by them. The example of the initial smooth heat pulse relaxation in a thin film
was considered.

We found that variation of the Knudsen number values in a reasonable range Kn ∈ [0.05, 2]
practically does not influence the relaxation time of the initial smooth pulse: the values of the solution
of GK type equation vary less than 3% for 0.05 < Kn < 2. Thus in thin films the conditions on the
surface, expressed by the Knudsen number, are particularly important for laser heat flash, but not that
important for relaxation of a wide heat spot without a sharp boundary.

For the propagation of the initial laser heat flash f (x) = δ(x) the relaxation time is ten times
smaller for Kn = 1 than for Kn = 0.2. The relaxation time τ for the harmonic initial function for the first
harmonic (n = 1) is five times shorter for Kn = 1 than for Kn = 0.2: n=1τKn=1 ≈ 0.5 and n=1τKn=0.2 ≈ 2.5;
for the third harmonic f (x) = e3ix the relaxation time τ is 15 times shorter for Kn = 1 than τ for Kn = 0.2:
the proper relaxation times are n=3τKn=1 ≈ 0.2 and n=3τKn=0.2 ≈ 3. The ratios of proper relaxation times
are n=1τKn=1/n=1τKn=0.2 = 1/5 and n=3τKn=1/n=3τKn=0.2 = 1/15.

We obtained exact analytical solutions in terms of the orthogonal polynomials and special
functions for three different models of heat conduction: Fourier, Cattaneo, and Guyer-Krumhansl.
These solutions allow analytical modelling of the space–time propagation for heat flashes and pulses,
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which is the established experimental technique. We can also model the relaxation of any initial
function, expandable in the Fourier series and in the series of the exponential-polynomial function.
This series approximation is applicable practically to any pulse.

In conclusion we stress that the operational technique, used for the solution of hyperbolic
heat equations, yields exact analytical solutions. They have clear physical meaning and allow easy
understanding of the role of different terms in the equations. The validity of the obtained analytical
solutions was checked by their substitution in the equations, the latter were satisfied. Our study
not only has theoretical interest, but it also provides practical results of experimental technique and
measurements. The obtained exact analytical solutions can be used as a benchmark for numerical
solutions of more sophisticated forms of the studied equations.
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Abstract: We aim to present some formulas for the Saigo hypergeometric fractional integral and
differential operators involving the generalized Mathieu series Sμ(r), which are expressed in terms of
the Hadamard product of the generalized Mathieu series Sμ(r) and the Fox–Wright function pΨq(z).
Corresponding assertions for the classical Riemann–Liouville and Erdélyi–Kober fractional integral
and differential operators are deduced. Further, it is emphasized that the results presented here,
which are for a seemingly complicated series, can reveal their involved properties via the series of the
two known functions.

Keywords: Mathieu series; generalized Mathieuseries; fractional calculus operators

1. Introduction and Preliminaries

Fractional calculus, which has a long history, is an important branch of mathematical analysis
(calculus) where differentiations and integrations can be of arbitrary non-integer order. During the past
four decades or so, fractional calculus has been widely and extensively investigated and has gained
importance and popularity due mainly to its demonstrated applications in numerous and diverse
fields of science and engineering such as turbulence and fluid dynamics, stochastic dynamical system,
plasma physics and controlled thermonuclear fusion, nonlinear control theory, image processing,
nonlinear biological systems, and astrophysics (see, for detail, [1–5]).

We recall Saigo fractional integral and differential operators involving Gauss’s hypergeometric
function 2F1 as a kernel. Let α, β, η ∈ C, �(α) > 0 and x > 0, then Saigo’s fractional integral
and differential operators

(
Iα,β,η
0+ f

)
(x),

(
Iα,β,η
− f

)
(x) and

(
Dα,β,η

0+ f
)
(x),

(
Dα,β,η
− f

)
(x) are defined as

(see, for example, [1,2,4–6]):

(
Iα,β,η
0+ f

)
(x) =

x−α−β

Γ(α)

∫ x

0
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(
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Here and in what follows, [x] denotes the greatest integer less than or equal to the real number x.
When β = −α, the operators in (1)–(4) coincide with the classical Riemann–Liouville fractional integrals
and derivatives of order α ∈ C with �(α) > 0 and x > 0 (see, e.g., [1,4]):(
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− f

)
(x) = (Dα− f ) (x) = (−1)n

(
d

dx

)n 1
Γ(n− α)

∫ ∞

x
(t− y)n−α−1 f (t) dt

= (−1)n
(

d
dx

)n (
In−α− f

)
(x) (n = [�(α)] + 1). (8)

Here and in the following, let C, R+, and N be the sets of complex numbers, positive real numbers,
and positive integers, respectively, and let N0 := N∪ {0}.

If β = 0 in (1)–(4) yields the so-called Erdélyi–Kober fractional integrals and derivatives of order
α ∈ C with �(α) > 0 and x > 0 (see, e.g., [1,4]):

(
Iα,0,η
0+ f

)
(x) =

(
I+η,α f

)
(x) =

x−α−η

Γ(α)

∫ x

0
(x− t)α−1tη f (t) dt, (9)

(
Iα,0,η
− f

)
(x) =

(
K−η,α f

)
(x) ≡ xη

Γ(α)

∫ ∞

x
(t− x)α−1t−α−η f (t) dt, (10)

and (
Dα,0,η

0+ f
)
(x) =

(
D+

η,α f
)
(x)

=

(
d

dx

)n (
I−α+n,−α,α+η−n
0+ f

)
(x) (n = [�(α)] + 1), (11)

(
Dα,0,η
− f

)
(x) =

(
D−η,α f

)
(x)

= (−1)n
(

d
dx

)n (
I−α+n,−α,α+η
− f

)
(x) (n = [�(α)] + 1), (12)

(
D+

η,α f
)
(x) = x−η

(
d

dx

)n 1
Γ(n− α)

∫ x

0
tα+η(x− t)n−α−1 f (t) dt (n = [�(α)] + 1), (13)
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(
D−η,α f

)
(x) = xη+α

(
d

dx

)n 1
Γ(n− α)

∫ ∞

x
t−η(t− x)n−α−1 f (t) dt (n = [�(α)] + 1). (14)

A detailed account of such operators along with their properties and applications has been
considered by several authors (see, for details, [1–5]).

The following familiar infinite series of the form

S(r) = ∑
n≥1

2n
(n2 + r2)2 , r > 0 (15)

is known in literature as the Mathieu series. Émile Leonard Mathieu was the first to investigate such a
series in 1890 in his book elasticity of solid bodies [7]. An alternative version of (15)

S̃(r) = ∑
n≥1

(−1)n−1 2n
(n2 + r2)2 , r > 0 (16)

was introduced by Pogány et al. [8]. Closed form integral representations for S(r) and S̃(r) are given
by (see e.g., [8,9])

S(r) =
1
r

∫ ∞

0

x sin(rx)
ex − 1

dx (17)

and

S̃(r) =
1
r

∫ ∞

0

x sin(rx)
ex + 1

dx, (18)

respectively. Several interesting problems and solutions deal with integral representations and bounds
for the following mild generalization of the Mathieu series and its alternative version with a fractional
power defined by ([10], p. 2, Equation (16)) ( see also, [11], p. 181)

Sμ(r) = ∑
n≥1

2n
(n2 + r2)μ+1 ( r > 0, μ > 0) (19)

and
S̃μ(r) = ∑

n≥1
(−1)n−1 2n

(n2 + r2)μ+1 ( r > 0, μ > 0), (20)

respectively. Such a series has been widely considered in mathematical literature (see, e.g., papers of
Cerone and Lenard [10], Diananda [12] and Pogány et al. [8]). Various applications of the familiar
Mathieu series and its generalizations in probability theory with other variants such as trigonometric
Mathieu series, harmonic Mathieu series, Fourier–Mathieu series and some other particular forms of
the Mathieu series can be found in a recent paper [13].

Recently, Tomovski and Pogány [14] studied the several integral representations of the generalized
fractional order Mathieu-type power series

Sμ(r; z) = ∑
n≥1

2n zn

(n2 + r2)μ+1 , (μ > 0, r ∈ R, |z| < 1). (21)

Obviously, we have

Sμ(r; 1) = Sμ(r) and Sμ(r;−1) = −S̃μ(r).

Various other investigations and generalizations of the Mathieu series with its alternative variants
can also be found in [11,14–24], and the references cited therein.

The concept of the Hadamard product (or the convolution) of two analytic functions is useful
in our present investigation. It can help us to decompose a newly emerged function into two known
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functions. If, in particular, one of the power series defines an entire function, then the Hadamard
product series defines an entire function, too. Let

f (z) :=
∞

∑
n=0

anzn (|z| < R f ) and g(z) :=
∞

∑
n=0

bnzn (|z| < Rg)

be two power series whose radii of convergence are denoted by R f and Rg, respectively.
Then, their Hadamard product is the power series defined by

( f ∗ g)(z) :=
∞

∑
n=0

an bnzn = (g ∗ f )(z) (|z| < R) (22)

where

R = lim
n→∞

∣∣∣∣ an bn

an+1 bn+1

∣∣∣∣ = ( lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣) .
(

lim
n→∞

∣∣∣∣ bn

bn+1

∣∣∣∣) = R f · Rg,

therefore, in general, we have R ≥ R f · Rg [25,26]. For various other investigations involving the
Hadamard product (or the convolution), the interested reader may be referred to several recent papers
on the subject (see, for example, [27,28] and the references cited in each of these papers).

In this paper, our aim is to study the compositions of the generalized fractional integration and
differentiation operators (1)–(4) with the generalized Mathieu series (21) in terms of the Hadamard
product (22) of the generalized Mathieu series and the Fox–Wright function. Further, corresponding
assertions for the classical Riemann–Liouville and Erdélyi–Kober fractional integral and differential
operators are deduced. The results presented in Theorems together with Corollaries are sure to be new
and potentially useful, mainly because they are expressed in terms of the Hadamard product with two
known functions. At least, a seemingly complicated resulting series expressed in terms of two known
functions means that certain properties involved in the complicated resulting series can be revealed via
the series of the known functions.

2. Fractional Integration of the Mathieu Series

We first recall the Fox–Wright function pΨq(z) (p, q ∈ N0) with p numerator and q denominator
parameters defined for α1, . . . , αp ∈ C and β1, . . . , βq ∈ C \Z−0 by (see, for details, [1,3]; see also [4,29]):

pΨq

[
(α1, A1), · · · , (αp, Ap);
(β1, B1), · · · , (βq, Bq);

z

]
=

∞

∑
n=0

Γ(α1 + A1n) · · · Γ(αp + Apn)
Γ(β1 + B1n) · · · Γ(βq + Bqn)

zn

n!
(23)

(
Aj ∈ R

+ (j = 1, . . . , p); Bj ∈ R
+ (j = 1, . . . , q); 1 +

q

∑
j=1

Bj −
p

∑
j=1

Aj ≥ 0

)
,

where the equality in the convergence condition holds true for

|z| < ∇ :=

(
p

∏
j=1

A
−Aj
j

)
.

(
q

∏
j=1

B
Bj
j

)
.

In particular, when Aj = Bk = 1 (j = 1, . . . , p; k = 1, . . . , q), (23) reduces immediately to the
generalized hypergeometric function pFq (p, q ∈ N0) (see, e.g., [29]):

pFq

[
α1, . . . , αp;
β1, . . . , βq;

z

]
=

Γ(β1) · · · Γ(βq)

Γ(α1) · · · Γ(αp)
pΨq

[
(α1, 1), · · · , (αp, 1);
(β1, 1), · · · , (βq, 1);

z

]
. (24)
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Lemma 1. Let α, β, η ∈ C. Then, there exists the relation

(a) If �(α) > 0 and �(σ) > max[0,�(β− η)], then

(Iα,β,η
0+ tσ−1)(x) =

Γ(σ)Γ(σ + η − β)

Γ(σ− β)Γ(σ + α + η)
xσ−β−1 (25)

In particular, for x > 0, we have

(Iα
0+tσ−1)(x) =

Γ(σ)
Γ(σ + α)

xσ+α−1 (�(α) > 0, �(σ) > 0), (26)

(I+η,αtσ−1)(x) =
Γ(σ + η)

Γ(σ + α + η)
xσ−1 (�(α) > 0, �(σ) > −�(η)). (27)

(b) If �(α) > 0 and �(σ) < 1 + min[�(β),�(η)], then

(Iα,β,η
− tσ−1)(x) =

Γ(1− σ + β)Γ(1− σ + η)

Γ(1− σ)Γ(1− σ + α + β + η)
xσ−β−1. (28)

In particular, for x > 0, we have

(Iα−tσ−1)(x) =
Γ(1− α− σ)

Γ(1− σ)
xσ+α−1 (0 < �(α) < 1−�(σ)), (29)

(K−η,αtσ−1)(x) =
Γ(1− σ + η)

Γ(1− σ + α + η)
xσ−1 (�(σ) < 1 +�(σ)). (30)

We begin the exposition of the main results by presenting the composition formulas of generalized
fractional integrals, (1) and (2), involving the generalized Mathieu series in terms of the Hadamard
product (22) of the generalized Mathieu series (21) and the Fox–Wright function (23). It is emphasized
that the results presented here, which are for a seemingly complicated series, can reveal their involved
properties via the series of the two known functions.

Theorem 1. Let α, β, η, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) > 0 and
�(σ) > max[0,�(β− η)]. Then, the following Saigo hypergeometric fractional integral Iα,β,η

0+ of Sμ(r, tρ)

holds true: (
Iα,β,η
0+

{
tσ−1 Sμ(r, tρ)

})
(x)

= xσ−β+ρ−1 Sμ(r, xρ) ∗ 3Ψ2

[
(1, 1), (σ + ρ, ρ), (σ + η − β + ρ, ρ);
(σ− β + ρ, ρ), (σ + α + η + ρ, ρ);

xρ

]
. (31)

Proof. Using the definitions (1) and (21), by changing the order of integration and applying the
relation (25), we find that x > 0

(
Iα,β,η
0+

{
tσ−1Sμ(r, tρ)

})
(x) =

∞

∑
k=1

2k
(k2 + r2)μ+1

(
Iα,β,η
0+ tσ+ρk−1

)
(x)

= xσ−β−1
∞

∑
k=1

2k
(k2 + r2)μ+1

Γ(σ + ρk)Γ(σ + η − β + ρk)
Γ(σ− β + ρk)Γ(σ + α + η + ρk)

xρk. (32)

by applying the Hadamard product (22) in (32), which in the view of (21) and (23), yields the
desired formula (31).
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Theorem 2. Let α, β, η, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) > 0 and �(σ) < 1 +

min[�(β),�(η)]. Then, the following Saigo hypergeometric fractional integral Iα,β,η
− of Sμ

(
r, 1

tρ

)
holds true:

(
Iα,β,η
−

{
tσ−1 Sμ

(
r,

1
tρ

)})
(x)

= xσ−ρ−β−1 Sμ

(
r,

1
xρ

)
∗ 3Ψ2

[
(1, 1), (1− σ + β + ρ, ρ), (1− σ + η + ρ, ρ);
(1− σ + ρ, ρ), (1− σ + α + β + η + ρ, ρ);

1
xρ

]
. (33)

Proof. Using the definitions (2) and (21), by changing the order of integration and applying
the relation (28)(

Iα,β,η
−

{
tσ−1Sμ

(
r,

1
tρ

)})
(x) =

∞

∑
k=1

2k
(k2 + r2)μ+1

(
Iα,β,η
− tσ−ρk−1

)
(x)

= xσ−β−1
∞

∑
k=1

2k
(k2 + r2)μ+1

Γ(1− σ + β + ρk)Γ(1− σ + η + ρk)
Γ(1− σ + ρk)Γ(1− σ + α + β + η + ρk)

x−ρk. (34)

by applying the Hadamard product (22) in (34), which in the view of (21) and (23), yields the
desired formula (33).

Further, we deduce the fractional integral formulas for the classical Riemann–Liouville and
Erdélyi–Kober fractional integral and differential operators by letting β = −α and β = 0 respectively,
which are asserted by Corollaries 1–4 below.

Corollary 1. Let α, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) > 0 and �(σ) > 0. Then,
the following Riemann–Liouville fractional integral Iα

0+ of Sμ(r, tρ) holds true:

(
Iα
0+

{
tσ−1 Sμ(r, tρ)

})
(x) = xσ+ρ+α−1 Sμ(r, xρ) ∗ 2Ψ1

[
(1, 1), (σ + ρ, ρ);
(σ + α + ρ, ρ);

xρ

]
. (35)

Corollary 2. Let α, η, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) > 0 and �(σ) > −�(η).
Then, the following Erdélyi–Kober fractional integral I+η,α of Sμ(r, tρ) holds true:

(
I+η,α

{
tσ−1 Sμ(r, tρ)

})
(x) = xσ+ρ−1 Sμ(r, xρ) ∗ 2Ψ1

[
(1, 1), (σ + η + ρ, ρ);
(σ + α + η + ρ, ρ);

xρ

]
. (36)

Corollary 3. Let α, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that 0 < �(α) < 1 − �(σ). Then,
the following Riemann–Liouville fractional integral Iα− of Sμ

(
r, 1

tρ

)
holds true:

(
Iα−
{

tσ−1 Sμ

(
r,

1
tρ

)})
(x) = xσ+α−ρ−1 Sμ

(
r,

1
xρ

)
∗ 2Ψ1

[
(1, 1), (1− σ− α + ρ, ρ);

(1− σ + ρ, ρ);
1
xρ

]
. (37)

Corollary 4. Let α, η, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) > 0 and �(σ) < 1 + �(η).
Then, the following Erdélyi–Kober fractional integral K−η,α of Sμ

(
r, 1

tρ

)
holds true:

(
K−η,α

{
tσ−1 Sμ

(
r,

1
tρ

)})
(x) = xσ−ρ−1 Sμ

(
r,

1
xρ

)
∗ 2Ψ1

[
(1, 1), (1− σ + η + ρ, ρ);
(1− σ + α + η + ρ, ρ);

1
xρ

]
. (38)

The results obtained in this section can be presented in terms of Gauss’s hypergeometric
functions by taking ρ = 1. Here, we present results for the classical Riemann–Liouville fractional
integral operators.
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Corollary 5. Let the conditions of Corollary 1 be satisfied, and let �(σ) > 0 and �(σ + α + 1) > 0. Then,
for x > 0, there holds the relation

(
Iα
0+

{
tσ−1 Sμ(r, t)

})
(x) = xσ+α Γ(σ + 1)

Γ(σ + α + 1)
Sμ(r, x) ∗ 2F1

[
1, σ + 1;

σ + α + 1;
x

]
. (39)

Corollary 6. Let the conditions of Corollary 3 be satisfied, and let �(1− σ) > 0 and �(2− σ− α) > 0.
Then, for x > 0, there holds the relation

(
Iα−
{

tσ−1 Sμ

(
r,

1
t

)})
(x) = xσ+α−2 Γ(2− σ− α)

Γ(2− σ)
Sμ

(
r,

1
x

)
∗ 2F1

[
1, 2− σ− α;

2− σ;
1
x

]
. (40)

3. Fractional Differentiation of the Mathieu Series

In this section, we present the composition formulas of generalized fractional derivatives,
(3) and (4), involving the generalized Mathieu series in terms of the Hadamard product (22) of
the generalized Mathieu series (21) and the Fox–Wright function (23).

Lemma 2. Let α, β, η ∈ C. Then, there exists the relations

(a) If �(α) > 0 and �(σ) > −min[0,�(α + β + η)], then

(Dα,β,η
0+ tσ−1)(x) =

Γ(σ)Γ(σ + α + β + η)

Γ(σ + β)Γ(σ + η)
xσ+β−1 (41)

In particular, for x > 0, we have

(Dα
0+tσ−1)(x) =

Γ(σ)
Γ(σ− α)

xσ−α−1 (�(α) > 0, �(σ) > 0), (42)

(D+
η,αtσ−1)(x) =

Γ(σ + α + η)

Γ(σ + η)
xσ−1 (�(α) > 0, �(σ) > −�(α + η)). (43)

(b) If �(α) > 0,�(σ) < 1 + min[�(−β− n),�(α + η)] and n = [�(α)] + 1, then

(Dα,β,η
− tσ−1)(x) =

Γ(1− σ− β)Γ(1− σ + α + η)

Γ(1− σ)Γ(1− σ + η − β)
xσ+β−1. (44)

In particular, for x > 0, we have

(Dα−tσ−1)(x) =
Γ(1− σ + α)

Γ(1− σ)
xσ−α−1 (�(α) > 0, �(σ) < 1 +�(α)− n), (45)

(D−η,αtσ−1)(x) =
Γ(1− σ + α + η)

Γ(1− σ− η)
xσ−1 (�(α) > 0, �(σ) < 1 +�(α + η)− n). (46)

Theorem 3. Let α, β, η, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that
�(α) ≥ 0 and �(σ) > −min[0,�(α + β + η)]. Then, the following Saigo hypergeometric fractional
derivative Dα,β,η

0+ of Sμ(r, tρ) holds true:(
Dα,β,η

0+

{
tσ−1 Sμ(r, tρ)

})
(x)

= xσ+β+ρ−1 Sμ(r, xρ) ∗ 3Ψ2

[
(1, 1), (σ + ρ, ρ), (σ + α + β + η + ρ, ρ);

(σ + β + ρ, ρ), (σ + η + ρ, ρ);
xρ

]
. (47)
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Proof. Using the definitions (3) and (21), by changing the order of integration and applying the
relation (41), we find for x > 0

(
Dα,β,η

0+

{
tσ−1Sμ(r, tρ)

})
(x) =

∞

∑
k=1

2k
(k2 + r2)μ+1

(
Dα,β,η

0+ tσ+ρk−1
)
(x)

= xσ+β−1
∞

∑
k=1

2k
(k2 + r2)μ+1

Γ(σ + ρk)Γ(σ + α + β + η + ρk)
Γ(σ + β + ρk)Γ(σ + η + ρk)

xρk. (48)

by applying the Hadamard product (22) in (48), which in the view of (21) and (23), yields the
desired formula (47).

Theorem 4. Let α, β, η, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) ≥ 0 and �(σ) <
1 + min[�(−β − n),�(α + η)], n = [�(α)] + 1. Then, the following Saigo hypergeometric fractional
derivative Dα,β,η

− of Sμ

(
r, 1

tρ

)
holds true:

(
Dα,β,η
−

{
tσ−1 Sμ

(
r,

1
tρ

)})
(x)

= xσ−ρ+β−1 Sμ

(
r,

1
xρ

)
∗ 3Ψ2

[
(1, 1), (1− σ− β + ρ, ρ), (1− σ + α + η + ρ, ρ);

(1− σ + ρ, ρ), (1− σ + η − β + ρ, ρ);
1
xρ

]
.

(49)

Proof. Using the definitions (4) and (21), by changing the order of integration and applying the
relation (44), we find for x > 0(

Dα,β,η
−

{
tσ−1Sμ

(
r,

1
tρ

)})
(x) =

∞

∑
k=1

2k
(k2 + r2)μ+1

(
Dα,β,η
− tσ−ρk−1

)
(x)

= xσ+ρ+β−1
∞

∑
k=1

2k
(k2 + r2)μ+1

Γ(1− σ− β + ρk)Γ(1− σ + α + η + ρk)
Γ(1− σ + ρk)Γ(1− σ + η − β + ρk)

x−ρk. (50)

by applying the Hadamard product (22) in (50), which in the view of (21) and (23), yields the
desired formula (49).

Now, we deduce fractional derivative formulas for the classical Riemann–Liouville and
Erdélyi–Kober fractional integral and differential operators by letting β = −α and β = 0 respectively,
which are asserted by Corollaries 7–10 below.

Corollary 7. Let α, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) ≥ 0 and �(σ) > 0. Then,
the following Riemann–Liouville fractional differentiation Dα

0+ of Sμ(r, tρ) holds true:

(
Dα

0+

{
tσ−1 Sμ(r, tρ)

})
(x) = xσ+ρ−α−1 Sμ(r, xρ) ∗ 2Ψ1

[
(1, 1), (σ + ρ, ρ);
(σ− α + ρ, ρ);

xρ

]
. (51)

Corollary 8. Let α, η, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) ≥ 0 and �(σ) > −�(α + η).
Then, the following Erdélyi–Kober fractional derivative D+

η,α of Sμ(r, tρ) holds true:

(
D+

η,α

{
tσ−1 Sμ(r, tρ)

})
(x) = xσ+ρ−1 Sμ(r, xρ) ∗ 2Ψ1

[
(1, 1), (σ + α + η + ρ, ρ);

(σ + η + ρ, ρ);
xρ

]
. (52)
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Corollary 9. Let α, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) ≥ 0 and �(σ) < �(α)− [�(α)].
Then, the following Riemann–Liouville fractional differentiation Dα− of Sμ

(
r, 1

tρ

)
holds true:

(
Dα−
{

tσ−1 Sμ

(
r,

1
tρ

)})
(x) = xσ−ρ−α−1 Sμ

(
r,

1
xρ

)
∗ 2Ψ1

[
(1, 1), (1− σ + α + ρ, ρ);

(1− σ + ρ, ρ);
1
xρ

]
. (53)

Corollary 10. Let α, η, σ ∈ C and ρ > 0, μ > 0, r ∈ R be such that �(α) ≥ 0 and
�(σ) < �(α + η)− [�(α)]. Then, the following Erdélyi–Kober fractional differentiation D−η,α of Sμ

(
r, 1

tρ

)
holds true:(

D−η,α

{
tσ−1 Sμ

(
r,

1
tρ

)})
(x) = xσ−ρ−1 Sμ

(
r,

1
xρ

)
∗ 2Ψ1

[
(1, 1), (1− σ + α + η + ρ, ρ);

(1− σ + η + ρ, ρ);
1
xρ

]
.

(54)

The results obtained in this section can be presented in terms of Gauss’s hypergeometric
functions by taking ρ = 1. Here, we present results for the classical Riemann–Liouville fractional
derivative operators.

Corollary 11. Let the conditions of Corollary 7 be satisfied, and let �(σ + 1) > 0 and �(σ− α + 1) > 0.
Then, for x > 0, there holds the relation

(
Dα

0+

{
tσ−1 Sμ(r, t)

})
(x) = xσ−α−2 Γ(σ + 1)

Γ(σ− α + 1)
Sμ(r, x) ∗ 2F1

[
1, σ + 1;

σ− α + 1;
x

]
. (55)

Corollary 12. Let the conditions of Corollary 9 be satisfied, and let �(2− σ) > 0 and �(2− σ + α) > 0.
Then, for x > 0, there holds the relation

(
Dα−
{

tσ−1 Sμ

(
r,

1
t

)})
(x) = xσ−α−2 Γ(2− σ + α)

Γ(2− σ)
Sμ

(
r,

1
x

)
∗ 2F1

[
1, 2− σ + α;

2− σ;
1
x

]
. (56)

4. Concluding Remarks and Observations

In our present investigation, with the help of the concept of the Hadamard product (or the
convolution) of two analytic functions, we have obtained the composition formulas of the generalized
fractional integrals, (1) and (2), involving the generalized Mathieu series in terms of the Hadamard
product (22) of the generalized Mathieu series (21) and the Fox–Wright function (23). Further, we have
also deduced the fractional integral formulas for the classical Riemann–Liouville and the Erdélyi–Kober
fractional integral and differential operators by letting β = −α and β = 0, respectively. The results
presented here, which are for a seemingly complicated series, can reveal their involved properties via
the series of the two known functions.
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Abstract: Strong coupling between values at different times that exhibit properties of long
range dependence, non-stationary, spiky signals cannot be processed by the conventional
time series analysis. The autoregressive fractional integral moving average (ARFIMA) model,
a fractional order signal processing technique, is the generalization of the conventional integer
order models—autoregressive integral moving average (ARIMA) and autoregressive moving
average (ARMA) model. Therefore, it has much wider applications since it could capture both
short-range dependence and long range dependence. For now, several software programs have
been developed to deal with ARFIMA processes. However, it is unfortunate to see that using
different numerical tools for time series analysis usually gives quite different and sometimes radically
different results. Users are often puzzled about which tool is suitable for a specific application. We
performed a comprehensive survey and evaluation of available ARFIMA tools in the literature in the
hope of benefiting researchers with different academic backgrounds. In this paper, four aspects of
ARFIMA programs concerning simulation, fractional order difference filter, estimation and forecast
are compared and evaluated, respectively, in various software platforms. Our informative comments
can serve as useful selection guidelines.

Keywords: ARFIMA; long range dependence; fractional order; survey

1. Introduction

Humans are obsessed about their future so much that they worry more about their future more
than enjoying the present. Time series modelling and analysis are scientific ways to predict the
future. When dealing with empirical time series data, it usually comes to the classic book of Box and
Jekin’s methodology for time series models in the 1970s, in which it introduced the autoregressive
integrated moving average (ARIMA) models to forecast and predict the future behavior [1,2].
However, the ARIMA model as well as Poisson processes, Markov processes, autoregressive (AR),
moving average (MA), autoregressive moving average (ARMA) and ARIMA processes, can only
capture short-range dependence (SRD). They belong to the conventional integer order models [3].

In time series analysis, another traditional assumption is that the coupling between values
at different time instants decreases rapidly as the time difference or distance increases. Long-range
dependence (LRD), also called long memory or long-range persistence, is a phenomenon that may arise
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in the analysis of spatial or time series data. LRD was first highlighted in the hydrological data by the
British hydrologist H. E. Hurst, and then the other statistics in econometrics, network traffic, linguistics
and the Earth sciences, etc. LRD, which is characterized by the Hurst parameter, means that there is
a strong coupling effect between values at different time separations. Thus, LRD also indicates that the
decay of the autocorrelation function (ACF) is algebraic and slower than exponential decay so that the
area under the function curve is infinite. This behavior can be also called inverse power-law delay.
Different from the analytical results of linear integer-order differential equations, which are represented
by the combination of exponential functions, the analytical results of the linear fractional-order
differential equations are represented by the Mittag–Leffler function, which intrinsically exhibits
a power-law asymptotic behavior [4–6].

Due to the increasing demand on modeling and analysis of LRD and self-similarity in time series,
such as financial data, communications networks traffic data and underwater noise, the fractional order
signal processing (FOSP) technique is becoming a booming research area. Moreover, fractional Fourier
transform (FrFT), which is the generalization of the fast Fourier transform (FFT), has become one of
the most valuable and frequently used techniques in the frequency domain of the fractional order
systems [3].

Compared to the conventional integer order models, the ARFIMA model gives a better fit
and result when dealing with the data which possess the LRD property. Sun et al. applied the
ARFIMA model to analyze the data and predict the future levels of the elevation of Great Salt
Lake (GSL) [7]. The results showed that the prediction results have a better performance compared to
the conventional ARMA models. Li et al. examined four models for the GSL water level forecasting:
ARMA, ARFIMA, autoregressive conditional heteroskedasticity (GARCH) and fractional integral
autoregressive conditional heteroskedasticity (FIGARCH). They found that FIGARCH offers the best
performance, indicating that conditional heteroscedasticity should be included in time series with high
volatility [8]. Sheng and Chen proposed a new ARFIMA model with stable innovations to analyze the
GSL data, and predicted the future levels. They also compared accuracy with previously published
results [9]. Contreras-Reyes and Palma developed the statistical tools afmtools package in R for
analyzing ARFIMA models. In addition, the implemented methods are illustrated with applications to
some numerical examples and tree ring data base [10]. Baillie and Chung considered the estimation of
both univariate and multivariate trend-stationary ARFIMA models, which generated a long memory
autocorrelated process around a deterministic time trend. The model was found to be remarkably
successful at representing annual temperature and width of tree ring time series data [11]. OxMetrics
is an econometric software including the Ox programming language for econometrics and statistics,
developed by Doornik and Hendry. Several papers and manuals are available for the ARFIMA model
with OxMetrics [12–14].

Nowadays, there are lots of numerical tools available for the analysis of the ARFIMA processes
since these applications are developed by different groups based on different algorithms and definitions
of accuracies and procedures. As a consequence, the estimation and prediction results may be different
or even conflicting with others. For the scholars or engineers who are going to do the modeling work
of the ARFIMA processes, they might get confused as to which tool is more suitable to choose. Thus,
we have evaluated techniques concerning the ARFIMA process so as to provide some guidelines
when choosing appropriate methods to do the analysis. With this motivation, this paper briefly
introduces their usage and algorithms, evaluates the accuracy, compares the performance, and provides
informative comments for selection. Through such efforts, it is hoped that informative guidelines are
provided to the readers when they face the problem of selecting a numerical tool for a specific application.

For one thing, many publications about fractional systems dynamics use their novel fractional
order calculus ideas to represent with encouraging results [15]. However, in reality, when it comes to
engineers with zero background, they do not even know which tool to start to use.

The rest of the paper is organized as the follows: Section 2 introduces the basic mathematics of
LRD and the ARFIMA model. Section 3 gives a brief review and description on the software commonly
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used for the analysis of the ARFIMA processes. In Section 3, the quantitative performances of the
tools are evaluated and compared in four primary categories—simulation, processing, estimation and
prediction in the ARFIMA process. Conclusions are given in Sections 4 and 5.

2. LRD and ARFIMA Model

When the hydrologist H.E. Hurst spent many years analyzing the records of elevation of
the Nile river in the 1950s, he found a strange phenomena: the long-range recording of the
elevation of the Nile river has much stronger coupling, and the autocorrelation function (ACF)
decays slower than exponentially [16]. In order to quantify the level of coupling, the rescaled
range (R/S) analysis method was provided to estimate the coupling level, which is now called
the Hurst parameter. Furthermore, many valuable Hurst parameter estimators were provided to more
accurately characterize the LRD time series [17]. Since then, the LRD or long memory phenomenon
has attracted numerous research studies. Based on Hurst’s analysis, more suitable models, such as
ARFIMA and fractional integral generalized autoregressive conditional heteroscedasticity (FIGARCH)
were built to accurately analyze LRD processes.

The rescaled range (R/S) method is one of the time-domain analysis of Hurst parameter defined
as follows [16]:

E[
R(n)
S(n)

]n→∞ = CnH , (1)

where E(·) denotes the expected value of the observations, R(n) is the range of the first n values,
S(n) is their standard deviation, and C is a constant. Whittle’s Maximum Likelihood Estimator (MLE)
and wavelet analysis using periodogram based analysis in the frequency domain [18].

Autocorrelation function (ACF) analysis is one of the useful techniques for identifying trends and
periodicities in the data, in a manner that is often more precise than can be obtained with simple visual
inspections. In addition, LRD or long memory property can be defined by ACF.

Let {X(t); t ∈ (−∞,+∞)} and the ACF ρ(k) is defined as:

ρ(k) =
Cov(Xt, Xt−k)

Var(Xt)
, (2)

where Cov(·) is the covariance and Var(·) is the variance.
A stationary time series defined over t = 0, 1, 2, 3 · · · is said to be long memory if ∑∞

k=0 |ρ(k)|
diverges, where ρ(k) is the ACF of the process. Otherwise, the time series is said to be short memory or
SRD. Another definition of long memory if for some frequency, f ∈ [0, 0.5], the power spectrum P( f ),
becomes unbounded.

The power spectrum P( f ) is defined by:

P( f ) =
∫ ∞

−∞
e−2πi f kρ(k)dk, (3)

where −∞ < f < ∞, i =
√−1 and ρ(k) is the ACF.

The spectral density S( f ) is a normalized form of P( f ), defined by:

S( f ) =
P( f )

σ2 =
∫ ∞

−∞
e−2πi f kρ(k)dk. (4)

If the spectrum becomes unbounded, then the ACF are not absolutely summable [19].
Therefore, ACF is defined as time domain analysis, while power spectrum density (PSD) is used
for the frequency domain analysis.

The ACF of the stationary SRD stochastic models, such as the ARMA processes and Markov
processes, is absolutely summable, while the correlations function ρk is not absolutely summable
for the processes with long-range dependence [19]. Signals with long-range correlations, which are
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characterized by inverse power-law decaying autocorrelation function, occur ubiquitously in nature
and many man-made systems. Because of the strong coupling and the slow decaying autocorrelation,
these processes are also said to be long memory processes. Typical examples of LRD signals include
financial time series, underwater noise, electroencephalography (EEG) signal, etc. The level of the
dependence or coupling of LRD processes can be indicated or measured by the estimated Hurst
parameter, or the Hurst exponent [16]. The value of the Hurst Exponent varies between 0 and 1.
If H = 0.5, the time series has no statistical dependence. If H < 0.5, the time series is a negatively
correlated process or an anti-persistent process. If H > 0.5, the time series is a positively correlated
process [20]. The LRD processes are also closely related to fractional calculus. In order to capture
the property of coupling or hyperbolic decaying autocorrelation, fractional calculus based LRD
models have been suggested, such as ARFIMA and FIGARCH models [21,22]. The ARFIMA model is
a generalization of ARMA model, which is a typical fractional order system.

2.1. Autoregressive (AR) Model

The notation AR(p) refers to the autoregressive model of order p. The AR(p) model is written as [2]:

Xt = c +
p

∑
i=1

φiXt−i + εt, (5)

where φ1, · · · , φp are autoregressive parameters, c is a constant, and the random variable εt is the
white noise. Some constraints are necessary on the values of the parameters so that the model remains
stationary. For example, processes in the AR(1) model with |φ1| ≥ 1 are not stationary. In statistics
and signal processing, an autoregressive (AR) model is a representation of a type of random process;
as such, it describes certain time-varying processes in nature, economics, etc.

2.2. Moving Average (MA) Model

The notation MA(q) refers to the moving average model of order q [2]:

Xt = μ +
q

∑
i=1

θiεt−i + εt, (6)

where the θ1, · · · , θq are the moving average parameters of the model, μ is the expectation of Xt

(often assumed to equal 0), and the εt , εt−1 ,. . . are again, white noise error terms. The moving average
(MA) smooths a time series, which can produce cyclic and a trend like plots even when the original data
are themselves independent random events with fixed mean. This characteristic lessens its usefulness
as a control mechanism.

2.3. ARIMA and ARFIMA Model

The above AR and MA models can be generalized as follows [2]:

(1−
p

∑
i=1

φiBi)(1− B)d(Xt − μ) = (1 +
q

∑
i=1

θiBi)εt. (7)

The above (1− B)d is called a difference operator ∇d. The ARMA or ARIMA models can only
capture the SRD property, since d is confined in the range of integer order. Therefore, in order to
capture the LRD property of the fractional systems, the ARFIMA(p,d,q) model is thereby proposed
accordingly. In fact, the operator can be defined in a natural way by using binomial expansion for any
real number d with Gamma function:

(1− B)d =
∞

∑
k=0

(
d
k

)
(−B)k =

∞

∑
k=0

Γ(d + 1)
Γ(k + 1)Γ(d + 1− k)

(−B)k. (8)
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Many authors suggested the use of the fractionally ARIMA model by using a fractional difference
operator rather than an integer one could better take into account this phenomenon of LRD [23].
Hosking et al. defined an extension of the ARIMA model, which allows for the possibility of
stationary long-memory models [24]. Thus, the general form of ARIMA(p, q, d) process Xt in
Equation (7)—the ARFIMA(p,d,q) process is defined as:

Φ(B)(1− B)dXt = Θ(B)εt, (9)

where d ∈ (−0.5, 0.5), and (1− B)d is defined as the fractional difference operator in Equation (8).
ARFIMA(p, d, q) processes are widely used in modeling LRD time series, where p is the autoregressive
order, q is the moving average order and d is the level of differencing [25]. The larger the value
of d, the more closely it approximates a simple integrated series, and it may approximate a general
integrated series better than a mixed fractional difference and ARMA model.

Figure 1 presents the discrete ARFIMA process that can be described as the output of the
fractional-order system driven by a discrete white Gaussian noise (wGn). The ARFIMA(p, d, q) process
is the natural generalization of the standard ARIMA or ARMA processes. In a fractionally differenced
model, the difference coefficient d is a parameter to be estimated first [26]. The intensity of self-similar
of ARFIMA is measured by a parameter d. For the finite variance process with fractional Gaussian
noise, d has a closed relation with Hurst parameter H [3,26,27]:

d = H − 1/2. (10)

In addition, for the infinite variance process with fractional α-stable noise, d is related with Hurst
and characteristic exponent α [18,22]:

d = H − 1/α. (11)

In this way, the parameter d may be chosen to model long-time effects, whereas p and q may be
selected to model relatively short-time effects.

Figure 1. ARFIMA model.

3. Review and Evaluation

ARFIMA(p, d, q) processes are widely used in modeling LRD time series, especially for the high
frequency trading data, network traffic and hydrology dataset, etc. In practice, several time series
exhibit LRD in their observations, leading to the development of a number of estimation and prediction
methodologies to account for the slowly decaying autocorrelations. The ARFIMA process is one of
the best-known classes of long-memory models. As introduced in Section 1, most statistical analysis
programs have been embedded with ARFIMA models. A summary of the current software dealing
with ARFIMA model analysis is as follows:

1. MATLAB applications
MATLAB R© (Matrix Laboratory) is a multi-paradigm numerical computing environment and
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fourth-generation programming language developed by MathWorks (Natick, MA 01760-2098,
USA). The MATLAB applications are interactive applications written to perform technical
computing tasks with the MATLAB scripting language from MATLAB File Exchange, through
additional MATLAB products, and by users.

2. SAS software
SAS (Statistical Analysis System) is a software suite developed by SAS
Institute (Cary, NC 27513-2414, USA) for advanced analytics, multivariate analyses, business
intelligence, data management, and predictive analytics.

3. R packages
R packages and projects are contributed by RStudio (Boston, MA 02210, USA) team on
CRAN (Comprehensive R Archive Network). R users are doing some of the most innovative and
important work in science, education, and industry. It is a daily inspiration and challenge to keep
up with the community and all it is accomplishing.

4. OxMetrics
OxTM is an object-oriented matrix language with a comprehensive mathematical and statistical
function library developed by Timberlake Consultants Limited (Richmond, Surrey TW9 3GA,
UK). Many packages were written for Ox including software mainly for econometric modelling.
The Ox packages for time series analysis and forecasting.

MATLAB codes are open-source applications where we could download, view and revise the
codes if possible while other three are packaged and embedded in the software modules. In the
following evaluation parts, we could clearly see the differences between them even with the same
inputs. Four primary embedded functions concerning simulation, fractional difference filter, parameter
estimation and forecast, are tested and evaluated for the ARFIMA processes in Table 1. It should be
noted that the first two functions can be regarded as the forward problem solving systems, while the
latter two are developed for the backward problem solving systems which are much more significant.
In view of the above, this section can be divided into four parts.

Table 1. Numerical tools for the ARFIMA process.

Procedures MATLAB R SAS OxMetrics

Simulation �∗ � � �

Fractional Difference � � � �

Parameter Estimation � � � �

Forecast � � � �

�∗ means it can simulate ARFIMA processes, but cannot choose or define the initial seeds.

3.1. Simulation

On the website of MATLAB Central, there are two files that can simulate ARFIMA processes.
They are developed by Fatichi [28] and Caballero [29]. However, users cannot choose initial random
seeds, that is, it can only simulate one certain series of ARFIMA process. The ARFIMA(p, d, q) estimator
is developed by Inzelt, which is used for a linear stationary ARFIMA(p, d, q) process [30].

R is a freely available language and environment for statistical computing and graphics, which
provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling,
statistical tests, time series analysis, classification, clustering, etc. Like the MATLAB Central, CRAN
is a platform that stores identical, up-to-date, versions of code and documentation for R. There are
several major packages concerning ARFIMA process according to the authors’ survey in Table 2.
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Table 2. Comparison of ARFIMA packages in R.

