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Abstract 
 
We propose, in the present paper, the investigation of the Sumudu transformation for certain 
distribution spaces with regard to the fractional integral and differential operators of the 
transform. This paper is organized in two sections, first of which gives an abriged text on 
fractional operators and the Sumudu transform (which is less discussed and reserached). Basic 
concept in analysing the investigation is initiated by the fact that the Riemann-Liouville 
fractional integral can be expressed as one of the appropriate forms of the Abel integral equation, 
which is the second section of this paper.  

 

Keywords:  Fractional integral and derivatives, Sumudu transform, convolution, distribution   
    spaces 
  
MSC 2010: 26A33, 44A99, 44A35, 4605, 46F12 

 
 

1.   Preliminaries : Notations and Definitions 
 

Fractional integrals are defined [cf. Samko, Kilbas and Marichev (1993, p.33)], for 
),,()( 1 baLx   by 
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where 0>  (  being the order). These integrals are also known as the Riemann-Liouville 
fractional integrals or the left - sided and right - sided fractional integrals, respectively. The 
integrals given in (1) and (2) are extensions to half and (or) whole axis finite interval ].,[ ba  
These may be used on the half axis ),( a  or ),( b , respectively, subject to the variable limit 
of integration. For the half axis, we write 
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and on the whole real axis, it is given by [cf. Samko, Kilbas and Marichev (1993, pp. 93-94)]  
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Fractional derivatives of order 1,<<,0   are also called Riemann-Liouville fractional 
derivatives or the left - handed and right - handed fractional derivatives, respectively, in the 
interval ],[ ba  which are defined as [cf. Samko, Kilbas and Marichev (1993, p.35)]  
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The fractional derivatives on the whole real axis is [cf. Samko, Kilbas and Marichev (1993,  
p.95 )], ).,()(  pLxf  
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Fractional integration by parts formulae [cf. Samko, Kilbas and Marichev  (1993, p.96)] 
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The fractional integral of Riemann-Liouville (right hand) is interpreted as one of the forms of 
Abel integral equation [cf. Samko, Kilbas and Marichev (1993, pp. 29-30)] 
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solution of  which is given by 
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The Riemann-Liouville fractional integral (left hand) in the form of the Abel integral equation is 
given by 
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whose solution is obtained as 
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The solution obtained for fractional integrals by considering the Abel integral equations are 
equivalent to the fractional derivatives. In addition to the brief note (that is given), one may refer 
to Miller and Ross (1993) and Podlubny (1999) among other monographs. 

 
For generalized functions, fractional integrals and derivatives have two approaches, the first is 
based on Schwartz theory, by virtue of the definition of a fractional integral as the convolution  
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x , with the generalized function f  . 
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In other words, the fractional integrals of a generalized function 1Kf   is 
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when f  is supported on the half axis 0>x , and 1K   is the dual of the test function space 

),(= 101 RCK   which is also known as the space of generalized functions. For such functions, 

fI 
  is also supported on the half axis. Equation (17) is applicable for all   with the generalized 

function .1

x  

 
The second approach is based on using the adjoint operators. By employing fractional 
integration by parts, we get    
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The approach via (18) will be justified if  

bI  continuously maps the space of test functions X 

into itself . Sometimes a more general treatment is admitted when f  and fI a

  are considered as  

generalized functions on different test function spaces X and Y, respectively such that X f  

( the dual of the test function space X),  )( fI a
  Y  (the dual of test function space Y). Then 


bI must map continuously Y into X. Based on the same approach the fractional derivatives for 

generalized functions are proved. Let  ,;H  be an inner product space over the real or complex 

number field K .  
 
In the early 90's, Watugala (1993) christened the Sumudu transform. Related formulation, called 
the s  multiplied Laplace transform, was announced as early as 1948 [Belgacem et al. (2003)]. 
Weerakoon (1998), using Watugala's work, introduced a complex inversion formula of the same. 
One may refer to Ali and Kalla (2007), Belgacem and Karaballi (2006), Eltayeb and Kilicman 
(2010a), Eltayeb and Kilicman (2010b), Eltayeb, Kilicman and Fisher (2010) for more text on 
the Sumudu transform and its applications. 

 
Consider functions in the set A  , we have M  a constant and 1 and 2  need not exist 
simultaneously (each may be infinite), 
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which initiates the definition of  the Sumudu transform, see [Belgacem, Karaballi and Kalla  
(2003)], in the form 
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Two parts arise in (20), because, in the domain of f  , the variable t  may not change sign. Infact, 
the Sumudu transform, which is itself linear, preserves linear functions and hence (in particular) 
does not change units. 