Package Author Release Date Typical Functions Requirements

fractal William Constantine et al. [31] 2016-05-21 hurstSpec R (≥ 3.0.2)
fracdiff Martin Maechler et al. [32] 2012-12-02 fracdiff longmemo, urca

afmtools Javier E. Contreras-Reyes et al. [33] 2012-12-28 arfima.whittle
R (≥ 2.6.0), polynom
fracdiff, hypergeo,
sandwich, longmemo

ArfimaMLM Patrick Kraft et al. [34] 2015-01-21 arfimaMLM R (≥ 3.0.0), fractal
arfima Justin Q. Veenstra et al. [35] 2015-12-31 arfima R (≥ 2.14.0), ltsa

The first two packages are used for the processing of ARFIMA processes, including Hurst fitting,
calculation and fractional order difference and so on, while the latter two are mainly used for the
parameter estimation of ARFIMA. The last package arfima is the most comprehensive tool that could
simulate, estimate and predict the results of ARFIMA processes. In the paper, we use the last one
package to compare with the other software.

SAS and R could also generate the ARFIMA process by defining the order of AR(p) and MA(q),
setting the parameters φ, θ and d, respectively. In addition, the number of the initial random seeds
could/should be set for the stochastic process. Random seeds are defined by the internal algorithms,
which make the initial stochastic process a difference. Therefore, it may be a big difference if picking
arbitrary seeds. In order to illustrate the above problems, we have generated the ARFIMA(1, 0.4, 1)
process with d = 0.4, φ = 0.5, θ = −0.1 and σ = 1. Then, we set 100 different initial random seeds
with 3000 observations and do the same estimation. It should be kept in mind that, even with the
same simulation software that generates the processes, the estimation results could be a big difference
in Figure 2. However, from the perspective of the sample-path analysis for the stochastic processes,
this could be the advantage compared to the MATLAB ARFIMA applications, which can only generate
one certain series (path). Furthermore, we have also found that the SAS software is somewhat better
or “conservative”, while R software is more “aggressive” in Figure 2. We could check the comparisons
below with dashed lines showing true values of parameters.

Figure 2. Estimation results of SAS and R.

It should be also noted that, even with a certain series of the initial starting random seeds,
the estimation results could also have quite a few variations. For example, we have set the fractional
order d from 0 to 0.5, and do the simulation and estimation accordingly in MATLAB. It can be seen
that the estimation d̂ is jumping up and down around the true values (red line) in Figure 3.
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Figure 3. Comparison of d̂ and d.

Here are some comments of this subsection:

1. Estimation results also depend on the initial random seeds, even the series that are from their
own simulations.

2. The test results may be different if not enough points/observations are generated. More than
300 points are preferred.

3. Estimation results may not be accurate if they only use one method. R should be more desirable to
try first.

3.2. Fractional Order Difference Filter

Many time series signals contain trends, i.e., they are non-stationary. It is usually preferable to
specify and remove the trends explicitly to get the smoothed or stationary data for the further analysis
and modeling. According to the theory of Box–Jekins, an ARIMA model can be viewed as a “filter” that
tries to separate the signal from the noise, and the signal is then extrapolated into the future to obtain
forecasts [2]. Since the beginning of the 1980s, the long memory ARFIMA model has been introduced
and investigated by many scholars especially for the parameter estimation problems. Shumway and
Stoffer gave a brief overview of “long memory ARMA” models in [36]. This type of long memory
model might be considered to use when the ACF of the series tapers slowly to 0 and spectral densities
are unbounded at f = 0. Jensen et al. derived an algorithm for the calculation of fractional differences
based on circular convolutions method in [37]. In fact, there are a lot of estimation methods concerning
fractional difference algorithms.

In some instances, however, we may see a persistent pattern of non-zero correlations that
begins with a first lag correlation that is not close to 1. In these cases, models that incorporate
“fractional differencing” may be useful. Therefore, differencing the time series data by using the
approximated binomial expression of the long-memory filter is a prerequisite to estimates of the
memory parameter in the ARFIMA(p, d, q) model. The user should not only set numeric vector of p
and q, but also specify the order of the fractional difference filter. By passing through fractional order
difference filter, the ARFIMA series will yield residuals that are uncorrelated and normally distributed
with constant variance in Figure 4.
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Figure 4. Fractional order difference of the ARFIMA(0, 0.4, 0) process.

The sample ACF and partial autocorrelation function (PACF) are useful qualitative tools to assess
the presence of autocorrelation at individual lags. The Ljung-Box Q-test is a more quantitative way to
test for autocorrelation at multiple lags jointly [38]. The Ljung-Box test statistic is given by:

Q(L) = N(N + 2)
L

∑
k=1

ρ̂2
k

N − k
, (12)

where N is the sample size, L is the number of autocorrelation lags, and ρ(k) is the sample
autocorrelation at lag k. Under the null hypothesis, the asymptotic distribution of Q is chi-square with
L degrees of freedom. If we use lbqtest function in the MATLAB Econometrics Toolbox, it returns the
rejection decision and p-value for the hypothesis test. Similar functions Box.test of stats and ljung.wge
of tswge are also available in the R package. p-values indicate the strength at which the test rejects
the null hypothesis. If all of the p-values are larger than 0.01, there is strong evidence to accept the
hypothesis that the residuals are not autocorrelated.

Thus, we have generated an ARFIMA(0,0.4,0) process in Figure 5 and use fractional order
difference filter with the order d = 0.4 to filter the LRD property in Figure 6. It is obvious that,
by passing through the fractional order difference filter, the slowly decaying property of LRD has
been eliminated.

Figure 5. Simulation of ARFIMA(0, 0.4, 0) process.
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Figure 6. ARFIMA(0,0.4,0) process passing through the fractional difference filter.

In order to evaluate residuals, p-values are used to quantify the goodness of fitting in Table 3.

Table 3. Fractional filters.

Software MATLAB R SAS Ox

Function d_filter diffseries fdif fracdiff

p-values with
1,5,10,15 lags

0.0710 0.09998 0.1062 0.0862
0.2253 0.2395 0.2414 0.2114
0.5850 0.5320 0.5198 0.5898
0.5330 0.4571 0.4473 0.5473

Here are some comments of this subsection: all of the four programs above have fractional order
operators to filter the LRD process successfully. In general, d is the parameter to be estimated first [26].
If we use the calculation defined by the Hurst method in Equations (10) and (11), d could probably be
the fractional one. Therefore, the fractional order filter would be the primary tool to eliminate the LRD
property or the heavy-tailedness in order to get the stationary series.

Meanwhile, however, the fractional order d is closely related to the Hurst parameter in
Equations (10) and (11). There are more than ten methods to estimate Hurst parameters, R/S method,
aggregated variance method, absolute value method, periodogram method, whittle method,
Higuchi’s method, etc. These methods are mainly useful as simple diagnostic tools for LRD time
series. These Hurst estimators have been introduced to analyze the LRD time series in [17,39,40].
Therefore, the results of Hurst estimators can be different if applying different methods. In addition,
from Equation (8), it is interesting to note that there are infinite factorial series in the expansion of
binomial expansion. In practice, we usually take the first three factorials for approximation. That is to
say, the accuracy of differencing is also determined by how many factorials are used for approximation.
Consequently, these different methods make the subsequent estimations differ from each other in the
following sections.

3.3. Parameter Estimation

From Figure 2, we could see that, even though R and SAS can both simulate the ARFIMA
processes, the properties of these processes are not the same mainly because of the distinctive random
seeds defined by different software. Therefore, when reviewing and evaluating the accuracy of above
software, the same ARFIMA series should be guaranteed first. Herein, we have proposed to use
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the following steps to compare the results in Figure 7. In addition, OxMetrics is the software that
cannot generate ARFIMA simulation, but it can estimate and forecast ARFIMA-FIGARCH processes.
MATLAB cannot generate multiple ARFIMA series for the same parameter combinations. We have
thus used R and SAS to provide the ARFIMA series for the inputs of estimations.

Figure 7. Simulation and estimation of the ARFIMA process.

Since we have received simulation results, the parameters of ARFIMA processes can be estimated
and compared with true values (parameter setting values). First, we have used the simulation data
from R software and have then used these three programs to do the estimation in Figure 8. Second, we
have used SAS to do the same simulation and have then used the other three to do the estimation in
Figure 9. Without loss of generality, we pick 10 groups of 3000 observations to see who could capture
the accuracy.

Here are some comments from this subsection: from the above plots, it is very interesting to find
that the estimation results of ARFIMA simulations are relatively accurate when they come from the
same simulation data set. However, OxMetrics and MATLAB estimate the negative values of θ.

In order to further test whether the Ox and MATLAB can only return the negative values of θ

or if they just return the inverse values. The parameters are set to the inverse values, accordingly,
with φ = −0.5 and θ = 0.2; while, in the previous test, they are φ = 0.5 and θ = −0.1, respectively.
The result presented in Figure 10 validates the comments above.

Figure 8. Parameter estimation with different methods (R simulation inputs).
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Figure 9. Parameter estimation with different methods (SAS simulation inputs).

Figure 10. Parameter estimation with different methods (R simulation inputs).

3.4. Forecast

Simulation data could only be the auxiliary part of these software, since it can never be a powerful
and useful tool for the ARFIMA process analysis if it cannot retrieve the estimation parameters from
the real data with LRD. Moreover, the last and the most significant part of the ARFIMA process is to
forecast and thereby predict the future behavior. Therefore, mean absolute percentage error (MAPE)
values are used for the evaluation of the forecast results for the data from real life. The error square of
the prediction results from different methods with the increasing number of predictions are illustrated
in Figure 11:

σ2
t =

n

∑
t=1

(ŷt − yt)
2. (13)

Data description: Centered annual pinus longaeva tree ring width measurements at Mammoth
Creek, Utah, USA from 0 A.D (anno Domini) to 1989 A.D with 1990 sampling points in time
series [41,42]. The data can be divided into two parts: the first part with 1900 observations are
used to estimate ARFIMA parameters, and the second part with 90 points are used for comparison
with the prediction results from the fitted ARFIMA models. Finally, the results with the implemented
methods that are applied to real-life time series are summarized in Table 4.
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Here are some comments of this subsection:

1. d is the parameter to be estimated first when doing ARFIMA model fitting. Therefore, if the
estimation of d is different for a certain time series, the following estimations for AR(Φ) and
MA(Θ) will be different.

2. The ideal length (horizon) of predictions is within 30 steps. With the increasing steps of forecast,
prediction errors are adding up. If a long range prediction series is required, R and MATLAB
should be priorities for their smaller prediction errors.

3. Compared with other forecast results with true values in Table 4, R produces the minimum
prediction errors and MAPE.

Figure 11. Prediction comparison with different methods.

Table 4. Parameter estimations and forecast comparisons.

Number Parameters R SAS OxMetrices MATLAB

1 mu 0.9833 N/A (Not Applicable) 0.98799 0.9878
2 d 0.1670 0.1479624 0.282087 0.2313
3 ar 0.9070119 0.8939677 −0.254265 0.6473
4 ma 0.8603811 0.8318787 0.18698 0.6393
5 sigma 0.1078173 0.1073417 0.1246 0.1163
6 p value Lag1 0.9195 N/A 0.7709458 0.9101
7 p value Lag5 0.6369 N/A 0.341324 0.6959
8 p value Lag10 0.8659 N/A 0.4367925 0.9037
9 p value Lag15 0.6491 N/A 0.6229542 0.6776

10 LogLikelihood 2117.224 1851.5512 −570.599 1162.527
11 MAPE 28.95 N/A 29.36 29.02

4. Summary of Selection Guidelines

Qualitative analysis as well as quantitative evaluations of the selected ARFIMA tools have
been conducted in the previous sections. In order to make it easier for researchers from different
backgrounds, we summarize the selection guidelines for the ARFIMA process modeling and analysis.

1. R and SAS software are priorities for the simulation of ARFIMA process, since they could define
the initial seeds. R is one of the desirable tools for the estimation of ARFIMA process, since it
has more than five packages including Hurst estimators, ACF plot, Quantile-Quantile (QQ) plot,
white noise test and some LRD examples.
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2. Estimation results of the ARFIMA process may be different if the number of observations is not
large enough. Therefore, more than one estimation method should be used in order to guarantee
the accuracy.

3. d is the parameter to be estimated first. All of this software could use fractional difference
functions to filter the trend and thereafter stationarize time series data.

4. The ideal length (horizon) of predictions is within 30 steps. If a long range prediction series is
required, R and MATLAB are the priorities for their smaller prediction errors.

5. Conclusions

Compared to the conventional integer order models that can only capture SRD, the ARFIMA
model gives a better fitting result, especially for the data with the LRD property. Nowadays, some
programs have been integrated with ARFIMA solutions. However, the final results of estimation
and prediction could be different or even conflicting if choosing different methods. Therefore,
a comprehensive review and evaluation of the numerical tools for the ARFIMA process is presented in
the paper so as to provide some guidelines when choosing appropriate methods to do the time series
analysis of LRD data. Through such efforts, it is hoped that an informative guidance is provided to the
readers when they face the problem of selecting a numerical tool for a specific application.

Supplementary Materials: The MATLAB code, SAS code and R code for Sections 3.1–3.4, and Ox code are
available online at www.mdpi.com/2075-1680/6/2/16/s1.
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Abstract: We use the skew distribution generation procedure proposed by Azzalini [Scand. J.
Stat., 1985, 12, 171–178] to create three new probability distribution functions. These models make
use of normal, student-t and generalized logistic distribution, see Rathie and Swamee [Technical
Research Report No. 07/2006. Department of Statistics, University of Brasilia: Brasilia, Brazil, 2006].
Expressions for the moments about origin are derived. Graphical illustrations are also provided.
The distributions derived in this paper can be seen as generalizations of the distributions given by
Nadarajah and Kotz [Acta Appl. Math., 2006, 91, 1–37]. Applications with unimodal and bimodal data
are given to illustrate the applicability of the results derived in this paper. The applications include
the analysis of the following data sets: (a) spending on public education in various countries in 2003;
(b) total expenditure on health in 2009 in various countries and (c) waiting time between eruptions of
the Old Faithful Geyser in the Yellow Stone National Park, Wyoming, USA. We compare the fit of
the distributions introduced in this paper with the distributions given by Nadarajah and Kotz [Acta
Appl. Math., 2006, 91, 1–37]. The results show that our distributions, in general, fit better the data sets.
The general R codes for fitting the distributions introduced in this paper are given in Appendix A.

Keywords: generalized logistic distribution; normal distribution; Student-t distribution;
skew distributions

MSC: 60E05; 62B15; 33C60; 60E10

1. Introduction

The skew symmetric models have been considered by several researchers. Skew normal
distribution is a classical example. Abtahi et al. [1] constructed skew student-t and skew Cauchy
distributions. Recently, Rathie et al. [2,3] introduced a system of univariate skew distributions by
utilizing Rathie and Swamee [4] generalized logistic distribution. For certain values of the parameters,
this skew distribution approximates nicely the skew normal distribution. Recently, Gupta and
Kundu [5] defined and studied two generalizations of the logistic distribution by introducing
skewness parameters. In this paper we use Azzalini’s formula to generate new asymmetric
distributions by using the Generalized Logistic, Normal and Student-t distributions. The distributions
are Skew Normal-Generalized Logistic (Skew Normal-GL), Skew Generalized Logistic-Normal
(Skew GL-Normal), Skew Student-t-Generalized Logistic (Skew t-GL) and Skew Generalized
Logistic-Student-t (Skew GL-t). The models Skew GL-t and Skew GL-Normal generated by using f (.)
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as define by the Equation (1) are bimodal for values of a close to 0, it is important to note that the
values of the parameters determining uni/bi modal shapes are yet to be investigated.

We apply these distributions to three real data sets (expenditure on education, expenditure on
health and waiting time between eruptions of the Old Faithful Geyser. We compare the fit of the
distributions introduced in this paper with the distributions given by Nadarajah and Kotz [6], the
results show that: (1) our distributions, in general, fit better the data sets; (2) The Skew GL-Normal,
Skew GL-t, Skew Normal-GL and Skew t-GL distributions can be used to model symmetrical and
asymmetrical unimodal data; (3) The Skew GL-Normal and Skew GL-t distributions can be used to
adjust bimodal symmetrical and asymmetrical data, offering good fits, showing a high flexibility which
is not common in the literature on probability distributions, which are mostly unimodal. This may be
very important in practical applications; (4) The distributions are robust to numerical calculations in
practical applications. The general R codes for fitting the distributions introduced in this paper are
given in Appendix A.

The paper is organized as follows. In Section 2, we introduce the Skew Normal-GL, Skew
GL-Normal, Skew t-GL and Skew GL-t distributions and we obtained the mathematical expressions
for the moments, respectively. In Section 3, we apply the new distributions in three real data sets.
Finally, in Section 4, we point out some final considerations of the results obtained in this paper.

We conclude this introduction section with some results which will be useful in the subsequent
sections of this paper.

1.1. Generalized Logistic Distribution

We start by defining the symmetric generalized logistic density function and its cumulative
distribution function studied recently by Rathie and Swamee [4]:

f (x) =
[a + b(1 + p)|x|p] exp [−x (a + b|x|p)]

{exp [−x (a + b|x|p)] + 1}2 , (1)

F(x) = {exp [−x (a + b|x|p)] + 1}−1 , (2)

where x ∈ R, a ≥ 0, b ≥ 0, p ≥ 0 (with a and b are not zero simultaneously), and R is the set of real
numbers. For the values a = 1.59413, b = 0.07443 and p = 1.939, this distribution approximates very
well the normal distribution with a maximum error of 4× 10−4 at x = 0 for the density function and
7.757× 10−5 at x = 2.81 for the distribution function. For approximations to Student-t distribution,
see Rathie et al. [3]. The case a = 0 was studied, and applied to a civil engineering problem by Swamee
and Rathie [7]. In the recent review article on univariate normal distribution, Rathie [8] pointed out
that the generalized logistic distribution defined in (1) and (2) is invertible and that the approximation
to the normal distribution is important for practical applications.

1.2. Azzalini’s Skew Distribution

Azzalini [9] obtained the following skew density function:

h(x) = 2 f (x)G(w(x)) (−∞ < x < ∞), (3)

where f (x) is a symmetric probability density function about the origin, G(x) is the cumulative
distribution function of a symmetric density function about the origin, and w(x) is an odd function of
x. In this paper, we take w(x) = cx, c ∈ R.

1.3. Moments

It is easy to calculate the n-th moments of h(x) given in (3) with w(x) = cx, c ∈ R, which are

E(Xn) = 2
∫ ∞

0
xn f (x)dx, (4)
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when n is even, and

E(Xn) = 4
∫ ∞

0
xn f (x)G(cx)dx− 2

∫ ∞

0
xn f (x)dx, (5)

when n is odd.

1.4. Generalized Hypergeometric Function

The H-function, which is a generalization of Meijer’s G function, is given below

Hm,n
p,q

[
x
∣∣∣∣ (a1, A1), ..., (an, An), (an+1, An+1), ..., (ap, Ap)

(b1, B1), ..., (bn, Bn), (bn+1, Bn+1), ..., (bp, Bp)

]
=

=
1

2πi

∫
L

∏m
j=1 Γ(bj − Bjs)∏n

j=1 Γ(1− aj + Ajs)

∏
q
j=m+1 Γ(1− bj + Bjs)∏

p
j=n+1 Γ(aj − Ajs)

xsds.

(6)

As a special case, we have

Hm,n
p,q

[
x
∣∣∣∣ (a1, 1), ..., (ap, 1)
(b1, 1), ..., (bp, 1)

]
= Gm,n

p,q

[
x
∣∣∣∣ a1, ..., ap

b1, ..., bp

]
. (7)

For details, see Luke [10], Springer [11], or Mathai et al. [12].

2. Skew Distributions

2.1. Skew Normal-Generalized Logistic Distribution

The skew normal-generalized logistic distribution (Skew Normal-GL), using (3), with f (x)
standard normal and G(x) given in Equation (2) is defined by

h(x) =

√
2
π

exp[−x2

2 ]{
exp
[−cx

(
a + b|cx|p)]+ 1

} (−∞ < x < ∞). (8)

In order that (8) is identifiable, we can rewrite it in the following form:

h(x) =

√
2
π

exp[−x2

2 ]{
exp
[−x

(
A + B|x|p)]+ 1

} (−∞ < x < ∞), (9)

where A = ac ∈ R and B = bc|c|p ∈ R. Plots for probability density function (9), varying some values
of A, B and p, to show different forms of the Skew Normal-GL distribution are illustrated in Figure 1.
We can see that the density has symmetric, asymmetric to the left and asymmetric to the right behavior,
which may be important for practical purposes.

In the next subsection, we obtain n-th moments. For B = 0, our results give alternative expressions
for the results obtained earlier by Nadarajah and Kotz [6].
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Figure 1. The skew normal-generalized logistic distribution (Skew Normal-GL) using the following
parameter values: [1] A = 6, B = 10.8 and p = 2; [2] A = 0, B = 0 and p = 3; [3] A = −6, B = −10.8
and p = 2.

Moments

The n-th moments of (9) are

E(Xn) =

√
2n

π
Γ
(

n + 1
2

)
, (10)

for even values of n. For odd values of n, on using (1 + y)−1 = ∑∞
r=0 (−y)r, one gets

E(Xn) =
4√
2π

∞

∑
r=1

(−1)r
∞

∑
k=0

(−rB)k

k!
(rA)−(p+1)k−n−1

2
×

H1,1
1,1

[
1

rA
√

2

∣∣∣∣ (−(p + 1)k− n, 1)
(0, 1

2 )

]
+
(

2−
√

2π
)√2n

π
Γ
(

n + 1
2

)
.

(11)

2.2. Skew Generalized Logistic-Normal Distribution

This section deals with the skew generalized logistic-normal distribution (Skew GL-Normal)
defined below in (13). Moments about origin are obtained. The skew generalized logistic-normal
distribution, using (3), with f (x) given in (1) and

G(x) =
1
2

{
1 +

x√
2π

G1,1
1,2

[
x2

2

∣∣∣∣ 1
2

0, −1
2

]}
(−∞ < x < ∞), (12)

is defined by

h(x) = 2
[a + b(1 + p)|x|p] exp

[−x
(
a + b|x|p)]

{exp [−x (a + b|x|p)] + 1}2 G(cx) (−∞ < x < ∞). (13)

Plots for probability density function (13), varying some values of a, b, p and c, to show different
forms of the Skew GL-Normal distribution are illustrated in Figure 2. As in Skew Normal-GL
distribution, the density has symmetric, asymmetric to the left and asymmetric to the right behavior.
It is interesting to note that, for values of parameter a near to zero, the Skew GL-Normal distribution
has a bimodal shape, which may be very important in practical applications.
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Figure 2. The Skew GL-Normal distribution using the following parameter values: [1] a = 1.59,
b = 0.0727, p = 1.962 and c = 10; [2] a = 0.3, b = 0.7, p = 0.4 and c = 0.6; [3] a = 1.59, b = 0.0727,
p = 1.962 and c = 0; [4] a = 1.59, b = 0.0727, p = 1.962 and c = −10.

In the next subsection, we obtain the moments of Skew GL-Normal distribution . For b = 0,
the results of this section give alternative expressions for the results obtained earlier by Nadarajah and
Kotz [6].

Moments

Using (4) the n-th moments of (13) for even values of n has been calculated earlier by Rathie and
Swamee [4], and are given by

E(Xn) = 2
∞

∑
r=0

(−1)r(1 + r)
[

aIh,r + b(1 + p)Ih+p,r

]
, (14)

where
Iα,r =

∫ ∞

0
xα exp [−(1 + r)x (a + bxp)] dx

= [a(1 + r)]−α−1H1,1
1,1

[
ap+1(1 + r)p

b

∣∣∣∣ (1, 1)
(α + 1, p + 1)

]
.

(15)

For odd values of n, on using (7),

E(Xn) =
4c√
2π

∞

∑
r=0

(−1)r(1 + r)
[

aLn+1,a(1+r) + b(1 + p)Ln+p+1,a(1+r)

]
, (16)

where

Lα,θ =
2α

√
πθα+1

∞

∑
k=0

(−2p+1(1 + r)b
θp+1

)k

×

1
k!

G1,3
3,2

[
2c2

θ2

∣∣∣∣ − 1
2 , 1−α−k(p+1)

2 , −α−k(p+1)
2

0,− 1
2

]
.

(17)

2.3. Skew Student-t-Generalized Logistic Distribution

The skew student-t-generalized logistic distribution (Skew t-GL), using Azzalini’s formula,
is defined by

h(x) =
2√

vB (v/2, 1/2)

(
1 +

x2

v

)−(1+v)
2

{1 + exp [−cx (a + b|cx|p)]}−1 , (18)
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for −∞ < x < ∞ and v > 0. As before, taking A1 = ac ∈ R and B1 = bc|c|p ∈ R, (18) can be rewritten
as

h(x) =
2√

vB (v/2, 1/2)

(
1 +

x2

v

)−(1+v)
2

{1 + exp [−x (A1 + B1|x|p)]}−1 , (19)

for−∞ < x < ∞, v > 0 and B(.) is the Beta function, defined by B(a, b) = Γ(a)Γ(b)
Γ(a+b) . Plots for probability

density function (19), varying some values of A1, B1, p and v, showing different unimodal forms of
the Skew t-GL distribution are illustrated in Figure 3. We can see that the density also has symmetric,
asymmetric to the left and asymmetric to the right behavior. However, the Skew t-GL distribution has
heavy tails.

Figure 3. The Skew t-GL distribution using the following parameter values: [1] A1 = 6, B1 = 10.8,
v = 2 and p = 2; [2] A1 = 0, B1 = 0, v = 4 and p = 3; [3] A1 = −6, B1 = −10.8, v = 2 and p = 2.

In the next subsection, moments of the Skew t-GL distribution (19) are obtained.

Moments

The n-th moments of (19), using (4), are given by

E(Xn) =
1√

πΓ(v/2)

[
Γ
(

v− n
2

)
Γ
(

1 + n
2

)
vn/2

]
, (20)

if n is an even integer, and 0 < n < v. For odd integer n, and using the equation (3.389.2) of Gradshteyn
et al. [13] or Prudnikov et al. [14], the moments are given by

E(Xn) =
vn/2

πΓ
( v

2
) ∞

∑
r=0

∞

∑
k=0

(−1)r+k (B1r)k v
k(p+1)

2

k!
Sv,p,k

n, v+1
2

(A1r)−

vn/2

πΓ
( v

2
) ∞

∑
r=0

∞

∑
k=0

(−1)r+k (B1(1 + r))k v
k(p+1)

2

k!
Sv,p,k

n, v+1
2

(A1(1 + r)) ,

(21)

where

Sγ,p,k
α,β (θ) = G1,3

3,1

[
θ2γ

4

∣∣∣∣ 1−α−k(p+1)
2

β−
(

α+1+k(p+1)
2

)
, 0, 1

2

]
. (22)

For B1 = 0, (21) reduces to the result obtained earlier by Nadarajah and Kotz [6].
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2.4. Skew Generalized Logistic-Student-t Distribution

The skew generalized logistic-student-t distribution (Skew GL-t), using (3), with f (x)
given in (1) and

G(x) =
1
2

{
1 +

x√
vπΓ

( v
2
) G1,2

2,2

[
x2

v

∣∣∣∣ 1−v
2 , 1

2
0, −1

2

]}
(−∞ < x < ∞), (23)

is defined by

h(x) = 2
[a + b(1 + p)|x|p] exp [−x (a + b|x|p)]

{exp [−x (a + b|x|p)] + 1}2 G(cx) (−∞ < x < ∞). (24)

Plots for probability density function (24), for different values of values of a, b, p, c and v, showing
different forms of the Skew GL-t distribution are illustrated in Figure 4. As in Skew GL-Normal
distribution, the density also has symmetric, asymmetric to the left and asymmetric to the right
behavior. Again, it is interesting to note that, for values of the parameter a near to zero, the Skew GL-t
distribution has a bimodal shape and heavy tails.

Figure 4. The Skew GL-t distribution using the following parameter values: [1] a = 1.59, b = 0.0727,
p = 1.962, v = 2 and c = 10; [2] a = 0.3, b = 0.7, p = 0.4, v = 3 and c = 0.6; [3] a = 1.59, b = 0.0727,
p = 1.962, v = 3 and c = 0; [4] a = 1.59, b = 0.0727, p = 1.962, v = 2 and c = −10.

In the next subsection, we obtain the moments of Skew GL-t distribution. For b = 0, the results of
this section give alternative expressions for what have been given earlier by Nadarajah and Kotz [6].

Moments

Using (4), the n-th moments of (24), for even values of n, has been calculated earlier by Rathie
and Swamee [4], and is given by

E(Xn) = 2
∞

∑
r=0

(−1)r(1 + r)
[

aIh,r + b(1 + p)Ih+p,r

]
, (25)

where
Iα,r =

∫ ∞

0
xα exp [−(1 + r)x (a + bxp)] dx

= [a(1 + r)]−α−1H1,1
1,1

[
ap+1(1 + r)p

b

∣∣∣∣ (1, 1)
(α + 1, p + 1)

]
.

(26)

For odd values of n, on using (7),
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E(Xn) =
2c√

vπΓ
( v

2
) ∞

∑
r=0

(−1)r(1 + r)
[

aRn+1,a(1+r) + b(1 + p)Rn+p+1,a(1+r)

]
, (27)

where

Rα,θ =
2α

√
πθα+1

∞

∑
k=0

(−2p+1(1 + r)b
θp+1

)k

×

1
k!

G1,4
4,2

[
4c2

vθ2

∣∣∣∣ 1−v
2 , 1

2 , 1−α−k(p+1)
2 , −α−k(p+1)

2
0,− 1

2

]
.

(28)

3. Applications to Real Data

In this section, we apply all the distributions introduced in this paper to three real data sets.
The first data set is related to the total spending on public education (% of GDP—Gross Domestic
Product) in various countries in 2003, which is unimodal and asymmetrical. The second data set relates
to the total expenditure, in 2009, on health (% of GDP—Gross Domestic Product) in various countries,
which has a bimodal and asymmetric behavior, even if not so evident. And finally, the third data set is
related to the waiting time between eruptions of the Old Faithful Geyser in the Yellow Stone National
Park, Wyoming, USA, which is clearly bimodal and asymmetrical.

The performance of the models was then compared by using the Akaike criterion (AIC),
Bayesian criterion (BIC), Modified Akaike criterion (AICC) and Komogorov-Sminorv test (KS-Test).
The information criterion AIC, BIC and AICC are given by

AIC = −2log( f (x|θ)) + 2p; (29)

BIC = −2log( f (x|θ)) + plog(n);

AICC = −2log( f (x|θ)) + 2
p(p + 1)
n− p− 1

,

where log( f (x|θ)) is the log-likelihood function, p is then number of parameters of models and n is
the sample size. The models that have lowest AIC, BIC and AICC values are better.

The accuracy of the models was then compared by using Mean Square Error (MSE),
Mean Deviation Absolute (MDA) and Max Deviation (MaxD). The MSE, MDA and MaxD are given by

MSE =
∑n

i=1 (Fe(xi)− F̂(xi))
2

n
(30)

MAD =
∑n

i=1 |Fe(xi)− F̂(xi)|
n

MaxD = max(|Fe(xi)− F̂(xi)|), i = 1, . . . , n,

where Fe(xi) is the empirical cumulative distribution and F̂(xi) is the fitted cumulative distribution of
the data. The models that have minimum values of MSE, MAD and MaxD (close to zero) are better.
In Appendix A, we give a general R code for fitting the distributions introduced in this paper for
practical purposes.

3.1. Application 1: Expenditure on Education

We use the data of total spending on public education (% of GDP- Gross Domestic Product)
in various countries in 2003. These data were obtained from [15]. Expenditure on public
education includes the current and capital spending by private and government agencies on
educational institutions (both public and private), educational administration and subsidies to private
(student/family) entities.

To adjust this data set, we modify the models by introducing a location parameter μ and a scale
parameter σ by changing x to (x− μ)/σ everywhere in the density function divided by σ. The software
R was used to calculate the estimates of the parameters through maximum likelihood method and the R
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function constrOptim [16] was used to maximize the log-likelihood function (Appendix A). The reason
for using the R function constrOptim is to guarantee that the estimated parameters are consistent
within their respective parametric space. The maximum likelihood estimates for the parameters of the
models are given by:

• Skew Normal-GL: Â = −0.000227, B̂ = −8.83× 10−14, p̂ = 2.29, μ̂ = 4.83 and σ̂ = 1.51;
• Skew GL-Normal: â = 22.76, b̂ = 2.67, p̂ = 26.40, ĉ = 43.94, μ̂ = 2.60 and σ̂ = 38.21;
• Skew t-GL: Â1 = 0.167, B̂1 = 0.005, p̂ = 5.19, v̂ = 3.44, μ̂ = 4.21 and σ̂ = 1.40;
• Skew GL-t: â = 22.75, b̂ = 2.55, p̂ = 26.66, v̂ = 1968.59, ĉ = 43.92, μ̂ = 2.60 and σ̂ = 38.18.

We compare the results of our distribution with the corresponding distribution (special cases)
introduced by Nadarajah and Kotz [6] (Skew Normal-Logistic, Skew Logistic-Normal, Skew t-Logistic
and Skew Logistic-t distributions). The Figure 5 illustrates the fit of the distributions introduced in
this paper. The Figure B1 (Appendix B) illustrates the fit of Nadarajah and Kotz [6] distributions.
The Figure 6 illustrates the pp− plot of all distributions. The performance of the all fitted distributions
are given in Table 1. Observing the results in Table 1 we can see that, looking the p-value of
the KS test, all distributions can be used to model the data. According to the accuracy, the Skew
GL-Normal, Skew GL-t and Skew Logistic-Normal distributions indicated better results with similar
values. However, Skew GL-Normal and Skew GL-t distributions presented smaller values of AIC, BIC
and AICC compared to the Skew Logistic-Normal distribution. In contrast, Skew Normal-Logistic
distribution showed the worst results followed by Skew Normal-GL distribution.

(a)

(b)

Figure 5. Education data - Fitted distributions. [1] Skew GL-Normal distribution; [2] Skew GL-t
distribution; [3] Skew Normal-GL distribution; [4] Skew t-GL distribution. (a) Probability density
function; (b) Cumulative distribution.
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Figure 6. Education data - PP-Plot. (a) Skew Normal-GL; (b) Skew GL-Normal; (c) Skew t-GL; (d) Skew
GL-t; (e) Skew Normal-Logistic; (f) Skew Logistic-Normal; (g) Skew t-Logistic; (h) Skew Logistic-t.

Table 1. Performance and accuracy of the distributions.

Model AIC BIC AICC KS-Test (p-Value) MSE MAD MaxD

Skew GL-Normal 448.29 429.20 461.22 0.9973 0.000387 0.0153 0.0481
Skew GL-t 448.29 429.20 461.23 0.9973 0.000387 0.0153 0.0481

Skew Normal-GL 609.70 593.33 620.91 0.1549 0.003777 0.0443 0.1417
Skew t-GL 441.69 422.60 454.62 0.866 0.001086 0.0266 0.0736

Skew Logistic-Normal 452.29 438.65 461.73 0.9973 0.000387 0.0153 0.0481
Skew Logistic-t 465.02 448.66 476.23 0.9818 0.000683 0.0210 0.0588

Skew Normal-Logistic 611.70 598.06 621.14 0.1549 0.004160 0.0581 0.1449
Skew t-Logistic 450.39 434.02 461.59 0.9973 0.000389 0.0154 0.0459

Comparing the proposed distributions in this paper with their corresponding distributions given
by Nadarajah and Kotz [6], we can see that: (1) Skew GL-t and Skew Normal-GL distributions have
lower values of AIC, BIC, AICC , MSE , MAD and MaxD compared to the Skew Logistic-t and Skew
Normal-Logistic distributions, respectively; (2) The Skew t-Logistic gave better accuracy compared to
Skew distribution t-GL (Smaller values of MSE, MAD and MaxD), however, Skew t-GL distribution
indicated better performance than Skew t-Logistic distribution (Smaller values of AIC, BIC and AICC).
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Thus, for this application, in general, the distributions introduced in this paper fit better the data
and the Skew GL-Normal and Skew GL-t distributions are preferable to fit this data because they
present better and similar results (smaller values of AIC, AICC, BIC, MSE, MAD and MaxD).

3.2. Application 2: Expenditure on Health

We use the data of total expenditure, in 2009, on health (% of GDP—Gross Domestic Product) in
various countries. These data are obtained from [17]. Total health expenditure is the sum of expenses
with public and private health. It covers the provision of health services (preventive and curative),
family planning activities, nutrition activities and emergency aid designated for health but does not
include water supply and sanitation.

Again, to adjust this data set we introduced a location parameter μ and a scale parameter σ.
For the estimates of model parameters the maximum likelihood method is used. The software R was
used to calculate estimates of the parameters by using the R function constrOptim [16] to maximize
the log-likelihood function (Appendix A). The maximum likelihood estimates for the parameters of
the models are given by:

• Skew Normal-GL: Â = 9.51× 10−8, B̂ = 0.0005, p̂ = 7.28, μ̂ = 6.62 and σ̂ = 1.99;
• Skew GL-Normal: â = 0.38, b̂ = 3.30, p̂ = 0.54, ĉ = −1.39, μ̂ = 8.61 and σ̂ = 5.98;
• Skew t-GL: Â1 = 8.86× 10−7, B̂1 = 0.069, p̂ = 4.41, v̂ = 4.61, μ̂ = 5.84 and σ̂ = 2.28;
• Skew GL-t: â = 0.37, b̂ = 4.07, p̂ = 0.53, v̂ = 0.72, ĉ = −4.02, μ̂ = 8.60 and σ̂ = 6.78.

We compare the results of our distribution with the corresponding distribution (special cases)
introduced by Nadarajah and Kotz [6] (Skew Normal-Logistic, Skew Logistic-Normal, Skew t-Logistic
and Skew Logistic-t distributions). The Figure 7 illustrates the fit of the distributions introduced in
this paper. The Figure B2 (Appendix B) illustrates the fit of Nadarajah and Kotz [6] distributions.
The Figure 8 illustrates the pp− plot of all distributions. The performance of the all fitted distributions
are included in Table 2. Observing the Figure 7 we can see that the data presents a bimodal and
asymmetric behavior, even if it is not very evident.

(a)

Figure 7. Cont.
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Figure 7. Health data - Fitted distributions. [1] Skew GL-Normal distribution; [2] Skew GL-t
distribution; [3] Skew Normal-GL distribution; [4] Skew t-GL distribution. (a) Probability density
function; (b) Cumulative distribution.

Figure 8. Cont.
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Figure 8. Cont.
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Figure 8. Health data - PP-Plot. (a) Skew Normal-GL; (b) Skew GL-Normal; (c) Skew t-GL; (d) Skew
GL-t; (e) Skew Normal-Logistic; (f) Skew Logistic-Normal; (g) Skew t-Logistic; (h) Skew Logistic-t.
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Table 2. Performance and accuracy of the distributions.

Model AIC BIC AICC KS-Test (p-Value) MSE MAD MaxD

Skew GL-Normal 1040.04 1016.26 1050.52 0.993 0.000169 0.0104 0.0379
Skew GL-t 1038.21 1017.54 1050.42 0.9904 0.000152 0.0103 0.0378

Skew Normal-GL 1426.81 1406.42 1438.42 0.05759 0.003472 0.0497 0.1226
Skew t-GL 1048.29 1024.50 1061.76 0.9774 0.000196 0.0103 0.0402

Skew Logistic-Normal 1041.70 1024.71 1051.42 0.993 0.000211 0.0110 0.0401
Skew Logistic-t 1057.58 1037.19 1069.18 0.2235 0.001299 0.0279 0.0975

Skew Normal-Logistic 1442.35 1425.36 1452.07 0.02585 0.005780 0.0686 0.1371
Skew t-Logistic 1040.60 1019.22 1054.21 0.9774 0.000233 0.0111 0.0407

Observing the results in Table 2 we can see that, through the p-value of the KS test, only the
Skew-Normal Logistic distribution could not be used to model the data. The Skew GL-t distribution
had the smallest values of AIC, BIC, AICC, MSE, MAD and MaxD followed by Skew GL-Normal
and Skew t-Logistics distributions. In contrast, Skew-Normal Logistic distribution showed the worst
results followed by Skew Normal-GL distribution.

Comparing the distributions proposed in this paper with their corresponding distributions given
by Nadarajah and Kotz [6], we can see that: (1) the Skew GL-Normal Skew GL-t and Skew Normal-GL
distributions has smaller values of AIC, BIC, AICC, MSE, MAD and MaxD compared to the Skew
Logistic-Normal Skew Logistic-t and Skew Normal-Logistic distributions, respectively; (2) The Skew
t-Logistic distribution resulted in better performance when compared to the Skew t-GL distribution
(Smaller values of AIC, BIC and AICC), however, the Skew t-GL distribution obtained better accuracy
than Skew t-Logistic distribution (Smaller values of MSE, MAD and MaxD).

Again, for this application, in general, the distributions proposed in this paper fit better the data
and the Skew GL-t distribution is preferred to fit this data presenting better results (smaller values of
AIC, AICC, BIC, MSE, MAD and MaxD).

3.3. Application 3: Waiting Time between Eruptions of Old Faithful Geyser

This application shows the versatility of the Skew GL-Normal and the Skew GL-t distributions.
Using data available in the free statistical software R we see the shape of bimodal distribution.
Among the variables available, the waiting time between eruptions of Old Faithful Geyser in Yellow
Stone National Park, Wyoming, USA was used. The data has 272 observations given in minutes.

Once more, to adjust this data set we modify the models by introducing a location parameter
μ and a scale parameter σ. The software R was used to calculate the estimates of the parameters
through maximum likelihood method and the R function constrOptim [16] was used to maximize the
log-likelihood function (Appendix A). The maximum likelihood estimates for the parameters of the
models are given by:

• Skew Normal-GL: Â = −8.23× 10−8, B̂ = −0.010, p̂ = 5.94, μ̂ = 73.59 and σ̂ = 9.76;
• Skew GL-Normal: â = 0.42, b̂ = 1.59, p̂ = 1.57, ĉ = 0.48, μ̂ = 66.59 and σ̂ = 17.31;
• Skew t-GL: Â1 = −3.33× 10−8, B̂1 = −0.222, p̂ = 6.37, v̂ = 10714.65, μ̂ = 75.58 and σ̂ = 14.37;
• Skew GL-t: â = 0.89, b̂ = 10.89, p̂ = 1.57, v̂ = 35.10, ĉ = 1.02, μ̂ = 66.59 and σ̂ = 36.51.

We now compare the results of our distribution with the corresponding distribution (special cases)
introduced by Nadarajah and Kotz [6] (Skew Normal-Logistic, Skew Logistic-Normal, Skew t-Logistic
and Skew Logistic-t distributions). It is interesting to note that, when we try to adjust the distributions
given by Nadarajah and Kotz [6] to the data, which have a marked bimodal behavior, we had numerical
problems when trying to calculate their cumulative distribution functions, which did not happen
with our distributions. Thus, it was not possible to calculate the p-value of the KS test, MSE, MAD
and MaxD for the Skew Normal-Logistic, Skew Logistic-Normal, Skew t-Logistic and Skew Logistic-t
distributions.
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The Figure 9 illustrates the fit of the distributions introduced in this paper. The Figure 10 illustrates
the fit of the density function of the distributions introduced by Nadarajah and Kotz [6]. The Figure
11 illustrates the pp− plot of our distributions. The performance of the all fitted distributions are
given in Table 3. Observing the results of the Table 3 we can see that, only the Skew GL-Normal and
Skew GL-t distributions adjusted well to the data with similar accuracies. However, observing the
AIC, BIC and AICC values, the Skew GL-t distribution had a slightly better result. In contrast, Skew
Normal-GL and Skew t-GL distributions, even having no numerical problems, are not indicated to
model these data showing poor results. Finally, the Skew Logistic-Normal Skew Logistic-t, Skew
Normal-Logistic and Skew t-Logistic distributions presented numerical problems when calculating
the cumulative distribution functions, showing that they are not flexible enough to model bimodal
data. So, for this application, the Skew GL-t distribution is preferred to fit this data presenting better
results (smaller values of AIC, AICC, BIC, MSE, MAD and MaxD).

(a)

(b)

Figure 9. Faithful data - Fitted distributions. [1] Skew GL-Normal distribution; [2] Skew GL-t
distribution; [3] Skew Normal-GL distribution; [4] Skew t-GL distribution. (a) Probability density
function; (b) Cumulative distribution.
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Figure 10. Faithful data - Fitted Nadarajah and Kotz [6] distributions. [5] Skew Logistic-Normal
distribution; [6] Skew Logistic-t distribution; [7] Skew Normal-Logistic distribution; [8] Skew
t-Logistic distribution.

Figure 11. Cont.
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Figure 11. Faithful data - PP-Plot. (a) Skew Normal-GL; (b) Skew GL-Normal; (c) Skew t-GL;
(d) Skew GL-t.

Table 3. Performance and accuracy of the distributions.

Model AIC BIC AICC KS-Test (p-Value) MSE MAD MaxD

Skew GL-Normal 2055.26 2033.63 2066.95 0.7344 0.000439 0.0171 0.0378
Skew GL-t 2053.27 2028.02 2066.84 0.7344 0.000439 0.0171 0.0378

Skew Normal-GL 3454.74 3433.11 3466.43 <0.0001 0.009393 0.0805 0.1915
Skew t-GL 2120.98 2095.74 2134.55 0.01705 0.002896 0.0448 0.1077

Skew Logistic-Normal 2149.71 2131.68 2159.49 - - - -
Skew Logistic-t 2147.71 2126.08 2159.40 - - - -

Skew Normal-Logistic 3494.18 3476.15 3503.95 - - - -
Skew t-Logistic 2178.58 2156.95 2190.26 - - - -

From the results of Sections 3.1, 3.2 and 3.3, we can see that: (1) in general, our distributions
adjusted the data better than the distributions given by Nadarajah and Kotz [6]; (2) The Skew
GL-Normal, Skew GL-t, Skew t-GL and Skew Normal-GL distributions can be used to model
symmetrical and asymmetrical unimodal data; (3) Skew GL-t and Skew GL-Normal distributions
can be used to adjust bimodal symmetrical and asymmetrical data, showing high flexibility which is
not common in the literature on probability distributions, and this can be very important in practical
applications; (4) For application 1, the Skew GL-Normal and Skew GL-t distributions are preferable to
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fit this data because they present better and similar results (smaller values of AIC, AICC, BIC, MSE,
MAD and MaxD), and, for applications 2 and 3, the Skew GL-t distribution is preferred to fit this data
presenting better results. Finally, the distributions introduced in this paper are robust to numerical
computation.

4. Conclusions

In this paper, we proposed new skew probability density functions using the Azzalini’s formula
2 f (x)G(cx), where f is a symmetric density about zero, and G is a distribution function of a symmetric
density about zero. The expressions for f and G are taken from normal, student-t and generalized
logistic distributions. We derived expressions for the n-th moments in terms of the H and Meijer G
functions [12].

We apply new distributions to three data sets. One application for unimodal data is provided
for total expenditure on education in various countries in 2003. Two applications of bimodal data
are given for the total expenditure on health in various countries in 2009 and waiting time between
eruptions of the Old Faithful Geyser. We conclude that:

1. In general, the distributions introduced in this paper fit better the data when compared with the
Skew Logistic-Normal, Skew Logistic-t, Skew Normal-Logistic and Skew t-Logistic distributions,
introduced by Nadarajah and Kotz [6];

2. The Skew GL-Normal, Skew GL-t, Skew Normal-GL and Skew t-GL distributions can be used to
model symmetrical and asymmetrical unimodal data;

3. The Skew GL-Normal and Skew GL-t distributions can be used to adjust bimodal symmetrical
and asymmetrical data, offering good fits, showing a high flexibility which is not common in the
literature on probability distributions, and this can be very important in practical applications;

4. For application 1, the Skew GL-Normal and Skew GL-t distributions are preferable to fit this data
because they present better and similar results (smaller values of AIC, AICC, BIC, MSE, MAD
and MaxD), and, for applications 2 and 3, the Skew GL-t distribution is preferred to fit this data
presenting better results;

5. The distributions proposed in this paper apply to all applications without presenting numerical
problems, unlike the proposed distributions by Nadarajah and Kotz [6] which had serious
numerical problems to adjust bimodal data. (Section 3.3).

Thus, the proposed distributions in this paper are flexible to adjust symmetric and asymmetric
data, with unimodal and bimodal behavior, and are robust to numerical computation in
practical applications.
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Appendix General R Codes

In this appendix we give the general R code for fitting the distributions introduced in this paper
for practical purpose.

Appendix A.1 Skew Normal-GL Distribution

#READ THE DATA

data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)

#SKEW NORMAL GENERALIZED LOGISTIC DISTRIBUTION - DENSITY

dnormgen <- function(x, a, b, p, c, mu, sigma){
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(2/sigma)*dnorm(x=x, mean=mu, sd=sigma)/(1+exp(-c*(x-mu)/sigma*(a+b*abs(c*(x-mu)/sigma)**p)))

}

#GIVE THE INITIAL PARAMETERS HERE

theta <- theta0

#LOG-LIKELIHOOD FUNCTION

loglik <- function(pars){

a <- pars[1]

b <- pars[2]

p <- pars[3]

c <- pars[4]

mu <- pars[5]

sigma <- pars[6]

logl <-sum(log(dnormgen(x, a=a, b=b, p=p, c=c, mu=mu, sigma=sigma)))

return(-logl)

}

#FIT

fit=constrOptim(theta=theta, f=loglik, ui=rbind(c(1, 0, 0, 0, 0, 0),

c(0, 1, 0, 0, 0, 0),

c(0, 0, 1, 0, 0, 0),

c(0, 0, 0, 0, 1, 0),

c(0, 0, 0, 0, 0, 1)), ci=c(0, 0, 0, 0, 0)

, method="Nelder-Mead", outer.iterations=300)

Appendix A.2 Skew GL-Normal Distribution

#READ THE DATA

data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)

#SKEW GENERALIZED LOGISTIC NORMAL DISTRIBUTION - DENSITY

dglnorm <- function(x, a, b, p, c, mu, sigma){

2/sigma*{(a+b*(1+p)*abs((x-mu)/sigma)**p)*exp(-(x-mu)/sigma*(a+b*abs((x-mu)/sigma)**p))/

(1+exp(-(x-mu)/sigma*(a+b*abs((x-mu)/sigma)**p)))**2}*pnorm(c*(x-mu)/sigma, mean=0,sd=1)

}

#GIVE THE INITIAL PARAMETERS HERE

theta <- theta0

#LOG-LIKELIHOOD FUNCTION

loglik <- function(pars){

a <- pars[1]

b <- pars[2]

p <- pars[3]

c <- pars[4]

mu <- pars[5]

sigma <- pars[6]

logl <-sum(log(dglnorm(x, a=a, b=b, p=p, c=c, mu=mu, sigma=sigma)))

return(-logl)

}

#FIT

fit=constrOptim(theta=theta, f=loglik, ui=rbind(c(1, 0, 0, 0, 0, 0),

c(0, 1, 0, 0, 0, 0),

c(0, 0, 1, 0, 0, 0),

c(0, 0, 0, 0, 1, 0),

c(0, 0, 0, 0, 0, 1)), ci=c(0, 0, 0, 0, 0)
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, method="Nelder-Mead", outer.iterations=300)

Appendix A.3 Skew t-GL Distribution

#READ THE DATA

data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)

#SKEW T GENERALIZED LOGISTIC DISTRIBUTION - DENSITY

dtgen <- function(x, a, b, p, c, v, mu, sigma){

(2/sigma)*dt((x-mu)/sigma, df=v)/(1+exp(-c*(x-mu)/sigma*(a+b*abs(c*(x-mu)/sigma)**p)))

}

#GIVE THE INITIAL PARAMETERS HERE

theta <- theta0

#LOG-LIKELIHOOD FUNCTION

loglik <- function(pars){

a <- pars[1]

b <- pars[2]

p <- pars[3]

c <- pars[4]

v <- pars[5]

mu <- pars[6]

sigma <- pars[7]

logl <-sum(log(dtgen(x, a=a, b=b, p=p, c=c, v=v, mu=mu, sigma=sigma)))

return(-logl)

}

#FIT

fit=constrOptim(theta=theta, f=loglik, ui=rbind(c(1, 0, 0, 0, 0, 0, 0),

c(0, 1, 0, 0, 0, 0, 0),

c(0, 0, 1, 0, 0, 0, 0),

c(0, 0, 0, 0, 1, 0, 0),

c(0, 0, 0, 0, 0, 1, 0)), ci=c(0, 0, 0, 0, 0)

, method="Nelder-Mead", outer.iterations=300)

Appendix A.4 Skew GL-t Distribution

#READ THE DATA

data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)

#SKEW GENERALIZED LOGISTIC T DISTRIBUTION - DENSITY

dglt <- function(x, a, b, p, c, v, mu, sigma){

2/sigma*{(a+b*(1+p)*abs((x-mu)/sigma)**p)*exp(-(x-mu)/sigma*(a+b*abs((x-mu)/sigma)**p))/

(1+exp(-(x-mu)/sigma*(a+b*abs((x-mu)/sigma)**p)))**2}*pt(c*(x-mu)/sigma, df=v)

}

#GIVE THE INITIAL PARAMETERS HERE

theta <- theta0

#LOG-LIKELIHOOD FUNCTION

loglik <- function(pars){

a <- pars[1]

b <- pars[2]

p <- pars[3]

c <- pars[4]

v <- pars[5]

mu <- pars[6]

sigma <- pars[7]

181



Axioms 2016, 5, 10

logl <-sum(log(dglt(x, a=a, b=b, p=p, c=c, v=v, mu=mu, sigma=sigma)))

return(-logl)

}

#FIT

fit=constrOptim(theta=theta, f=loglik, ui=rbind(c(1, 0, 0, 0, 0, 0, 0),

c(0, 1, 0, 0, 0, 0, 0),

c(0, 0, 1, 0, 0, 0, 0),

c(0, 0, 0, 0, 1, 0, 0),

c(0, 0, 0, 0, 0, 1, 0)), ci=c(0, 0, 0, 0, 0)

, method="Nelder-Mead", outer.iterations=300)

Appendix Density Plots

In this appendix we give the plots of Nadarajah and Kotz [6] estimated densities given in
Sections 3.1 and 3.2.

Appendix B.1 Application 1: Expenditure on Education

(a)

(b)

Figure B1. Education data - Fitted Nadarajah and Kotz [6] distributions. [5] Skew Logistic-Normal
distribution; [6] Skew Logistic-t distribution; [7] Skew Normal-Logistic distribution; [8] Skew t-Logistic
distribution. (a) Probability density function; (b) Cumulative distribution.
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Application 2: Expenditure on Health

(a)

(b)

Figure B2. Health data - Fitted Nadarajah and Kotz [6] distributions. [5] Skew Logistic-Normal
distribution; [6] Skew Logistic-t distribution; [7] Skew Normal-Logistic distribution; [8] Skew t-Logistic
distribution. (a) Probability density function; (b) Cumulative distribution.

References

1. Abtahi, A.; Behboodian, J.; Shafari, M.A. General class of univariate skew distributions considering Stein’s
lemma and infinite divisibility. Metrika 2010, 75, 193–206.

2. Rathie, P.N.; Coutinho, M. A new skew generalized logistic distribution and approximations to skew normal
distribution. Aligarh J. Stat. 2011, 31, 1–12.

3. Rathie, P.N.; Swamee, P.K.; Matos, G.G.; Coutinho, M.; Carrijo, T.B. H-function and statistical distributions.
Ganita 2008, 59, 23–37.

4. Rathie, P.N.; Swamee, P.K. On a New Invertible Generalized Logistic Distribution Approximation to Normal
Distribution; Technical Research Report No. 07/2006; Department of Statistics, University of Brasilia:
Brasilia, Brazil, 2006.

5. Gupta, R.D.; Kundu, D. Generalized logistic distributions. J. Appl. Stat. Sci. 2010, 18, 51–66.
6. Nadarajah, S.; Kotz, S. Skew distributions generated from different families. Acta Appl. Math. 2006, 91, 1–37.
7. Swamee, P.K.; Rathie, P.N. Invertible alternatives to normal and lognormal distributions. J. Hydrol. Eng. ASCE

2007, 12, 218–221.
8. Rathie, P.N. Normal Distribution, Univariate; Springer: Berlin, Germany, 2011; pp. 1012–1013.

183



Axioms 2016, 5, 10

9. Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178.
10. Luke, Y.L. The Special Functions and Their Approximations; Academic Press: New York, NY, USA, 1969.
11. Springer, M.D. Algebra of Random Variables; John Wiley: New York, NY, USA, 1979.
12. Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer:

New York, NY, USA, 2010.
13. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products; Academic Press: San Diego, CA, USA, 2000.
14. Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Breach Science: Amsterdam,

The Netherlands, 1986.
15. The World Bank: Working for a World Free of Poverty. Government expenditure on education as % of GDP

(%). Available online: http://data.worldbank.org/indicator/SE.XPD.TOTL.GD.ZS (accessed on 1 February
2016).

16. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2015. Available online: http://www.R-project.org/ (accessed on 1 February 2016).

17. The World Bank: Working for a World Free of Poverty. Health expenditure, total (% of GDP). Available online:
http://data.worldbank.org/indicator/SH.XPD.TOTL.ZS (accessed on 1 February 2016).

c© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

184



axioms

Article

Closed-Form Representations of the Density Function
and Integer Moments of the Sample
Correlation Coefficient

Serge B. Provost

Department of Statistical & Actuarial Sciences, The University of Western Ontario,
London, ON N6A 5B7, Canada; provost@stats.uwo.ca

Academic Editors: Angel Garrido and Hans J. Haubold
Received: 7 May 2015; Accepted: 18 June 2015; Published: 20 July 2015

Abstract: This paper provides a simplified representation of the exact density function of R, the
sample correlation coefficient. The odd and even moments ofR are also obtained in closed forms.
Being expressed in terms of generalized hypergeometric functions, the resulting representations are
readily computable. Some numerical examples corroborate the validity of the results derived herein.

Keywords: sample correlation coefficient; hypergeometric function; density function; moments

1. Introduction

Given {(Xi, Yi), i = 1, . . . , n}, a simple random sample of size n from a bivariate normal
distribution, the sample correlation coefficient,

R =
1
n

n

∑
i=1

(
Xi − X

SX

)(
Yi −Y

SY

)
(1)

where X = ∑n
i=1 Xi/n , Y = ∑n

i=1 Yi/n , S2
X = ∑n

i=1
(
Xi − X

)2/n and S2
Y = ∑n

i=1
(
Yi −Y

)2/n , is the
maximum likelihood estimator of ρX,Y, Pearson’s product-moment correlation coefficient. Fisher [1]
obtained the following series representation of the density function ofR:

fR(r) =
2 n−3

π(n− 3)!

(
1− ρ2

) n−1
2
(

1− r2
) n−4

2
∞

∑
i=0

Γ2
(

n + i− 1
2

)
(2 ρ r)i

i !
(2)

which converges for −1 < ρ r < 1 .
Closed-form representations of the exact density ofR are derived in Section 2. They are given in

terms of the generalized hypergeometric function,

p Fq
(
a1, . . . , ap; b1, . . . , bq; z

)
=

∞
∑

k=0

(a1)k ···(ap)k
(b1)k ···(bq)k

zk

k! (3)

where, for example, (a1)k = Γ(a1 + k)/Γ(a1). More specifically, it will be shown that the exact density
ofR can be expressed as

g(r) = 2n−3

π(n−3)!

(
1− ρ2) n−1

2
(
1− r2) n−4

2

×
[
Γ2
(

n−1
2

)
2
F1

(
n−1

2 , n−1
2 ; 1

2 ; ρ2r2
)
+ 2 ρ r Γ2( n

2
)

2F1
( n

2 , n
2 ; 3

2 ; ρ2r2)] (4)
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for −1 < ρ r < 1, which simplifies to

g(r) = κ(n, ρ)
(
1− r2) n

2−2
2 F1(n− 1, n− 1; n− 1/2; (1 + ρ r)/2 ) (5)

where κ(n, ρ) = [(n− 2)B2
(

n−1
2 , n

2

) (
1− ρ2) n−1

2 ]/
[
π 2n+1 B(n− 1, n)

]
,B(a , b) = Γ(a)Γ(b)/Γ(a + b)

denoting the beta function. For various results on the hypergeometric function 2F1(a, b ; c, z) and its
main properties, the reader is referred to Olver et al. [2], Chapter 15. Closed-form representations of
the odd and even moments ofR are provided in Section 3 and some numerical examples are included
in Section 4.

Fisher’s Z-transform is a well-known transformation ofR whose associated approximate normal
distribution is known to present some shortcomings, especially when the sample size is small and
|ρ| is large, in which case the distribution of R is markedly skewed. Winterbottom [3] showed
that the normal approximation requires large sample sizes to be valid. It is also known that, in
the bivariate normal case, the asymptotic variance of Fisher’s Z statistic does not depend on ρ.
Furthermore, as pointed out by Hotelling [4], the variance ofR changes with the mean. The density
and moment expressions derived in this paper remain accurate for any values of ρ and n.

2. The Exact DensityR
It should be noted that the series representation of the density function ofR given in Equation (2)

converges very slowly. It was indeed observed that, in certain instances, more than 1000 terms may be
necessary to reach convergence. Closed-form representations of the exact density function ofR are
derived in this section.

First, we note that the identity,

Γ[1/2]
k! Γ[1/2+k] =

22k

(2k)! (6)

can be established by re-expressing the Legendre duplication formula,

Γ(2 k) = π−1/2 22k−1Γ(k) Γ(k + 1/2) (7)

as
[2k Γ(2k)] = (Γ(1/2))−1 22k [k Γ(k)] Γ(1/2 + k)

Moreover, since Γ(3/2 + k) = (1/2 + k) Γ(1/2 + k) = (1/2) (2k + 1) Γ(1/2 + k) and Γ(3/2) =

(1/2) Γ(1/2), it follows from Equation (6) that

Γ(3/2)
k! Γ(3/2+ k) =

22k

(2k + 1)! (8)

In order to prove that the representation of the density function of given in Equation (4) is
equivalent to the series representation (2), it suffices to show that

∞
∑

k=0

(2rρ)k

k! Γ2[(k + n− 1)/2] = Γ2
(

n
2 − 1

2

)
2
F1

(
n
2 − 1

2 , n
2 − 1

2 ; 1
2 ; r2ρ2

)
+2rρ Γ2( n

2
)

2F1
( n

2 , n
2 ; 3

2 ; r2ρ2) (9)

Now, letting k = 2j + 1, we establish that when k odd,

2rρ
∞
∑

j=0

(2rρ)2j

(2j+ 1)! Γ
2[(2j + n)/2] = 2rρ Γ2( n

2
)

2F1
( n

2 , n
2 ; 3

2 ; r2ρ2) (10)
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Note that

2rρ
∞
∑

j=0

(2rρ)2j

(2j+ 1)! Γ
2(j + n/2) = 2rρ

∞
∑

j=0

(2rρ)2j

(2j+ 1)! Γ2(j + n/2)

= 2rρ
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∑

j=0
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However,
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)
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2 ; 3
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2
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2 +j) Γ( 3
2 )
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(
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Γ(3/2)
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)
which, in view of Equation (8), proves the result.

We now show that when k = 2i,
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First, note that
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The result is established by applying identity (7) wherein k is replaced by k− 1. Thus, one has the
following closed-form representation of the exact density function ofR:

g1(r) = 1
π(n−3)! 2n−3(1− r2) n−4

2
(
1− ρ2) n−1

2

×
[
Γ2
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n
2 − 1
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)
2
F1
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2 − 1

2 , n
2 − 1

2 ; 1
2 ; ρ2 r2

)
+ 2ρ r Γ2( n

2
)

2F1
( n

2 , n
2 ; 3

2 ; ρ2 r2)] (12)

A simplified representation of this expression can be obtained by making use of the following
identity listed under “Quadratic transformations with fixed a, b, z” on the Wolfram website,
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/17/02/10/ :

2F1

(
a, b; a+b+1

2 ; z
)

=
√

π Γ( a+b+1
2 )

Γ( a+1
2 )Γ( b+1
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2 )Γ( b

2 )
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2 ; 3
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) (13)

which, on making the substitutions, a→ n− 1, b→ n− 1andz→ (1 + ρ r)/2, becomes

2F1

(
n− 1, n− 1; n− 1

2 ; 1+ρ r
2

)
=

√
π Γ(n− 1

2 )
Γ( n

2 )Γ( n
2 )

2F1

(
n−1

2 , n−1
2 ; 1

2 ; ρ2 r2
)

+
2 r ρ
√

π Γ(n− 1
2 )

Γ( n−1
2 )Γ( n−1

2 ) 2F1
( n

2 , n
2 ; 3

2 ; ρ2 r2) (14)

Multiplying both sides by Γ2
(

n−1
2

)
Γ2( n

2
)
/
{

Γ
(

n− 1
2

)√
π
}

then yields

Γ2( n−1
2 )Γ( n

2 )
2

Γ(n− 1
2 )
√

π 2F1

(
n− 1, n− 1; n− 1

2 ; 1+ρ r
2

)
= Γ2

(
n−1

2

)
2F1

(
n−1

2 , n−1
2 ; 1

2 ; ρ2 r2
)

+ 2 ρ r Γ2( n
2
)

2F1
( n

2 , n
2 ; 3

2 ; ρ2 r2) (15)
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Hence, the following form of the exact density function ofR:

2n−3Γ2( n−1
2 )Γ2( n

2 )(1−ρ2)
n−1

2

π3/2 Γ(n− 1
2 ) (n−3)!

(
1− r2) n−4

2
2 F1

(
n− 1, n− 1; n− 1

2 ; 1
2 (1 + rρ)

)
=

2n−3B2( n−1
2 , n

2 )Γ(n− 1
2 )(1−ρ2)

n−1
2

π3/2(n−3)!

(
1− r2) n−4

2
2F1

(
n− 1, n− 1; n− 1

2 ; 1
2 (1 + ρ r)

)
which, on letting k = n− 1 in Equation (6), gives

B2
(

n−1
2 , n

2

)
(2n− 2)!

(
1− ρ2) n−1

2

2n+1 π(n− 3)!(n− 1)!

(
1− r2

) n−4
2

2F1

(
n− 1, n− 1; n− 1

2
;

1
2
(1 + ρ r)

)
Finally, the following representation of the density function of R is obtained on writing
(2n− 2)!/[(n− 3)!(n− 1)!] as (n− 2)Γ(2n − 1)/[Γ((n− 1)Γ(n) ] = (n− 2)/B(n− 1, n) :

g(r) =
(n−2)B2( n−1

2 , n
2 )(1−ρ2)

n−1
2

2n+1B(n−1,n)π

(
1− r2) n

2−2
2 F1

(
n− 1 , n− 1 ; n− 1

2 ; 1+ ρ r
2

)
(16)

Incidentally, this expression is more compact than that proposed by Hotelling [4].

3. Closed Forms for the Moments ofR
It is shown in this section that the moments of R can also be expressed in closed forms.

The following moment expressions are available in Anderson [5] pp. 151–152:

E
(
Rk
)
=

(1−ρ2)
n−1

2
√

π Γ( n−1
2 )

∞
∑

i=0

(2ρ)2i+1

(2i+1)!
Γ( 3

2+
k−1

2 +i) Γ2( n
2 +i)

Γ( n+1
2 + k−1

2 +i)
forkodd (17)

and

E
(
Rk
)
=

(1−ρ2)
n−1

2
√

π Γ( n−1
2 )

∞
∑

i=0

(2ρ)2i

(2i)!
Γ( 1

2+
k
2+i) Γ2( n

2− 1
2+i)

Γ( n−1
2 + k

2+i)
forkeven (18)

We will show that when k is odd,

E
(
Rk
)
=

2ρ (1−ρ2)
n−1

2 Γ( k
2+1) Γ2( n

2 )√
π Γ( n−1

2 ) Γ( k+n
2 ) 3

F2

(
k
2 + 1, n

2 , n
2 ; 3

2 , k
2 + n

2 ; ρ2
)

(19)

and when k is even,

E
(
Rk
)
=

(1−ρ2)
n−1

2 Γ( k+1
2 ) Γ( n−1

2 )√
π Γ( k+n−1

2 ) 3
F2

(
k
2 + 1

2 , n
2 − 1

2 , n
2 − 1

2 ; 1
2 , k

2 + n
2 − 1

2 ; ρ2
)

(20)

where the generalized hypergeometric function, pFq
(
a1, . . . , ap; b1, . . . , bq; z

)
, is as defined in

Equation (3).
Since

3F2(n1, n2, n3; d1, d2; v) =
∞
∑

k=0

Γ(n1+k)Γ(n2+k)Γ(n3+k)Γ(d1)Γ(d2) vk

Γ(n1) Γ(n2) Γ(n3) Γ(d1+k) Γ(d2+k) k!

then, according to Equation (19), when k is odd, one has

E
(
Rk
)

=
(1−ρ2)

n−1
2

√
π Γ( n−1

2 )
2ρ Γ( k

2+1)Γ2( n
2 )

Γ( k+n
2 )

∞
∑

i=0

Γ( k
2+1+i)Γ2( n

2 +i)Γ( 3
2 )Γ( k

2+
n
2 ) ρ2i

Γ( k
2+1)Γ2( n

2 )Γ( 3
2+i)Γ( k

2+
n
2 +i) i!

=
(1−ρ2)

n−1
2

√
π Γ( n−1

2 )

∞
∑

i=0

2 Γ( k
2+1+i) Γ2( n

2 +i) Γ( 3
2 ) ρ2i+1

Γ( k
2+

n
2 +i) Γ( 3

2+i) i!
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which, in light of Equation (8), that is, Γ(3/2)
Γ(3/2+i) i! =

22i

(2i+1)! , is seen to be equal to the expression given in
Equation (17).

Now, when k is even, according to Equation (20), one has

E
(
Rk
)

=
(1−ρ2)

n−1
2

√
π

Γ( k+1
2 )Γ( n−1

2 )
Γ( 1

2 (k+n−1))

∞
∑

i=0

Γ( k
2+

1
2+i)Γ2( n

2− 1
2+i)Γ( 1

2 )Γ( k
2+

n
2− 1

2 )ρ2i

Γ( k
2+

1
2 )Γ2( n

2− 1
2 )Γ( 1

2+i)Γ( k
2+

n
2− 1

2+i)i!

=
(1−ρ2)

n−1
2

√
π

∞
∑

i=0

Γ( k
2+

1
2+i) Γ2( n

2− 1
2+i) Γ( 1

2 ) ρ2i

Γ( n
2− 1

2 ) Γ( k
2+

n
2− 1

2+i) Γ( 1
2+i) i!

which turns out to be equal to the right-hand side of Equation (18) on noting that, as proved earlier,
Γ( 1

2 )
Γ( 1

2+i) i!
= 22i

(2i)! .

4. Numerical Examples

When the series representations of the density function or the moments of R are utilized, the
number of terms required to achieve convergence depends on the length of the observation vector,
the underlying correlation coefficient and the point at which the density function is evaluated in the
former case or the order of the required moment in the latter. In certain instances, even 1000 terms
turn out to be insufficient. The proposed closed-form expressions, which for all intents and purposes
produce exact numerical results, can be evaluated much more quickly.

Consider for example the case, n = 10 and ρ = −0.97. Table 1 reports the values of the probability
density function (PDF) ofR, first determined from f (r) as specified by Equation (2), truncated to 500
and 1000 terms, and then, from g(r), the exact closed-form representation given in Equation (16), for
r = −0.99,−0.25, 0.05, 0.25, 0.95.

Table 1. PDF ofR as evaluated from f (r) truncated to m terms and g(r).

r f (r)[m = 500] f (r)[m = 1000] g(r)(Closed f orm)

−0.99 21.0839 21.1043 21.1043
−0.25 0.0000284304 0.0000284304 0.0000284304
0.05 2.15111× 10−6 2.15111× 10−6 2.15111× 10−6

0.25 4.20668× 10−7 4.20668× 10−7 4.20668× 10−7

0.95 4.61344× 10−11 1.1523× 10−11 1.15232× 10−11

Similarly, when n = 75 and ρ = 0.80, one obtains the numerical results appearing in Table 2.

Table 2. PDF ofR as evaluated from f (r) truncated to m terms and g(r).

r f (r)[m = 500] f (r)[m = 1000] g(r)(Closed f orm)

−0.90 1.08277× 10−18 1.07281× 10−18 1.57819× 10−59

−0.60 4.50675× 10−19 4.50675× 10−19 5.23693× 10−36

0.60 0.0128167 0.0128167 0.0128167
0.95 6.01144× 10−7 6.01144× 10−7 6.01144× 10−7

Certain moments ofR are included Table 3 for some values of k, n and ρ, along with the computing
times associated with the evaluation of the truncated series representations of the moments given
in Equations (17) and (18) and the closed-form representations specified by Equations (19) and (20).
We observed that the computing times can be significantly reduced by making use of the closed-form
expressions. All the calculations were carried out with the symbolic computing software Mathematica,
the code being available from the author upon request.
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Table 3. Certain moments ofR and associated computing times in seconds.

Formula (n, ρ, k) kth moment Timing

(17) 1000 terms (800, 0.75, 7) 0.134421 0.468
(19) closed-form (800, 0.75, 7) 0.134421 0.032

(18) 1000 terms (200,−0.91, 12) 0.324631 0.577
(20) closed-form (200,−0.91, 12) 0.324631 0.047

(17) 1000 terms (8, 0.255, 23) 0.001752 0.327
(19) closed-form (8, 0.255, 23) 0.001752 5.72459× 10−16

(18) 1000 terms (60, 0.051, 36) 1.16476× 10−13 0.514
(20) closed-form (60, 0.051, 36) 1.16476× 10−13 6.67869× 10−16
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1. Introduction

Thomas and George [1] introduced a generalized type-1 Dirichlet model having several
mathematical and statistical properties. The density has been derived from the property of the
following ratios:
Let x1, ..., xk be such that 0 < xi < 1, i = 1, ..., k, 0 < x1 + · · ·+ xk < 1 and let

x1

x1 + x2
,

x1 + x2

x1 + x2 + x3
, ...,

x1 + · · ·+ xk−1
x1 + · · ·+ xk

, x1 + · · ·+ xk

be independently distributed as type-1 beta with parameters (α1, α2), (α1 + α2 + β2, α3), (α1 + α2 +

α3 + β2 + β3, α4), ..., (α1 + · · ·+ αk + β2 + · · ·+ βk, αk+1) respectively. Then (x1, ..., xk) has the density
function of the following form:

f (x1, ..., xk) = ckxα1−1
1 . . . xαk−1

k (x1 + x2)
β2 ...(x1 + · · ·+ xk)

βk (1− x1 − · · · − xk)
αk+1−1. (1)

Obviously it is a generalization of type-1 Dirichlet probability model. The normalizing constant ck can
be evaluated as

ck =
Γ(α1 + α2)

Γ(α1)Γ(α2)...Γ(αk+1)

Γ(α1 + α2 + α3 + β2)

Γ(α1 + α2 + β2)
...

× Γ(α1 + · · ·+ αk + β2 + · · ·+ βk−1)

Γ(α1 + · · ·+ αk−1 + β2 + · · ·+ βk−1)

Γ(α1 + · · ·+ αk+1 + β2 + · · ·+ βk)

Γ(α1 + · · ·+ αk + β2 + · · ·+ βk)

for �(αj) > 0, j = 1, ..., k + 1, �(α1 + · · ·+ αj + β2 + · · ·+ β j) > 0, j = 2, ..., k, where � denotes the
real part of (·). For more properties of the Model (1) one may refer Thomas and George [1]. Note that

x1 =
x1

x1 + x2

x1 + x2

x1 + x2 + x3
...

x1 + · · ·+ xk−1
x1 + · · ·+ xk

(x1 + · · ·+ xk)

is structurally a product of k independent real variables and its density can be written in terms of a
G-function of the type Gk,0

k,k (·). The majority of the established special functions can be represented
in terms of the G-function. A notable property of G-functions is the closure property. The closure
property implies that whenever a function is expressible as a G-function of a constant multiple of some
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constant power of the function argument, the derivative and the antiderivative of this function are
expressible so too. A general G-function is defined as the following Mellin-Barnes integral:

Gm,n
p,q (z) = Gm,n

p,q

(
z|a1,...,ap

b1,...,bq

)

=
1

2πi

∫
L

{
m

∏
j=1

Γ(bj + s)

}{
n

∏
j=1

Γ(1− aj − s)

}
{

q

∏
j=m+1

Γ(1− bj − s)

}{
p

∏
j=n+1

Γ(aj + s)

} z−sds (2)

where i =
√
(−1) and L is a suitable contour.

The existence of different types of contours, properties and applications of G-functions are
available in Mathai and Haubold [2].

2. Integral Representations

All the random variables considered above take values in [0, 1] and hence the density functions
can be uniquely determined by their moments. For arbitary t, we have

E(xt
1) = c′k

k

∏
j=1

Γ(α1 + · · ·+ αj + β2 + · · ·+ β j + t)
Γ(α1 + · · ·+ αj+1 + β2 + · · ·+ β j + t)

(3)

where

c′k =
k

∏
j=1

Γ(α1 + · · ·+ αj+1 + β2 + · · ·+ β j)

Γ(α1 + · · ·+ αj + β2 + · · ·+ β j)
.

Note that the moments of the product of independent random variables are the products of the
respective moments. Treating Equation (3) as a Mellin transform of the density of x1, the density is
available by the inverse Mellin transform. Thus, the density of x1 is the following:

g(x1) = c′kx−1
1

1
2πi

∫
L

Γ(α1 + t)
Γ(α1 + α2 + t)

· · · Γ(α1 + · · ·+ αk + β2 + · · ·+ βk + t)
Γ(α1 + · · ·+ αk+1 + β2 + · · ·+ βk + t)

x−t
1 dt

= c′kx−1
1 Gk,0

k,k

[
x1|α1+α2,...,α1+···+αk+1+β2+··· .+βk

α1,...,α1+···+αk+β2+···+βk

]
(4)

for 0 < x1 < 1 and zero elsewhere.

Proposition 1.

Gk,0
k,k

[
x1|α1+α2,...,α1+···+αk+1+β2+···+βk

α1,...,α1+···+αk+β2+···+βk

]
=

x1

Γ(α2)Γ(α3)...Γ(αk+1)

∫ 1−x1

0

∫ 1−x1−x2

0
...
∫ 1−x1−··· .−xk−1

0
xα1−1

1 ...xαk−1
k

×(x1 + x2)
β2 ...(x1 + · · ·+ xk)

βk (1− x1 − · · · − xk)
α−1

k+1dxkdxk−1...dx2.

Proof. The result follows by equating Equation (4) with the marginal density of x1 obtained by
integrating out x2, ..., xk from the joint density of x1, ..., xk given in Equation (1).

Let Xj, j = 1, ..., k be an ordered set of points in the Euclidean n-spaceRn, n ≥ k. Let O denotes the
origin of a rectangular coordinate system. Now the 1× n vector Xj can be considered as a point inRn.
If X1, ..., Xk are linearly independent then the convex hull generated by these k-points almost surely
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determine a k-parallelotope inRn with the sides
−−→
OX1, . . . ,

−−→
OXk. The random volume or k-content�k,n

of this random parallelotope is given by

�k,n = |XX′|1/2

where

X =

⎛⎜⎝ X1
...

Xk

⎞⎟⎠
is a matrix of order k× n, X′ is the transpose of X and |(·)| denotes the determinant of (·). The classical
approach to random points and random volumes consists in looking at independently distributed
isotropic random points and dealing with random geometric configurations with the help of techniques
from differential and integral geometry. Mathai [3] looked into random volumes under a more general
structure by deleting the assumptions of independence and isotropy. Mathai [3] has shown that if the
k× n, n ≥ k, real random matrix X of full rank k has the density:

f (X) = C|XX′|α|I − XX′|β− k+1
2

for 0 < XX′ < I, then the probability distribution of�2
k,n = |XX′| has the following structure:

�2
k,n

d
=

k

∏
j=1

type-1 beta[α +
1
2
(n + 1− j), β].

Thus, it is possible to express the density of�2
k,n as a marginal density of x1 obtained from the joint

density given in Equation (1) with specific set of parameters. The notion�2
k,n has application in the

study of variance of multivariate distributions. More details on random volumes may be seen from
Mathai [3]. Thomas and Mathai [4] expressed the density of �2

k,n as a marginal density of x1 in the
Model (1) with parameters as

α1 = α + n
2 , α2 = α3 = · · · = αk+1 = β, β2 = · · · = βk = −(β + 1

2 ).

Now let us consider the Gaussian or ordinary hypergeometric function 2F1(a, b; c; z) which is a
special function represented by the hypergeometric series:

2F1(a, b; c; z) =
∞

∑
r=0

(a)r(b)r

(c)r

zr

r!

where

(a)r = (a + r− 1)(a + r− 2) · · · (a) =
Γ(a + r)

Γ(a)
; (a)0 = 1, a 	= 0

when Γ(a) is defined.

Proposition 2.

2F1(β, β +
1
2

; 2β; 1− x) = 22β−1x−
1
2 (1 + x1/2)1−2β; 0 < x < 1.

Proof. Let us consider the model (1) for the case when k = 2 and take the parameters as
α1 = α + n

2 , α2 = α3 = β and β2 = −(β + 1
2 ). Now the density of �2

2,n as a marginal density of
x1, can be obtained as the following:

g(x1) =
1

22βB(2α + n− 1, 2β)
xα+ n

2−1
1 (1− x1)

2β−1
2F1(β, β +

1
2

; 2β; 1− x1); (5)
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for 0 < x1 < 1 and zero elsewhere, where B(α, β) is the beta function.

Alternatively, we can obtain the density of�2
2,n by using Meijer’s G-function given in Equation (4).

Then the density function obtained has the form:

g(x1) =
1

2B(2α + n− 1, 2β)
(x1/2

1 )2α+n−3(1− x1/2
1 )2β−1; 0 < x1 < 1 (6)

and zero elsewhere.
Since the density function is unique, Equations (5) and (6) must be equal. Hence the result follows.
Since Equation (5) is a probability density function we obtain the following relation:

Proposition 3.

∫ 1

0
x[(2α+n−1)−1]/2(1− x)2β−1

2F1(β, β +
1
2

; 2β; 1− x)dx = 22βB(2α + n− 1, 2β).

Many multivariate procedures based on random samples from multivariate normal populations
can be interpreted as the study of the distribution of�2

k,n. The exact distribution of likelihood ratio
criteria for testing hypothesis in MANOVA, MANCOVA, multivariate regression analysis etc can be
obtained as a special case of distribution of�2

k,n. Thomas and Thannippara [5,6] expressed the density
of the above mentioned likelihood ratio criteria in terms of the marginal distribution of the generalized
type-1 Dirichlet model given in Equation (1) with specific set of parameter values. The density of the
likelihood ratio criterion Uk, m, n for k = 4 is obtained to be the following:

g(x) =
Γ(n + m− 1)Γ(n + m− 3)
2Γ(n− 1)Γ(n− 3)Γ(2m)

(x1/2)n−3(1− x1/2)2m−1
2F1(m + 2; m; 2m; 1− x1/2) (7)

for 0 < x < 1, n ≥ 4 and zero elsewhere. Since Equation (7) is a probability density function we obtain
the following relation:

Proposition 4.

∫ 1

0
(x1/2)n−3(1− x1/2)2m−1

2F1(m + 2; m; 2m; 1− x1/2)dx =
2Γ(n− 1)Γ(n− 3)Γ(2m)

Γ(n + m− 1)Γ(n + m− 3)
.

Note that the evaluation of a G-function involves evaluation of residues at poles of different
orders. Hence in such cases we may end up with psi, gamma or zeta functions. The above results are
useful in evaluating the definite integrals involving G-functions of the type Gk,0

k,k (·).
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Abstract: In this article, we move back almost 200 years to Christoph Gudermann, the great expert
on elliptic functions, who successfully put the twelve Jacobi functions in a didactic setting. We prove
the second hyperbolic series expansions for elliptic functions again, and express generalizations
of many of Gudermann’s formulas in Carlson’s modern notation. The transformations between
squares of elliptic functions can be expressed as general Möbius transformations, and a conjecture
of twelve formulas, extending a Gudermannian formula, is presented. In the second part of the
paper, we consider the corresponding formulas for hyperbolic modular functions, and show that
these Möbius transformations can be used to prove integral formulas for the inverses of hyperbolic
modular functions, which are in fact Schwarz-Christoffel transformations. Finally, we present the
simplest formulas for the Gudermann Peeta functions, variations of the Jacobi theta functions.
2010 Mathematics Subject Classification: Primary 33E05; Secondary 33D15.

Keywords: hyperbolic series expansion; Carlson’s modern notation; hyperbolic modular function;
Möbius transformation; Schwarz-Christoffel transformation; Peeta function

1. Introduction

The elliptic integrals were first classified by Euler and Legendre, and then Gauss, Jacobi and Abel
started to study their inverses, the elliptic functions. Starting in the 1830s, Gudermann published a
series of papers in German and Latin, with the aim of presenting these functions in a didactic way, and
to introduce a short notation for them. This notation, with a small modification, has survided until
the present day. Jacobi, in 1829, had found quickly converging Fourier series expansions for most of
the twelve elliptic functions, which have been put in q-hypergeometric form in the authors article [1].
As Gudermann [2] showed, there are second series expansions for the twelve elliptic functions, starting
from the imaginary period, which are not so quickly converging for all values of the variables; these
expansions were also found, without proof, by Glaisher [3]. Since these hyperbolic expansions are
virtually unknown today, we prove them again, and also put them into q-hypergeometric form in
section two. There are many series expansions for squareroots of rational functions of elliptic functions;
as a bonus we also prove some of these. However, before this, we introduce the q-hypergeometric
notation in this first section, this can also be found in the book [4].

In section three, we generalize many of Gudermanns formulas to the very general Carlson [5]
notation, where many formulas can be put into one single equation by using a clever code, and the
symmetry of these functions. This notation has been known for many years, but was only recently
published; by coincidence, the author saw it when he was asked to review this article by Carlson.
In particular, a formula with squareroots, stated without proof by Gudermann, is generalized to a
conjecture of two formulas with squareroots, or twelve elliptic function formulas, which generalize
four formulas with squareroots for trigonometric and hyperbolic functions. Gudermann was the first

Axioms 2015, 4, 235–253 196 www.mdpi.com/journal/axioms
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to point out the close relationship between trigonometric and hyperbolic functions. We also state four
Möbius transformations in Carlson’s notation, and generalize Gudermanns formulas for artanh.

In section four, we come to the hyperbolic modular functions, which have not yet appeared in
the English literature; the function SN (u) is the inverse of an hyperbolic integral, which is formed
by changing two minuses to plus in the elliptic integral of the first kind. We calculate the poles,
periods, Möbius transformations for squares, and special values of the hyperbolic modular functions.
Finally, we compute several addition formulas using a short notation for these functions.

In section five, we consider the Peeta functions, which are theta functions with imaginary
function value. We show that the hyperbolic modular functions can be expressed as quotients of Peeta
functions, and that the four Peeta functions are solutions of a certain heat equation with the variable q
as parameter.

Before presenting the q-series formulas in the next section, we present the necessary definitions.
An elliptic integral is given by

F(z) =
∫ z

0

dx
2
√
(1− x2)(1− (kx)2)

(1)

where 0 < k < 1.
Abel and Jacobi, inspired by Gauss, discovered that inverting F(z) gave the doubly periodic

elliptic function
F−1(ω) = sn(ω) (2)

In connection with elliptic functions k always denotes the modulus.

Definition 1. Let δ > 0 be an arbitrarily small number. We will always use the following branch of the
logarithm: −π + δ < Im (log q) ≤ π + δ. This defines a simply connected space in the complex plane.