 
In other words, the Sumudu transform can also be written as [Belgacem, Karaballi and Kalla 
(2003), Eltayeb and Kilicman (2010a)]  
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 inversion formula of which is given by 
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The Sumudu transform of the n th order derivative of )(tf  is defined by 
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Convolution of the Sumudu transform is 
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If )(uF  is the Sumudu  transform of a function )(tf  in A , )()( tf n  is the n th derivative of )(tf  

with respect to ,t  and )()( uF n  is the n  th derivative of )(uF  with respect to u , then the Sumudu 
transform of the prescribed function is 
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In what follows, are mentioned properties of the Sumudu transform, see  [Eltayeb and Kilicman 
(2010a), Eltayeb and Kilicman (2010b), Eltayeb, Kilicman and Fisher (2010), Kilicman and 
Eltayeb (2010)].  
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Theorem 1. Existence of Sumudu transform [Eltayeb and Kilicman (2010a)]  
 
 If f  is of exponential order, then its Sumudu transform )(uF  exists, which is given by 
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In [Eltayeb, Kilicman and Fisher (2010)], the Sumudu transform is extended to the distribution 
spaces and some other properties have been formulated. Authors of the present paper Loonker 
and Banerji (2011) have proved the Parseval equation of the Sumudu transform for distribution 
spaces and obtained solution of the Abel integral equation related to the distribution spaces. The 
fractional integral for the Sumudu transform is given by [see Ali and Kalla (2007)] 
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In terms of Equation (3), the fractional integrals for the Sumudu transform, can be defined as   
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Definition 1. [Eltayeb and Kilicman (2010b), Eltayeb, Kilicman and Fisher (2010)] 
 
 The space W  of test functions of exponential decay is the space of complex valued functions 

)(t  satisfying the following properties 

(i) )(t  is infinitely differentiable; i.e., )()( nRCt   
(ii) )(t  and its derivatives of all orders vanish at infinity faster than the reciprocal of the 

exponential of order 1/ ; that is, 
 

kMtDe kt ,/1,<)(/    .                                                                                              (28) 

 
Then a function )(tf  is said to be of exponential growth if and only if )(tf  together with all its 
derivatives grow more slowly than the exponential function of order ,1/  that is, there exists a 

real constant 1/  and M  such that .<)( 
t

k MetD  A linear continuous functional over the 

space W  of test functions is called a distribution of exponential growth and its dual space is 
denoted by W  . 
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The Sumudu transform of the function f  for the space W   is given by 
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2.    Distributional Fractional Integrals and Derivatives of Sumudu Transform 

 
In this section we will define the fractional integral and differential operators of the Sumudu 
transform for distribution (or generalized functions) spaces. Applications of integral transform to 
the fractional integrals and derivatives for generalized functions may be seen in [Erdelyi (1972), 
Ross (1975), Rubin (1995)]. 

 
 Let space )(R�   be the Schwartz space of infinitely differentiable rapidly decreasing 

complex valued function on the real line .R  Let )(  R  be the linear topological space of the 

restricted Schwartz function of the half line ][0,= R  with the topology   represented by the 
sequence of norms 
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The Sumudu transform defined for the test function space W   can also be considered for the 
Schwartz spaces  , possessing similar properties. Employing the Sumudu transform )]([ zgS  

for ,, g the topology in space W  is defined by the norm 
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The subspace 0W  of W  is defined by 
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with the norms generated by the topology 
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Theorem 2. The Sumudu transform is an isomorphism from S  onto W  and from   onto .0W  

  
Proof: 
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Similarly, by the inverse Sumudu transform, we get 

 
WtfScf m )];([;                                                                                                          (38) 

 
with the convergence of the Sumudu transform, the isomorphism from one space to another is 
proved. 

 
Corollary 1. The space S (the space )  is an algebra (with respect to the convolution Sumudu 

transform) which is isomorphic to the multiplicative algebra )( 0WW . The space   is an ideal in 

the algebra .S  
 

Theorem 3. The operator 0>,0  ReI   is an automorphism of the space  . There is no 

subspace X {0}  of the space S  such that X is invariant under 
I  for all 0.>  

   
Proof: 
 
For ,f  we have )]([=)]([ 0 zfSuzfIS  , where the function )(zf  is an entire function of 

z . The Sumudu transform converges and thus, the Sumudu transform of fractional integral 
converges. To obtain (or justify) 00 )]([ WzfIS  , from Theorem 2, we have 
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Hence , 
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which implies the continuity of the mapping 00 ][][ WfISfS    and simultaneously justifies 

.][1)(=][ 1
0 WfSufIS  


  

 
To define fractional integrals and derivatives on the distributions spaces, the space of linear 
continuous functionals on   will be denoted by .  The class 

0C  and   are 

invariant with respect to fractional integration and differentiation. The space W  is considered 
similar to the space  . Therefore, the fractional integration of the Sumudu transform will be in 
the space W . 