The power function is defined by
qa ≡ ea log(q) (3)

Definition 2. The q-factorials and the tilde operator are defined by

〈a; q〉n ≡
⎧⎨⎩

1, n = 0;
n−1
∏

m=0
(1− qa+m) n = 1, 2, . . .

(4)

〈ã; q〉n ≡
n−1

∏
m=0

(1 + qa+m) (5)

Definition 3. The q-hypergeometric series is defined by

2φ1(â, b̂; ĉ|q; z) ≡
∞

∑
n=0

〈â; q〉n〈b̂; q〉n
〈1; q〉n〈ĉ; q〉n

zn (6)

where
â ≡ a ∨ ã (7)

It is assumed that the denominator contains no zero factors.
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By
√

z we mean the branch |z| 12 exp (i 1
2 argz). Everywhere we have y ≡ πu

2K′ . To maintain a

symmetrical form, we put according to Jacobi and Glaisher q′ ≡ e−π K
K′ . The following lemma will be

used in the proofs.

Lemma 1.1. A Fourier series for the logarithmic potential [6].

log (1− 2q2k cos (2x) + q4k) = −
∞

∑
n=1

2q2kn

n
cos (2nx) (8)

2. Hyperbolic series expansions

The following series were published for the first time by Gudermann in [2], see also [7].

Theorem 2.1.
cnudnu

snu
=

π

2K′

[
2

sinh(2y)
− 8

∞

∑
m=1

q′4m−2

1− q′4m−2 sinh ((4m− 2)y)

]
(9)

snu
cnudnu = 4π

K′k′2
∞
∑

m=1

q′2m−1

1−q′4m−2 sinh ((4m− 2)y) (10)

snudnu
cnu = π

2K′

(
tanh y + 4

∞
∑

m=1

q′m
1+(−q′)m sinh (2my)

)
(11)

cnu
snudnu = π

2K′

(
coth y + 4

∞
∑

m=1

(−q′)m

1+(−q′)m sinh (2my)
)

(12)

snucnu
dnu = π

2k2K′

[
tanh y + 4

∞
∑

m=1

(−q′)m

1+q′m sinh (2my)
]

(13)

dnu
snucnu

=
π

2K′

[
coth y + 4

∞

∑
m=1

q′m

1 + q′m sinh (2my)

]
(14)

Proof. We only prove Equation (9), the other formulas are proved similarly.

log snu = log
(

2q
1
4 sin x

k
1
2

)
+

∞
∑

n=1
log (1− 2q2n cos 2x + q4n)− log (1− 2q2n−1 cos 2x + q4n−2)

by(8)
= log

(
2q

1
4 sin x

k
1
2

)
+

∞
∑

m,n=1

2 cos 2mx(qm(2n−1)−q2mn)
m

= log
(

2q
1
4 sin x

k
1
2

)
+

∞
∑

m=1

2qm cos 2mx
m(1+qm)

(15)

The derivative with respect to u finally gives (9).

Theorem 2.2. Hyperbolic series for
√

1±t
1∓t , t ∈ {cdu, cnu, dnu} [2]. The comodulus k′ is small.

k′
√

1 + cdu
1− cdu

=
π

K′

[
1

sinh y
− 4

∞

∑
m=1

q′4m−2

1− q′2m−1 sinh ((4m− 2)y)

]
(16)

k′
√

1−cdu
1+cdu = 4π

K′
∞
∑

m=1

q′2m−1

1−q′4m−2 sinh ((2m− 1)y) (17)
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√
1−cnu
1+cnu = π

2K′

(
tanh y

2 + 4
∞
∑

m=1

q′m
1+(−q′)m sinh (my)

)
(18)

√
1+cnu
1−cnu = π

2K′

(
coth y

2 + 4
∞
∑

m=1

(−q′)m

1+(−q′)m sinh (my)
)

(19)

k
√

1−dnu
1+dnu = π

2K′

[
tanh y

2 + 4
∞
∑

m=1

(−q′)m

1+q′m sinh (my)
]

(20)

k

√
1 + dnu
1− dnu

=
π

2K′

[
coth

y
2
+ 4

∞

∑
m=1

q′m

1 + q′m sinh (my)

]
(21)

Proof. All formulas are proved with the help of the previous theorem. We first observe that

k′
sn( u

2 )

cn( u
2 )dn( u

2 )
=

√
1− cdu
1 + cdu

(22)

sn( u
2 )dn( u

2 )

cn( u
2 )

=

√
1− cnu
1 + cnu

(23)

k
sn( u

2 )cn( u
2 )

dn( u
2 )

=

√
1− dnu
1 + dnu

(24)

The Formulas (16) and (17) follow from Formula (22), the Formulas (18) and (19) follow from
Formula (23) and finally, Formulas (20) and (21) follow from Formula (24).

Theorem 2.3. The following 12 series, found by Gudermann [8] and Glaisher [3], define the second series
expansions of the corresponding elliptic functions.

[8, p.366(6), p.367(3)]snu =

π
2K′k

[
tanh y + 4

∞
∑

m=1

(−1)mq′2m

1+q′2m cosh (2my)
]

(25)

[8, p.366(4), p.368(11)]cnu =

π
2K′k

[
1

cosh y + 4
∞
∑

m=1

(−1)mq′2m−1

1+q′2m−1 cosh ((2m− 1)y)
]

(26)

[8, p.366(5), p.368(19)]dnu =

π
2K′

[
1

cosh y − 4
∞
∑

m=1

(−1)mq′2m−1

1−q′2m−1 sinh ((4m− 2)y)
]

(27)

[8, p.366(3), p.367(7)]nsu =

π
2K′

[
coth y + 4

∞
∑

m=1

q′2m

1+q′2m sinh (2my)
]

(28)

[8, p.366(7), p.368(15)]ncu =

2π
K′k′

∞
∑

m=1

q′
2m−1

2

1+q′2m−1 sinh ((2m− 1)y)
(29)

[8, p.367(11), p.368(20)]ndu =

2π
K′k′

∞
∑

m=1

(−1)m+1q′
2m−1

2

1−q′2m−1 cosh ((2m− 1)y)
(30)

[8, p.366(8), p.368(23)]scu =
2π

K′k′
∞

∑
m=1

q′ 2m−1
2

1− q′2m−1 sinh ((2m− 1)y) (31)
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[8, p.368(24)]csu =

π
2K′

[
1

sinhy − 4
∞
∑

m=1

q′2m−1

1−q′2m−1 sinh ((2m− 1)y)
]

(32)

[8, p.367(10), p.368(12)]sdu =

2π
K′kk′

∞
∑

m=1

(−1)n−1q′
2m−1

2

1+q′2m−1 sinh ((2m− 1)y)
(33)

[8, p.365(1), p.368(16)]dsu =

π
2K′

[
1

sinhy + 4
∞
∑

m=1

q′2m−1

1+q′2m−1 sinh ((2m− 1)y)
]

(34)

[8, (p.367(4)), p.367(12)]cdu =

π
2K′k

[
1 + 4

∞
∑

m=1

(−q′)m

1+q′2m sinh (2my)
]

(35)

[8, p.366(9), p.367(8)]dcu =

π
2K′

[
1 + 4

∞
∑

m=1

q′m
1+q′2m cosh (2my)

]
(36)

Proof. By addition and subtraction of the Formulas (76) and (77) we obtain Formulas (37)–(40):

dsu + csu =
π

2K′

[
2

sinh y
− 8

∞

∑
m=1

q′4m−2

1− q′4m−2 sinh ((2m− 1)y)

]
(37)

dsu− csu = 4π
K′

∞
∑

m=1

q′2m−1

1−q′4m−2 sinh ((2m− 1)y) (38)

nsu + csu = π
2K′

(
tanh y

2 + 4
∞
∑

m=1

q′m
1+(−q′)m sinh (my)

)
(39)

nsu− csu = π
2K′

(
coth y

2 + 4
∞
∑

m=1

(−q′)m

1+(−q′)m sinh (my)
)

(40)

New additions and subtractions give Formulas (34), (32) and (28). The substitution u �→ u + iK′

gives Formulas (26), (27) and (25).

Theorem 2.4. According to Heine, these 12 series can be written as follows.

snu = π
2K′k

[
tanh y− iIm

(
−2 + 22φ1(1, 0̃; 1̃|q′2;−q′2e−2y)

)]
(41)

cnu = π
2K′k

[
1

cosh y − Re
[
e−y 4q′

1+q′ 2
φ1(1, 1̃

2 ; 3̃
2 |q′2;−q′2e−2y)

]]
(42)

dnu = π
2K′
[

1
cosh y + Re

(
4q′e−y

1−q′ 2
φ1(1, 1

2 ; 3
2 | − q′2;−q′2e−2y)

)]
(43)

nsu = π
2K′
[

1
tanh y − iIm

(
−2 + 22φ1(1, 0̃; 1̃|q′2; q′2e−2y)

)]
(44)

ncu = 2π
K′k′Re

[
q′

1
2 e−y

1+q′ 2
φ1(1, 1̃

2 ; 3̃
2 |q′2; q′e−2y)

]
(45)

ndu = 2π
K′k′Re

[
e−y q′

1
2

1−q′ 2
φ1(1, 1

2 ; 3
2 |q′2;−q′e−2y)

]
(46)

scu = −2πi
K′k′ Im

[
q′

1
2 e−y

1−q′ 2
φ1(1, 1

2 ; 3
2 |q′2; q′e−2y)

]
(47)
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csu = π
2K′
[

1
sinhy − iIm

[
e−y 4q′

1−q′ 2
φ1(1, 1

2 ; 3
2 |q′2; q′2e−2y)

]]
(48)

sdu = −2πi
K′kk′ Im

[
e−y q′

1
2

1+q′ 2
φ1(1, 1̃

2 ; 3̃
2 |q′2;−q′e−2y)

]
(49)

dsu = πk′
2K′k

[
1

sinhy − iIm
[
e−y 4q′

1+q′ 2
φ1(1, 1̃

2 ; 3̃
2 |q′2; q′2e−2y)

]]
(50)

cdu = π
2K′k

[
−1 + 2Re2φ1(1, 0̃; 1̃|q′2;−q′e−2y)

]
(51)

dcu = π
2K′
[
−1 + 2Re2φ1(1, 0̃; 1̃|q′2; q′e−2y)

]
(52)

3. Some New Elliptic Function Formulas in Carlsons Notation

Bille Carlson (1924–2013) [5] managed to simplify the great number of elliptic function formulas
into a series of very general formulas. First put

{p, q, r} ≡ {c, d, n} (53)

and use Glaisher’s abbreviations for Jacobis elliptic functions. Thus q is not a q-analogue in this section.
Furthermore, we put

� (p, q) ≡ ps2 − qs2, p, q ∈ {c, d, n} (54)

which implies that

� (n, c) = − � (c, n) = 1,� (n, d) = − � (d, n) = k2

� (d, c) = − � (c, d) = k′2
(55)

The default function values are u, k. All formulas apply for u ∈ Σ (Riemann sphere). It is
well-known that

lim
k→0+

snx = lim
k→0+

sdx = sin x, lim
k→0+

cnx = cos x, lim
k→0+

dnx = 1

lim
k→0+

scx = tan x, lim
k→1−

snx = tanh x, lim
k→1−

cnx = lim
k→1−

dnx = 1
cosh x

lim
k→1−

scx = lim
k→1−

sdx = sinhx

(56)

All formulas in this section lie between these two limits, i.e., for all limits in k, we get known
trigonometric and hyperbolic function (or trivial) formulas. We first give one of Carlsons results; all
other formulas are presumably new.

Theorem 3.1. Addition formulas [5]. Put psi ≡ ps(ui, k), i = 1, 2, and similar notation for the other functions.
Then

ps(u1 + u2, k) =
ps1qs2rs2 − ps2qs1rs1

ps2
2 − ps2

1
=

ps2
1ps2

2− � (p, q) � (p, r)
ps1qs2rs2 + ps2qs1rs1

(57)

sp(u1 + u2, k) =
sp2

1 − sp2
2

sp1qp2rp2 − sp2qp1rp1
=

sp1qp2rp2 + sp2qp1rp1
1− � (p, q) � (p, r)sp2

1sp2
2

(58)

pq(u1 + u2, k) =
ps1qs2rs2 − ps2qs1rs1

qs1ps2rs2 − qs2ps1rs1
=

ps1qs1ps2qs2+ � (p, q)rs1rs2

qs2
1qs2

2+ � (p, q) � (q, r)
(59)

pq(u1 + u2, k) =
pq1sq1rq2 − pq2sq2rq1
pq2sq1rq2 − pq1sq2rq1

=
pq1pq2+ � (p, q)sq1rq1sq2rq2

1+ � (p, q) � (q, r)sq2
1sq2

2
(60)
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Remark 1. A special case of Formula (58) was first given by Gudermann 1838 [9]. Two special
cases of Formula (60) were first given by Gudermann 1838 [9].

Put psi ≡ ps(ui, k), i = 1, 2, and similar notation for the other functions.

Theorem 3.2. Formulas for elliptic functions corresponding to product formulas for trigonometric functions.

ps(u1 + u2, k) + ps(u1 − u2, k) = 2ps1qs2rs2
ps2

2−ps2
1

ps(u1 − u2, k)− ps(u1 + u2, k) = 2ps2qs1rs1
ps2

2−ps2
1

(61)

Proof. Use Formulas (57).

A special case of Formula (61) was first given by Gudermann 1838 [10].

Theorem 3.3. Formulas for elliptic functions corresponding to product formulas for trigonometric functions.

sp(u1 + u2, k) + sp(u1 − u2, k) = 2sp1qp2rp2
1−�(p,q)�(p,r)sp2

1sp2
2

sp(u1 + u2, k)− sp(u1 − u2, k) = 2sp2qp1rp1
1−�(p,q)�(p,r)sp2

1sp2
2

(62)

Proof. Use Formulas (58).

Special cases of Formula (62) were first given by Legendre [11] 1828 , Jacobi 1829 [12], Laurent [13]
and by Gudermann 1838 [10].

Theorem 3.4. Formulas for elliptic functions corresponding to product formulas for trigonometric functions.

pq(u1 + u2, k) + pq(u1 − u2, k) = 2pq1pq2
1+�(p,q)�(q,r)sq2

1sq2
2

pq(u1 + u2, k)− pq(u1 − u2, k) = 2�(p,q)sq1rq1sq2rq2
1+�(p,q)�(q,r)sq2

1sq2
2

(63)

Proof. Use formula Equation (60).

Special cases of Formula (63) were first given by Gudermann 1838 [10].

Theorem 3.5.

sp(u1 + u2, k)sp(u1 − u2, k) =
sp2

1 − sp2
2

1− � (p, q) � (p, r)sp2
1sp2

2
(64)

pq(u1 + u2, k)pq(u1 − u2, k) =
1+ � (q, p) � (p, r)sp2

1sp2
2

1+ � (p, q) � (q, r)sq2
1sq2

2
(65)

Proof. Use Formulas (61), (62), and (63).

Special cases of Formulas (64) and (65) were first given by Jacobi 1829 [12] and by Gudermann
1838 [10].

Theorem 3.6. Put fi = f (2ui), i = 1, 2. Then we have

pq(u1 + u2, k)pq(u1 − u2, k) =
pq1rq2 + rq1pq2

rq1 + rq2
(66)
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pq(u1 − u2, k)
pq(u1 + u2, k)

=
sq1 + sq2

sq1pq2 + sq2pq1
=

sq1pq2 + sq2pq1
sq1 + sq2

(67)

Special cases of Formula (66) were given by Gudermann 1838 [10]. Special cases of Formula (67)
were given by Gudermann 1838 [10].

Theorem 3.7. For p = n, Formula (68) holds unaltered. In the two other cases we only use one of the two
factors qn, rn in either numerator or denominator. This gives the six formulas

sp(u1 − u2, k)
sp(u1 + u2, k)

=
sn(2u1)qn(2u2)− sn(2u2)qn(2u1)

sn(2u1)rn(2u2) + sn(2u2)rn(2u1)
(68)

Special case of Formula (68) were given by Gudermann 1838 [10].

Theorem 3.8. Bisection
sp2(

u
2

, k) =
1

� (p, q)
1− qp
1 + rp

(69)

Special cases of the following formulas were given by Gudermann 1838 [10].

Theorem 3.9. Addition formulas [5]. Put psi ≡ ps(ui, k), i = 1, 2, and similar notation for the other functions.

1 + pq(u1 ± u2, k) =
(pq1 + pq2)(sr1 ∓ sr2)

sr1pq2 ∓ sr2pq1
(70)

1− pq(u1 ± u2, k) =
(pq1 − pq2)(sr1 ± sr2)

±sr2pq1 − sr1pq2
(71)

Half of the following conjecture was given in [2]. We have the well-known formulas

1
2

√
1 + cos x
1− cos x

+
1
2

√
1− cos x
1 + cos x

=
1

sin x
(72)

1
2

√
1 + cos x
1− cos x

− 1
2

√
1− cos x
1 + cos x

= cot x (73)

1
2

√
1 + cosh x
cosh x− 1

− 1
2

√
cosh x− 1
1 + cosh x

=
1

sinh x
(74)

1
2

√
1 + cosh x
cosh x− 1

+
1
2

√
cosh x− 1
1 + cosh x

= coth x (75)

Conjecture 3.10. We have the twelve formulas√
� (p, q)

2

√
pq + 1
pq− 1

+

√
� (p, q)

2

√
pq− 1
pq + 1

= f (76)

√
� (p, q)

2

√
pq + 1
pq− 1

−
√
� (p, q)

2

√
pq− 1
pq + 1

= g (77)

where f , g ∈ {qs, ps}. We choose the right hand side that has the correct limits for limk→0+ and
limk→1− in Formulas (72)–(75). Ten of the formulas have one limit among these four formulas, and the
remaining two (with ncu) have two limits.
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To be able to compute the inverses of the elliptic functions, we must first prove a number of
Möbius transformations between squares of elliptic functions which govern their transformations.
Most of these can be summarized in the formulas

pq2 =
� (p, r) + rs2

� (q, r) + rs2 (78)

sr2 =
pq2 − 1

� (p, r)− � (q, r)pq2 (79)

sp2 =
1− pq2

� (q, p)pq2 (80)

pq2 =
� (p, r)qr2+ � (q, p)

� (q, r)qr2 (81)

Formula (81) is its own inverse. With these formulas we can prove integral formulas for the
twelve inverse elliptic functions like in [14] and [15]. The integral formulas for the inverses of the
elliptic functions are Schwarz-Christoffel mappings from the periodic rectangle of each elliptic function.
The Formulas (78) to (81) do not map each periodic rectangle to the next, but if we take all rectangles
in the vicinity of the origin and agree to start each equation solving with the prerequisite �(z) > 0,
the formulas give correct values on the Riemann sphere.

We conclude with a few formulas with the function artanh(x), which again generalize
Gudermanns results.

Theorem 3.11. We have the eighteen formulas

log

√
1 + pq(u1 ± u2, k)
1− pq(u1 ± u2, k)

= artanh
(

pq2
pq1

)
± artanh

(
sr2

sr1

)
(82)

log

√
1 + pq(u1 − u2, k)
1 + pq(u1 + u2, k)

= artanh
(

sr2

sr1

)
− artanh

(
sr2pq1
sr1pq2

)
(83)

log

√
1− pq(u1 + u2, k)
1− pq(u1 − u2, k)

= artanh
(

sr2

sr1

)
+ artanh

(
sr2pq1
sr1pq2

)
(84)

Proof. Use Formulas (70) and (71).

Special cases were given by Gudermann 1838 [10].

Theorem 3.12. Assume that p 	= n and q = n. Then we have the two formulas

log

√
sp(a + b)
sp(a− b)

=
1
2

artanh
(

sn(2b)
sn(2a)

)
+

1
2

artanh
(

sr(2b)
sr(2a)

)
(85)

Proof. Use Formula (68).

Special cases of Formula (85) were given by Gudermann 1838 [10].
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Theorem 3.13. We have the six formulas

log

√
pq(a + b)
pq(a− b)

=
1
2

artanh
(

sq(2b)pq(2a)
sq(2a)pq(2b)

)
− 1

2
artanh

(
sq(2b)
sq(2a)

)
(86)

Proof. Use Formula (67).

Special cases of Formula (86) were given by Gudermann 1838 [10].

4. Hyperbolic Modular Functions

We will again consider two inverse functions.

Definition 4. Let 0 < k < 1 and consider the following hyperbolic integral.

u ≡ F(x) ≡
∫ x

0

dt√
1 + t2

√
1 + k2t2

(87)

Now put x = SN (u) ≡ F−1(u), the hyperbolic modular sine for the module k. Then we further define

CN (u) ≡
√

1 + x2 (88)

the hyperbolic modular cosine for the module k

SC(u) ≡ x√
1 + x2

(89)

the hyperbolic modular tangent for the module k

DN (u) ≡
√

1 + k2x2 (90)

the hyperbolic difference for the module k.

Definition 5. Just like for the elliptic functions, we use the Glaischer notation as follows:

NSu ≡ 1
SN u

,NCu ≡ 1
CN u

,NDu ≡ 1
DN u

, CDu ≡ CN u
DN u

, etc. (91)

We find that

lim
k→0+

SN x = lim
k→0+

SDx = sinhx, lim
k→0+

SN x = cosh x, lim
k→0+

DN x = 1

lim
k→0+

SCx = tanh x lim
k→1−

SN x = tan x

lim
k→1−

CN x = lim
k→1−

DN x = 1
cos x , lim

k→1−
SCx = lim

k→1−
SDx = sin x

(92)

Definition 6. We put
{P ,Q,R} ≡ {C,D,N} (93)

Furthermore, we put
� (P ,Q) ≡ PS2 −QS2 (94)
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Definition 7. The Gudermannian function l(x) relates the circular functions and hyperbolic functions
without using complex numbers. It is given by

l(x) ≡ ∫ x
0

dt
cosh t = arcsin(tanh x) = arctan(sinhx)

= 2 arctan
[
tanh

(
1
2 x
)]

= 2 arctan (ex)− 1
2 π

(95)

The inverse function or the Mercator function is given by

L(x) ≡ ∫ x
0

dt
cos t = log 1+sin x

cos x = log
√

1+sin x
1−sin x

= log[tan x + sec x] = log
[
tan
(

1
4 π + 1

2 x
)]

= artanh (sin x) = arsinh (tan x)

(96)

The function L(x) is the inverse of l(x). Legendre calculated tables for this function.
Since Lϕ > ϕ it follows that [9]

sinhu < SN u < sinhLu (97)

We also find that
cosh u < CN u < coshLu, tanh u < SCu < tanhLu (98)

The hyperbolic elliptic functions can also be transformed to the hyperbolic potential functions by
putting

SN u = sinhψ, CN u = cosh ψandSCu = tanh ψ (99)

The arc ψ is is called the hyperbolic amplitude of the argument u for the module kt; or ψ = Amu, and vice
versa u = ArgAm(ψ).

Next we have [9]
DSN u = CN uDN u, DCN u = SN uDN u (100)

DSCu =
DN u
CN 2u

, DDN u = k2SN uCN u (101)

Below is a list of the inverse of the four hyperbolic modular functions:

When t = SN u, so u = ArgSN t;
When t = CN u, so u = ArgCN t;
When t = SCu, so u = ArgSCt;

When t = DN u, so u = ArgDN t;

We have
DAmu = DN u (102)

Formula (87) is equivalent to

ArgAm(t) =
∫ arsinh t

0

dψ√
1 + k2 sin h2(ψ)

(103)

The poles and periods are shown in the following table:
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half period polesiK polesK′ + iK polesK′ poles0 periods

iK SC ND DN CS 2iK, 4K′ +
4iK, 4K′

K′ + iK NC SD CN DS 4iK, 2K′ +
2iK, 4K′

K′ DC CD SN NS 4iK, 4K′ +
4iK, 2K′

We have the following special values for the twelve hyperbolic modular functions:

u SN CN DN SC SD ND CD CS DS NC DC NS
0 0 1 1 0 0 1 1 ∞ ∞ 1 1 ∞

iK i 0 k′ ∞ i
k′

1
k′ 0 0 −ik′ ∞ ∞ −i

K′ ∞ ∞ ∞ 1 1
k 0 1

k 1 k 0 k 0

2K′ 0 −1 −1 0 0 −1 1 ∞ ∞ −1 1 ∞

2K′ +
2iK

0 −1 −1 0 0 −1 −1 ∞ ∞ −1 −1 ∞

2iK 0 −1 1 0 0 1 −1 ∞ ∞ −1 −1 ∞

K′ +
iK

i
k

ik′
k 0 1

k′ ∞ ∞ ∞ k′ 0 −ik
k′ 0 −ik

Just like the trigonometric and hyperbolic potential functions can be transformed to each other by
multiplication by i, the trigonometric and hyperbolic modular functions can also be mapped to each
other with utter avoidance of imaginary forms [9]. These transformations look like this (we use the
Glaisher notation and ′ means the module k′):{

SN ui = isnu, CN ui = cnu
SCui = iscu,DN ui = dnu

(104)

{
snui = iSN u, cnui = CN u
scui = iSCu, dnui = DN u

(105)

Then we have by the Jacobi imaginary transformation [12], compare with [16].⎧⎪⎪⎪⎨⎪⎪⎪⎩
SN u = sc′u
CN u = nc′u
SCu = sn′u
DN u = dc′u

(106)

This implies
Amui = iamu, amui = iAmu (107)

To be able to compute the inverses of the hyperbolic modular functions, we must first prove a large
number < 132 of Möbius transformations between squares of hyperbolic modular functions which
govern their transformations. Most of these can be summarized in the formulas

PQ2 =
� (R,P) +RS2

� (R,Q) +RS2 (108)

SR2 =
PQ2 − 1

� (R,P)− � (R,Q)PQ2 (109)
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SP2 =
1−PQ2

� (P ,Q)PQ2 (110)

PQ2 =
� (P ,R)QR2+ � (Q,P)

� (Q,R)QR2 (111)

Formulas (108) and (109) are inverse to each other. Formula (111) is its own inverse. It is the same
as the previous Formula (81).

We can now easily prove the following integral formulas:

SN−1(x) =
∫ x

0

dt√
1 + t2

√
1 + k2t2

, 0 < x ≤ ∞ (112)

CN−1(x) =
∫ x

1

dt√
t2 − 1

√
k′2 + k2t2

, ∞ ≥ x > 1 (113)

SC−1(x) =
∫ x

0

dt√
1− t2

√
1− k′2t2

, 0 < x ≤ 1 (114)

DN−1(x) =
∫ x

1

dt√
t2 − 1

√
t2 − k′2

, ∞ ≥ x > 1 (115)

SD−1(x) =
∫ x

0

dt√
1 + k′2t2

√
1− k2t2

,
1
k
≥ x > 0 (116)

DC−1(x) =
∫ 1

x

dt√
t2 − k2

√
1− t2

, k ≤ x < 1 (117)

DS−1(x) =
∫ ∞

x

dt√
k′2 + t2

√
t2 − k2

, x ≥ k > 0 (118)

CD−1(x) =
∫ x

1

dt√
t2 − 1

√
1− k2t2

,
1
k
≤ x < 1 (119)

CS−1(x) =
∫ 1

x

dt√
1− t2

√
k′2 − t2

,−∞ ≤ x < 1 (120)

NS−1(x) =
∫ ∞

x

dt√
1 + t2

√
k2 + t2

, ∞ > x ≥ 0 (121)

NC−1(x) =
∫ 1

x

dt√
1− t2

√
k2 + k′2t2

, 0 ≤ x < 1 (122)

ND−1(x) =
∫ 1

x

dt√
1− t2

√
1− k′2t2

, 0 ≤ x < 1 (123)

Formulas (112)–(115) can be found in [9].
The addition formulas for hyperbolic modular functions are

Theorem 4.1. Put PS i ≡ PS(ui, k), i = 1, 2, and similar notation for the other functions.

PS(u1 + u2, k) =
PS1QS2RS2 −PS2QS1RS1

PS2
2 −PS2

1
=

� (P ,Q) � (P ,R)−PS2
1PS2

2
PS1QS2RS2 + PS2QS1RS1

(124)

SP(u1 + u2, k) = SP2
1−SP2

2SP1QP2RP2−SP2QP1RP1

= SP1QP2RP2+SP2QP1RP1
1−�(P ,Q)�(P ,R)SP2

1SP2
2

(125)

PQ(u1 + u2, k) = PS1QS2RS2−PS2QS1RS1QS1PS ps2RS2−QS2PS1RS1

= PS1QS1PS2QS2−�(P ,Q)RS1RS2
QS2

1QS2
2+�(P ,Q)�(Q,R)

(126)
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PQ(u1 + u2, k) = PQ1SQ1RQ2−PQ2SQ2RQ1PQ2SQ1RQ2−PQ1SQ2RQ1

= PQ1PQ2−�(P ,Q)SQ1RQ1SQ2RQ2
1+�(P ,Q)�(Q,R)SQ2

1SQ2
2

(127)

Proof. Use Formula (105).

Special cases of Formulas (124) to (127) were given in [17]. Formulas (124) and (125) are inverse to
each other.

Theorem 4.2. Addition formulas for complex arguments. Put ps1 ≡ ps(u1, k),PS ≡ PS(u2, k), and similar
notation for the other functions.

ps(u1 + iu2, k) =
ps1QSRS − iPSqs1rs1

PS2 + ps2
1

=
PS2ps2

2+ � (p, q) � (p, r)
ps1QSRS + iPSqs1rs1

(128)

sp(u1 + iu2, k) =
SP2 + sp2

1
sp1QPRP − iSPqp1rp1

=
sp1QPRP + iSPqp1rp1

1+ � (p, q) � (p, r)sp2
1SP2 (129)

pq(u1 + iu2, k) =
ps1QSRS − iPSqs1rs1

qs1PSRS − iQSps1rs1
=

ps1qs1PSQS + i � (p, q)rs1RS
qs2

1QS2− � (p, q) � (q, r)
(130)

pq(u1 + iu2, k) =
pq1sq1RQ− iPQSQrq1
PQRQsq1 − ipq1SQrq1

=
pq1PQ+ i � (p, q)sq1rq1SQRQ

1− � (p, q) � (q, r)sq2
1SQ2 (131)

Proof. Use Formula (105).

Special cases of Formulas (128) to (131) were first given by Gudermann 1838 [9].

5. The Peeta Functions

The Peeta functions were first introduced by Gudermann [18], to be able to express the hyperbolic
modular functions by theta functions in a manner similar to the elliptic functions.

Eagle [7] has also spoken of the great importance of these functions.
The four Peeta functions are defined as follows:

Definition 8.

ψ1(z, q) ≡ −iθ1(iz, q); ψ2(z, q) ≡ θ2(iz, q); ψ3(z, q) ≡ θ3(iz, q); ψ4(z, q) ≡ θ4(iz, q) (132)

This is equivalent to

ψ1(z, q) ≡ 2
∞
∑

n=0
(−1)nQE((n + 1

2 )
2
) sinh (2n + 1)z

ψ2(z, q) ≡ 2
∞
∑

n=0
QE((n + 1

2 )
2
) cosh (2n + 1)z

ψ3(z, q) ≡ 1 + 2
∞
∑

n=1
QE(n2) cosh (2nz)

ψ4(z, q) ≡ 1 + 2
∞
∑

n=1
(−1)nQE(n2) cosh (2nz)

(133)

where QE(x) ≡ qx, q ≡ exp(πit), t ∈ U .
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Another definition is

ψ1(z, q) = 2q
1
4 sinh (x)

∞
∏

k=1
(1− q2k)(1− 2q2k cosh (2z) + q4k)

ψ2(z, q) = 2q
1
4 cosh (z)

∞
∏

k=1
(1− q2k)(1 + 2q2k cosh (2z) + q4k)

ψ3(z, q) =
∞
∏

k=1
(1− q2k)(1 + 2q2k−1 cosh (2z) + q4k−2)

ψ4(z, q) =
∞
∏

k=1
(1− q2k)(1− 2q2k−1 cosh (2z) + q4k−2)

(134)

This implies [18]

log ψ1(z, q) = f1(q) + log sinh (z)− ∞
∑

m=1

2q2m

m(1−q2m)
cosh (2mz)

log ψ2(z, q) = f2(q) + log cosh (z) +
∞
∑

m=1

2(−1)m+1q2m

m(1−q2m)
cosh (2mz)

log ψ3(z, q) = f3(q) +
∞
∑

m=1

2(−1)m+1qm

m(1−q2m)
cosh (2mz)

log ψ4(z, q) = f4(q)−
∞
∑

m=1

2qm

m(1−q2m)
cosh (2mz)

(135)

The hyperbolic modular functions can be expressed in terms of Peeta functions as follows [18]:

Theorem 5.1.
SN (u) = k− 1

2
ψ1(z,q)
ψ4(z,q)

CN (u) =
(

k′
k

) 1
2 ψ2(z,q)

ψ4(z,q)

DN (u) = k′ 12 ψ3(z,q)
ψ4(z,q)

(136)

The Peeta functions have the following periodic properties:

y = z z + 1
2 log q z + log q z + πi

2 z + πi

ψ1(y) ψ1(z) q− 1
4 ezψ4(z) −q−1e2zψ1(z) −iψ2(z) −ψ1(z)

ψ2(y) ψ2(z) q− 1
4 ezψ3(z) q−1e2zψ2(z) −iψ1(z) −ψ2(z)

ψ3(y) ψ3(z) q− 1
4 ezψ2(z) q−1e2zψ3(z) ψ4(z) ψ3(z)

ψ4(y) ψ4(z) −q− 1
4 ezψ1(z) −q−1e2zψ4(z) ψ3(z) ψ4(z)

Theorem 5.2. The Peeta functions have the following zeros:

ψ1(mπi + n log q, q) = 0
ψ2(

πi
2 + mπi + n log q, q) = 0

ψ3(
πi
2 + 1

2 log q + mπi + n log q, q) = 0
ψ4(

1
2 log q + mπi + n log q, q) = 0

(137)

where m, n ∈ Z.

Theorem 5.3. The four Peeta functions satisfy the following heat equation

∂2ψi(z, q)
∂z2 = 4q

∂ψi(z, q)
∂q

, i = 1, . . . , 4 (138)
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Corollary 5.4. Generalization of heat equation to n variables. Put

�N≡
N

∑
i=1

∂2

∂x2
i

, u(x1, . . . , xN , q) ≡
N

∏
i=1

ψk(i)(xi, q), k(i) ∈ {1, . . . , 4} (139)

Then
�N u = 4q

∂u
∂q

(140)

Proof. Use [19].

By scaling in q, we can transform Formula (140) to other heat equations.
Example 1. Heat transfer in friction-free (non-viscous) fluid flow.

a2(
∂2u
∂x2 +

∂2u
∂y2 ) =

∂u
∂t

(141)

Several formulas for theta functions, like logarithmic derivative, immediately transfer to
Peeta functions.
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Abstract: Motivated by the pathway model of Mathai introduced in 2005 [Linear Algebra and Its
Applications, 396, 317–328] we extend the standard kinetic equations. Connection of the extended
kinetic equation with fractional calculus operator is established. The solution of the general form of
the fractional kinetic equation is obtained through Laplace transform. The results for the standard
kinetic equation are obtained as the limiting case.
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1. Introduction

The chemical evolution of a star like sun could be effectively explained by kinetic equations.
The kinetic equations explain the rate of change of chemical composition of a star in terms of the
thermonuclear reaction rates for destruction and production of the species involved. An arbitrary
reaction is characterized by the rate of change dN

dt of a time dependent quantity N(t) between the
destruction rate d and production rate p. Here the destruction or production at time t depends not only
on N(t) but also on the past history N(τ), τ < t of the variable N. This may be formally represented
by following [1,2]

dN(t)
dt

= −d(Nt) + p(Nt) (1)

where Nt denotes the function defined by Nt(t∗) = N(t− t∗), t∗ > 0. It should be noted that d and
p are functionals and Equation (1) represents a functional-differential equation. If we consider a
simplified form of Equation (1) we could consider the decay rate of a radio-active substance which is
given by a homogeneous differential equation

dN
dt

= −λN (2)

where N is the number density of the radio-active substance and λ is the decay constant. The solution
of this differential equation with initial condition N = N0 at t = 0 is

N(t) = N0e−λt (3)

If we consider a more general form of the differential Equation (2) for the decay rate of a
radio-active substance as

dN
dt

= −λNα (4)

Axioms 2015, 4, 412–422 213 www.mdpi.com/journal/axioms
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we have the solution of the form

Nα(t) = N0[1 + a(α− 1)t]−
1

α−1 (5)

where a is a constant. One may get the solution in Equation (3) from Equation (5) as α→ 1 . These types
of problems arise in many experimental situations where one needs to switch from one family of
functions to another family. In 2005, Mathai [3,4] introduced the pathway model by which one can
switch among three different families of functions, say, type-1 beta families, type-2 beta families
and gamma families. We get three different functional forms by varying the pathway parameter α.
The pathway model in the real scalar case is defined as

f (x) =

⎧⎪⎨⎪⎩
c1|x|γ[1− a(1− α)|x|δ] η

1−α , 1− a(1− α)|x|δ > 0, α < 1
c2|x|γ[1 + a(α− 1)|x|δ]− η

α−1 ,−∞ < x < ∞, α > 1

c3|x|γe−aη|x|δ ,−∞ < x < ∞, α→ 1

(6)

where a > 0, δ > 0, γ > 0, η > 0. c1, c2 and c3 are the normalizing constants when we consider the
functions as statistical densities. The three different functional forms are respectively generalized
type-1 beta, generalized type-2 beta and generalized gamma forms. By writing 1− α = −(α− 1),
the generalized type-2 beta form can be obtained from generalized type-1 beta form. Both generalized
type-1 beta form and generalized type-2 beta form reduce to generalized gamma form as α→ 1 .

Due to this switching property, the pathway model has been widely used in many areas. In this
paper, we use the pathway model to extend kinetic equations. The present paper is organized as
follows: In the next section we discuss the extended kinetic equation and its solution with a brief
description of the extended reaction rate probability integral. Connection of the extended kinetic
equation with fractional calculus is examined in Section 3. In Section 4 we try to solve fractional kinetic
equations and their various generalizations. Concluding remarks are given in Section 5.

2. Extended Kinetic Equations

The following discussion is based on [1,2]. If we consider a production and destruction of nuclei
in the proton-proton chain reaction, we can describe it by the equation

dNi
dt

= −∑
j

Ni Nj〈σv〉ij + ∑
k,l 	=i

Nk Nl〈σv〉kl (7)

where Ni is the number density of the species i over time. Here the summation is taken over all
reactions, productions or destructions of the species i. The number density Ni of the species i can be
expressed by the relation Ni = ρNA

Xi
Ai

where ρ is the mass density, Xi is the mass abundance, NA is
the Avogadro number and Ai is the mass of species i in mass units. The mean life time τj(i) of species i
for destruction by species j is given by the relation [2]

λj(i) =
1

τj(i)
= Nj〈σv〉ij = ρNA

Xj

Aj
〈σv〉ij (8)

where λj(i) is the decay rate of i for interaction with j. 〈σv〉ij denotes the reaction probability for an
interaction involving species i and j defined as

〈σv〉ij =
√

2
μ

∫ ∞

0
E

1
2 f (E)σ(E)dE (9)
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where μ is the reduced mass of the particles given by μ = m1m2
m1+m2

, E = μv2

2 is the kinetic energy of the
particles in the center of mass system. Consider the cross section σ(E) for low-energy non-resonant
reactions given by

σ(E) =
2

∑
ν=0

S(ν)(0)
ν!

Eν−1e
−2π(

μ
2 )

1
2

Zi Zje2

�E
1
2

(
E
B
� 1

)
(10)

where Zi and Zj are the atomic numbers of the nuclei i and j, e is the quantum of electric charge, h̄ is
the Planck’s quantum of action, B the nuclear barrier height, S(E) is the cross-section factor which
is a slowly varying function of energy over a limited energy range and which can be characterized
depending on the nuclear reaction. The density function of the relative velocities of the nuclei for a
non-degenerate and non-relativistic gas is assumed to be Maxwell-Boltzmann given as

fMBD(E)dE = 2π

(
1

πkT

) 3
2
e−

E
kT
√

EdE (11)

By substituting Equation (11) and Equation (10) in Equation (9) the reaction probability 〈σv〉ij is
obtained as

〈σv〉ij =
(

8
πμ

) 1
2
(

1
kT

) 3
2 2

∑
ν=0

S(ν)(0)
ν!

∫ ∞

0
Eνe
− E

kT−2π(
μ
2 )

1
2

Zi Zje2

�E
1
2 dE (12)

If a deviation from the thermodynamic equilibrium with regard to their velocities is considered
then it results in a deviation from the Maxwell-Boltzmann velocity. In this context, we consider a
more general density function than Maxwell-Boltzmann density function by using the pathway model
defined in Equation (6). The pathway energy density function has the form

fPD(E)dE =
2π(α− 1)

3
2

(πkT)
3
2

Γ
(

1
α−1

)
Γ
(

1
α−1 − 3

2

)√E
[

1 + (α− 1)
E

kT

]− 1
α−1

dE (13)

for α > 1, 1
α−1 − 3

2 > 0. Replacing the Maxwell-Boltzmann density Function Equation (11) by the
pathway energy density Equation (13), we get the extended thermonuclear reaction probability integral
in the form

〈σv〉ij=
(

8
πμ

) 1
2
(

α− 1
kT

) 3
2 Γ

(
1

α−1

)
Γ
(

1
α−1 − 3

2

) 2

∑
ν=0

S(ν)(0)
ν!

× ∫ ∞
0 Eν

[
1 + (α− 1) E

kT

]− 1
α−1 exp

[
−2π

( μ
2
) 1

2 ZiZje2

�E
1
2

]
dE (14)

Putting y = E
kT and x = 2π

( μ
2kT
) 1

2 ZiZje2

�
we get

〈σv〉ij =
(

8
πμ

) 1
2
(α− 1)

3
2

Γ
(

1
α−1

)
Γ
(

1
α−1 − 3

2

) 2

∑
ν=0

(
1

kT

)−ν+ 1
2 S(ν)(0)

ν!
I1α

(
ν, 1, x,

1
2

)
(15)

where

I1α

(
ν, 1, x,

1
2

)
=
∫ ∞

0
yν[1 + (α− 1)y]−

1
α−1 e−xy−

1
2 dy (16)

Following [5], by taking the Mellin transform of Equation (16) and simplifying, we get

MI1α
(s) =

Γ(s)Γ
(
ν + 1 + s

2
)
Γ
(

1
α−1 − ν− 1− s

2

)
(α− 1)ν+1+ s

2 Γ
(

1
α−1

) (17)
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where �(s) > 0,�(ν + 1 + s
2
)
> 0,�

(
1

α−1 − ν− 1− s
2

)
> 0. By taking the inverse Mellin transform

we get,

I1α

(
ν, 1, x,

1
2

)
=

1

(α− 1)ν+1Γ
(

1
α−1

) 1
2πi

∫
L

Γ(s)Γ
(

ν + 1 +
s
2

)

×Γ
(

1
α−1 − ν− 1− s

2

)[
x(α− 1)

1
2
]−s

ds (18)

where L is a suitable contour which separates the poles of Γ(s) and Γ
(
ν + 1 + s

2
)

from the poles of

Γ
(

1
α−1 − ν− 1− s

2

)
. Putting s = 2s′ and using Legendre’s duplication formula [6]

Γ(2z) = π−
1
2 22z−1Γ(z)Γ

(
z +

1
2

)
, z ∈ C (19)

we get

I1α

(
ν, 1, x,

1
2

)
=

π− 1
2

(α− 1)ν+1Γ
(

1
α−1

) 1
2πi

∫
L′

Γ
(
s′
)
Γ
(

1
2
+ s′
)

Γ
(
ν + 1 + s′

)

×Γ
(

1
α−1 − ν− 1− s′

)[
(α−1)x2

4

]−s′
ds′ (20)

=
π− 1

2

(α− 1)ν+1Γ
(

1
α−1

)G3,1
1,3

(
(α− 1)x2

4
|2−

1
α−1+ν

0, 1
2 ,ν+1

)
(21)

where G3,1
1,3(.) is the G-function originally introduced by C.S. Meijer in 1936, see [5,7,8]. The G3,1

1,3(.)

used in Equation (21) converges for all (α−1)x2

4 , x 	= 0. The contour line L′ appearing in the integral in

Equation (20) is c− i∞ to c + i∞ for 0 < c < 1
α−1 − ν− 1 so that all the poles of Γ(s′), Γ

(
1
2 + s′

)
and

Γ(ν + 1 + s′) lie to the left and all the poles of Γ
(

1
α−1 − ν− 1− s′

)
lie to the right. G3,1

1,3(.) is evaluated

as the sum of the residues at the poles of Γ(s′), Γ
(

1
2 + s′

)
and Γ(ν + 1 + s′).

In most of the cases the nuclear factor S(ν)(0) used in Equation (15) is approximately constant
across the fusion window. Hence taking S(ν)(0) = 0 for ν = 1 and ν = 2 and taking S0(0) = S(0)
we get

〈σv〉ij =
(

8(α− 1)
μkT

) 1
2 1

πΓ
(

1
α−1 − 3

2

)S(0)G3,1
1,3

(
(α− 1)x2

4
|2−

1
α−1

0, 1
2 ,1

)
(22)

The following derivations are adapted from [9]. From the Mellin-Barnes representation of

the G-function, G3,1
1,3

(
(α−1)x2

4

)
appearing in Equation (20) with ν = 0, the poles of Γ(s′) are

s′ = 0,−1,−2, . . . ; the poles of Γ
(

1
2 + s′

)
are s′ = − 1

2 ,− 3
2 ,− 5

2 , . . . ; and the poles of Γ(1 + s′) are

s′ = −1,−2,−3, . . .. Here the poles of Γ(s′) and Γ(1 + s′) will coincide at all points except at
s′ = 0 and hence the pole s′ = 0 is a pole of order 1, s′ = − 1

2 ,− 3
2 ,− 5

2 , . . . are each of order 1
and s′ = −1,−2,−3, . . . are each of order 2. The sum of residues corresponding to the pole s′ = 0 is
given by

R1 =
√

πΓ
(

1
α− 1

− 1
)

(23)

The sum of the residues corresponding to the poles s′ = − 1
2 ,− 3

2 ,− 5
2 , . . . is

R2=
∞

∑
r=0

(−1)r

r!
Γ
(
−1

2
− r
)

Γ
(

1
2
− r
)

Γ
(

1
α− 1

− 1
2
+ r
)[

(α− 1)x2

4

]− 1
2+r
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= −2πΓ
(

1
α−1 − 1

2

)[
(α−1)x2

4

] 1
2

1F2

(
1

α−1 − 1
2 ; 3

2 , 1
2 ;− (α−1)x2

4

)
(24)

where 1F2 is the hypergeometric function defined by

1F2(a; b, c; x) =
∞

∑
r=0

(a)r
(b)r(c)r

xr

r!

where

(a)r =

{
a(a + 1) · · · (a + r− 1) ifr ≥ 1, a 	= 0

1 ifr = 0

The sum of the residues corresponding to poles s′ = −1,−2,−3, . . . . of order 2 can be obtained as
follows:

R3 =
∞
∑

r=0
lim

s′→−1−r
∂

∂s′
[
(s′ + 1 + r)2Γ(1 + s′)Γ(s′)Γ

(
1
2 + s′

)
×Γ
(

1
α−1 − 1− s′

)(
(α−1)x2

4

)−s′]
=

∞
∑

r=0
lim

s′→−1−r
∂

∂s′

[
Γ2(2+s′+r)Γ( 1

2+s′)Γ( 1
α−1−1−s′)

(s′+r)2(s′+r−1)2···(s′+1)2s′

(
(α−1)x2

4

)−s′]

=
∞

∑
r=0

lim
s′→−1−r

∂

∂s′Φ
(
s′
)

(25)

where

Φ
(
s′
)
=

Γ2(2 + s′ + r)Γ
(

1
2 + s′

)
Γ
(

1
α−1 − 1− s′

)
(s′ + r)2(s′ + r− 1)2 · · · (s′ + 1)2s′

(
(α− 1)x2

4

)−s′

We have
∂

∂s′Φ
(
s′
)
= Φ

(
s′
) ∂

∂s′ [ln
(
Φ
(
s′
)]

ln Φ(s′) = 2 ln[Γ(2 + s′ + r)] + ln
[
Γ
(

1
2 + s′

)]
+ ln

[
Γ
(

1
α−1 − 1− s′

)]
−s′ ln

(
(α−1)x2

4

)
− 2 ln(s′ + r)− · · · − 2 ln(s′ + 1)− ln(s′)

∂
∂s′ [ln (Φ(s′)] = 2Ψ(2 + s′ + r) + Ψ

(
1
2 + s′

)
+ Ψ

(
1

α−1 − 1− s′
)

− ln
(
(α−1)x2

4

)
− 2

s′+r − 2
s′+r−1 − · · · − 2

s′+1 − 1
s′

lim
s′→−1−r

{
∂

∂s′ ln
[
Φ
(
s′
)]}

= Ψ
(
−1

2
− r
)
+ Ψ

(
1

α− 1
+ r
)
+ Ψ(1 + r)

+Ψ(2 + r)− ln
(
(α−1)x2

4

)
(26)

where Ψ(z) is a Psi function or digamma function (see Mathai [5]) and Ψ(1) = −γ, γ = 0.5772156649 . . .
is Euler’s constant. Now

lim
s′→−1−r

Φ(s) =
(−1)1+r2

√
πΓ
(

1
α−1 + r

)
( 3

2
)

rr!(1 + r)!

(
(α− 1)x2

4

)1+r

(27)

Then by using Equation (25)–Equation (27) we get,

R3=
∞

∑
r=0

(−1)1+r2
√

πΓ
(

1
α−1 + r

)
( 3

2
)

rr!(1 + r)!

(
(α− 1)x2

4

)1+r

×
[
Ψ
(
− 1

2 − r
)
+ Ψ

(
1

α−1 + r
)
+ Ψ(1 + r) + Ψ(2 + r)− ln

(
(α−1)x2

4

)]
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=
(

2
√

π(α−1)x2

4

) ∞
∑

r=0

(
(α−1)x2

4

)r[
Ar − ln

(
(α−1)x2

4

)]
Br (28)

where

Ar = Ψ
(
−1

2
− r
)
+ Ψ

(
1

α− 1
+ r
)
+ Ψ(1 + r) + Ψ(2 + r) (29)

and

Br =
(−1)rΓ

(
1

α−1 + r
)

( 3
2
)

rr!(1 + r)!
(30)

Thus the series representation for the reaction probability is

〈σv〉ij=
[

8(α− 1)
μkT

] 1
2 1

Γ
(

1
α−1 − 3

2

)S(0)
{

1√
π

Γ
(

1
α− 1

− 1
)

−2Γ
(

1
α−1 − 1

2

)[
(α−1)x2

4

] 1
2

1F2

(
1

α−1 − 1
2 ; 3

2 , 1
2 ;− (α−1)x2

4

)
+ 2(α−1)x2

4
√

π

∞
∑

r=0

(
(α−1)x2

4

)r[
Ar − ln

(
(α−1)x2

4

)]
Br

}
(31)

where Ar and Br are as defined in Equations (29) and (30). For detailed theory of extended reaction
rates and its series representations see Haubold and Kumar [10,11], Kumar and Haubold [12].

The following discussion is adapted from [1]. The solution of the differential Equation (4) with
initial condition Ni(t) = 1 when t = 0 is

Nα
i (t)dt = [1 + (α− 1)cit]

− 1
α−1 dt (32)

When ci in Equation (32) is a constant, the total number of reactions in the time interval 0 ≤ t ≤ t0 is
obtained as∫ t0

0
Nα

i (t)dt =
∫ t0

0
[1 + (α− 1)cit]

− 1
α−1 dt =

1
ci(2− α)

{
[1 + (α− 1)cit0]

− 2−α
α−1 − 1

}
(33)

Now [1 + (α− 1)cit0]
− 2−α

α−1 − 1 is the probability that the lifetime of species i is≤ t0 when t follows
a distribution with density function

f (t) = ci(2− α)[1 + (α− 1)cit]
− 1

α−1 , 0 ≤ t < ∞, ci > 0, 1 < α < 2 (34)

or we have

Ni(t) =
f (t)

ci(2− α)
(35)

Equation (34) is the Tsallis statistics for α > 1, see [13,14] which can also be seen as a particular case of
the pathway model Equation (6) for α > 1. If ci in Equation (32) is a function of time, say ci(t), then it
should be replaced by

∫
ci(t)dt. When ci = ci(t) = dit where di > 0 is independent of t, then in this

case
∫

ci(t)dt = dit2

2 , then

Ni(t) =
Γ
(

1
α−1 − 1

2

)
Γ
(

1
α−1

) [
π

2di(α− 1)

] 1
2

g(t) (36)

where

g(t) =
Γ
(

1
α−1

)
Γ
(

1
α−1 − 1

2

)[2di(α− 1)
π

] 1
2
[1 + (α− 1)

dit2

2
]
− 1

α−1

, 0 ≤ t < ∞, di > 0, 1 < α < 2 (37)
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The density in Equation (34) is the lifetime density of the destruction of the species i, with the
expected mean value

E(t) =
1

ci(3− 2α)
(38)

where E(·) is the expected value of (·). The mean value of the lifetime density function given in
Equation (37) is

E(t) =
Γ
(

1
α−1

)
Γ
(

1
α−1 − 1

2

)[2(α− 1)
πdi

] 1
2 1

2− α
(39)

Now as α→ 1 we get the expected mean lifetime

E(t) =
(

2
πdi

) 1
2

(40)

of the lifetime density function

g∗(t) =
(

2di
π

) 1
2
e−

di t2

2 , 0 ≤ t < ∞, di > 0 (41)

considered by Haubold and Mathai [1].
From the lifetime density function given in Equation (34) and the mean lifetime Equation (38) we

can infer that

1. the expected lifetime of the species depends on the value of ci and α. As ci(3− 2α) increases the
expected lifetime decreases and vice versa.

2. 1
ci(2−α)

f (t)Δ(t) can be interpreted as the amount of the net destruction in a small time interval
Δ(t). As the net destruction is faster the lifetime becomes smaller.

3. Connection of Extended Kinetic Equation to Fractional Calculus

Let Φ1(t1) be an integrable function as defined in Equation (34) and Φ2(t2) = θ(t) be any
integrable function, then by the Mellin convolution property, we have

Φ(u) =
∫

t

1
t

Φ1(t)Φ2

(u
t

)
dt =

∫
t

1
t

Φ1

(u
t

)
Φ2(t)dt (42)

Then Φ(u), after substituting Φ1(t1) and Φ2(t2), takes the form

Φ(u) = ci(2− α)
∫ ∞

t=0

1
t

[
1 + (α− 1)ci

u
t

]− 1
α−1

θ(t)dt (43)

for α > 1 which can be considered as a generalized fractional Kober type operator of an integrable
function θ(t). Here as α→ 1− we have

Φ(u) = ci(2− α)
∫ ∞

t=0
t−1e−ci

u
t θ(t)dt (44)

More general cases can be seen in the paper Mathai and Haubold [15].

4. Fractional Kinetic Equation and Its Solution

The following discussion is based on [16,17]. In Equation (4), if instead of an ordinary classical
integral we use a fractional integral, we get the reaction equation as

N(t)− N0 = −cν
0Dt
−νN(t), ν > 0 (45)
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where 0Dt
−νN(t) represents the Riemann-Liouville fractional integral defined as

0Dt
−ν f (t) =

1
Γ(ν)

∫ t

0
(t− u)ν−1 f (u)du, ν > 0 (46)

with 0D0
t f (t) = f (t). Taking Laplace transform, simplifying and then taking the inverse Laplace

transform one gets

N(t) = N0

∞

∑
k=0

(−1)k(ct)kν

Γ(1 + kν)
= N0Eν(−cνtν) (47)

where Eν(−cνtν) is the Mittag-Leffler function, introduced by M. G. Mittag-Leffler in 1903 [18] as

Eβ(z) =
∞

∑
k=0

zk

Γ(βk + 1)
, β ∈ C,�(β) > 0, z ∈ C (48)

If we consider a generalization of the fractional kinetic equation considered by Mathai, Haubold
and Saxena [16,17] in the form

N(t)− N0tω−1Eγ
ν,ω(−cνtν) = −cν

0Dt
−νN(t), ν > 0, ω > 0, γ > 0 (49)

where Eγ
ν,ω(.) is the generalized three parameter Mittag-Leffler function introduced by Prabhakar [19]

defined as

Eγ
β,ρ(z) =

∞

∑
k=0

(γ)kzk

Γ(βk + ρ)k!
, β, ρ, γ ∈ C,�(β) > 0,�(ρ) > 0, z ∈ C (50)

then the solution of the fractional kinetic Equation (49) is

N(t) = N0tω−1Eγ+1
ν,ω (−cνtν) (51)

5. Conclusions

The linear and non-linear kinetic equations establish a connection between the Boltzmann-Gibbs
statistical mechanics and Tsallis non-extensive statistical mechanics. The pathway parameter α plays a
key role in switching between these two cases. The theory of extended reaction rates and its closed
form solutions can be seen in Haubold and Kumar [10] and Kumar and Haubold [12]. Further, the
fractional diffusion equation and its solution help us to understand the connection with the classical
Laplace transform. In 2013, the author has solved the fractional kinetic equations discussed here by
Pα-transform [20]. Various fractional differential equations and their solution by various transforms
are studied by many authors, see [21,22]. It should be noted that the Mittag-Leffler function arises in
the solution of a fractional diffusion equation whereas the exponential function arises in the solution of
its classical counterpart. A possible connection of the extended kinetic equation to fractional calculus
can be established through the procedure adopted here.
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Abstract: Recently, probability models with thicker or thinner tails have gained more importance
among statisticians and physicists because of their vast applications in random walks, Lévi flights,
financial modeling, etc. In this connection, we introduce here a new family of generalized probability
distributions associated with the Mittag–Leffler function. This family gives an extension to the
generalized gamma family, opens up a vast area of potential applications and establishes connections
to the topics of fractional calculus, nonextensive statistical mechanics, Tsallis statistics, superstatistics,
the Mittag–Leffler stochastic process, the Lévi process and time series. Apart from examining the
properties, the matrix-variate analogue and the connection to fractional calculus are also explained. By
using the pathway model of Mathai, the model is further generalized. Connections to Mittag–Leffler
distributions and corresponding autoregressive processes are also discussed.

Keywords: generalized Mittag–Leffler density and process; gamma density; Lévi density; pathway
model; Tsallis statistics; superstatistics

1. Introduction

In model building situations in physical, biological, social and engineering sciences, the usual
procedure is to select a probability model from a parametric family of distributions. In many practical
problems, it is often found that the selected model is not a good fit for the experimental data, because
it requires a model with a thicker or thinner tail than the ones available from the parametric family of
distributions. In order to make the tail thicker or thinner, a technique is introduced here by augmenting
a series to the original density. Our first step is to construct the thicker or thinner tailed distribution
associated with the Mittag–Leffler function, because this function is connected to fractional calculus,
the Mittag–Leffler stochastic process, non-Gaussian time series, Lévi flights and in a limiting process to
the topics of Tsallis statistics, superstatistics, as well as to statistical distribution theory.

In reaction rate theory, input-output type situations and reaction-diffusion problems in physics
and chemistry, when the integer derivatives are replaced by fractional derivatives, the solutions
automatically go in terms of Mittag–Leffler functions and their generalizations; see Haubold and
Mathai (2000) [1]. The ordinary and generalized Mittag–Leffler functions interpolate between a purely
exponential law and power-law-like behavior of phenomena governed by ordinary kinetic equations
and their fractional counterparts; see Kilbas et al. (2004) [2], Kiryakova (2000) [3], Mathai (2010) [4] and
Mathai et al. (2010) [5]. This paper examines a new family of statistical distributions associated with
Mittag–Leffler functions, which gives an extension to the gamma family, which will then connect to
fractional calculus and statistical distribution theory through the theory of special functions. The model
investigated in this paper is useful in the study of life testing problems, reliability analysis, in physical
situations to describe stable solutions, as well as unstable and chaotic neighborhoods, etc. We will start
with the definition of the Mittag–Leffler function.

Axioms 2015, 4, 365–384 222 www.mdpi.com/journal/axioms
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A two-parameter Mittag–Leffler function is defined as follows:

Eα,β(xα) =
∞

∑
k=0

xαk

Γ(αk + β)
,�(α) > 0,�(β) > 0, (1)

where �(·) denotes the real part of (·). Observe that the Mittag–Leffler function is an extension of the
exponential function. When α = 1,β = 1, Equation (1) reduces to ex. In statistical model building,
usually, the parameters are real, but since the results to be discussed hold for complex parameters,
as well, we will state the corresponding relevant conditions. Various properties, generalizations and
applications of the Mittag–Leffler function can be seen from Kilbas et al. (2004) [2].

Consider a probability density of the form:

f (x) =

{
aβ[1 + δ

aα ]x
β−1e−axEα,β(−δxα),β > 0,α > 0, a > 0, x ≥ 0

0, elsewhere,
(2)

where C is the normalizing constant and Eα,β(−δxα) is the Mittag–Leffler function. Some interesting
special cases of Equation (2) are the following: The density in Equation (2) includes two-parameter
gamma, exponential, chi square, noncentral chi square and the like. When δ = 0, Equation (2) reduces
to the two-parameter gamma density:

f1(x) = C1xβ−1e−ax, x ≥ 0. (3)

For α = β = 1 in Equation (2), we have the exponential density. For β = n
2 and a = 1

2 in f1(x),
we have the chi square density with n degrees of freedom. For β = p, p = 2, 3, · · · in Equation (3), we
have the Erlang density. For p = 1 in Erlang density, we have the exponential density. For fixed values
of a,β and for various values of δ, we can look at the graphs that give a suitable interpretation to the
model in Equation (2).

The above figures show a comparison between gamma density and gamma Mittag–Leffler density
for different values of δ. Observe that δ = 0 corresponds to the gamma density. In Figure 1, as the
value of δ decreases, the right tail of the new density becomes thicker and thicker compared to that
of a gamma density. Similarly the peakedness of the curve slowly decreases. In Figure 2, also, δ = 0
corresponds to the gamma density. When the values of δ increases from δ = 0, the right tail of the new
density becomes thinner and thinner compared to that of a gamma density. Similarly, the peakedness
of the curve slowly increases. Hence, when we look for a model with a thicker or thinner tail while a
gamma density is found to be more or less a proper fit, then a member from the new family of densities
introduced here will become quite useful and handy. Observe that the new density is mathematically
and computationally easily tractable, just like a gamma density.

The moment-generating function of Equation (2) is given by:

Mx(t) = aβ[1 + δ
aα ]
∫ ∞

0 xβ−1e−(a−t)x
∞
∑
0

(−δxα)k

Γ(αk+β)
dx

= aβ[1 + δ
aα ]

∞
∑
0

(−δ)k

Γ(αk+β)

∫ ∞
0 xαk+β−1e−(a−t)xdx.
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Figure 1. For a = 1.5,β = 2 and δ < 0.

Figure 2. For a = 1.5,β = 2 and δ > 0.

On simplification, we obtain mgfas:

Mx(t) =
aβ

(a− t)β
(1 + δ

aα )

(1 + δ
(a−t)α )

, | δ

(a− t)α
| < 1, (a− t) > 0. (4)
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The characteristic function can be obtained if we replace t by it, i =
√−1. If we put −t instead

of t, then we will obtain the Laplace transform of the density. Using the Laplace transform or
moment-generating function, we can easily obtain the integer moments by using the following formula:

μ′r = E(xr) = (−1)r dr

dtr L f (t)|t=0.

Thus, the mean value will be obtained as:

μ′1 =
β

a
− δα

a(aα + δ)
, (5)

and:

μ′2 =
1
a2

{
2α2(

δ

aα + δ
)

2
− (α2 + α(2β+ 1))(

δ

aα + δ
) + β(β+ 1)

}
. (6)

Variance:

μ2 =
β

a2 −
δα[(α+ 1)aα + δ]

a2(aα + δ)2 .

Arbitrary moments can be obtained in terms of the generalized Wright hypergeometric function.
That is,

μ′γ = E(xγ) =
∫ ∞

0
xγ f (x)dx

which is nothing but the Mellin transform of the function f with γ = s− 1.

μ′γ =
(1 + δ

aα )

aγ 2
Ψ1

[
(1,1),(β+γ,α)
(β,α)

|− δ

aα

]
(7)

where pΨq(z) is the generalized Wright’s hypergeometric function defined for z ∈ C, complex ai, bj ∈ C
and αi,βj ∈ �+ = (0, ∞), ai, bj 	= 0; i = 1, 2, . . . , p; j = 1, 2, . . . , q by the series:

pΨq(z) ≡p Ψq

[
(ai ,αi)1,p
(bj ,β j)1,q|z

]
=

∞

∑
k=0

{
∏

p
i=1 Γ(ai + αik)

}
zk{

∏
q
j=1 Γ(bj + β jk)

}
k!

. (8)

The function in Equation (8) was introduced by Wright and is called the generalized Wright’s
hypergeometric function. For convergence conditions, the existence of various contours and other
properties, see Wright (1940) [6] or the theory of H-function to be discussed later. If we take γ as
integers in Equation (7), then we will obtain integer moments. It may be observed that the distribution
function is available in terms of a series of incomplete gamma functions.

2. Estimation of Parameters

In this section, we have given explicit forms of the estimators of the parameters using the method
of moments. The motivation for the method of moments comes from the fact that the sample moments
are consistent estimators for the corresponding population moments. To start with, let us consider the
case for a = 1,β = 1 in Equation (2), then the model will become the Mittag–Leffler extension of the
standard exponential distribution and has the density of the form:

g1(x) = (1 + δ)e−xEα(−δxα). (9)

The moments can be obtained from Equations (5) and (6) with the parameter value a = 1,β = 1.
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The moment estimators of δ and α are given by:

α̂ =
∑ (xi − x)2 − nx2

n(x− 1)
+ 1, x 	= 1

and:

δ̂ =
n(x− 1)2

nx−∑ (xi − x)2 , nx−∑ (xi − x)2 	= 0.

Now, consider the Mittag–Leffler extension of standard gamma density. For that, we take a = 1 in
Equation (2); thus, the model has the following form:

g2(x) = (1 + δ)xβ−1e−xEα,β(−δxα). (10)

Using the same procedure as above, one can obtain the estimators as:

β̂ =
∑ (xi − x)3 − [∑ (xi − x)2][∑ x2

i + nx] + 2nx[nx3 − x2]

∑ x2
i [4nx− 3n− 3] + nx2[8nx + 13n] + n2x

α̂ =
∑ (xi − x)2 − n(x− β̂)

2 − nx
n(x− β̂)

, n(x− β̂) 	= 0

and:

δ̂ =
(β̂− x)

α̂+ x− β̂
.

If we retain all parameters α,β, δ and a, then the analytical solution is quite difficult, but the
numerical solution can be obtained by using software like MATLAB and MAPLE.

3. The Q-Analogue of Generalized Gamma Mittag–Leffler Density

In this section, a generalized density of Equation (2) is considered. Mathai (2005) [7] introduced
the pathway model, where the scalar version of the pathway density is given as follows:

f1(x) = c1 |x|β−1[1 + a(q− 1)|x|ρ]− 1
q−1

fora > 0,β > 0, q > 1,−∞ < x < ∞
(11)

wherec1 =
ρ[a(q−1)]

β
ρ Γ( 1

q−1 )

2Γ( β
ρ )Γ(

1
q−1−β

ρ )
, 1

q−1 >
β
ρ .

For q < 1, writing q− 1 = −(1− q), we have the form:

f2(x) = c2 |x|β−1[1− a(1− q)|x|ρ] 1
1−q

fora > 0,β > 0, q < 1, 1− a(1− q)|x|ρ > 0
(12)

wherec2 =
ρ[a(1−q)]

β
ρ Γ( 1

1−q +
β
ρ +1)

2Γ(βρ )Γ(
1

1−q +1)
.

As q→ 1 , f1(x) and f2(x) tend to f3(x), which we refer to as the extended symmetric generalized
gamma distribution, where f3(x) is given by:

f3(x) =
ρa

β
ρ

2Γ(βρ )
|x|β−1e−a|x|ρ ,−∞ < x < ∞, a,β, ρ > 0. (13)
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Now, generalize Equation (2) by using Equation (11). Since the normalizing constants obtained in
this section are in terms of H-functions, a definition of the H-function is given here.

Hm,n
p,q

[
z|(a1,α1),...,(ap ,αp)

(b1,β1),...,(bq ,βq)

]
= 1

2πi
∫

L φ(s)z−sds, (14)

where:

φ(s) =

{
∏m

j=1 Γ(bj+β js)
}{

∏n
j=1 Γ(1−aj−αjs)

}
{

∏
q
j=m+1 Γ(1−bj−βjs)

}{
∏

p
j=n+1 Γ(aj+αjs)

}
where αj, j = 1, 2, ..., p,βj, j = 1, 2, ..., q are real positive numbers, aj, j = 1, 2, ..., p and bj, j = 1, 2, ..., q
are complex numbers and L is a contour separating the poles of Γ(bj + βjs), j = 1, 2, ..., m from those of
Γ(1− aj−αjs), j = 1, 2, ..., n. The details of convergence conditions, various properties and applications
of H-function are available in Mathai et al. (2010) [5].

Consider:
f4(x) = C4xβ−1[1 + a(q− 1)xρ]

− 1
q−1 Eα

ρ ,βρ
(−δxα), (15)

x ≥ 0, q > 1, a > 0, ρ > 0,α > 0,β > 0

where:

C−1
4 = 1

ρΓ( 1
q−1 )[a(q−1)

β
ρ ]

H2,1
1,2

[
δ

[a(q−1)]
α
ρ
|(0,1)
(0,1),( 1

q−1−β
ρ ,αρ )

]
, q > 1. (16)

The general density in Equation (15), for q > 1, includes the Mittag–Leffler extension of Type 2
beta density and F density. If x > 0 is replaced by |x|,−∞ < x < ∞, with the appropriate change in
the normalizing constant, then we have the Student t density and Cauchy density as special cases, and
many more. As q→ 1 , f4(x) reduces to f5(x), where:

f5(x) = C5xβ−1e−axρ
Eα

ρ ,βρ
(−δxα), C5 = ρa

β
ρ (1 +

δ

a
α
ρ
). (17)

This includes the Mittag–Leffler extension of generalized gamma, Weibull, chi-square,
Maxwell–Boltzmann and related densities. If δ = 0, Equation (17) reduces to the generalized gamma
density. When ρ = 1, Equation (17) reduces to Equation (2). In particular, if ρ = β, the Mittag–Leffler
extension of Weibull density is obtained,

f6(x) = C6xβ−1e−axβ
E α

ρ ,1(−δxα). (18)

For x > 0 and q < 1, f4(x) takes the following form:

f7(x) = C7xβ−1[1− a(1− q)xρ]
1

1−q Eα
ρ ,βρ

(−δxα), (19)

0 ≤ x ≤ 1

[a(1− q)]
1
ρ

, a,α,β > 0, q < 1

where:

C−1
7 =

Γ(1+ 1
1−q )

ρ[a(1−q)
β
ρ ]

H1,1
1,2

[
δ

[a(1−q)]
α
ρ
|(0,1)
(0,1),(− 1

1−q−β
ρ ,αρ )

]
, q < 1. (20)

This general density includes the Mittag–Leffler extension of Type 1 beta density, triangular
density, uniform density and many more. As q→ 1 , Equation (15) reduces to Equation (17). For ρ = β,
then Equations (15) and (19) will give the two forms of extended q-Weibull density as given below.

f8(x) = C8xβ−1[1 + a(q− 1)xβ]
− 1

q−1 Eα
β ,1(−δxα), (21)
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x ≥ 0, q > 1, a > 0,α > 0,β > 0

f9(x) = C9xβ−1[1− a(1− q)xβ]
1

1−q Eα
β ,1(−δxα), (22)

0 ≤ x ≤ 1

[a(1− q)]
1
β

, a,α,β > 0, q < 1

where the normalizing constants C8 and C9 are obtained from Equations (16) and (20), respectively. In
particular, if δ = 0, then f8(x) and f9(x) will coincide with q-Weibull density. In particular, for β = 1
and ρ = 1, the integral of Equation (19) can be treated as the pathway fractional integral transform
of the Mittag–Leffler function with appropriate transformation of the variable. More details about
pathway fractional integral transform can be found in Seema Nair ((2009) [8], (2011) [9]).

The model in Equation (15) can be connected to the superstatistics of Beck and Cohen (2003) [10]
and Beck (2006) [11] for q = 2, δ = 0. There is a vast literature on Beck–Cohen superstatistics in
statistical mechanics with many physical interpretations; see, for example, Beck ((2010) [12], (2009) [13]).
From a statistical point of view, it can be obtained as an unconditional density from Bayes’ setup, by
considering generalized gamma as a conditional density with the assumption that the scale parameter
a has a prior gamma density; see Nair and Kattuveettil (2010) [14]. For β = 1, ρ = 1, a = 1 and δ = 1,
we have Tsallis statistics for q > 1 and q < 1, respectively, from the models in Equations (15) and
(19). Thus, we can make a connection to nonextensive statistical mechanics; see, for example, Tsallis
((1988) [15], (2004) [16], (2009) [17]) and Mathai et al. (2010) [5]. (It is stated that over 3000 papers have
been published on this topic during the past 20 years, and over 5000 people from around the globe are
working in this area).

4. Connection to Mittag–Leffler Distributions and Autoregressive Processes

Especially when a = 0, β = α, such that 0 < α ≤ 1 in Equation (2), we have the Mittag–Leffler
density, which has the probability density function:

g1(x) = δxα−1Eα,α(−δxα), 0 < α ≤ 1, δ > 0 (23)

and has Laplace transform δ(sα + δ)−1, a special case of the general class of Laplace transforms
discussed by Mathai et al. (2006) [18]. Similarly, for a = 0 in (2) and replacing β by αγ and δ by 1

ρ , one
can arrive at the generalized Mittag–Leffler density, which has the probability density function:

g(x) =
xαγ−1

ργ
Eγ
α,αγ(− xα

ρ
), 0 < α < 1, γ, ρ > 0, x ≥ 0 (24)

where Eδ
α,β(·) is the generalized Mittag–Leffler function defined as:

Eδ
α,β(z) =

∞

∑
k=0

(δ)kzk

Γ(αk + β)k!
,α > 0,β > 0, γ > 0,

where (δ)k = δ(δ+ 1)(δ+ 2) · · · (δ+ k− 1) and Equation (24) has the Laplace transform of the form:

Lg(t) = [1 + ρtα]−γ, |ρtα| < 1. (25)

The Laplace transform in Equation (25) is associated with infinitely-divisible and geometrically
infinitely-divisible distributions, α-Laplace and Linnik distributions. The class of Laplace transforms
relevant in geometrically infinitely-divisible and α-Laplace distributions is of the form L(p) = 1

1+η(p) ,
where η(p) satisfies the condition η(bp) = bαη(p) and η(p) is a periodic function for fixed α. In
Mathai (2010) [4], it is noted that there is a structural representation in terms of the positive Lévi
random variable by using Equation (25).
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A positive Lévi random variable u > 0, with parameter α is such that the Laplace transform of
the density of u > 0 is given by e−tα . That is:

E[e−tu] = e−tα . (26)

Theorem 4.1. Let y > 0 be a Lévi random variable with Laplace transform as in (26) and x ≥ 0 an
exponential random variable with parameter δ, and let x and y be independently distributed. Then, u = yx

1
α is

distributed as generalized Mittag–Leffler random variable with Laplace transform (see [4]):

Lu(t) = [1 + ρtα]−γ

Proof: For proving this result, we will make use of the following lemma of the
conditional argument.

Lemma 1.1. For two random variables u and v having a joint distribution,

E(u) = E[E(u|v)] (27)

whenever all of the expected values exist, where the inside expectation is taken in the conditional
space of u given v and the outside expectation is taken in the marginal space of v.

Now, by applying Equation (27), we have the following: Let the density of u be denoted by g(u).
Then, the conditional Laplace transform of g, given x, is given by:

E[e−(tx
1
α )y|x] = e−tαx. (28)

However, the right side of Equation (28) is in the form of a Laplace transform of the density of
x with parameter tα. Hence, the expected value of the right side, with respect to x, is available by
replacing the Laplace parameter t in [1 + ρt]−γ (the Laplace transform of a gamma density with the
scale parameter ρ and shape parameter γ) by tα,

Lg(t) = [1 + ρtα]−γ, ρ > 0, γ > 0 (29)

which establishes the result. From Equation (27), one can observe that if we consider an arbitrary
random variable y with the Laplace transform of the form:

Lg(t) = e−[φ(t)] (30)

whenever the expected value exists, where φ(t) is such that:

φ(tx
1
α ) = xφ(t), lim

t→0
φ(t) = 0, (31)

then from Equation (28), we have:

E[e−(tx
1
α )y|x] = e−x[φ(t)]. (32)

Now, let x be an arbitrary positive random variable having Laplace transform, denoted by Lx(t)
where Lx(t) = ψ(t). Then, from Equations (27) and (30), we have:

Lg(t) = ψ(φ(t)).

In particular, when δ = 1 in Equation (23), we have the standard Mittag–Leffler density introduced
by Pillai (1990) [19]. For the properties of Mittag–Leffler distributions connected to the autoregressive
process, see the papers of Pillai and Jayakumar (1995) [20] and Jayakumar (2003) [21].
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4.1. Moments from Mellin–Barnes Integral Representation

It is shown in Mathai (2010) [4] that for handling problems connected to Mittag–Leffler densities,
it is convenient to use the Mellin–Barnes representation of a Mittag–Leffler function and then proceed
from there. The following gives the Mellin–Barnes integral representation of g(x).

g(x) = 1
Γ(γ)

1
2πi
∫ c+i∞

c−i∞
Γ(s)Γ(γ−s)
Γ(αγ−αs) xαγ−1x−αsds,�(γ) > 0

= 1
αΓ(γ)

1
2πi
∫ c+i∞

c−i∞
Γ(γ− 1

α+ s
α )Γ( 1

α− s
α )

Γ(1−s) x−sds,
(33)

by taking αγ− 1− αs = −s1. One can also look upon the Mellin transform of the density of a positive
random variable as the (s− 1)-th moment, and therefore, from Equation (33), one can write the Mellin
transform as an expected value. That is,

Mg(s) = E(xs−1)ing

= 1
Γ(γ)

Γ(γ− 1
α+ s

α )Γ( 1
α− s

α )
αΓ(1−s) ,

for1− α < �(s) < 1, 0,α ≤ 1, γ > 0

= 1
Γ(γ)

Γ(γ− 1
α+ s

α )Γ(1+ 1
α− s

α )
Γ(2−s) .

(34)

If we replace s− 1 by ρ, then one can obtain the ρ-th moment of the generalized Mittag–Leffler
density as follows:

E(xρ) =
Γ(γ + ρ

α )Γ(1− ρ
α )

Γ(γ)Γ(1− ρ)
,−α < �(ρ) < α < 1.

In particular, for γ = 1, we can arrive at the ρ-th moment of the Mittag–Leffler density of Pillai
(1990) [19], Pillai and Jayakumar (1995) [20]. For α→ 1 , Equation (34) reduces to:

Mg(t) =
1

Γ(γ)
Γ(γ− 1 + s).

Its inverse Mellin transform is then:

g1(x) =
1

Γ(γ)
1

2πi

∫
L

Γ(γ− 1 + s)x−sds =
1

Γ(γ)
xγ−1e−x, x ≥ 0, γ > 0 (35)

which is the one-parameter gamma density, and for γ = 1, it reduces to the exponential density. Hence,
the generalized Mittag–Leffler density g can be taken as an extension of a gamma density, such as the
one in Equation (35), and the Mittag–Leffler density g1 as an extension of exponential density for γ = 1.
It is shown that generalized Mittag–Leffler density (GMLD(α, γ, ρ)) is infinitely and geometrically
infinitely divisible for 0 < α ≤ 1, 0 < γ ≤ 1, and also, it belongs to the class L; see [21]. Jose et al.
(2010) [22] discussed the first order autoregressive process with GMLD(α,β) marginals. In a similar
manner, we shall construct a first order autoregressive process with GMLD(α, γ, ρ) marginals, which
will be stated as a remark.

Remark: The first order autoregressive process Xn = aXn−1 + ηn, a ∈ (0, 1) is strictly stationary
Markovian with GMLD(α, γ, ρ) if and only if the {ηn} are distributed independently and identically
as the γ-fold convolution of the random variable {Vn} where:

Vn =

{
0withprobabilityaα

Mnwithprobability1− aα
(36)

where {Mn} are independently and identically distributed Mittag–Leffler random variables, provided

X0
d
= GMLD(α, γ, ρ) and independent of ηn.

230



Axioms 2015, 4, 365–384

5. Applications in Reaction-Diffusion Problems

We can look at the model Equation (2) in another way, as well; consider the total integral as:

1 = C
∫ ∞

0
xβ−1e−axEα,β(−δxα)dx, (37)

which can be treated as the Laplace transform of the function xβ−1Eα,β(−δxα), and hence,
C−1 = aα−β

aα+δ , where C is the normalizing constant of Equation (2), is nothing but the Laplace transform
of the given function. It is shown to be very relevant in fractional reaction-diffusion problems in
physics, since it naturally occurs in the derivation of the inverse Laplace transform of the functions of
the type aα(d + baβ), where a is the Laplace transform parameter and dandb are constants.

For more details, see the papers of [8,18,23]. Reaction-diffusion equations are modeling tools for
the dynamics presented by a competition between two or more species, activators and inhibitors or
production and destruction, that diffuse in a physical medium. As an example, [1] considered the
evolution of a star like the Sun, which is governed by a second order system of differential equations,
the kinetic equations, describing the rate of change of chemical composition of the star for each species
in terms of the reaction rates for destruction and production of that species [24–26]. Methods for
modeling processes of destruction and production have been developed for bio-chemical reactions
and their unstable equilibrium states [27] and for chemical reaction networks with unstable states,
oscillations and hysteresis [28].

Consider an arbitrary reaction characterized by a time-dependent quantity N = N(t). It is
possible to equate the rate of change dN

dt to a balance between the destruction rate d and the production
rate p of N, that is dN

dt = −d + p. In general, through feedback or other interaction mechanisms,
destruction and production depend on the quantity N itself: d = d(N) or p = p(N). This dependence
is complicated, since the destruction or production at time t depends not only on N(t), but also on the
past history N(τ), τ < t, of the variable N. This may be formally represented by:

dN
dt

= −d(Ni) + p(Ni) (38)

where Ni denotes the function defined by Ni(t∗) = N(t− t∗), t∗ > 0. The production and destruction
of species is described by kinetic equations governing the change of the number density Ni of species i
over time, that is,

dNi
dt

= −∑
j

Ni Nj < σν >ij + ∑
k,l 	=i

Nk Nl < σν >kl , (39)

where < σν >mn denotes the reaction probability for an interaction involving species mand n, and the
summation is taken over all reactions, which either produce or destroy the species i [29]. The first sum
in Equation (39) can also be written as:

−∑
j

Ni Nj < σν >ij= −Ni(∑
j

Nj < σν >ij) = Niai, (40)

where ai is the statistically expected number of reactions per unit volume per unit time destroying
the species i. It is also a measure of the speed at which the reaction proceeds. In the following, we are
assuming that there are Nj(j = 1, . . . i, . . .) species j per unit volume and that for a fixed Ni, the number
of other reacting species that interact with the i-th species is constant in a unit volume. Following the
same argument, for the second sum in Equation (39) accordingly,

+ ∑
k,l 	=i

Nk Nl < σν >kl= +Nibi, (41)
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where Nibi is the statistically expected number of the i-th species produced per unit volume per unit
time for a fixed Ni. Note that the number density of species i, Ni = Ni(t), is a function of time, while
the < σν >mn, containing the thermonuclear functions (see Haubold and Kumar (2008) [30]), are
assumed to depend only on the temperature of the gas, but not on the time t and number densities Ni.
Then, Equation (38) implies that:

dNi(t)
dt

= −(ai − bi)Ni(t). (42)

For Equation (42), we have three distinct cases, ci = ai − bi > 0, ci < 0 and ci = 0, of which the
last case says that Ni does not vary over time, which means that the forward and reverse reactions
involving species i are in equilibrium; such a value for Ni is called a fixed point and corresponds to
a steady-state behavior. The first two cases exhibit that either the destruction (ci > 0) of species i or
production (ci < 0) of species i dominates.

For the case ci > 0, we have:

dNi(t)
dt

= −ci Ni(t), (43)

with the initial condition that Ni(t = 0) = N0 is the number density of species i at time t = 0, and it
follows that:

Ni(t)dt = N0e−citdt. (44)

The exponential function in Equation (44) represents the solution of the linear one-dimensional
differential Equation (43) in which the rate of destruction of the variable is proportional to the value
of the variable. Equation (43) does not exhibit instabilities, oscillations or chaotic dynamics, in
striking contrast to its cousin, the logistic finite-difference equation [26,29]. A thorough discussion of
Equation (43) and its standard solution in Equation (44) is given in [25].

Let us consider the standard fractional kinetic equation:

N(t)− N0 = −cν
0D−ν

t N(t), ν > 0 (45)

which is derived by [1]. 0D−ν
t is the Riemann–Liouville fractional integral of order ν. It is very easy to

find the solution of this equation. On applying Laplace transforms on both sides, with parameter p,
one has:

L{N(t)} − N0L{1} = −cν L
{

0D−ν
t N(t)

}
L{N(t)} − N0

p = −cν p−νL{N(t)}
(1 + cν p−ν)L{N(t)} = N0

p

L{N(t)} = N0

p[1+(
p
c )
−ν

]
= N0

[
∞
∑

k=0
(−1)kcνk p−(νk+1)

]
.

Now, applying inverse Laplace transform,

N(t) = N0
∞
∑

k=0
(−1)kcνkL−1

{
p−(νk+1)

}
= N0

∞
∑

k=0
(−1)k (ct)νk

Γ(νk+1) .

This solution can be written in terms of the Mittag–Leffler function as:

N(t) = N0 Eν(−cνtν), ν > 0. (46)

Theorem 5.1. For ν > 0, let the coefficient of N0 of the fractional integral equation be g(t) an arbitrary
function, so that the fractional integral becomes:

N(t)− N0 g(t) = −cν
0D−ν

t N(t). (47)
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Then, the Laplace transforms of the fractional integral equation will be:

L{N(t)} = N0 G(p)
1 + ( c

p )
ν , whereG(p) = L{g(t)} (48)

Now, one can take various forms for G(p); all of the special cases are considered in [23,31].
For example:

Let us consider G(p) = p−β1 F1(γ1,β1, p−α) for α > 0,β > 0, ν > 0, c > 0, then
Equation (47) becomes:

L{N(t)} = N0 p−β
∑∞

k=0
(γ1)k
(β1)k

p−αk
k![

1+( c
p )

ν
]

= N0 p−β
∞
∑

k=0

(γ1)k
(β1)k

p−αk

k!

∞
∑

n=0
(−1)n( c

p )
νn

= N0
∞
∑

k=0

(γ1)k
(β1)kk!

∞
∑

n=0
(−1)ncνn p−(νn+αk+β)

(49)

On applying inverse Laplace transform, we get:

N(t) = N0
∞
∑

k=0

(γ1)k
(β1)kk!