 
Let us introduce another space   of functions )(x  with all their derivatives 
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virtue of the definition of the space  , that consists of functions  the of combinations of the 

delta function and its derivative. The Sumudu transform in the sense of distribution spaces are 
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obtained from    by shifting out polynomials, that is, two functionals in    differing by a 
polynomial are indistinguishable as elements of   From the definition of distribution space for 
fractionals integrals (17)  and the Sumudu transform in distribution spaces (42) and (43), we 
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convolution of fractional integral with the Sumudu transform, that defines the Sumudu transform 
)(x  with ,u  will also be in the distribution space W  . 

 
We consider the fractional integral in the form of Abel integral equation, that is given in (12), the 
convolution form of which is given by 

 

.)](][
)(

1
=)( 1 xxxf 


 


                                                                                                   (45) 

 
Applying Sumudu transform convolution in both the sides, we have 

 
11

[ ( )] = ( ) [ ( )].
( )

S f x u u S x 


 


                                                                              (46) 

 

Setting ,
1!

=)(
1





n

t
tf

n

 the Sumudu transform is 1=)( nuuF , which reduces to the following 

  
( ) = [ ( )].F u u S x   

  
1 1

[ ( )] = ( ) = [ ( )].
(1 )

S x u F u S x f t
u

 


 
 

 

 

, 

 
i.e., 

                                    

,)]([
1

)(1

1
=)]([ xHS

u
xS 

 
                                                                                         (47) 

 

where 0)0(,)()()(
0

  HdttftxxH
x  . .

)]([
=

(0))]([
=)]([

u

xHS

u

HxHS
xHS

  Then 

                                  
1

[ ( )] = [ ( )],
(1 )

u
S x S H x

u





 
 

 
i.e., 

  

0

1
( ) = ( ) ( ) .

(1 )

xd
x x t f t dt

dx



                                                                                (48) 

  





 


 dttftxS

u
xS

x
)()(

)(1

1
=)]([

0





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The solution obtained in the form of )(x  is equivalent to ).(tf
D  Considering another 

fractional integral form as the Abel integral equation (14) and once again using the Sumudu 
transform, the solution obtained will be equivalent to ).(tf

D  
 

 As the Abel integral equation, I  with f ,X  X= ],,[ baCb
  has the unique solution 

f D=  in the space X of generalized functions. This solution can be understood in the sense 

that  

.X,,=,   
bff DD                                                                                              (49) 

 
Moreover, if the fractional integrals of the Sumudu transform are considered in the distribution 
spaces, then the solution thus obtained  will also be interpreted in the sense of distribution spaces 
(or generalized functions). 
 
Remark 1. Replacing   by )(1   in (12) we notice it to reduce to another form of Abel 
integral equation. In other words, the fractional integrals and derivatives both can be employed to 
different types of distribution spaces as discussed in this paper and as cited in [Loonker and 
Banerji (2011)]. 

 
Applications: An Equation of the form ),(=)( xfyy   0,=(0)y  1<<0    is solved by 
invoking the Sumudu transform and using 0,=(0)y  which yields the solution by applying 
complex inversion formula of fractional Sumudu transform, see [Kilicman and Eltayeb (2010)]. 

 
A linear fractional partial differential equation, see Jumarie (2007) 
 

( , ) = ( , ), , ,t xz x t c z x t x t R      

 
with boundary conditions )(=,0)(),(=)(0, xgxztftz , is solved by taking fractional double 
Sumudu transform, see Gupta, Sharma and Kilicman (2010). 

 
We also can refer to [Eltayeb and Kilicman (2010b)] to study a differential equation involving 
the Heaviside function and the Dirac delta function, whose solution is found through Sumudu 
transform. Applications of Sumudu transform are also studied for population growth and in 
finance, see [Eltayeb and Kilicman (2010a), Kataetbeh and Belgacem (2011)].   

 
Moreover, fractional differential equations those are solved either by using the Sumudu 
transform or by invoking any type of fractional derivative operators, can be extended to the 
distribution spaces. And (on the other hand) the distributional Sumudu transform can be used to 
investigate and study of several types fractional derivatives and to obtain solutions of fractional 
differential equations, see, for instance [Kataetbeh and Belgacem (2011)]. 
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3.  Conclusion   
 
Since the Riemann-Liouville fractional integral is expressible as one of the forms of the Abel 
integral equation and solution obtained is one of the fractional derivatives, the Sumudu transform 
defined for a certain test function space can as well be considered for the Schwartz space (those 
possessing similar properties). Two results proved in Section 2, explain the investigation.   
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