∞
∑

n=0
(−1)ncνn tνn+αk+β−1

Γ(νn+αk+β)

= N0tβ−1
∞
∑

k=0

(γ1)k
(β1)kk! t

αkEν,αk+β(−cνtν)
(50)

Haubold and Mathai (2000) [1] generalized the standard kinetic Equation (43) to a standard
fractional kinetic Equation (45), derived solutions of a fractional kinetic equation that contains
the particle reaction rate (or thermonuclear function) as a time constant and provided the analytic
technique to further investigate possible modifications of the reaction rate through a kinetic equation.
The Riemann–Liouville operator in the fractional kinetic equation introduces a convolution integral
with a slowly-decaying power-law kernel, which is typical for memory effects referred to in [32].
This technique may open an avenue to accommodate changes in standard solar model core physics as
proposed by [33]. In the solution of the standard fractional kinetic Equation (45), given in Equation (46),
the standard exponential decay is recovered for ν = 1. However, the Equation (46), for 0 < ν < 1,
shows a power-law behavior for t→ ∞ and is constant (initial value N0) for t→ 0 .

6. Application in Financial Modeling

In this section, we present an application of generalized gamma Mittag–Leffler density in
modeling currency exchange rates. Here, we considered 1152 observations starting from 2004 to
2008, of U.S. dollar-Indian rupee foreign exchange rates, which is available at www.rbi.org. The log
returns of the exchange rates are considered. The following Figure 3 is the graph of the log-transformed
data embedded with the generalized gamma Mittag–Leffler density.

From the data, the summary statistics for transformed currency exchange rates obtained are
as follows:

Mean = 0.0110
Variance = 2.0805× 10−6

Coefficientofskewness = 0.2728

For convenience, assume that α = 1; by using the method of moments, estimates of parameters
are obtained and are given as:

β̂ = 76.3057
δ̂ = 6227.6449
â = 7413.998
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From the figures, we can observe that the generalized gamma Mittag–Leffler density fits well to
the data with the above estimated values of the parameters. Here, we used the chi square statistic to
measure the goodness of fit. The calculated chi square value is 2.44, and the corresponding tabled value
is 15.507. Hence, we conclude that the model in Equation (2) is a good fit to the dataset considered.

Figure 3. Generalized gamma Mittag–Leffler density fitted to the data on dollar-rupee exchange rate.

7. Multivariate Generalization

In this section, a multivariate analogue of the density in Equation (2) is considered.
The multivariate Mittag–Leffler function will be defined as:

Ep[α1, · · · ,αp;β1, · · · ,βp;−δ; xα1
1 · · · x

αp
p ] =

∞
∑

k=0

x
α1k
1 ···xαpk

p (−δ)k

Γ(α1k+β1)···Γ(αpk+βp)
,

where�(αj) > 0,�(βj > 0), j = 1, 2, . . . , p.
(51)

A function close to Ep(·) of Equation (37) is the multi-index Mittag–Leffler function of Kiryakova;
see, for example, Kiryakova (2000) [3]. Now, the general density is defined as:

fp(x1, . . . , xp) =

⎧⎪⎨⎪⎩
Cpxβ1−1

1 · · · xβp−1
p e−a1x1−···−apxp Ep[α1, · · · ,αp;β1, · · · ,βp;−δ; xα1

1 · · · x
αp
p ],

0 ≤ xj < ∞,�(αj) > 0,�(βj > 0), aj > 0, j = 1, 2, . . . , p
0, elsewhere.

The normalizing constant is available, by proceeding as before, as:

Cp = aβ1
1 · · · a

βp
p (1 + δ

a
α1
1 ···a

αp
p
), | δ

a
α1
1 ···a

αp
p
| < 1. (52)

Various properties of one form of a multivariate gamma density can be seen from
Griffiths (1984) [34]. The following sections reveal the joint Laplace transform and product moments
of the density function.
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The Joint Laplace transform is available from Equation (52) by replacing aj by aj + tj, j = 1, . . . , p
and then dividing by the normalizing constant. That is:

E(e−t1x1 · · · e−tpxp) =
a
β1
1 ···a

βp
p

(a1+t1)
β1 ···(ap+tp)

βp

(1+ δ

a
α1
1 ···aαp

p
)

(1+ δ

(a1+t1)
α1 ···(ap+tp)

αp )
, aj + tj > 0,

| δ
(a1+t1)

α1 ···(ap+tp)
αp | < 1, j = 1, . . . , p.

(53)

The arbitrary product moments are obtained in terms of generalized Wright function and are
given by:

E(xγ1
1 · · · xp

p) =
∫ ∞

0 · · ·
∫ ∞

0 xγ1
1 · · · x

γp
p Cpxβ1−1

1 · · · xβp−1
p e−a1x1 · · · e−apxp

×Ep(αj;βj, j = 1, . . . , p;−δ; xα1
1 · · · x

αp
p )dx1 · · ·dxp

= 1
a

γ1
1 ···a

γp
p
(1 + δ

a
α1
1 ···a

αp
p
)

p+1
Ψp

[
(β1+γ1,α1),··· ,(βp+γp ,αp),(1,1)
(β1,α1),,(βp ,αp)

;− δ

a
α1
1 ···a

αp
p

]
,

�(βj + γj) > 0, j = 1, . . . , p.

(54)

Conditional density of x1 given x2, . . . , xp is given by:

f (x1|x2, . . . , xp) = aβ1
1 xβ1−1

1 e−a1x1
Ep(αj; β j, j = 1, . . . , p;−δ; xα1

1 · · · x
αp
p )

Ep−1(αj; β j, j = 2, . . . , p;− δ

a
α1
1

; xα2
2 · · · x

αp
p )

. (55)

Regression analysis is concerned with constructing the best predictor of one variable at the
preassigned values of some other variables. Under the minimum mean square principle, the best
predictors can be seen to be the conditional expectation of x1 given x2, · · · , xp. Hence, E(x1|x2, · · · , xp)

is defined as the regression of x1 on x2, · · · , xp. In our case:

E(x1|x2, . . . , xp) =
∫ ∞

0 x1 f (x1|x2, . . . , xp)dx1

= 1
K(X)

aβ1
1

∫ ∞
0 xβ1

1 e−a1x1
∞
∑

k=0

(−δ)kx
α1k
1 ···xαpk

p
Γ(α1k+β1)···Γ(αpk+βp)

whereK(X) = Ep−1(αj;βj, j = 2, . . . , p;− δ

a
α1
1

; xα2
2 · · · x

αp
p )

E(x1|x2, . . . , xp) =
β1
a1
− δα1xα2

2 · · · x
αp
p

aα1+1
1

E(2)
p−1(αj;βj + αj, j = 2, . . . , p;− δ

a
α1
1

; xα2
2 · · · x

αp
p )

Ep−1(αj;βj, j = 2, . . . , p;− δ

a
α1
1

; xα2
2 · · · x

αp
p )

, (56)

where E(2)
p−1 is the same function appearing in Equation (37), but with an additional Pochhammer

symbol (2)k sitting in the numerator. The conditional expectation, E(x1|x2), is the best predictor, best in
the sense of minimizing the expected squared error, also known as the regression of x1 on x2, and is
given as:

E(x1|x2) =
β1
a1
− δα1xα2

2

aα1+1
1 aα3

3 · · · a
αp
p

E(2)
1 (α2;β2 + α2;− δ

a
α1
1 a

α3
3 ···a

αp
p

; xα2
2 )

E1(α2;β2;− δ

a
α1
1 a

α3
3 ···a

αp
p

; xα2
2 )

. (57)

In a similar manner, we can extend the results in Section 2 to matrix-variate cases, as well.
Let X = (xrs) be m× n, where all xrs’s are distinct, X of full rank and having a joint density f (X),
where f (X) is a real-valued scalar function of X. Then, the characteristic function of f (X), denoted by
φX(T), is given by:

φX(T) = E[eitr(XT)], i =
√−1andT = (trs) (58)
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is an m× n matrix of distinct parameters trs’s, and let T be of full rank. As an example, we can look at
the real matrix-variate Gaussian distribution, given by the density geometric:

g(X) =
|A| n2 |B| m2

π
mn
2

e−tr(AXBX′) (59)

where X is m× n, A = A′ > 0, B = B′ > 0 are m×m and n× n positive definite constant matrices,
having Fourier transform as:

φg(T) = e−
1
4 tr(B−

1
2 TA−1T′B−

1
2 ) (60)

where T is the parameter matrix. Motivated by Equations (58) and (60), Mathai (2010) [4] defined
matrix-variate Linnik density and gamma-Linnik density. The following result was given recently in
Mathai (2010) [4], which will be needed for the discussion to follow.

Theorem 7.1. Let y be a real scalar random variable, distributed independently of the m× n matrix X and
having a gamma density with the Laplace transform:

Ly(t) = (1 + ρt)−γ, ρ > 0, γ > 0

and let X be distributed as a real rectangular matrix-variate Linnik variable having characteristic function

e−[tr(TΣ1T′Σ2)]
α
2 , 0 < α ≤ 2; then, the rectangular matrix U = y

1
α X has the characteristic function:

φU(T) = [1 + ρ(tr(TΣ1T′Σ2))
α
2 ]
−β

(61)

The matrix variable U in Equation (61) will be called a real rectangular matrix-variate Gaussian
Linnik variable when α = 2 and gamma Linnik variable for the general α. By using the
multi-index Mittag–Leffler function of Kiryakova (2000) [3] in Equation (37), one can also define
a gamma-Kiryakova vector or matrix variable. Now, let us consider two independently-distributed
real random variables y and X where y has a general Mittag–Leffler density as in Equation (24) and
X has a real rectangular matrix-variate Gaussian density as in Equation (59). Then, we have the
following results.

Theorem 7.2. Let y follow GMLD(α, γ, ρ) and the real rectangular matrix X have the density in
Equation (59), and let X and y be independently distributed. Then, U1 = y

1
α X has the characteristic function:

φU1(T) = [1 +
ρ

4α
(tr(A−1T′B−1T))

α
]
−γ

(62)

Theorem 7.3. Let U2 = y
1
β X, where y and X are independently distributed with y having the density in

Equation (24), and X is a real rectangular matrix-variate Linnik variable with the parameters γ, A, B; then U2

has the characteristic function:

φU2(T) = [1 + ρ(tr(A−1T′B−1T)
αβ
2 )]
−γ

, ρ, γ, α, β > 0 (63)

8. Conclusion

The model introduced in this paper will be useful for investigators in disciplines of physical
sciences, particularly superstatistics of Beck ((2006) [11], (2009) [13]), nonextensive statistical mechanics
Tsallis ((1988) [15], (2004) [16], (2009) [17]), reaction-diffusion problems in physics and Haubold
(2000) [5], statistical distribution theory and model building. In many physical situations, when the
integer derivatives are replaced by fractional derivatives, naturally, the solutions are obtained in terms
of Mittag–Leffler functions and their generalizations. However, fractional integrals are shown to be
connected to Laplace convolutions of positive random variables. Thus, one can connect the ideas of
fractional calculus to statistical distribution theory via the Mittag–Leffler function. the Mittag–Leffler

236



Axioms 2015, 4, 365–384

distribution can also be used as waiting time distributions, as well as first passage time distributions
for certain renewal process.
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1. Introduction

In recent years, considerable interest has been shown in so-called fractional calculus, which allows
one to consider integration and differentiation of any order, not necessarily integer. Fractional calculus
is a rapidly growing field both in theory and in applications to real-world problems. There is a revived
interest in fractional integrals and fractional derivatives due to their recently-found applications in
reaction, diffusion, reaction-diffusion problems, in solving certain partial differential equations, in
input-output models and related areas; see, for example [1–6]. There are many books in the area, some
of which are [7–11]. The classical left- and right-hand-sided Riemann–Liouville fractional integral
operators of order α ∈ C,�(α) > 0, are defined as:

0D−αx f = (Iα0+ f )(x) =
1

Γ(α)

∫ x

o
(x− t)α−1 f (t)dt, x > 0,�(α) > 0 (1)

xD−α∞ f = (Iα− f )(x) =
1

Γ(α)

∫ ∞

x
(t− x)α−1 f (t)dt, x > 0,�(α) > 0 (2)

The traditional special functions are also related to the classical fractional calculus (FC) and later to
the generalized fractional calculus and are shown to be representable as fractional order integration or
differentiation operators of some basic elementary functions. Such relations provided some alternative
definitions for the special functions by means of Poisson-type and Euler-type integral representations
and Rodrigues-type differential formulas. An example of such a unified approach on special functions,
based on a generalized fractional calculus, can be seen in [8]. The essentials of fractional calculus
according to different approaches that can be useful for our applications in the theory of probability
and stochastic processes are established with the help of the pathway idea in [12].
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The pathway idea was originally proposed by Mathai in the 1970s in connection with population
models and later rephrased and extended in [12] to cover scalar, as well as matrix cases, and it was
made suitable for modeling data from statistical and physical situations. The main idea behind the
derivation of this model is the switching properties of going from one family of functions to another
and, yet, another family of functions. It is shown that through a parameter q, called the pathway
parameter, one can connect a generalized Type 1 beta family of densities, a generalized Type 2 beta
family of densities and generalized gamma family of densities, in the scalar, as well as in the matrix
cases, also in the real and complex domains. It is shown that when the model is applied to physical
situations, then the current hot topics of Tsallis statistics and superstatistics in statistical mechanics
become special cases of the pathway model, and the model is capable of capturing many stable
situations, as well as the unstable or chaotic neighborhoods of the stable situations and transitional
stages. Mathai [12] deals mainly with rectangular matrix-variate distributions, and the scalar case is a
particular case there. For the real scalar case, the pathway model is the following:

h1(x) = k1xγ−1[1− a(1− q)xθ]
η

1−q , 1− a(1− q)xθ > 0, a, θ,γ,η > 0, q < 1 (3)

where k1 is the normalizing constant if a statistical density is needed. For q < 1, the model remains
as a generalized Type 1 beta model in the real case. Other cases available are the regular Type 1 beta
density, Pareto density, power function, triangular and related models. Observe that Equation (3) is
a model with the right tail cut off. When q > 1, we may write 1− q = −(q− 1), q > 1, so that h2(x)
assumes the form:

h2(x) = k2xγ−1
[
1 + a(q− 1)xθ

]− η
q−1 , x ≥ 0, a, θ,γ,η > 0, q > 1 (4)

which is a generalized Type 2 beta model for real x, and k2 is the normalizing constant, if a statistical
density is required. Beck and Cohen’s superstatistics belongs to this case Equation (4), and dozens of
published papers are available on the topic of superstatistics in astrophysics. For γ = 1, a = 1, θ = 1,
we have Tsallis statistics for q > 1 from Equation (4). Other standard distributions coming from this
model are the regular Type 2 beta, the F-distribution, Lévi models and related models. When q→ 1 ,
the forms in Equations (3) and (4) reduce to:

h3(x) = k3xγ−1e−bxθ , x ≥ 0, b = aη > 0,γ, θ > 0 (5)

where k3 is the normalizing constant. This includes generalized gamma, gamma, exponential,
chi-square, Weibull, Maxwell–Boltzmann, Rayleigh and related models; for more details, see [13,14].
If x is replaced by |x| in Equation (3), then more families of distributions are covered in Equation (3).
Note that q is the most important parameter here, which enables one to move from one family of
functions to another family. The other parameters are the usual parameters within each family of
functions.

The paper is organized as follows: In Section 2, the connections of fractional integral operators
to statistical distribution theory and incomplete integrals are given. Section 3 covers the limiting
approach to the generalized gamma model via the pathway operator. The application of the extended
generalized gamma model in statistical mechanics is introduced in Section 4. Generalized Laplacian
density and the stochastic process are introduced in Section 5. In Section 6, we consider the application
of the generalized gamma model in solar spectral irradiance modeling.

2. Statistical Interpretations of Fractional Integrals

A general pathway fractional integral operator is discussed in [15], which generalizes the classical
Riemann–Liouville fractional integration operator. The pathway fractional integral operator has found
applications in reaction-diffusion problems, non-extensive statistical mechanics, non-linear waves,
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fractional differential equations, non-stable neighborhoods of physical system, etc. By means of the
pathway model [12], the pathway fractional integral operator (pathway operator) is defined as follows:
Let f (x) ∈ L(a, b), η ∈ C,�(η) > 0, a > 0 and q < 1, then:

(
P(η,q)

0+ f
)
(x) = xη−1

∫ x
a(1−q)

0

[
1− a(1− q)t

x

] η
(1−q)−1

f (t)dt (6)

where q is the pathway parameter and f (t) is an arbitrary function.

When q→ 1−,
[
1− a(1−q)t

x

] η
1−q → e−

aη
x t . Thus, the operator will become:

Pη,1
0+ = xη−1

∫ ∞

0
e
−aη

x t f (t)dt = xη−1L f

( aη

x

)
the Laplace transform of f with parameter aη

x . When q = 0, a = 1 in Equation (6), the integral will
become, ∫ x

0
(x− t)η−1 f (t)dt = Γ(η)Iη

0+

where I0+ is the left-sided Riemann–Liouville fractional integral operator.
Fractional integrals in the matrix-variate cases and their connection to statistical distributions

are pointed out in [16,17]. Let x > 0 and y > 0 be statistically-independently-distributed positive real
scalar random variables. Let the densities of x and y be f1(x) and f2(y), respectively. Then, the joint
density of x and y is f (x, y) = f1(x) f2(y). Let u = x + y, t = y. Then, the density of u, denoted by
g1(u), is given by:

g1(u) =
∫ u

t=0
f1(u− t) f2(t)dt (7)

Here, Equation (7) is in the same format of the Riemann–Liouville left-sided fractional integral for
f1(x) = c1xα−1 and f2(y) = c2 f (y), where c1 and c2 are normalizing constants to create densities.
Thus, a constant multiple of the left-sided Riemann–Liouville fractional integral can be interpreted as
the density g1(u) of a sum of two independently-distributed real positive scalar random variables.

Now, let us look at u = x− y with the additional assumption that u = x− y > 0. Then, the density
of u, denoted by g2(u), will have the format:

g2(u) =
∫ ∞

t=u
f1(t) f2(t− u)dt (8)

By taking f2(y) = c2yα−1 and f1(x) = c1 f (x), where c1 and c2 are some normalizing constants,
Equation (8) agrees with the density of a structure u = x − y with x − y > 0, x > 0, y > 0.
Thus, the right-sided Riemann–Liouville fractional integral can be interpreted as the density of
u = x − y > 0, x > 0, y > 0, where x and y are statistically-independently- distributed real scalar
random variables.

Let us look into some examples from [16,18]. A real positive scalar random variable x is said to
have a gamma density if its density function is of the form:

f (x) =
mα

Γ(α)
xα−1e−mx, 0 ≤ x < ∞,α > 0, m > 0

and f (x) = 0 elsewhere. Here, f (x) ≥ 0 for all x and
∫ ∞
−∞ f (x)dx = 1, so that f (x) can be a statistical

density. In this case:

1 =
mα

Γ(α)

∫ ∞

0
tα−1e−mtdt
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Let us take a fraction of this integral, such as e−ax times this total integral one. That is,

e−mx(1) = e−mx mα

Γ(α)

∫ ∞
0 tα−1e−mtdt

= mα

Γ(α)

∫ ∞
0 tα−1e−m(t+x)dt, u = t + x

= mα

Γ(α)

∫ ∞
u=x(u− x)α−1e−udu

= mα(Iα− f )(x)with f (u) = e−mu

Thus, the constant multiple of the right-sided Riemann–Liouville fractional integral when
f (u) = e−mu can be interpreted as a fraction of the total integral coming from a gamma density.
Let us examine a fraction of the Type 1 beta density. A real scalar random variable u is said to have a
Type 1 beta density if the density function is given by:

f (u) =
uα−1(1− u)β−1

B(α,β)
, 0 ≤ u < 1,α > 0,β > 0

and zero elsewhere, where B(α,β) = Γ(α)Γ(β)/Γ(α+ β). The total probability in this case is given by:

1 =
∫ 1

0

uα−1(1− u)β−1

B(α,β)
du

Let us consider a fraction of this total probability and consider bα+β−1(1). That is,

bα+β−1 = bα+β−1
∫ 1

0
uα−1(1−u)β−1

B(α,β)
du

=
∫ b

0
(b−t)α−1tβ−1

B(α,β)
dt

= Γ(α+β)
Γ(β)

(Iα0+ f )(x), f (t) = tβ−1

Thus, the left-sided Riemann–Liouville fractional integral when f (t) = tβ−1 can be interpreted as
a fraction of the total integral coming from a beta density.

Similarly, a constant multiple of the left-sided pathway fractional integral can be interpreted as
the density of a sum of two independently-distributed real positive scalar random variables; see [17].
Let x > 0 and y > 0 be statistically-independently-distributed positive real scalar random variables
with densities f1(x) and f2(y), respectively. Let u = x + a(1− q)y, t = y. Then, the density of u is
given by:

g3(u) =
∫ u

a(1−q)

t=0
f1(u− a(1− q)) f2(t)dt (9)

This is in the same format of the left-sided pathway fractional integral for f1(x) = c1
( x

u
) η
(1−q)−1

and f2(y) = c2uη−1 f (y). That is:

g3(u) = c1c2xη−1
∫ x

a(1−q)
0

[
1− a(1−q)t

x

] η
(1−q)−1

f (t)dt

= c1c2P(η,q)
0+

Likewise, statistical interpretations can also be given for other fractional integrals. If we replace
f (t) by a non-negative integrable function, one can obtain a statistical density through this operator.
In addition to this, from this fractional integral, one can list out almost all of the extended densities for
the pathway parameter q < 1 and q→ 1 ; for more details, see [17].
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3. Limiting Approach to the Generalized Gamma Bessel Model via the Pathway Operator

Here, we bring out the idea of thicker- or thinner-tailed models associated with a gamma-type
distribution as a limiting case of the pathway operator. Let the integrand of Equation (6) be denoted
by I(η,q).

I(η,q) =

[
1− a(1− q)t

x

] η
(1−q)−1

f (t), η > 0 (10)

If we consider any real-valued positive integrable scalar function of t instead of any arbitrary
real-valued scalar function of t, one can bring out a statistical density from the pathway fractional
integral operator. Thus, one can say that:

fq(t) = CI(η,q)(t)

is a statistical density. Hence, Equation (6) generalizes all of the left-sided standard fractional
integrals and almost all of the extended densities for q < 1 and q→ 1 . In Equation (6), when
q→ 1 , the integrand I(η,q) will become:

I(η,1) = e−
aη
x t f (t)

In particular, if we take f (t) = 1 and aη
x = b > 0, then one has obtained the Gaussian or normal

density. For q→ 1 and if f (t) is replaced by tβ, we have the gamma density. Similarly, for the standard
Type 1 beta density, the pathway model for q < 1, chi-square density, exponential density and many
more can be obtained as a special case of the pathway integral operator. From Equation (10), one can
obtain the generalized gamma Bessel density as a limiting case. When q→ 1− and replacing f (t) by
tβ−1

0F1(;β; δt), then g(t) will be:

g(t) =

{
Ctβ−1e−bt

0F1(;β; δt); t ≥ 0,β, b > 0
0; otherwise

(11)

Some of the special cases of Equation (11) are given in Table 1. For fixed values of β and b, we
can look at the graphs for δ > 0, as well as for δ < 0. These graphs give a suitable interpretation,
when tail areas are considered. In Figure 1a, note that δ = 0 is the case of a gamma density. Thus,
when δ increases from δ = 0, the right tail of the density becomes thicker and thicker. Thus, when
fitting a gamma-type model to given data and if it is found that a model with a thicker tail is needed,
then one can select a member from this family for appropriate δ > 0. In Figure 1b, observe that
δ = 0 is the case of gamma density. When δ decreases from δ = 0, the right tail gets thinner and
thinner. Thus, if we are looking for a gamma-type density, but with a thinner tail, then one from
this family may be appropriate for δ < 0. For more details of the model in Equation (11), see [19,20].
When q→ 1−,η = 1 and replacing f (t) by tβ−1

0F1(;β; δt) in the pathway fractional integral operator,
then we are essentially dealing with distribution functions under a gamma Bessel-type model in a
practical statistical problem, which provides a connection between statistical distribution theory and
fractional calculus, so that one can make use of the rich results in statistical distribution theory for
further development of fractional calculus and vice versa.

Table 1. Special cases of the generalized gamma model associated with the Bessel function.

δ = 0 Two-parameter gamma density

δ = 0, a = 1 One-parameter gamma density
δ = 0,β = 1 Exponential density

δ = 0, a = 1
2 ,β = n

2 , n = 1, 2, · · · Chi-square density
δ = λ, a = 1

2 ,β = n
2 , n = 1, 2, · · · Noncentral chi-square density
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(a) (b)

Figure 1. (a) Gamma Bessel model for δ > 0; (b) gamma Bessel model for δ < 0.

We can look at the model in another way also. Consider the total integral as:

1 = C
∫ ∞

0
tβ−1e−bt

0F1(;β; δt)dt

which can be treated as the Laplace transform of the function tβ−1
0F1(; β; δt), and hence, C = bβ

Γ(β)e
δ
b

,

where C, the normalizing constant of Equation (11), is nothing but the Laplace transform of the
given function. It is shown to be very relevant in fractional reaction-diffusion problems in physics.
Similarly for b = 0, it will become the Mellin transform of the function 0F1(;β; δt).

The q-analogue of generalized gamma Bessel density can also be deduced from the pathway
fractional integral operator, by putting x = 1,η = 1 and replacing f (t) by tβ−1

0F1(;β; δt), then, gq(t)
will be:

gq(t) =

{
Ktβ−1[1− b(1− q)t]

1
1−q 0F1(;β; δt); q < 1, 1− b(1− q)t > 0, t > 0,β, b > 0

0; otherwise
(12)

where K is the normalizing constant. For fixed values of b and β, we can look at the graphs for δ = −0.5,
q < 1, δ = 0.5, q < 1, as well as for δ = 0, q < 1. From Figures 2 and 3, we can see that when q moves
from −1 to one, the curve becomes thicker tailed and less peaked. It is also observed that when δ > 0,
the right tail of the density becomes thicker and thicker. Similarly, when δ < 0, the right tail gets
thinner and thinner. Observe that for q > 1, writing 1− q = −(q− 1) in Equation (11) produces the
extended Type 2 beta form, which is given by:

fq(t) =

{
Ptβ−1[1 + b(q− 1)t]−

1
q−1 0F1(;β; δt); q > 1, t > 0,β, b > 0

0; otherwise
(13)

where P is the normalizing constant. From Figure 4, we can see that when q moves from one to ∞,
the curve becomes less peaked. In this case, also, it is observed that when δ > 0, the right tail of the
density becomes thicker and thicker, and when δ < 0, the right tail gets thinner and thinner.
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Figure 2. (a) The q-gamma Bessel model for q < 1, δ = −0.50; (b) The q-gamma Bessel model for
q < 1, δ = 0.5.

Figure 3. The q-gamma Bessel model for q < 1, δ = 0.

Densities exhibiting thicker or thinner tails occur frequently in many different areas of science.
For practical purposes of analyzing data from physical experiments and in building up models in
statistics, we frequently select a member from a parametric family of distributions. However, it is often
found that the model requires a distribution with a thicker or thinner tail than the ones available from
the parametric family.
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(a) (b)

Figure 4. (a) q-gamma Bessel model for δ = 0.5, q > 1; (b) q-gamma Bessel model for δ = −0.5, q > 1.

4. Applications in Statistical Mechanics

Nonequilibrium complex systems often exhibit dynamics that can be decomposed into several
dynamics on different time scales. As a simple example, consider a Brownian motion of a particle
moving through a changing fluid environment, characterized by temperature variations on a large
scale. In this case, two dynamics are relevant: one is a fast dynamics describing the local motion
of the Brownian particle, and the other one is a slow one due to the large global variations of the
environment with spatio-temporal inhomogeneities. These effects produce a superposition of two
different statistics, which is referred to as superstatistics. The concept of superstatistics has been
introduced by [21,22] after some preliminary considerations in [23,24]. The stationary distributions
of superstatistical systems typically exhibit a non-Gaussian behavior with fat tails, which can decay,
for example, as a power law, a stretched-exponential law or in an even more complicated way [25].
Essential for this approach is the existence of an intensive variable, say β, which fluctuates on a large
spatio-temporal scale.

For the above-mentioned example of a superstatistical Brownian particle, β is the fluctuating
inverse temperature of the environment. In general, however, β may also be an effective friction
constant, a changing mass parameter, a variable noise strength, the fluctuating energy dissipation
in turbulent flows, a fluctuating volatility in finance, an environmental parameter for biological
systems, a local variance parameter extracted from a signal, and so on. Superstatistics offers a very
general framework for treating nonequilibrium stationary states of such complex systems. After the
original work in [21], much effort has been made for further theoretical elaboration; see [26,27]. At the
same time, it has also been applied successfully to a variety of systems and phenomena, including
hydrodynamic turbulence, pattern formation, cosmic rays, mathematical finance, random matrices
and hydro-climatic fluctuations.

From a statistical point of view, the procedure is equivalent to starting with a conditional
distribution of a gamma type for every given value of a parameter a. Then, a is assumed to have a
prior known density of the gamma type. Then, the unconditional density is obtained by integrating
out over the density of a. Let us consider the conditional density of the form:

fx|a(x|a) = k1xγ−1e−axρ
0F1(;

γ

ρ
; δxρ); 0 ≤ x < ∞, ρ, a,γ > 0 (14)
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and f (x) = 0 elsewhere, where k1 is the normalizing constant. When δ = 0, Equation (14) reduces to
generalized gamma density. Note that this is the generalization of some standard statistical densities,
such as gamma, Weibull, exponential, Maxwell–Boltzmann, Rayleigh and many more. When we put
ρ = 1 in Equation (14), it reduces to Equation (11). When δ = 0, ρ = 2, Equation (14) reduces to folded
standard normal density.

Suppose that a has a gamma density given by:

fa(a) =
ληaη−1e−λa

Γ(η)
; 0 ≤ a < ∞,η, λ > 0 (15)

and fa(a) = 0 elsewhere. In a physical problem, the residual rate of change may have small
probabilities of it being too large or too small, and the maximum probability may be for a medium range
of values for the residual rate of change a. This is a reasonable assumption. Then, the unconditional
density of x is given by:

fx(x) =
∫

a
fx|a(x|a) fa(a)da =

ρληxγ−1

Γ(γρ )Γ(η)
0F1(;

γ

ρ
; δxρ)I11 (16)

where:
I11 =

∫ ∞

0
a
γ
ρ+η−1e−a(λ+xρ)− δ

a da (17)

Note that one form of the inverse Gaussian probability density function is given by:

h1(x) = cx−
3
2 e−

ξ
2 [

x
ν2 +

1
x ],ν 	= 0, ξ > 0, x ≥ 0

where c is the normalizing constant. Put γ
ρ + η− 1 = − 3

2 , λ+ xρ = ξ
2ν2 , δ = ξ

2 in I11; we can see that
the inverse Gaussian density is the integrand in I11. Hence, I11 can be used to evaluate the moments of
inverse Gaussian density. Furthermore, I11 is the special case of the reaction rate probability integral in
nuclear reaction rate theory, Krätzel integrals in applied analysis, etc. (see [28–31]). For the evaluation
of this integral and for more details, see [19,20]. Hence, we have the unconditional density:

fx(x) =
ρλη

Γ(γρ )Γ(η)
xγ−1

(λ+ xρ)
γ
ρ+η 0F1(;

γ

ρ
; δxρ)G2,0

0,2 [δ(λ+ xρ)|0,γρ+η] (18)

where the G-function is defined as the following Mellin–Barnes integral:

Gm,n
p,q

[
z|a1,...,ap

b1,...,bq

]
=

1
2πi

∫
L

Φ(s)z−sds

where:

Φ(s) =

{
∏m

j=1 Γ
(
bj + s

)}{
∏n

j=1 Γ
(
1− aj − s

)}{
∏

q
j=m+1 Γ

(
1− bj − s

)}{
∏

p
j=n+1 Γ

(
aj + s

)}
with aj, j = 1, . . . , p and bj, j = 1, . . . , q being complex numbers and L a contour separating the poles
of Γ
(
bj + s

)
, j = 1, . . . , m from those of Γ

(
1− aj − s

)
, j = 1, . . . , n. Convergence conditions, properties

and applications of the G-function in various disciplines are available in the literature. For rexample,
see [7]. Equation (18) is a superstatistics, in the sense of superimposing another distribution or
the distribution of x with superimposed distribution of the parameter a. In a physical problem,
the parameter may be something like temperature having its own distribution. Several physical
interpretations of superstatistics are available from the papers of Beck and others.
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We can easily obtain the series representation of the unconditional density Equation (18), given by:

fx(x) = ρλη

Γ(γρ )Γ(η)
xγ−1

(λ+xρ)
γ
ρ +η 0F1(;

γ
ρ ; δxρ)

∞
∑

k=0

Γ(γρ+η−k)(−1)k [δ(λ+xρ)]k

k!

=
ρΓ(γρ+η)λη

Γ(γρ )Γ(η)
xγ−1

(λ+xρ)
γ
ρ +η 0F1(;

γ
ρ ; δxρ)0F1(; 1− γ

ρ − η; δ(λ+ xρ))

λ, ρ,η, δ > 0, γρ > 0, 1− γ
ρ − η 	= −ν,ν = 0, 1, · · · , x ≥ 0

(19)

This series representation provides an extension of the Beck and Cohen statistic.
Thus, Equation (19) gives a suitable interpretation, when tail areas are shifted. This model has
wide potential applications in physical sciences, especially in statistical mechanics; see [19,20].

5. Applications in the Growth-Decay Mechanism

If x is replaced by |x| in Equation (3) and when q→ 1 , the real scalar case of the pathway model
takes the form,

h4(x) = c4|x|γ−1e−a|x|θ ,−∞ < x < ∞, a > 0 (20)

The density in Equation (20) for γ = 1, θ = 1 is the simple Laplace density. For γ = 1, we have
the symmetric Laplace density. A general Laplace density is associated with the concept of the
Laplacianness of quadratic and bilinear forms. For the concept of the Laplacianness of bilinear
forms, corresponding to the chi-squaredness of quadratic forms, and for other details, see [14,32].
Laplace density is also connected to input-output-type models. Such models can describe many of
the phenomena in nature. When two particles react with each other and energy is produced, part
of it may be consumed or converted or lost, and what is usually measured is the residual effect.
The water storage in a dam at a given instant is the residual effect of the water flowing into the dam
minus the amount taken out of the dam. Grain storage in a silo is the input minus the grain taken
out. Hence, it is of great importance in modeling this residual effect, and there are many studies on
this concept. There are several input-output-type situations in economics, social sciences, industrial
production, commercial activities, cosmological studies, and so on. It is shown in [33] that when
we have independently-distributed gamma-type input and gamma-type output, the residual part
z = x − y, x = input variable, y = output variable, then the special cases of the density of z is a
Laplace density. In this case, one can also obtain the asymmetric Laplace and generalized Laplace
densities, which are currently used very frequently in stochastic processes, as special cases of the
input-output model.

The generalized gamma Bessel model in Equation (11) has the moment generating function:

Mx(t) =
bβ1

e
δ1
b

e
δ1
b−t

(a1 − t)β1
, b− t > 0,β1 > 0

Let x and y be two independently-distributed generalized gamma Bessel models having parameters
(α1,β1, δ1) and (α2,β2, δ2), respectively, αi > 0,βi > 0, δi, i = 1, 2. Let z = x − y. Due to the
independence of x and y, the moment-generating function of u is given by:

Mz(t) =
α1

β1

e
δ1
α1

e
δ1

α1−t

(α1 − t)β1

α2
β2

e
δ2
α2

e
δ2

α2+t

(α2 + t)β2
,α1 − t > 0,α2 + t > 0

when α1 = α2 = α,β1 = β2 = β, δ1 = δ2 = δ = 0, then the above equation reduces to that of the
generalized Laplacian model of Mathai.
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6. Applications in Solar Spectral Irradiance Modeling

Any object with a temperature above absolute zero emits radiation. The Sun, our singular source
of renewable energy, sits at the center of the solar system and emits energy as electromagnetic radiation
at an extremely large and relatively constant rate, 24 h per day, 365 days of the year. With an effective
temperature of approximately 6000 K, the Sun emits radiation over a wide range of wavelengths,
commonly labeled from high energy shorter wavelengths to lower energy longer wavelengths as
gamma ray, X-ray, ultraviolet, visible, infrared and radio waves. These are called spectral regions;
see Figure 5. The rate at which solar energy reaches a unit area at the Earth is called the “solar
irradiance” or “insolation”. The units of measure for irradiance are watts per square meter (W/m2).
Solar irradiance is an instantaneous measure of rate and can vary over time. The units of measure for
solar radiation are joules per square meter (J/m2), but often watt-hours per square meter (Wh/m2)
are used. As will be described above, solar radiation is simply the integration or summation of solar
irradiance over a time period. For more details, see [34,35].

Figure 5. Solar irradiance spectrum above the atmosphere and at the surface prepared by Robert A.
Rohde (used by copyright from http://www.globalwarmingart.com/wiki/File:Solar-Spectrum-png).

Good quality, reliable solar radiation data are becoming increasingly important in the field of
renewable energy, with regard to both photovoltaic and thermal systems. It helps well-founded
decision making on activities, such as research and development, production quality control,
determination of optimum locations, monitoring the efficiency of installed systems and predicting the
system output under various sky conditions. Especially with larger solar power plants, errors of a
few percent can significantly impact the return on investment. Scientists studying climate change are
interested in understanding the effects of variations in the total and spectral solar irradiance on Earth
and its climate.

A recent set of typical meteorological year (TMY) datasets for the United States, called TMY2
datasets, has been derived from the 30-year historical National Solar Radiation Data Base. In 2000, the
American Society for Testing and Materials developed an AM0 reference spectrum (ASTM E-490) for
use by the aerospace community. That ASTM E490 Air Mass Zero solar spectral irradiance is based
on data from satellites, space shuttle missions, high-altitude aircraft, rocket soundings, ground-based
solar telescopes and modeled spectral irradiance. Our dataset consists of 1522 observations collected
from http://rredc.nrel.gov/solar/spectra/am0/. Here, mathematical software MAPLE and MATLAB
are used for the data analysis. The model considered here is the density function given in Equation (11).
In many situations, the gamma model is used to model the spectral density. Figure 6 is the histogram
of the data embedded with gamma and our new probability models. We have not specified any
parameters here to plot the function. The same program generated the two different graphs as shown
below. We calculated the Kolmogorov–Smirnov test statistic for the two different probability models.
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For gamma density, the value of the statistic is obtained as 0.11139, and for our new probability model,
the value is 0.10808. From the table, the value obtained is 0.410. We can see that the two different
probability models are consistent with the data. However, the distance measure of the statistic of our
new probability model is less than the other probability model, and hence, our model is better fit to
the data than the other one.

Figure 6. The graph of the histogram embedded with the probability models.

Acknowledgments: The author acknowledges gratefully the encouragement given by Arak M. Mathai,
Department of Mathematics and Statistics, McGill University, Montreal H3A 2K6, Canada.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Haubold, H.J.; Mathai, A.M. The fractional kinetic equation and thermonuclear functions.
Astrophys. Space Sci. 2000, 273, 53–63. [CrossRef]

2. Henry, B.I.; Wearne, S.L. Existence of Turing instabilities in a two-species fractional reaction-diffusion system.
SIAM J. Appl. Math. 2002, 62, 870–887. [CrossRef]

3. Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus
operators. Integral Transform. Special Funct. 2004, 15, 31–49. [CrossRef]

4. Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation.
Fract. Calc. Appl. Anal. 2001, 4, 153–192.

5. Mathai, A.M.; Haubold, H.J. Pathway model, superstatistics, Tsallis statistics and a generalized measure of
entropy. Phys. A 2007, 375, 110–122. [CrossRef]

6. Saxena, R.K.; Mathai, A.M.; Haubold, H.J. Fractional reaction-diffusion equations. Astrophys. Space Sci. 2006,
305, 289–296. [CrossRef]

7. Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; CRC Press: New York, NY, USA, 2004.
8. Kiryakova, V. Generalized Fractional Calculus and Applications; CRC Press: New York, NY, USA, 1994.
9. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley:

New York, NY, USA, 1993.
10. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
11. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications;

Gordon and Breach: New York, NY, USA, 1990.
12. Mathai, A.M. A pathway to matrix-variate gamma and normal densities. Linear Algebra Its Appl. 2005, 396,

317–328. [CrossRef]

250



Axioms 2015, 4, 385–399

13. Honerkamp, J. Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis; VCH Publishers:
New York, NY, USA, 1994.

14. Mathai, A.M. On non-central generalized Laplacianness of quadratic forms in normal variables.
J. Multivar. Anal. 1993, 45, 239–246. [CrossRef]

15. Nair, S.S. Pathway fractinal integration operator. Fract. Calc. Appl. Anal. 2009, 12, 237–252.
16. Mathai, A.M. Fractional integrals in the matrix-variate cases and connection to statistical distributions.

Integral Transform. Special Funct. 2009, 20, 871–882. [CrossRef]
17. Nair, S.S. Pathway fractional integral operator and matrix-variate functions. Integral Transform. Special Funct.

2011, 22, 233–244. [CrossRef]
18. Sebastian, N. Some statistical aspects of fractional calculus. J. Kerala Stat. Assoc. 2009, 20, 23–33.
19. Sebastian, N. A generalized gamma model associated with Bessel function and its applications in statistical

mechanics. In Proceedings of AMADE-09, Proceedings of Institute of Mathematics, Natinal Academy of
Sciences, Minsk, Belarus; 2009; pp. 114–119.

20. Sebastian, N. A generalized gamma model associated with a Bessel function. Integral Transform. Special Funct.
2011, 22, 631–645. [CrossRef]

21. Beck, C.; Cohen, E.G.D. Superstatistics. Phys. A 2003, 322, 267–275. [CrossRef]
22. Beck, C. Stretched exponentials from superstatistics. Phys. A 2006, 365, 96–101. [CrossRef]
23. Beck, C. Dynamical Foundations of Nonextensive Statistical Mechanics. Phys. Rev. Lett. 2001, 87, 180601.

[CrossRef]
24. Beck, C. Non-additivity of Tsallis entropies and fluctuations of temperature. Europhys. Lett. 2002, 57, 329–333.

[CrossRef]
25. Touchette, H. Nonextensive Entropy-Interdisciplinary Applications; Gell-Mann, M., Tsallis, C., Eds.;

Oxford University Press: Oxford, UK, 2004.
26. Beck, C. Comment on critique of q-entropy for thermal statistics. Phys. Rev. E 2004, 69, 038101.
27. Chavanis, P.H. Coarse-grained distributions and superstatistics. Phys. A 2006, 359, 177–212. [CrossRef]
28. Joseph, D.P. Gamma distribution and extensions using pathway idea. Stat. Pap. 2011, 52, 309–325. [CrossRef]
29. Krätzel, E. Integral transformations of Bessel type. 1979; 148–155.
30. Mathai, A.M.; Haubold, H.J. Mordern Problems in Nuclear and Neutrino Astrophysics; Akademie-Verlag:

Berlin, Germany, 1988.
31. Mathai, A.M. A Versatile Integral. CMS Project SR/S4/MS:287/05. Preprint. 2007; 9.
32. Mathai, A.M.; Provost, S.B.; Hayakawa, T. Bilinear Forms and Zonal Polynomials; Lecture notes in Statistics,

No. 102; Springer-Verlag: New York, MY, USA, 1995.
33. Mathai, A.M. The residual effect of growth-decay mechanism and the distributions of covariance structure.

Can. J. Stat. 1993, 21, 277–283. [CrossRef]
34. Gueymard, C. The sun’s total and spectral irradiance for solar energy applications and solar radiation

models. Sol. Energy 2004, 76, 423–453. [CrossRef]
35. Stoffel, T.; Renné, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C. Concentrating Solar Power.

Available online: http://www.nrel.gov/docs/fy10osti/47465.pdf (accessed on 13 August 2015).

© 2015 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

251



axioms

Article

Multivariate Extended Gamma Distribution

Dhannya P. Joseph

Department of Statistics, Kuriakose Elias College, Mannanam, Kottayam, Kerala 686561, India;
dhannyapj@gmail.com; Tel.: +91-9400-733-065

Academic Editor: Hans J. Haubold
Received: 7 June 2016; Accepted: 13 April 2017; Published: 24 April 2017

Abstract: In this paper, I consider multivariate analogues of the extended gamma density, which
will provide multivariate extensions to Tsallis statistics and superstatistics. By making use of the
pathway parameter β, multivariate generalized gamma density can be obtained from the model
considered here. Some of its special cases and limiting cases are also mentioned. Conditional
density, best predictor function, regression theory, etc., connected with this model are also
introduced.

Keywords: pathway model; multivariate extended gamma density; moments

1. Introduction

Consider the generalized gamma density of the form

g(x) = c1xγe−axδ
, x ≥ 0, a > 0, δ > 0, γ + 1 > 0, (1)

where c1 = δa
γ+1

δ

Γ( γ+1
δ )

, is the normalizing constant. Note that this is the generalization of some standard

statistical densities such as gamma, Weibull, exponential, Maxwell-Boltzmann, Rayleigh and many
more. We will extend the generalized gamma density by using pathway model of [1] and we get the
extended function as

g1(x) = c2xγ[1 + a(β− 1)xδ]
− 1

β−1 , x ≥ 0, β > 1, a > 0, δ > 0 (2)

where c2 =
δ(a(β−1))

γ+1
δ Γ( 1

β−1 )

Γ( γ+1
δ )Γ( 1

β−1− γ+1
δ )

, is the normalizing constant.

Note that g1(x) is a generalized type-2 beta model. Also lim
β→1

g1(x) = g(x), so that it can

be considered to be an extended form of g(x). For various values of the pathway parameter
β a path is created so that one can see the movement of the function denoted by g1(x) above
towards a generalized gamma density. From the Figure 1 we can see that, as β moves away from 1
the function g1(x) moves away from the origin and it becomes thicker tailed and less peaked.
From the path created by β we note that we obtain densities with thicker or thinner tail compared
to generalized gamma density. Observe that for β < 1, writing β− 1 = −(1− β) in Equation (2)
produce generalized type-1 beta form, which is given by

g2(x) = c3xγ[1− a(1− β)xδ]
1

1−β , 1− a(1− β)xδ ≥ 0, β < 1, a > 0, δ > 0
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where c3 =
δ(a(1−β))

γ+1
δ Γ( 1

1−β +1+ γ+1
δ )

Γ( γ+1
δ )Γ( 1

1−β +1)
, is the normalizing constant (see [2]).

Figure 1. The graph of g1(x), for γ = 1, a = 1, δ = 2, η = 1 and for various values of β.

From the above graph, one can see the movement of the extended gamma density denoted
by g1(x) towards the generalized gamma density, for various values of the pathway parameter β.
Beck and Cohen’s superstatistics belong to the case (2) [3,4]. For γ = 1, a = 1, δ = 1 we have Tsallis
statistics [5,6] for β > 1 from (2).

Several multivariate extensions of the univariate gamma distributions exist in the literature [7–9].
In this paper we consider a multivariate analogue of the extended gamma density (2) and some of
its properties.

2. Multivariate Extended Gamma

Various multivarite generalizatons of pathway model are discussed in the papers of
Mathai [10,11]. Here we consider the multivariate case of the extended gamma density of the
form (2). For Xi ≥ 0, i = 1, 2, . . . , n, let

fβ(x1, x2, . . . , xn) = kβxγ1
1 xγ2

2 . . . xγn
n [1 + (β− 1)(a1xδ1

1 + a2xδ2
2 + . . . + anxδn

n )]
− η

β−1 ,

β > 1, η > 0, δi > 0, ai > 0, i = 1, 2, . . . , n,
(3)

where kβ is the normalizing constant, which will be given later. This multivariate analogue can also
produce multivariate extensions to Tsallis statistics [5,12] and superstatistics [3]. Here the variables
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are not independently distributed, but when β→ 1 we have a result that X1, X2, . . . , Xn will become
independently distributed generalized gamma variables. That is,

lim
β→1

fβ(x1, x2, . . . , xn) = f (x1, x2, . . . , xn)

= kxγ1
1 xγ2

2 . . . xγn
n e−b1x

δ1
1 −...−bnxδn

n ,
xi ≥ 0, bi = ηai > 0, δi > 0, i = 1, 2, . . . , n,

(4)

where k =
n

∏
i=1

δib
γi+1

δi
i

Γ( γi+1
δi

)
, γi + 1 > 0, i = 1, 2, . . . , n.

The following are the graphs of 2-variate extended gamma with γ1 = 1, γ2 = 1, a1 = 1, a2 = 1,
δ1 = 2, δ2 = 2 and for various values of the pathway parameter β. From the Figures 2–4, we can see
the effect of the pathway parameter β in the model.

Figure 2. β = 1.2.

Figure 3. β = 1.5.
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Figure 4. β = 2.

Special Cases and Limiting Cases

1. When β → 1, (3) will become independently distributed generalized gamma variables.
This includes multivariate analogue of gamma, exponential, chisquare, Weibull, Maxwell-
Boltzmann, Rayleigh, and related models.

2. If n = 1, a1 = 1, δ1 = 1, β = 2, (3) is identical with type-2 beta density.
3. If β = 2, a1 = a2 = . . . = an = 1, δ1 = δ2 = . . . = δn = 1 in (3), then (3) becomes the type-2

Dirichlet density,

D(x1, x2, . . . , xn) = dxν1−1
1 xν2−1

2 . . . xνn−1
n [1 + x1 + x2 + . . . + xn]

−(ν1+...+νn+1), xi ≥ 0, (5)

where νi = γi + 1, i = 1, 2, . . . , n, νn+1 = η − (ν1 + . . . + νn) and d is the normalizing constant
(see [13,14]).

A sample of the surface for n = 2 is given in the Figure 5.

Figure 5. The graph of bivariate type-2 Dirichlet with γ1 = γ2 = 1, η = 6.
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3. Marginal Density

We can find the marginal density of Xi, by integrating out X1, X2, . . . , Xi−1, Xi+1, . . . , Xn−1, Xn.
First let us integrate out Xn, then the joint density of X1, X2, . . . , Xn−1 denoted by f1 is given by

f1(x1, x2, . . . , xn−1) =
∫

xn>0
fβ(x1, x2, . . . , xn)dxn

= kβxγ1
1 xγ2

2 . . . xγn−1
n−1 [1 + (β− 1)(a1xδ1

1 + . . . + an−1xδn−1
n−1 )]

− η
β−1

×
∫

xn
xγn

n [1 + Cxδn
n ]
− η

β−1 dxn,

(6)

where C = (β−1)an

[1+(β−1)(a1x
δ1
1 +...+an−1x

δn−1
n−1 )]

. By putting y = Cxδn
n and integrating we get

f1(x1, x2, . . . , xn−1) =
kβΓ( η

β−1 − γn+1
δn

)Γ( γn+1
δn

)

δn[an(β− 1)]
γn+1

δn Γ( η
β−1 )

xγ1
1 xγ2

2 . . . xγn−1
n−1

× [1 + (β− 1)(a1xδ1
1 + a2xδ2

2 + . . . + an−1xδn−1
n−1 )]

−
[

η
β−1− γn+1

δn

]
,

(7)

xi ≥ 0, i = 1, 2, . . . , n− 1, ai > 0, δi > 0, i = 1, 2, . . . , n, β > 1, η > 0, η
β−1 − γn+1

δn
> 0, γn + 1 > 0.

In a similar way we can integrate out X1, X2, . . . , Xi−1, Xi+1, . . . , Xn−1. Then the marginal
density of Xi is denoted by f2 and is given by

f2(xi) = k2xγi
i [1 + (β− 1)aix

δi
i ]
−
[

η
β−1− γn+1

δn −...− γi−1+1
δi−1

− γi+1+1
δi+1

−... γ1+1
δ1

]
, (8)

where xi ≥ 0, β > 1, δi > 0, η > 0,

k2 =
δi(ai(β−1))

γi+1
δi Γ( η

β−1− γn+1
δn −...− γi−1+1

δi−1
− γi+1+1

δi+1
−...− γ1+1

δ1
)

Γ( γi+1
δi

)Γ( η
β−1−

γ1+1
δ1
−...− γn+1

δn )
,

γi + 1 > 0, η
β−1 − γn+1

δn
− . . .− γi−1+1

δi−1
− γi+1+1

δi+1
− . . .− γ1+1

δ1
> 0, η

β−1 − γ1+1
δ1
− . . .− γn+1

δn
> 0.

If we take any subset of (X1, . . . , Xn), the marginal densities belong to the same family. In the
limiting case they will also become independently distributed generalized gamma variables.

Normalizing Constant

Integrating out Xi from (8) and equating to 1, we will get the normalizing constant kβ as

kβ =
δ1δ2 . . . δn(a1(β− 1))

γ1+1
δ1 (a2(β− 1))

γ2+1
δ2 . . . (an(β− 1))

γn+1
δn Γ( η

β−1 )

Γ( γ1+1
δ1

)Γ( γ2+1
δ2

) . . . Γ( γn+1
δn

)Γ( η
β−1 − γ1+1

δ1
− . . .− γn+1

δn
)

, (9)

δi > 0, ai > 0, γi + 1 > 0, i = 1, 2, . . . , n, β > 1, η > 0, η
β−1 − γ1+1

δ1
− . . .− γn+1

δn
> 0.

4. Joint Product Moment and Structural Representations

Let (X1, . . . , Xn) have a multivariate extended gamma density (3). By observing the normalizing
constant in (23), we can easily obtained the joint product moment for some arbitrary (h1, . . . , hn),
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E(xh1
1 xh2

2 . . . xhn
n ) = kβ

Γ( γ1+h1+1
δ1

) . . . Γ( γn+hn+1
δn

)Γ( η
β−1 − γ1+h1+1

δ1
− . . .− γn+hn+1

δn
)

δ1δ2 . . . δn(a1(β− 1))
γ1+h1+1

δ1 . . . (an(β− 1))
γn+hn+1

δn Γ( η
β−1 )

=

Γ( η
β−1 − γ1+h1+1

δ1
− . . .− γn+hn+1

δn
)

n

∏
i=1

Γ(
γi + hi + 1

δi
)

Γ( η
β−1 − γ1+1

δ1
− . . .− γn+1

δn
)

n

∏
i=1

[ai(β− 1)]
hi
δi Γ(

γi + 1
δi

)

,

(10)

η
β−1 −

n

∑
i=1

γi + hi + 1
δi

> 0, γi + hi + 1 > 0,
η

β− 1
−

n

∑
i=1

γi + 1
δi

> 0, γi + 1 > 0, ai > 0, β > 1, δi > 0,

i = 1, 2, . . . , n.

Property 1. The joint product moment of the multivariate extended gamma density can be written as

E(xh1
1 xh2

2 . . . xhn
n ) =

Γ
(

η
β−1 −

n

∑
i=1

γi + hi + 1
δi

)
Γ
(

η
β−1 −

n

∑
i=1

γi + 1
δi

) n

∏
i=1

E(yhi
i ), (11)

where Yi’ s are generalized gamma random variables having density function

fy(yi) = ciy
γi
i e−[ai(β−1)yi ]

δi , yi ≥ 0, β > 1, ai > 0, δi > 0, (12)

where ci =
δi [ai(β−1)]

γi+1
δi

Γ( γi+1
δi

)
, γi + 1 > 0, i = 1, 2, . . . , n, is the normalizing constant.

Property 2. Letting h2 = . . . = hn = 0, in (10), we get

E(xh1
1 ) =

Γ( η
β−1 − γ1+h1+1

δ1
− γ2+1

δ2
− . . .− γn+1

δn
)Γ( γ1+h1+1

δ1
)

Γ( η
β−1 − γ1+1

δ1
− . . .− γn+1

δn
)[a1(β− 1)]

h1
δ1 Γ( γ1+1

δ1
)

, (13)

η
β−1 − γ1+h1+1

δ1
−

n

∑
i=2

γi + 1
δi

> 0,
γ1 + h1 + 1

δ1
> 0,

η

β− 1
−

n

∑
i=1

γi + 1
δi

> 0, γ1 + 1 > 0, a1 > 0,

β > 1, δ1 > 0. (13) is the hth
1 moment of a random variable with density function of the the form (8),

f3(x1) = k3xγ1
1 [1 + (β− 1)a1xδ1

1 ]
−
[

η
β−1−

γ2+1
δ2
−...− γn+1

δn

]
, (14)

where k3 is the normalizing constant. Then

E(xh1
1 ) = k3

∫ ∞

0
xγ1

1 [1 + a1(β− 1)xδ1
1 ]
−[ η

β−1−
γ2+1

δ2
−...− γn+1

δn ]dx1 (15)

Making the substitution y = a1(β− 1)xδ1
1 , then it will be in the form of a type-2 beta density and we

can easily obtained the hth
1 moment as in (13).
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Property 3. Letting h3 = . . . = hn = 0, in (10), we get

E(xh1
1 xh2

2 ) =
Γ( η

β−1 − γ1+h1+1
δ1

− γ2+h2+1
δ2

− . . .− γn+1
δn

)Γ( γ1+h1+1
δ1

)Γ( γ2+h2+1
δ2

)

Γ( η
β−1 − γ1+1

δ1
− . . .− γn+1

δn
)[a1(β− 1)]

h1
δ1 [a2(β− 1)]

h2
δ2 Γ( γ1+1

δ1
)Γ( γ2+1

δ2
)

, (16)

η
β−1 − γ1+h1+1

δ1
− γ2+h2+1

δ2
−

n

∑
i=3

γi + 1
δi

> 0,
η

β− 1
−

n

∑
i=1

γi + 1
δi

> 0, β > 1, γi + hi + 1 > 0,

γi + 1 > 0, ai > 0, δi > 0, i = 1, 2, which is the joint product moment of a bivariate extended gamma
density is denoted by f4 and is given by

f4(x1x2) = k4xγ1
1 xγ2

2 [1 + (β− 1)(a1xδ1
1 + a2xδ2

2 )]
−
[

η
β−1−

γ3+1
δ3
−...− γn+1

δn

]
, (17)

where k4 is the normalizing constant. (17) is obtained by integrating out X3, . . . , Xn from (3). By putting
h4 = . . . = hn = 0, in (10), we get the joint product moment of trivariate extended gamma density and so on.

Theorem 1. When X1, . . . , Xn has density in (3), then

E{xh1
1 . . . xhn

n [1 + (β− 1)(a1xδ1
1 + . . . + anxδn

n )]h
′ }

= kβ

Γ( γ1+h1+1
δ1

) . . . Γ( γn+hn+1
δn

)Γ( η
β−1 − h′ − γ1+h1+1

δ1
− . . .− γn+hn+1

δn
)

δ1δ2 . . . δn(a1(β− 1))
γ1+h1+1

δ1 . . . (an(β− 1))
γn+hn+1

δn Γ( η
β−1 − h′)

=

Γ( η
β−1 )Γ(

η
β−1 − h′ − γ1+h1+1

δ1
− . . .− γn+hn+1

δn
)

n

∏
i=1

Γ(
γi + hi + 1

δi
)

Γ( η
β−1 − γ1+1

δ1
− . . .− γn+1

δn
)Γ( η

β−1 − h′)
n

∏
i=1

{
[ai(β− 1)]

hi
δi Γ(

γi + 1
δi

)

} ,

(18)

η
β−1 − h′ −

n

∑
i=1

γi + hi + 1
δi

> 0, γi + hi + 1 > 0,
η

β− 1
−

n

∑
i=1

γi + 1
δi

> 0, γi + 1 > 0, ai > 0, β > 1,

η > 0, δi > 0, i = 1, 2, . . . , n.

Corollary 1. When X1, . . . , Xn has density in (3), then

E{[1 + (β− 1)(a1xδ1
1 + . . . + anxδn

n )]h
′ } =

Γ( η
β−1 )Γ(

η
β−1 − h′ − γ1+h1+1

δ1
− . . .− γn+hn+1

δn
)

Γ( η
β−1 − γ1+1

δ1
− . . .− γn+1

δn
)Γ( η

β−1 − h′)
, (19)

η
β−1 − h′ −

n

∑
i=1

γi + hi + 1
δi

> 0,
η

β− 1
− h′ > 0,

η

β− 1
−

n

∑
i=1

γi + 1
δi

> 0, ai > 0, β > 1, η > 0,

δi > 0, i = 1, 2, . . . , n.

4.1. Variance-Covariance Matrix

Let X be a n× 1 vector. Variance-covariance matrix is obtained by taking E[(X− E(X))(X−
E(X))′]. Then the elements will be of the form
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E[(X− E(X))(X− E(X))′] =

⎡⎢⎢⎢⎣
Var(x1) Cov(x1, x2) . . . Cov(x1, xn)
Cov(x2, x1) Var(x2) . . . Cov(x2, xn)
...

. . .
Cov(xn, x1) Cov(xn, x2) . . . Var(xn)

⎤⎥⎥⎥⎦
where

Cov(xi, xj) = E(xixj)− E(xi)E(xj), i, j = 1, 2, . . . , n, i 	= j (20)

and
Var(xi) = E(x2

i )− [E(xi)]
2, i = 1, 2, . . . , n. (21)

E(xixj)’s are obtained from (10) by putting hi = hj = 1 and all other hk = 0, k = 1, 2, . . . , n,
k 	= i, j. E(xi)’s and E(x2

i )’s are respectively obtained from (10) by putting hi = 1 and hi = 2 and all
other hk = 0, k = 1, 2, . . . , n, k 	= i. Where

E(x1x2) =
∫ ∞

0

∫ ∞

0
x1x2 f2(x1, x2)dx1dx2. (22)

4.2. Normalizing Constant

Integrate out xi from (8) and equate with 1, we will get the normalizing constant Kα as

Kα =
δ1δ2 · · · δn(a1(α− 1))

γ1+1
δ1 (a2(α− 1))

γ2+1
δ2 · · · (an(α− 1))

γn+1
δn Γ( η

α−1 )

Γ( γ1+1
δ1

)Γ( γ2+1
δ2

) · · · Γ( γn+1
δn

)Γ( η
α−1 − γ1+1

δ1
− · · · − γn+1

δn
)

. (23)

5. Regression Type Models and Limiting Approaches

The conditional density of Xi given X1, X2, . . . , Xi−1, Xi+1, . . . , Xn is denoted by f5 and is
given by

f5(xi|x1, x2, . . . , xi−1, xi+1, . . . , xn) =
fβ(x1, x2, . . . , xn)

f6(x1, x2, . . . , xi−1, xi+1, . . . , xn)

=
δi[ai(β− 1)]

γi+1
δi Γ( η

β−1 )

Γ( γi+1
δi

)Γ( η
β−1 − γi+1

δi
)

xγi
i

× [1 +
(β− 1)aix

δi
i

1 + (β− 1)(a1xδ1
1 + a2xδ2

2 + . . . + ai−1xδi−1
i−1 + ai+1xδi+1

i+1 + . . . + anxδn
n )

]
− η

β−1

× [1 + (β− 1)(a1xδ1
1 + a2xδ2

2 + . . . + ai−1xδi−1
i−1 + ai+1xδi+1

i+1 + . . . + anxδn
n )]
− γi+1

δi ,

(24)

where f6 is the joint density of X1, X2, . . . , Xi−1, Xi+1, . . . , Xn. When we take the limit as β → 1 in
Equation (24), we can see that the conditional density will be in the form of a generalized gamma
density and is given by

lim
β→1

f5(xi|x1, x2, . . . , , xi−1, xi+1, . . . , xn) =
δi(ηai)

γi+1
δi

Γ( γi+1
δi

)
xγi

i e−aix
δi
i , (25)

xi ≥ 0, δi > 0, η > 0, γi + 1 > 0.
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Theorem 2. Let (X1, X2, . . . , Xn) have a multivariate extended gamma density (3), then the limiting case
of the conditional density fβ(xi|x1, x2, . . . , , xi−1, xi+1, . . . , xn) will be a generalized gamma density (25).

Best Predictor

The conditional expectation, E(xn|x1, . . . , xn−1), is the best predictor, best in the sense of
minimizing the expected squared error. Variables which are preassigned are usually called
independent variables and the others are called dependent variables. In this context, Xn is
the dependent variable or being predicted and X1, . . . , Xn−1 are the preassigned variables or
independent variables. This ‘best’ predictor is defined as the regression function of Xn on
X1, . . . , Xn−1.

E(xn|x1, . . . , xn−1) =
∫ ∞

xn=0
xn f7(xn|x1, . . . , xn−1)dxn

=
δn[an(β− 1)]

γn+1
δn Γ( η

β−1 )

Γ( γn+1
δn

)Γ( η
β−1 − γn+1

δn
)
[1 + (β− 1)(a1xδ1

1 + a2xδ2
2 + . . . + an−1xδn−1

n−1 )]
− γn+1

δn +
η

β−1

×
∫ ∞

xn=0
xγn+1

n [1 + (β− 1)(a1xδ1
1 + a2xδ2

2 + . . . + anxδn
n )]
− η

β−1 dxn.

(26)

We can integrate the above integral as in the case of Equation (6). Then after simplification we
will get the best predictor of Xn at preassigned values of X1, . . . , Xn−1 which is given by

E(xn|x1, . . . , xn−1) =
δn[an(β− 1)]−

1
δn Γ( η

β−1 − γn+2
δn

)Γ( γn+2
δn

)

Γ( γn+1
δn

)Γ( η
β−1 − γn+1

δn
)

× [1 + (β− 1)(a1xδ1
1 + a2xδ2

2 + . . . + an−1xδn−1
n−1 )]

− 1
δn ,

(27)

δn > 0, an > 0, β > 1, xi > 0, i = 1, 2, . . . , n− 1, η
β−1 − γn+2

δn
> 0, γn + 1 > 0. We can take the limit

β→ 1 in (27). For taking limit, let us apply Stirling’s approximations for gamma functions, see for
example [15]

Γ(z + a)→ (2π)
1
2 zz+a− 1

2 e−z, for |z| → ∞ and a is bounded (28)

to the gamma’s in (27). Then we will get

lim
β→1

E(xn|x1, . . . , xn−1) =
δnΓ( γn+2

δn
)

(anη)
1

δn Γ( γn+1
δn

)
(29)

which is the moment of a generalized gamma density as given in (25).

6. Multivariate Extended Gamma When β < 1

Consider the case when the pathway parameter β is less than 1, then the pathway model has
the form

g(x) = Kxγ[1− a(1− β)xδ]
η

1−β , β < 1, a > 0, δ > 0, η > 0, (30)
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1− a(1− β)xδ ≥ 0, and K is the normalizing constant. g(x) is the generalized type-1 beta model.
Let us consider a multivariate case of the above model as

gβ(x1, x2, . . . , xn) = Kβxγ1
1 xγ2

2 . . . xγn
n [1− (1− β)(a1xδ1

1 + a2xδ2
2 + . . . + anxδn

n )]
η

1−β ,

β < 1, η > 0, δi > 0, ai > 0, i = 1, 2, . . . , n,

1− (1− β)(a1xδ1
1 + a2xδ2

2 + . . . + anxδn
n ) ≥ 0.

(31)

where Kβ is the normalizing constant and it can be obtained by solving

Kβ

∫
. . .
∫

xγ1
1 . . . xγn

n [1− (1− β)(a1xδ1
1 + . . . + anxδn

n )]
η

1−β dx1 . . . dxn = 1 (32)

Integration over xn yields the following,

Kβ xγ1
1 xγ2

2 . . . xγn−1
n−1 [1− (1− β)(a1xδ1

1 + . . . + an−1xδn−1
n−1 )]

η
1−β

∫ u

0
xγn

n [1 + C1xδn
n ]
− η

β−1 dxn, (33)

where u =
[ 1−(1−β)(a1x

δ1
1 +...+an−1x

δn−1
n−1 )

an(1−β)

] 1
δ and C1 = (1−β)an

[1−(1−β)(a1x
δ1
1 +...+an−1x

δn−1
n−1 )]

. Letting y = C1xδn
n ,

then the above integral becomes a type-1 Dirichlet integral and the normalizing constant can be
obtained as

Kβ =

n

∏
j=1

[δj((1− β)aj)

γj+1
δj ]Γ(1 +

η

1− β
+

γ1 + 1
δ1

+ . . . +
γn + 1

δn
)

Γ( γ1+1
δ1

) . . . Γ( γn+1
δn

)Γ(1 + η
1−β )

(34)

When β→ 1, (31) will become the density of independently distributed generalized gamma
variables. By observing the normalizing constant in (34), we can easily obtaine the joint product
moment for some arbitrary (h1, . . . , hn),

E(xh1
1 xh2

2 . . . xhn
n ) = Kβ

Γ( γ1+h1+1
δ1

) . . . Γ( γn+hn+1
δn

)Γ(1 + η
1−β )

n

∏
j=1

[δj((1− β)aj)

γj+hj+1
δj ]Γ(1 +

η

1− β
+

γ1 + h1 + 1
δ1

+ . . . +
γn + hn + 1

δn
)

=
Γ(1 + η

1−β + γ1+1
δ1

+ . . . + γn+1
δn

)Γ( γ1+h1+1
δ1

) . . . Γ( γn+hn+1
δn

)

n

∏
j=1

[((1− β)aj)

hj
δj ]Γ(1 +

η

1− β
+

γ1 + h1 + 1
δ1

+ . . . +
γn + hn + 1

δn
)Γ(

γ1 + 1
δ1

) . . . Γ(
γn + 1

δn
)

,

(35)

γi + hj + 1 > 0, γj + 1 > 0, aj > 0, β < 1, δj > 0, j = 1, 2, . . . , n.

Letting h2 = . . . = hn = 0, in (35), we get

E(xh1
1 ) =

Γ(1 + η
1−β + γ1+1

δ1
+ . . . + γn+1

δn
)Γ( γ1+h1+1

δ1
)

[(1− β)a1]
h1
δ1 ]Γ(1 + η

1−β + γ1+h1+1
δ1

+ γ2+1
δ2

. . . + γn+1
δn

)Γ( γ1+1
δ1

)

, (36)

γ1 + h1 + 1 > 0, γj + 1 > 0, a1 > 0, β < 1, δj > 0, η > 0, j = 1, 2, . . . , n.
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(13) is the hth
1 moment of a random variable with density function,

g1(x1) = K1xγ1
1 [1− (1− β)a1xδ1

1 ]
η

1−β +
γ2+1

δ2
+...+ γn+1

δn , (37)

where K1 is the normalizing constant.
Letting h3 = . . . = hn = 0, in (35), we get

E(xh1
1 xh2

2 )

=
Γ(1 + η

1−β + γ1+1
δ1

+ . . . + γn+1
δn

)Γ( γ1+h1+1
δ1

)Γ( γ2+h2+1
δ2

)

2

∏
j=1

[((1− β)aj)

hj
δj ]Γ
(
1 +

η

1− β
+

2

∑
i=1

γi + hi + 1
δi

+
n

∑
j=3

γj + 1
δj

)
Γ(

γ1 + 1
δ1

)Γ(
γ2 + 1

δ2
)

, (38)

γ1 + h1 + 1) > 0, (γ2 + h2 + 1 > 0, γj + 1 > 0, a1 > 0, a2 > 0 β < 1, δj > 0, γj + 1 > 0,
j = 1, 2, . . . , n.

If we proceed in the similar way as in Section 4.1, here we can deduce the variance-covariance
matrix of multivariate extended gamma for β < 1.

7. Conclusions

Multivariate counterparts of the extended generalized gamma density is considered and some
properties are discussed. Here we considered the variables as not independently distributed,
but when the pathway parameter β→ 1 we can see that X1, X2, . . . , Xn will become independently
distributed generalized gamma variables. Joint product moment of the multivariate extended
gamma is obtained and some of its properties are discussed. We can see that the limiting case
of the conditional density of this multivariate extended gamma is a generalized gamma density.
A graphical representation of the pathway is given in Figures 1–4.
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1. Early Work in Design of Experiment and Related Problems

A.M. Mathai’s first paper was in the area of Design of Experiment and Analysis of Variance
in Statistics. This work was done after finishing M.A in Mathematics at University of Toronto and
waiting to register for Ph.D, during July–August 1962. This was the first publication which appeared
in the journal Biometrics in 1965, Mathai (1965) [Biometrics, 21(1965), 376–385]. This problem was
suggested by Professor Ralph Wormleighton of the University of Toronto. In two-way classification
with multiple observations per cell the analysis becomes complicated due to lack of orthogonality
in the design. If two factors, such as the amount of fertilizer used and planting methods in an
agricultural experiment to study the yield of corn, are to be tried and if the experiment is planned to
replicate n times, it may happen that some observations in some replicate may get lost and as a result,
instead of n observations per cell one may have nij observations in the (i, j)th cell. When doing the
analysis of the data, for estimating the effects of fertilizers, say, α1, ..., αp, one has to solve a singular
system of linear equations of the type (I − A)α = G where G is known and I − A is singular and
the unknown quantity α′ =

(
α1, ..., αp

)
is to be evaluated. Due to singularity, one cannot write

α = (I − A)−1G. This A =
(
aij
)

is the incidence matrix and has the property that all elements are
positive and ∑

p
j=1 aij = 1 for each i = 1, ..., p. Mathai observed that this property means that a norm of

A, namely ‖ A ‖ = maxi ∑
p
j=1

∣∣aij
∣∣ = 1 and further, since the design is taking care of a general effect,

one can impose a condition on α1, ..., αp such as α1 + ... + αp = 0. Now, consider A being rewritten as
A = A− C + C where C is a matrix where all the first row elements are equal to the median a1 of the
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first row elements of A, all the second row elements are the median a2 of the second row elements of A
and so on. Now, by using the conditions on αi’s, Cα = O (null). Then

(I − A)α = G ⇒ (I − B)α = G

where B =
(
bij
)
, bij = aij − ai, j = 1, ..., p or ∑

p
j=1 |bij|= ∑

p
j=1

∣∣aij − ai
∣∣ = sum of absolute deviations

from the median ai, which is the least possible. Hence the norm ‖ B ‖ = maxi ∑
p
j=1

∣∣aij − ai
∣∣ is the least

possible and evidently < 1. Then

(I − B)α = G ⇒ α = (I − B)−1G =
(

I + B + B2 + ...
)

G

Note that the convergence of the matrix series is made the fastest possible due to the fact that the
mean absolute deviation is least when taken from the median. Thus, successive approximations are
available from BG, B2G, ... but for all practical purposes of testing hypotheses it is found that the
approximation α ≈ BG is sufficient. This approximation avoids matrix inversion or other complicated
operations except one matrix multiplication, namely BG. Encouraged by this work, the thesis was
written on sampling distributions under missing values. A concept called “dispersion theory” was
also developed in the thesis. It is shown that statistical decision making is nothing but a study of a
properly defined measure of scatter or dispersion in random variables. Some dispersions are also
defined in terms of some norms or metrics. Papers were published on the concept, in the journal
Metron, XXVII-34.1–2(1968), 125–135.

2. Work on Generalized Distributions

This work started in 1965 when R.K. Saxena from Jodhpur, India, was visiting McGill University
as a post-doctoral fellow of Charles Fox, the father of Fox’s H-function. Mathai’s group is responsible
to call this function as Fox’s H-function. Such Mellin-Barnes type representations were available from
1888 onwards but since Charles Fox revived the whole area and given a new life it was decided to
call the function as Fox’s H-function. Mathai translated some statistical problems in terms of special
functions and Saxena immediately gave the solutions. Several general densities were introduced.
General compatible structures for conditional densities and prior densities, so that the unconditional
and posterior densities could be easily evaluated in Bayesian analysis problems, were investigated.
The paper got published in the Annals [Mathai and Saxena, Ann. Math. Statist., 40(1969), 1439–1448].

Mathai decided to study the area of special functions and the result of this study is the book from
Oxford University Press; Mathai (1993): A Handbook of Generalized Special Functions for Statistical and
Physical Sciences, Oxford University Press 1993.

2.1. Early Work on Multivariate Analysis

Some problems from multivariate statistical analysis were posed by Mathai, and Saxena could give
the solutions in terms of G and H-functions. These functions were not computable and hence difficult
to utilize in statistics or mathematics. This prompted Mathai and Saxena to look into computable series
forms for G and H-functions and Mathai developed an operator which could solve the difficulties
and computable series forms could be obtained. The work of Mathai and Saxena in the area of special
functions resulted in the following books : A.M. Mathai and R.K. Saxena (Generalized Hypergeometric
Functions with Applications in Statistics and Physical Sciences, Springer-Verlag, Heidelberg and New
York, Lecture Notes No.348, 1973; The H-function with Applications in Statistics and Other Disciplines,
Wiley Eastern, New Delhi and Wiley Halsted, New York, 1978); A.M. Mathai and H.J. Haubold,
Special Functions for Applied Scientists, Springer, New York, 2008, A.M. Mathai, R.K. Saxena and H.J.
Haubold, The H-function: Theory and Applications, Springer, New York, 2010.

When exploring statistical distributions and their structural decompositions Mathai established
several results in characterizations of densities, see Mathai (Canadian Mathematical Bullettin, 9(1966),
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95–102, 10(1967), 239–245; South African Journal of Statistics, 1(10)(1967), 43–48), Gordon and Mathai
(Annals of Mathematical Statistics, 43(1972), 205–229). These works and others’ related results were
put together and brought out a monograph on characterizations, see A.M. Mathai and G. Pederzoli,
Characterizations of the Normal Probability Law, Wiley Eastern, New Delhi and Wiley Halsted, New
York, 1977.

3. Work in Multivariate Analysis

Mathai had already noted the densities of several structures could be written in terms of
G and H-functions. Consider x1, x2, ..., xr, xr+1, ..., xk mutually independently distributed positive
random variables such as exponential variables, type-1 or type-2 beta variables or gamma variables or
generalized gamma variables etc. Consider the structures

u =
x1...xr

xr+1...xk
, v =

xδ1
1 ...xδr

r

xδr+1
r+1 ...xδk

k

(1)

where δ1, .., δk are some arbitrary real powers. Then taking the Mellin transforms or the (s− 1)th
moments of u and v and then taking the inverse Mellin transform one can write the density of u as a
G-function in most cases or as a H-function, and that of v as a H-function. Product of independently
distributed type-1 beta random variables has the same structure of general moments of the likelihood
ratio criterion or λ-criterion, or a one-to-one function of it, in many of testing hypotheses problems
connected with one or more multivariate Gaussian populations and exponential populations. This
showed that one could write the exact densities in the general cases as G-functions in most of the cases.
Mathai was searching for computable representations in the general cases.

During one summer camp at Queen’s University, Kingston, Ontario, Canada, Mathai met P.N.
Rathie, a post-doctoral fellow of L.L. Campbell of Queen’s University, again from Jodhpur, India, and
also a student of R.K. Saxena. They started the collaboration in information theory and at the same
time investigated ways and means of putting G-function in nice computable series form. First they
developed an operator and later Mathai perfected it, see Mathai (Annals of the Institute of Statistical
Mathematics, 23(1971), 181–197). The operator is of the form

Gν =

[
∂

∂s
+ (− ln x)

]ν

(2)

which is an operator operating on the integrand in the Mellin-Barnes representation of the density
functions when the densities are written in terms of G-functions. By using this operator, general
series expansions are obtained for G-functions of the types Gp,0

0,p , which is coming from product

of independent gamma variables, Gp,0
p,p, which is coming from product of independent type-1 beta

variables, Gp,p
p,p , which is coming from product of independent type-2 beta variables and the general

Gm,n
p,q , see Mathai (Metron, 28(1970), 122–146; Mathematische Nachrichten, 48(1970), 129–139; South African

Journal of Statistics, 5(1971), 71–90), Mathai and Rathie (Royal Belg. Akad. Class des Sci., 56(1970),
1073–1084; Sankhya Series A, 33(1983), 45–60), Mathai and Saxena (Kyungpook Mathematics Journal,
12(1972), 61–68; Book: Generalized Hypergeometric Functions with Applications in Statistics and Physical
Sciences, Springer Lecture Notes No. 348, Heidelberg and New York, 1973).

By using the same operator in Equation (2) the exact distributions of almost all λ-criteria associated
with tests of hypotheses on the parameters of one or more Gaussian populations and exponential
populations are worked out, see Mathai (Publ. l’ISUP Paris, 19(1970), 1–15; Journal of the Indian
Statistical Association, 8(1970), 1–17; Annals of the Institute of Statistical Mathematics, 23(1971), 181–197;
Trabajos de Estadistica, 23(1972), 67–83, 111–124; Skand. Aktuar., 55(1972), 193–198; Sankhya Series A,
34(1972), 161–170; Annals of the Institute of Statistical Mathematics, 24(1972), 53–65, 25(1973), 557–566),
Mathai and Rathie (Journal of Statistical Research, 4(1970), 140–159; Annals of the Institute of Statistical
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Mathematics, 22(1970), 69–116; Statistica, 31(1971), 673–688; Sankhya Series A, 33(1971), 45–60; Annals of
Mathematical Statistics, 42(1971), 1010–1019). Mathai popularized Mellin transform techniques, and
special function technique in general, in statistical distribution theory. Exact distributions of almost all
λ-criteria, in the null and non-null cases, are given in explicit computable forms for the most general
cases by Mathai and his co-researchers. The exact distributions in some non-null cases could not be
obtained for the general cases. For example, in testing equality of covariance matrices or equality of
populations in k multivariate normal populations are still open problems for k ≥ 3, in the sense that
some representations for the general case are not available.

3.1. Development of 11-digit Accurate Percentage Points for Multivariate Test Statistics

Even after giving the explicit computable series forms for the various exact distributions of test
statistics in the null (when the hypothesis is true) and non-null (under the alternate hypothesis) for
the general parameters, the series forms were complicated and exact percentage points could not be
computed. When Mathai visited University of Campinas in Brazil he met the physicist R.S. Katiyar.
After six months of joint work of simplifying the complicated gamma products, psi and zeta functions,
Katiyar was able to come up with a computer program. The first paper in the series giving the exact
percentage points up to 11-digit accurate was produced. This paper made all the complicated theory
usable in practical situations of testing of hypotheses in multivariate statistical analysis. The paper
appeared in Biometrika and other papers followed, see Mathai and Katiyar (Biometrika, 66(1979),
353–356; Annals of the Institute of Statistical Mathematics, 31(1979), 215–224; Sankhya Series B, 42(1980),
333–341), Mathai (Journal of Statistical Computation and Simulation, 9(1979), 169–182).

3.2. Development of a Computer Algorithm for Nonlinear Least Squares

After developing a computer program for computing exact 11-digit accurate percentage points
from complicated series forms of the exact densities of λ-criteria for almost all multivariate test statistics,
the problem of developing a computer program for non-linear least squares was re-examined. Starting
with Marquardt’s methods, there were a number of algorithms available in the literature but all these
algorithms had deficiencies. There are a few (around 11) standard test problems to test the efficiency of
a computer program. The efficiency of a computer program is measured by checking the following two
items: In how many test functions the computer program fails and how many function evaluations
are needed to come up to the final solution. These are the usual two criteria used in the field to test a
new algorithm. A new algorithm for non-linear least squares was developed by Mathai and Katiyar
which did not fail in any of the test functions and the number of function evaluations needed was least
compared to all other algorithms available in the literature. The paper was published in a Russian
journal, see Mathai and Katiyar (Researches in Mathematical Statistics (Russian), 207(10)(1993), 143–157).
This paper was later translated into English by the American Mathematical Society.

3.3. Integer Programming Problem

The usual optimization problems such as optimizing a quadratic form or quadratic expression,
subject to linear or quadratic constraints, optimizing a linear form subject to linear (linear programming
problem) or quadratic constraints etc. deal with continuous variables. When the variables are
continuous then these optimization problems can be handled by using calculus or related techniques.
Suppose that the variables can only take integer values such as positive integers 1, 2, 3, ... then
the problem becomes complicated. Many of the standard results available when the variables are
continuous are no longer true when the variables are integer-valued. One such problem was brought
to the attention of Mathai by S. Kounias. This was solved and a joint paper was published, see Kounias
and Mathai (Optimization, 19(1988), 123–131).
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4. Work on Information Theory

When the exact distributions for the test statistics being worked out, side by side the work on
information theory was also progressing. Characterizations of information and statistical concepts were
the ones attempted as a joint venture by Mathai and Rathie. Several characterization theorems were
established for various information measures and for statistical concepts such as covariance, variance,
correlation etc., see for example, Mathai and Rathie (Sankhya Series A, 34(1972), 441–442; Annals of
the Institute of Statistical Mathematics, 24(1972), 473–483; in the book Measures of Information and Their
Applications, IIT Bombay, pp. 1–10, 1974; in the book Essays in Probability and Statistics, Shinko Tsusho,
Tokyo, pp. 607–633, 1976. This collaboration resulted in the first book in the area of characterizations of
information measures, A.M. Mathai and P.N. Rathie∗, Basic Concepts in Information Theory and Statistics:
Axiomatic Foundations and Applications, Wiley Eastern, New Delhi and Wiley Halsted, New York, 1975.
One of the measures discussed there is Havrda-Charvát α-generalized entropy

H =

∫ ∞
−∞[ f (x)]αdx− 1

21−α − 1
(3)

where f (x) is a density function. This is the continuous version. There is also a discrete analogue.
The denominator is put into the form of the exponent of 2 for ready applications to binary systems.
When α→ 1 one has H in Equation (3) going to the Shannon entropy S = − ∫ ∞

−∞ f (x) ln f (x)dx
and hence Equation (3) is called an α-generalized entropy. There are several α-generalized entropies
in the literature, including the one given by Mathai. This Equation (3) in a modified form with
the denominator replaced by 1− α is developed later by C. Tsallis, as the basis for the whole area
of non-extensive statistical mechanics. The Mathai-Rathie (1975) book can be considered to be the
first book on characterizations. As a side result, as an application of functional equations, Mathai
and Rathie solved a problem in graph theory, see Journal of Combinatorial Theory, 13(1972), 83–90.
Other applications of information theory concepts in social sciences, population studies etc. may be
seen from Kaufman and Mathai (Journal of Multivariate Analysis, 3(1973), 236–242), Kaufman, Mathai,
Rathie (Sankhya Series A(1972), 441–442), Mathai (Transactions of the 7th Prague Conference on Information
Theory, pp. 353–357).

4.1. Applications to Real-Life Problems

Applications of the concepts of information measures, ‘entropy’ or the measure of ‘uncertainty’,
directed divergence (a concept of pseudo-distance), ‘affinity’ or closeness between populations,
concept of ‘distance between social groups’ etc. were applied to solve problems in social statistics,
population studies etc. Mathai had developed a generalized measure of ‘affinity’ as well as ‘distance
between social groups’. On application side, dealing with applications of information theory type
measures, see George and Mathai (Canadian Studies in Population, 2(1975), 91–100, 7(1980), 1–7; Journal of
Biosocial Sciences (UK), 6(1975), 347–356; The Manpower Journal, 14(1978), 69–78).

5. Work on Biological Modeling

During one of the visits of Mathai to the Indian Statistical Institute in Calcutta, India, he came
across the biologist T.A. Davis. Davis had a number of problems for which he needed answers. He had
a huge collection of data on the number of petals in certain flowers of one species of plant. He noted
that the petals were usually 4 in each flower but sometimes the number of petals was 5. He wanted to
know whether the occurrence of 5-petaled flowers showed any pattern. His data were insufficient to
come up with any pattern. Patterns, if any, would be connected to genetical factors. Then he had a
question about how various patterns come in nature, in the growth of leaves, flowers, arrangements of
petals and seeds in flowers etc. and whether any mathematical theory could be developed to explain
these. Then he brought in the observations on sunflower. When we look at flowers, certain flowers
such as rose flower, sunflower etc. look more beautiful than other flowers. This appeal is due to the
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arrangements of petals, florets, and color combinations. When we look at a sunflower at the florets or
at the seed formations, after the florets dry up, we see some patterns in the arrangements of these seeds
on the flower disk called capitulum. The seeds look like arranged along some spirals coming from the
periphery going to the center. Let us call these as radial spirals. If one marks a point on the periphery
and then one looks to the left of the mark one sees one set of radial spirals and if one looks to the right
one sees a different set of radial spirals going in the opposite direction. The numbers of these two
sets are always two successive numbers from a Fibonacci sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21, ...
(the sum of two successive numbers is the next number). Another observation made is that if one
looks along a radial spiral this spiral does not go to the center but it becomes fuzzy after a while. At
that stage if one draws a concentric circle and then look into the inside of this circle then one will see
that if one started with the pair (13, 21), then this has shifted to (8, 13) and then to (5, 8) and so on.
The same sort of arrangement can be seen in pineapple, in the arrangement of leaves on a coconut
tree crown and at many other places. If one takes a coconut crown and project onto a circle then
the positions of the leaves on the crown form a replica of the seed arrangement in a sunflower. In a
coconut crown if the oldest leaf is in a certain direction, call it 0-th direction then the next older leaf
is not the next one to the oldest, but it is about θ degrees either to the right or to the left and this θ is
such that θ

2π−θ = golden ratio =
√

5−1
2 . This golden ratio also appears at many places in nature and

the above θ ≈ 137.5o. Davis wanted a mathematical explanations for these and related observations.
These observations were made by biologists over centuries. Many theories were also available on
the subject. All the theories were trying to explain the appearance of radial spirals. Mathematicians
try with differential equations and others from other fields try with their own tools. Mathai figured
out that the radial spirals that one sees may be aftermath of something else and radial spirals are not
generated per se. Also the philosophy is that nature must be working on very simple principles. If one
buys sunflower seeds from a shop or look at sunflower seeds on a capitulum the seeds are all of the
same dimensions if one takes one from the periphery or from any other spot on the capitulum. Such a
growth can happen if something is growing along an Archimedes’ spiral, which has the equation in
polar coordinates r = kθ after one leaves the center. Davis’ artist was asked to mark points on an
Archimedes’ spiral, differentiating from point to point at θ =≈ 137.5◦, something like a point moving
along Archimedes’ spiral at a constant speed so that when the first points reaches θ mark a second
point starts, both move at the same speed whatever be the speed. When the second point comes
to the mark θ a third point starts, and so on. After creating a certain number of points, may be 200
points, remove the Archimedes’ spiral from the paper and fill up the space with any symmetrical
object, such as circle, diamonds etc., with those points being the centers. Then if one looks from the
periphery the two types of radial spirals can be seen. No such spirals are there but it is one’s vision
that is creating the radial spirals. Thus a sunflower pattern was recreated from this theory and Mathai
and Davis proposed a theory of growth and forms. Consider a capillary a very thin tube with built-in
chambers. Consider a viscous fluid being continuously pumped in from the bottom. The liquid enters
the first chamber. When a certain pressure is built up, an in-built valve opens and the fluid moves into
the second chamber and so on. Suppose that the tube opens in the center part of a pan (with a hole
at the center). If the pan is fully sealed so that the only force acting on the liquid is Earth’s gravity.
The flow of the liquid will be governed by the functional equation f (θ1) + f (θ2) = f (θ1 + θ2) whose
continuous solution is the linear function f (θ) = kθ. This is Archimedes’ spiral.

The paper was sent for publication in the journal of Mathematical Biosciences the editor
‘enthusiastically accepted for publication’. In this paper, Mathai and Davis∗(Mathematical Biosciences,
20(1974), 117–133), a theory of growth and form is proposed. This theory still stands and since then
there were many papers in physics, chemistry and other areas supporting various aspects of the theory
and none has disputed the theory so far. In 1976 the journal has taken Mathai-Davis sunflower head as
the cover design for the journal and it is still the cover design.
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5.1. Work on Coconut Tree Crown

The coconut crown was also examined from many mathematical points of view and found to be
an ideal crown. This paper may be seen from Mathai and Davis (Proceedings of the National Academy of
Sciences, India, 39(1973), 160–169).

5.2. Engineering Wonder of Bayya Bird’s Nest and Other Biological Problems

Further problems looked into by Mathai and Davis are the following: (1) The engineering aspect
of the egg chamber of bayya bird’s nest. The nest hangs from the tips of tree branches, the mother bird
goes into the egg chamber through the tail opening of the nest, the nest oscillates violently during
heavy winds or storms but no egg comes out of the egg chamber and fall through the tail opening.
Naturally the tail opening is bigger than the diameter of the eggs because the mother bird goes
through that opening. This shape, beng an engineering marvel, was examined by Mathai and Davis;
(2) thermometer birds in Andaman Nicobar Islands; (3) transfer of Canadian Maple Syrup technology
in the production of palm sugar and jaggery in Tamilnadu, India; (4) Nipa palms to prevent sea
erosion along Kannyakumari sea coast; (5) rejuvenation of Western Ghats in Kannyakumari region; All
these projects were undertaken jointly by the Centre for Mathematical Sciences, Trivandrum Campus
(CMS) where A.M. Mathai was the Honorary Director and Haldane Research Institute of Nagarcoil,
Tamilnadu (HRI) where T.A. Davis was the Director and A.M. Mathai was the Honorary Chairman.
Earlier to these studies, George and Mathai had done work in population problems, especially in
the study of inter-live-birth intervals, that is, the interval between two live births among women in
child-bearing age group, see George and Mathai (Sankhya Series B, 37(1975), 332–342; Demography
of India, 5(1976), 163–180; The Manpower Journal, 14(1978), 69–78). Here, Mathai had introduced the
concepts of affinity and distance between social groups.

5.3. Introducing the Phrase ‘Statistical Sciences’

By 1970 Mathai was working to establish a Canadian statistical society and a Canadian journal
of statistics. The phrase ‘statistical sciences’ was framed and defined it as a systematic and scientific
study of random phenomena so that the theoretical developments of probability and statistics and
applications in all branches of knowledge will come under the heading ‘statistical sciences’, and
random variables as an extension of mathematical variables or mathematical variables as degenerate
random variables. After launching Statistical Science Association of Canada, the term ‘statistical
science’ became a standard phrase. Journals and organizations started using the name ‘statistical
science’. Mathai was responsible to introduce these terms into scientific literature.

When G.P.H. Styan, a colleague of Mathai, was editing the news bulletin of the Institute of
Mathematical Statistics he posed the question whether the phrase ‘statistical science’ was ever used
before launching statistical science association of Canada. There was a response from a Japanese
scientist claiming that he had used the term ‘statistical science’ before. Incidentally, later the Institute of
Mathematical Statistics changed the name of Annals of Mathematical Statistics to Annals of Statistics
and hence that name was no longer available when statistical science association of Canada changed
its name back to the original proposed name Statistical Society of Canada.

6. Work on Probability and Geometrical Probabilities

Work in mathematical statistics and special functions continued. As a continuation of the
investigation of structural properties of densities, Mathai came across the distributions of lengths,
areas and volume contents of random geometrical configurations such as random distance, random
area, random volume and random hyper-volume. All the theories of G and H-functions, products
and ratios of positive random variables etc. could be used in examining the distributional aspects
of volume of random parallelotopes and simplices. By analyzing the structure of general moments,
Mathai noted that these could be generated by products of independently (1) gamma distributed
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points; (2) uniformly distributed points; (3) type-1 beta distributed points; (4) type-2 beta distributed
points. Out of these, (1) fell into the category of Gp,0

0,p , the second and third fell into Gp,0
p,p category and

(4) fell into Gp,p
p,p category, for all of which the necessary theory was already developed by Mathai

and his team. Papers were published on the distributional aspects, see Mathai (Sankhya Series A.
45(1983), 313–323; Mathai and Tracy (Communications in Statistics A, 12(15)(1983), 625–632, 1727–1736;
Mathai (Proceedings of ISPS VI Annual Conference, pp. 3–8, 1987; International Journal of Mathematical and
Statistical Sciences, 3(1)(1994), 79–109, 7(1) (1998), 77–96; Rendiconti del Circolo Matematico di Palermo, Serie
II, Suppl., 65(2000), 219–232), Mathai and Pederzoli (American Journal of Mathematical and Management
Sciences 9(1989), 113–139; Rendiconti del Circolo Matematico di Palermo, Serie II, Suppl., 50(1997), 235–258).

6.1. A Conjecture in Geometric Probabilities

Then Mathai came across a conjecture posed by an Australian scientist R.E. Miles, regarding the
asymptotic normality of a certain random volume coming from uniformly distributed random points.
This was proved to be true by H. Ruben. In fact Ruben brought this area to the attention of Mathai.
The structure of the random geometric configuration was known to Mathai and that it was a G-function
of the type Gp,0

p,p and Mathai realized that a very simple proof of the conjecture could be given by
using the asymptotic formula, or Stirling’s formula which is the first approximation there, for gamma
functions. This was worked out and shown that the conjecture could be proved very easily. This paper
appeared in the journal in probability, see Mathai (Annals of Probability, 10(1982), 247–251). Incidentally,
there is a mistake there. Final representation is given in terms of a confluent hypergeometric function

1F1 there but it should be a Gauss hypergeometric function 2F1, one parameter is missed there in
writing the final form. Then Mathai noted that the same conjecture can be formulated in terms of
type-1 beta distributed random points and similar conjectures could be formulated for type-2 beta
distributed random points and gamma distributed random points. These conjectures were formulated
and solved, see Mathai (Sankhya Series A, 45(1983), 313–323; American Journal of Mathematical and
Management Sciences, 9(1989), 113–139); Mathai and Tracy (Communications in Statistics A, 12(15)(1983),
1727–1736; Metron, 44(1986), 101–110).

6.2. Random Volumes and Jacobians of Matrix Transformations

Side by side Mathai was developing functions of matrix argument. The work in this area will
be given later but its connection to geometrical probabilities will be mentioned here. The area of
stochastic geometry or geometrical probabilities is a fusion of geometry and measure theory. When
measure theory is mixed with geometry the standard axiomatic definition for probability measure is
not sufficient. It is quite evident to see that an additional property of invariance is needed because a
geometrical object can be moved around in a plane or in space and the probability statements must
remain the same. The famous Betrand’s paradoxes or Russell’s paradoxes come from lack of invariance
conditions there. The details are discussed in the book, A.M. Mathai, Introduction to Geometrical
Probability: Distributional Aspects and Applications, Gordon and Breach, New York, 1999. Consider a
circle of radius r. Take two points A and B at random and independently on the circumference of this
circle. Here, ‘at random’ could mean that the probability of finding a point, such as A, in an interval of
length δ is δ

2πr . Consider the chord AB. Then AB is a random chord. Let P be the mid point of this
chord and O the center of the circle. Then OP is fixed when AB is fixed and OP is perpendicular to
AB. Consider another situation of selecting a point P at random inside the circle. This can be done
by assigning probability of finding P in a region R inside the circle is R

πr2 . If P is fixed and if P is
the midpoint of a chord then the chord is automatically fixed. In many ways one can geometrically
uniquely determine a chord. The chord can be made ‘random’ by assigning probabilities in many
ways. Two ways are described above. If one asks a question, what is the probability that the length of
this random chord is less than a specified number? The answer will be different for different ways of
assigning probabilities. This is the paradox. Note that all steps in the derivations of the answers will
be correct and valid steps as per the usual axioms of probability.
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In stochastic probability area the methods used are the methods from differential and integral
geometry and usually very difficult. Even if one wishes to talk about the distribution of random volume
of a parallelotope through differential or integral geometry the process is very involved. Mathai
noted that such problems could be easily answered through Jacobians of matrix transformations. A
paper was published in advances in applied probability, see Mathai Advances in Applied Probability,
31(2)(1999), 487–506). More papers were published, see Mathai (Rendiconti del Circolo Matematico di
Palermo, Serie II, Suppl., 65(2000), 219–232; in the book Probability and Statistical Models with Applications,
pp. 293–316, Chapman and Hall, 2001, Rendiconti del Circolo Matematico di Palermo XLVIII(1999),
487–506); Mathai and Moschopoulos (Statistica, LIX(1)(1999), 61–81; Rendiconti del Circolo Matematico di
Palermo, XLVIII(1999), 163–190).

6.3. Applications in Transportation Problems

As an application of geometrical probability problems Mathai explored the travel distance from
the suburb to city core for circular and rectangular grid cities. Many of the European cities are designed
with a city center and circular and radial streets from the center whereas in North America most of
the cities are designed in rectangular grids. Travel distances, time taken and associated expenses are
random quantities and related to the nature of city design. Some problems of this type were analyzed
by Mathai (Environmetrics, 9(1998), 617–628); Mathai and Moschopoulos (Environmetrics, 10(1999),
791–802).

7. Work in Astrophysics

After publishing the two books on generalized hypergeometric functions in 1973 and H-function
in 1978, physicists were interested to use those results in their works. A number of people from
different parts of Germany were using these results. The German group working in astrophysics
problems were trying to solve some problems connected with reaction rate theory. Then H.J. Haubold,
came to McGill University with open problems where help from special function theory was needed.
After converting their problems in terms of integral equations, Mathai noted that the basic integral to
be evaluated was of the following form:

I(γ, a, b) =
∫ ∞

0
xγe−ax−bx−

1
2 dx (4)

and generalizations of this integral. Note that if a or b is zero then the integral can be evaluated by
using a gamma integral. Mathematically, if the nonlinear exponent is of the form x− 1

2 or of the form
x−ρ, ρ > 0 it would not make any difference. Mathai could not find any such integrals in any of the
books of tables of integrals. He noted that the integrand consisted of integrable functions and therefore
one could make statistical densities out of them. For example, f1(x) = c1xγe−ax, 0 ≤ x < ∞ is a
density where c1 is the normalizing constant. Similarly f2(x) = c2e−xρ

, ρ > 0, 0 ≤ x < ∞ is a density
where c2 is the normalizing constant. Then the structure in Equation (4) can be written as follows:

g(u) =
∫

v

1
v

f1(v) f2

(u
v

)
dv (5)

where g(u) can represent the density of u = x1x2 where x1 and x2 are independently distributed
positive real scalar random variables with the densities f1(x1) and f2(x2) respectively. Once the
structure in Equation (4) is identified as that in Equation (5) then, since the density being unique, it is
only a matter of finding the density g(u) by using some other means. We can easily use the properties
of arbitrary moments. For example

E(u)s−1 = E(x1x2)
s−1 = E

(
xs−1

1

)
E
(

xs−1
2

)
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due to statistical independence of x1 and x2, where E denotes the expected value. Note that E
(

xs−1
1

)
is available from f1(x1) and E

(
xs−1

2

)
from f2(x2). Then g(u) is available from the inverse, that is,

g(u) =
1

2πi

∫ c+i∞

c−i∞
E
(

us−1
)

u−sds (6)

where i =
√−1 and c is determined from the poles of E

(
us−1). Thus, by using statistical techniques

the integral in Equation (4) was evaluated. After working out many results it was realized that one
could also use Mellin convolution of a product to solve integrals of the type in Equation (4). This was
not seen when the method through statistical distribution theory was devised. Various types of
thermonuclear reactions, resonant, non-resonant, depleted case, high energy cut off case etc. were
investigated. The work also went into exploring exact analytic solar models, gravitational instability
problems, solar neutrino problems, reaction-rates, nuclear energy generation etc. The work until
1988 was summarized in the monograph Mathai and Haubold (Modern Problems in Nuclear and
Neutrino Astrophysics, Akademie-Verlag, Berlin, 1988). Since then a lot of work was done, some
of them are the following: Haubold and Mathai (Annalen der Physik, 44(1987), 103–116; Astronomische
Nachrichten, 308(5)(1987), 313–318; Journal of Mathematical Physics, 29(9)(1988), 2069–2077; Astronomy
and Astrophysics, 203(1988), 211–216; Astronomische Nachrichten, 312(1)(1991), 1–6; Astrophysics and
Space Science, 176(1991), 51–60, 197(1992), 153–161,214, 49–70,139–149, 228(1995), 77–86, 258(1988),
185–199; American Institute of Physics, Conference Proceedings, 320(1994), 102-116, 320(1994), 89–101;
SIAM Review, 40(4)(1998), 995–997). The collaboration also resulted in two encyclopedia articles,
see Haubold and Mathai (Sun, Enclyclopaedia of Planetary Sciences, pp. 786–794, 1997, Structure of the
Universe, Encyclopedia of Applied Physics, 23(1998), pp. 47–51).

7.1. New Results in Mathematics Through Statistical Techniques

After evaluating the basic integrals in physics problems by using statistical techniques,
it was realized that such statistical techniques could be used to obtain results in mathematics.
Some summation formulae, computable series representations, extensions of several mathematical
identities etc. were obtained through statistical techniques, see Mathai and Tracy (Metron,
XLII-N1-2(1985), 117–126), Mathai and Pederzoli (Metron, XLIII-N3-4(1985), 157–166, Mathai and
Provost (Statistical Methods, 4(2)(2002), 75–98).

8. Work on Differential Equations

One of the problems investigated in connection with problems in astrophysics was the
gravitational instability problem. The problem was brought to the attention of Mathai by Haubold.
Papers by Russian researchers were there on the problem of mixing two types of cosmic dusts.
Mathai looked at it and found that by making a transformation in the dependent variable and by
changing the operator to t d

dt instead of the integer order differential operator D = d
dt one could identify

the differential equation as a particular case of the differential equation satisfied by a G-function.
Then G-function theory could be used to solve the problem of mixing k different cosmic dusts. Thus the
first paper in integer order differential equation was written and published in the MIT journal,
see Mathai (Studies in Applied Mathematics, 80(1989), 75–93). Two follow-up papers were written
developing the differential equation and applying to physics problems, see Haubold and Mathai
(Astronomische Nachrichten, 312(1)(1991), 1–6; Astrophysics and Space Science, 214(1&2)(1994), 139–149).

9. The Idea of Laplacianness of Bilinear Forms and Work on Quadratic and Bilinear Forms

In the 1980’s two students of Mathai, S.B. Provost and D. Morin-Wahhab, finished their Ph.Ds in
the area of quadratic form. Mathai has also published a number of papers on quadratic and bilinear
forms by this time. Then it was decided to bring out a book on quadratic forms in random variables.
On the mathematical side, there were books on quadratic forms but there was none in the area of
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quadratic forms in random variables. Only real random variables and samples coming from Gaussian
population were considered. Later in 2005 Mathai extended the theory to cover very general classes of
populations. This aspect will be considered later when pathway models are discussed. Only when I.
Olkin pointed out to Mathai about the many applications of complex Gaussian case in communication
theory, after the book appeared in print, Mathai and Provost realized that an equal amount of material
was missed out: A.M. Mathai and S.B. Provost, Quadratic Forms in Random Variables: Theory and
Applications, Marcel Dekker, New York, 1992. Work on quadratic forms and related topics may be seen
from Mathai(Communications in Statistics A, 20(10)(1991) 3159–3174; International Journal of Mathematical
and Statistical Sciences, 1(1)(1992), 5–20; Journal of Multivariate Analysis, 41(2)(1992), 178–193; Annals of
the Institute of Statistical Mathematics, 44(1992), 769–779; Journal of Applied Statistical Sciences, 1(2)(1993),
169–178; The Canadian Journal of Statistics, 21(3)(1993), 277–283; Journal of Multivariate Analysis, 45(1993),
239–246; Journal of Statistical Research, 27(1&2)(1993), 57–80).

9.1. Chisquaredness of Quadratic Forms and Laplacianness of Bilinear Forms

In the 1980’s two students of Mathai, S.B. Provost and D. Morin-Wahhab, finished their Ph.Ds in
the area of quadratic form. Mathai has also published a number of papers on quadratic and bilinear
forms by this time. Then it was decided to bring out a book on quadratic forms in random variables.
On the mathematical side, there were books on quadratic forms but there was none in the area of
quadratic forms in random variables. Only real random variables and samples coming from Gaussian
population were considered. Later in 2005 Mathai extended the theory to cover very general classes of
populations. This aspect will be considered later when pathway models are discussed. Only when I.
Olkin pointed out to Mathai about the many applications of complex Gaussian case in communication
theory, after the book appeared in print, Mathai and Provost realized that an equal amount of material
was missed out: A.M. Mathai and S.B. Provost, Quadratic Forms in Random Variables: Theory and
Applications, Marcel Dekker, New York, 1992. Work on quadratic forms and related topics may be seen
from Mathai(Communications in Statistics A, 20(10)(1991) 3159–3174; International Journal of Mathematical
and Statistical Sciences, 1(1)(1992), 5–20; Journal of Multivariate Analysis, 41(2)(1992), 178–193; Annals of
the Institute of Statistical Mathematics, 44(1992), 769–779; Journal of Applied Statistical Sciences, 1(2)(1993),
169–178; The Canadian Journal of Statistics, 21(3)(1993), 277–283; Journal of Multivariate Analysis, 45(1993),
239–246; Journal of Statistical Research, 27(1&2)(1993), 57–80).

9.2. Bilinear Form Book

After publishing the quadratic form book in 1992, a lot of work had been done on bilinear forms.
Even though a bilinear form can be written as a quadratic form, there are many properties enjoyed by
bilinear form and not enjoyed by quadratic forms. Quadratic forms do not have covariance structures.
Then T. Hayakawa of Japan contacted Mathai asking why not bring out a book on bilinear form,
parallel to the one on quadratic form including chapters on zonal polynomials. This book on bilinear
forms and zonal polynomials was brought out in 1995: A.M. Mathai, S.B. Provost and T. Hayakawa,
Bilinear Forms and Zonal Polynomials, Springer, New York, 1995, in the lecture notes series. Additional
papers may be seen from Mathai and Pederzoli (Journal of the Indian Statistical Society, 3(1995), 345–356;
Statistica, LVI(4)(1996), 4-7-41).

10. Functions of Matrix Argument

Meanwhile Mathai’s work on functions of matrix argument was progressing. These are
real-valued scalar functions where the argument is a real or complex matrix. The theory is well
developed when the argument matrix is real positive definite or hermitian positive definite. Note that
when A is a square or rectangular matrix we do not have a concept corresponding to the square root of
a scalar quantity uniquely defined. But if the matrix A is real positive definite or hermitian positive
definite, written as A > O, operations such as square root can be uniquely defined. Hence the theory
is developed basically for real positive definite or hermitian positive definite matrices. Gordon and
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Mathai tried to develop a matrix series and a pseudo analytic function involving general matrices,
the attempt was not fully successful but some characterization theorems for multivariate normal
population could be established, see Gordon and Mathai (Annals of Mathematical Statistics, 43(1972),
205–229). Gordon has two more papers in the area, one in the Annals of Statistics and the other in
the Annals of the Institute of Statistical mathematics. Hence the theory of real-valued scalar functions of
matrix argument is developed when the matrix is real or hermitian positive definite. There are three
approaches available in the literature. One is through matrix-variate Laplace transform and inverse
Laplace transform developed by C. Herz and others, see for example, Herz (Annals of Mathematics,
61(3)(1955), 474–523). Here one basic assumption is functional commutativity f (AB) = f (BA) even if
AB 	= BA, where A and B are p× p matrices. Under functional commutativity we have the following
result, observing that when A is symmetric there exists and orthonormal matrix P, PP′ = I, P′P = I
such that P′AP = D where D is a diagonal matrix with the diagonal elements being the eigenvalue of
A. Then

f (A) = f (AI) = f
(

APP′
)
= F
(

P′AP
)
= f (D)

Thus, the original function of p(p + 1)/2 real scalar variables, can be reduced to a function of p
variables, the eigenvalues of A. Another approach is through zonal polynomials, developed by
Constantine, James and others, see for example James (Annals of Mathematics, 74(1961), 456–469)
and Constantine (Annals of Mathematical Statistics, 34(1963), 1270–1285). In this definition a general
hypergeometric function with r upper parameters and s lower parameters is defined as follows:

rFs(X) = rFs(a1, ..., ar; b1, ..., bs; X) =
∞

∑
k=0

∑
K

(a1)K...(ar)K
(b1)K...(bs)K

CK(X)

k!
(7)

where CK(X) is zonal polynomial of order k, K =
(
k1, ..., kp

)
, k1 + ... + kp = k, and for example,

(a)K =
p

∏
j=1

(a− (j− 1)
2

)
kj

, (b)k = b(b + 1)...(b + k− 1), (b)0 = 1, b 	= 0 (8)

Here also functional commutativity is assumed. They claim uniqueness for the above series by claiming
that Equation (7) satisfies both the integral equations defining matrix-variate function through the
definition of Laplace and inverse Laplace pair. The third approach is due to Mathai and it is defined
in terms of a general matrix transform or M-transform. The M-transform of f (−X) defined by the
equation

g(ρ) =
∫

X>O
|X|ρ− p+1

2 f (−X)dX,�(ρ) > p− 1
2

(9)

where �(·) means the real part of (·). Under functional commutativity, f (−X) in Equation (9) reduces
to a function of p variables, the eigenvalues of X. But, still the left side of Equation (9) is a function
of only one variable ρ. Hence unique determination of f through g(ρ) need not be expected. It is
conjectured that f is unique when f is analytic in the cone of positive definite matrices. Right now,
f (−X) in Equation (9) remains as a class of functions satisfying the integral equation Equation (9).
In this definition, a general hypergeometric function with r upper and s lower parameters will be
defined as that class of functions for which the M-transform is the following:

g(ρ) =
Γp(a1 − ρ)...Γp(ar − ρ)

Γp(b1 − ρ)...Γp(bs − ρ)
,�(ρ) > p− 1

2
(10)

where Γp(a) is the real matrix-variate gamma given by

Γp(a) = π
p(p−1)

4 Γ(a)Γ(a− 1
2
)...Γ(a− (p− 1)

2
),�(a) >

p− 1
2

(11)
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Then that class of function f (−X) is given by the equation Equation (11). It is seen that M-transform
technique is the most powerful in extending univariate results to matrix-variate cases. Some of the
results may be seen from Mathai (Mathematische Nachrichten 84(1978), 171–177; Communications in
Statistics A, A8(1)(1979), 47–55, A9(8)(1980), 795–801;Annals of the Institute of Statistical Mathematics,
33(1981), 35–43, 34(1982), 591–597; Sankhya Series A, 45(1983), 313–323; Proceedings of the VI ISPS
Conference, pp. 3–8, 1987; Indian Journal of Pure Applied Mathematics, 22(11)(1991), 887–903; Journal of
Multivariate Analysis, 41(2)(1992), 178–193; Proceedings of the National Academy of Sciences, LXV(II)(1995),
121–142, LXV(III)(1995), 227–251, LXVI(IV)(1995), 367–393, LXVI(AI)(1996), 1–22; Indian Journal of
Pure and Applied Mathematics, 24(9)(1993), 513–531; Advances in Applied Probability, 31(2)(1999), 343–354;
Rendiconti del Circolo Matematico di Palermo, Series II, Suppl., 65(2000), 219–232; Linear Algebra and Its
Applications, 183(1993), 202–221; in Probability and Statistical Methods with Applications, pp. 293–316,
Chapman and Hall, 2001), Mathai and Saxena (Journal de Matematica e Estatistica, 1(1979), 91–106),
Mathai and Rathie (Statistica, XL(1980), 93–99; Sankhya Series A, 42(1980), 78–87;), Mathai and Tracy
(Communications in Statistics A, 12(15)(1983), 1727–1736; Metron, 44(1986), 11–110), Mathai and Pederzoli
(Metron, LI(3-4)(1993), 3–24; Indian Journal of Pure Applied Mathematics, 27(3)(1996), 7–32; Linear Algebra
and Its Applications, 253(1997), 209–226, 269(1998), 91–103). The important publication in this area is
the book on Jacobians of matrix transformation: A.M. Mathai, Jacobians of Matrix Transformations and
Functions of Matrix Argument, World Scientific Publishing, New York, 1997. The work on functions of
matrix argument is continuing in the form of applications in pathway models, fractional calculus and
so on. These will be mentioned later.

In connection with matrix-variate integrals it is a very often asked question that whether
matrix-variate integrals can be evaluated by treating them as multiple integrals and by using standard
techniques in calculus. Mathai explored the possibility of explicitly evaluating matrix-variate gamma
and beta integrals as multiple integrals in calculus. The basic matrix-variate integrals are the gamma
integral and beta integrals, where X is a p× p real positive definite matrix or hermitian positive definite
matrix. For example, when X is real and X > O (positive definite) the gamma integral is∫

X>O
|X|α− p+1

2 e−tr(X)dX,�(α) > p− 1
2

and the beta integral is∫
O<X<I

|X|α− p+1
2 |I − X|β− p+1

2 dX,�(α) > p− 1
2

,�(β) >
p− 1

2

The corresponding integrals are there in the complex-variate case also. It is shown that this can be done
explicitly for p = 2 and a recurrence relation can be obtained so that step by step they can be evaluated
but for p > 2 this method of treating as multiple integrals is not a feasible proposition. See Mathai
(Journal of the Indian Mathematical Society, 81(3–4)(2014), 259–271; Applied Mathematics and Computation,
247(2014), 312–318.)

11. Multivariate Gamma and Beta Models

Corresponding to a univariate model there is nothing called a unique multivariate analogue.
Explorations of some convenient multivariate models corresponding to univariate gamma, type-1
beta, type-2 beta, Dirichlet models etc. were conducted in a series of papers. See, for example, Mathai
(In Time Series Methods in Hydrosciences,, pp. 27–36, Elsevier, 1982), Mathai and Moschopoulos (Journal of
Multivariate Analysis, 39(1991), 135–153; Annals of the Institute of Statistical Mathematics,44(1)(1992),
97–106; Statistica, LVII(2) (1992), 189–197, LIII(2)(1993), 231–21). These were some of the works on the
multivariate analogues of gamma and beta densities. Dirichlet models themselves are multivariate
extensions of type-1 and type-2 beta integrals or beta densities. When working on order statistics from
logistic populations, Mathai came across the need for a generalized form of type-1 Dirichlet model, see
Mathai (IEEE Trans. Reliability, 52(2)(2003), 20–206; in Statistical Methods and Practice: Recent Advances,
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pp. 57–67, Narosa Publishing, India, 2003; Proceedings of the 7th Conference of the Society for Special
Functions and Their Applications, 7(2006), pp. 131–142,). Various types of generalizations of type-1
and type-2 Dirichlet densities were considered, see for example, Jacob, Jose and Mathai (Journal of the
Indian Academy of Mathematics, 26(1)(2004), 175–189); Kurian, Kurian and Mathai (Proceedings of the
National Academy of Sciences, 74(A)II(2004), 1–10), Jacob, George and Mathai (Proceedings of the National
Academy of Sciences, 15(3)(2005, 1–9), Thomas and Mathai (Advances in Applied Statistics, 8(1)(2008),
37–56; Sankhya Series A, 71(1)(2009), 49–63), Thomas, Thannippara and Mathai (Journal of Probability
and Statistical Science, 6(2)(2008), 187–200).

11.1. Power Transformation and Exponentiation

Another problem explored is to see the nature of models available by power transformations and
exponentiation of standard probability models. Such a study is useful when looking for an appropriate
model for a given data. These explorations are done in Mathai (Journal of the Society for Probability and
Statistics (ISPS), 13(2012), 1–19).

11.2. Symmetric and Assymetric Models

A symmetric model, symmetric at x = a where a could be zero also, means that for x < a the
behavior of the function or the shape of the function is the same as its behavior for x > a. In many
practical situations, symmetry may not be there. The behavior for x < a may be different from that for
x > a. Many authors have considered asymmetric models where asymmetry is introduced by giving
different weighting factors for x < a and for x > a so that the total probability under the curve will
be 1. But the shape of the curve itself may change for x < a and for x > a. A method is proposed in
the paper referred to in 11.1 above (Mathai 2012) where asymmetry is introduced through a scaling
parameter so that the shape itself will be different for x < a and x > a cases but the total probability
remaining as 1, which may have more practical relevance.

12. The Pathway Model

The basic idea was there in a paper of 1970’s in the area of population studies where it was
shown that by a limiting process one can go from one class of functions to another class of functions,
the property is basically coming from the theory of hypergeometric functions from the aspect of getting
rid off a numerator or a denominator parameter. This idea was revived and written as a paper on
functions of matrix argument where the variable matrix is a rectangular one, see Mathai (Linear Algebra
and Its Applications, 396(2005), 317–328). Let X be a real m× n matrix, m ≤ n and of rank m be a matrix
variable. Let A be m×m and B be n× n constant nonsingular matrices. Consider the function

f (X) = C|AXB X′|γ∣∣I − (1− α)AXBX′
∣∣ η

1−α , η > 0 (12)

where α, η, C be scalar constants. This C can act as a normalizing constant if we wish to create statistical
density out of Equation (12). Consider the case when m = 1, n = 1 and x > 0. Then one can also take
powers for x and the model in Equation (12) can be written as

f1(x) = c1xγ
[
1− a(1− α)xδ

] η
1−α (13)

where a > 0, δ > 0, η > 0, x ≥ 0. In the matrix-variate case in Equation (12) arbitrary powers for
matrices is not feasible even though AXBX′ is positive definite because even for a positive definite
matrix, Y, arbitrary power such as Yδ may not be uniquely defined. Even when uniquely defined
transformation such as Z = Yδ will create problems when computing the Jacobians. The types of
difficulties that can arise may be seen for the case δ = 2 described in the book, A.M. Mathai, Jacobians
of Matrix Transformations and Functions of Matrix Argument, World Scientific Publishing, New York
1997. Hence for the matrix case we consider only when δ = 1. Consider case −∞ < α < 1. Then
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Equation (13) remains as it is given in Equation (13) which is a generalized type-1 beta function. But if
α > 1 then writing 1− α = −(α− 1) the form in Equation (13) changes to the following:

f (x) = c2xγ
[
1 + a(α− 1)xδ

]− η
α−1 (14)

for a > 0, α > 1, η > 0, δ > 0, x ≥ 0. This model is a generalized type-2 beta model. When α→ 1 in
Equation (13) and Equation (14), f1(x) and f2(x) reduce to the the form

f3(x) = c3xγe−aηxδ
, a > 0, η > o, x ≥ 0 (15)

This is a generalized gamma model. Thus three functional forms f1(x), f2(x), f3(x) are available for
α < 1.α > 1, α→ 1 . This parameter α is called the pathway parameter, a pathway showing three
different families of functions.

The practical utility of the model is that if Equation (15) is the stable or ideal situation in a physical
system then the unstable neighborhoods or functions leading to Equation (15) are given in Equation (13)
and Equation (14). In a model building situation, if the underlying data show a gamma-type behavior
then a best-fitting model can be constructed for some values of the parameters or for some value of
α the ideal model can be determined. Most of the statistical models in practical use in the areas of
statistics, physics and engineering fields can be seen to be a member or products of members from
f1, f2, f3 above. Note that for α > 1 and α→ 1 situations we can take δ > 0 or δ < 0 and both these
situations can create statistical densities. Note that f1 is a family of finite range models whereas f2 and
f3 are families of infinite range models. Extended models are available by replacing x by |x| so that the
whole real line will be covered. In this case the nonzero part of model Equation (13) will be in the range

±[a(1− α)]−
1
δ and for others −∞ < x < ∞. Note that in Equation (12) all individual variables xij’s

are allowed to vary over the whole real line subject to the condition I − (1− α)AXBX′ > O (positive
definite). This model is also extended to complex rectangular matrix-variate case, see Mathai and
Provost (Linear Algebra and Its Applications, 410(2005), 198–216).

Note that Equation (13) for γ = 0, δ = 1, a = 1, η = 1 is Tsallis statistics in nonextensive statistical
mechanics. The function, without the normalizing constant c1 will then be

g(x) = [1− (1− α)x]
1

1−α (16)

which is Tsallis statistics. This can be generated by optimizing Tsallis entropy or Havrda-Charvát
entropy with the denominator factor 1− α instead of 21−α − 1, subject the constraint that the first
moment is fixed and this condition can be connected to the principle of the total energy being conserved.
Note that Equation (16) is also a power function model.

d
dx

g(x) = −[g(x)]α

Also Equation (14) for a = 1, δ = 1, η = 1 is superstatistics in nonextensive statistical mechanics.
Mathai’s students have introduced a pathway fractional integral operator based on Equation (13)

and a pathway transform based on Equation (13) and Equation (14). Equation (13) and Equation (14)
can also be obtained by optimizing Mathai’s entropy

Mα( f ) =

∫ ∞
−∞[ f (x)]2−αdx− 1

α− 1
, α 	= 1, α < 2

subject to two moment type constraints and also the pathway parameter α can be derived in terms
of moments of f1(x) or f2(x). Thus, in terms of entropies one can establish a entropic pathway,
in terms of distributions as explained above one can create a distributional pathway, one can also
look into the corresponding differential equations and create a differential pathway, covering the

278



Axioms 2015, 4, 213–234

three sets of functions belonging to generalized and extended type-1 beta family, type-2 beta family
and gamma family. The theory of quadratic and bilinear forms in random variables is extended
to cover pathway populations, instead of Gaussian population. Note that Gaussian population is
a special case of the extended pathway population or pathway model, see Mathai∗ (Linear Algebra
and Its Applications, 425(2007), 162–170). Applications and advancement of theory of pathway model
by Mathai and his associates may be seen from the following: Mathai and Haubold (Physica A,
375(2007), 110–122, 387(2007), 2462–2470; Physics Letters A, 372(2008), 2109–2113; Integral Transforms
and Special Functions, 21(11)(2011), 867–875; Applied Mathematics and Computations, 218(2011), 799–804;
Mathematica Aeterna, 2(1),(2012), 51–61; Sun and Geosphere, 8(2)(2013), 63–70, UN Proceedings (2013);
Entropy, 15(2013), 4011–4025), Mathai and Provost (IEEE Transactions on Reliability, 55(2)(2006), 237–244;
Journal of Probability and Statistical Science, 9(1)(2011), 1–20; Physica A, 392(4)(2013), 545–551).

12.1. Input-Output Models

Many practical situations are input-output situations where what is observed is really the residual
effect. Energy may be produced and consumed and what is observed is the net result or the residual
effect. Water flows into a dam, which is the input variable, and water is taken out of the dam, which is
the output variable and the storage at any instant is the residual effect of the input minus the output.
In any production-consumption, creation-destruction, growth-decay situation what is observed is
z = x− y where x is the input variable and y is the output variable and z is the residual effect. Mathai
explored a number of situations where x and y are independently distributed real scalar random
variables or matrix random variables. Observations as widely different as solar neutrinos and the
amount of melatonin present in human body are all residual observations. Some works in this direction
may be seen from Mathai (Annals of the Institute of Statistical Mathematics, 34(1982), 591–597; In Time
Series Methods in Hydrosciences, pp. 27–36, Elsevier, Amsterdam, 1982; Canadian Journal of Statistics,
21(3)(1993), 277–283; Journal of Statistical Research, 27(1–2)(1993), 57–80; Integral Transforms and Special
Functions, 20(12)(2009), 49–63), Haubold and Mathai (Astrophysics and Space Science, 228(1995), 113–134;
Astrophysics and Space Science, 273(2000), 53–63), Saxena, Mathai and Haubold (Astrophysics and Space
Science, 290(2004), 299–310) and a number of papers on fractional reaction-diffusion equations.

13. Work on Mittag-Leffler Functions and Mittag-Leffler Densities

On Mittag-Leffler functions and their generalizations an overview paper is written, see Haubold,
Mathai and Saxena (Journal of Applied Mathematics, ID 298628(2011), 51 pages). Mittag-Leffler function
comes in naturally when looking for solutions of fractional differential equations. This aspect will be
considered later. Three standard forms of Mittag-Leffler functions in current use are the following:

Eα(x)=
∞

∑
k=0

xk

Γ(1 + αk)
,�(α) > 0

Eα,β(x)=
∞

∑
k=0

xk

Γ(β + αk)
,�(α) > 0,�(β) > 0

Eγ
α,β(x)=

∞

∑
k=0

(γ)kxk

k!Γ(β + αk)
,�(α) > 0,�(β) > 0

There is no condition on the parameter γ. If these are to be written in terms of H-functions then α and
γ have to be real and positive. A generalization can be made by introducing a general hypergeometric
type function, which may be written as

Ea1,...,ar
α,β,b1,...,bs

(
xδ
)
=

∞

∑
k=0

(a1)k...(ar)k
(

xδ
)k

k!Γ(β + αk)(b1)k...(bs)k
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where the notation
(
aj
)

k and
(
bj
)

k are Pochhammer symbols. Convergence conditions can be worked
out for this general form.

A problem of interest in this case is a general Mittag-Leffler density because such a density is
needed in non-Gaussian stochastic processes and time series areas. Such a density was introduced
based on Eγ

α,β

(
xδ
)

and it is shown that such a model is connected to fat-tailed models, Lévy,
Linnik models. Structural properties and asymptotic behavior are also studied and it is shown that
such models are not attracted to Gaussian models, see Mathai (Fractional Calculus & Applied Analysis,
13(1) (2010), 113–132), Mathai and Haubold (Integral Transforms and Special Functions, 21(11)(2011),
867–875).

14. Work on Krätzel Function and Krätzel Densities

Another area explored is Krätzel function, Krätzel transform and Krätzel densities. Since Krätzel
transform is important in applied analysis area, a general density is introduced based on Krätzel
integral. The basic Krätzel integral is of the form

g1(x) =
∫ ∞

0
xγe−ax− y

x dx, a > 0, y > 0 (17)

which can be generalized to the form

g2(x) =
∫ ∞

0
xγe
−axα− y

xβ dx (18)

for a > 0, y > 0, α > 0, β > 0 or β < 0. The integrand in Eqaution (17), normalized, is the inverse
Gaussian density. The integral itself can be interpreted as Mellin convolution of a product, the marginal
density in a bivariate case etc. The integral in Eqaution (18) is connected the general reaction-rate
probability integral in reaction-rate theory (β = 1

2 , α = 1 is the basic integral in reaction-rate theory)
, unconditional densities in Bayesian analysis, marginal densities in a bivariate set up, and so on.
Different problems in a large number of areas can be connected to Eqaution (18). Note that xγe−axα

,

normalized can act as a marginal density of a real scalar random variable x > 0 and e
− y

xβ , normalized,
can act as the conditional density of y, given x. In this case Eqaution (18) has the structure of
unconditional density of y in a Bayesian analysis situation. One can also look at Eqaution (18),
normalized, as the joint density of two real scalar positive random variables and in this case Eqaution
(18) integral represents the marginal density of y. For β > 0, Eqaution (18) can act as the Mellin
convolution of a product and for β < 0 it can represent the Mellin convolution of a ratio. In this case,
one can connect it to the Laplace transform of a generalized gamma density for α = 1. Many types
of such properties are studied in Mathai (International Journal of Mathematical Analysis, 6(51)(2012),
2501–2510; In Frontiers of Statistics and its Applications, Bonfring Publications, Germany, 2013; Proceedings
of the 10th and 11th Annual Conference of SSFA, 10-11(2011–2012), pp. 11–20). Mathai has also considered
the matrix-variate version of Eqaution (17).

15. Work on Fractional Calculus

Mathai may be credited with making a connection of fractional integrals to statistical distribution
theory, extending fractional calculus to matrix-variate cases, to complex matrix-variate cases, to
many scalar variable (multiple) cases, to many matrix variable cases. Recently Mathai has given a
geometrical interpretation of fractional integrals in a simplex as fractions of certain total integral in
n-dimensional cube. Mathai has also given a new definition to the area of fractional integrals, and
thereby fractional derivatives, as Mellin convolutions of products and ratios in the real scalar case
and as M-convolutions of products and ratios in the matrix-variate case, where one function is of
type-1 beta form, see Mathai (Integral Transforms and Special Functions, 20(12)(2009), 871–882; Linear
Algebra and Its Applications, 439(2013), 2901–2913, 446(2014), 196–215), Mathai and Haubold (Fractional
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Calculus & Applied Analysis, 14(1)(2011), 138–155; Cornell University arXiv, I-IV(2012) 4 papers; Fractional
Calculus & Applied Analysis, 16(2)(2013), 469–478). Papers are published solving various types of
fractional reaction, diffusion, reaction-diffusion differential equations, see Haubold, Mathai, Saxena
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