192,028 research outputs found

    Stochastic models of evidence accumulation in changing environments

    Get PDF
    Organisms and ecological groups accumulate evidence to make decisions. Classic experiments and theoretical studies have explored this process when the correct choice is fixed during each trial. However, we live in a constantly changing world. What effect does such impermanence have on classical results about decision making? To address this question we use sequential analysis to derive a tractable model of evidence accumulation when the correct option changes in time. Our analysis shows that ideal observers discount prior evidence at a rate determined by the volatility of the environment, and the dynamics of evidence accumulation is governed by the information gained over an average environmental epoch. A plausible neural implementation of an optimal observer in a changing environment shows that, in contrast to previous models, neural populations representing alternate choices are coupled through excitation. Our work builds a bridge between statistical decision making in volatile environments and stochastic nonlinear dynamics.Comment: 26 pages, 7 figure

    Multialternative decision by sampling : a model of decision making constrained by process data

    Get PDF
    Sequential sampling of evidence, or evidence accumulation, has been implemented in a variety of models to explain a range of multialternative choice phenomena. But the existing models do not agree on what, exactly, the evidence is that is accumulated. They also do not agree on how this evidence is accumulated. In this article, we use findings from process-tracing studies to constrain the evidence accumulation process. With these constraints, we extend the decision by sampling model and propose the multialternative decision by sampling (MDbS) model. In MDbS, the evidence accumulated is outcomes of pairwise ordinal comparisons between attribute values. MDbS provides a quantitative account of the attraction, compromise, and similarity effects equal to that of other models, and captures a wider range of empirical phenomena than other models

    Parallel Implementation of Efficient Search Schemes for the Inference of Cancer Progression Models

    Full text link
    The emergence and development of cancer is a consequence of the accumulation over time of genomic mutations involving a specific set of genes, which provides the cancer clones with a functional selective advantage. In this work, we model the order of accumulation of such mutations during the progression, which eventually leads to the disease, by means of probabilistic graphic models, i.e., Bayesian Networks (BNs). We investigate how to perform the task of learning the structure of such BNs, according to experimental evidence, adopting a global optimization meta-heuristics. In particular, in this work we rely on Genetic Algorithms, and to strongly reduce the execution time of the inference -- which can also involve multiple repetitions to collect statistically significant assessments of the data -- we distribute the calculations using both multi-threading and a multi-node architecture. The results show that our approach is characterized by good accuracy and specificity; we also demonstrate its feasibility, thanks to a 84x reduction of the overall execution time with respect to a traditional sequential implementation

    Photoluminescence upconversion at GaAs/InGaP2 interfaces driven by a sequential two-photon absorption mechanism

    Get PDF
    This paper reports on the results of an investigation into the nature of photoluminescence upconversion at GaAs/InGaP2 interfaces. Using a dual-beam excitation experiment, we demonstrate that the upconversion in our sample proceeds via a sequential two-photon optical absorption mechanism. Measurements of photoluminescence and upconversion photoluminescence revealed evidence of the spatial localization of carriers in the InGaP2 material, arising from partial ordering of the InGaP2. We also observed the excitation of a two-dimensional electron gas at the GaAs/InGaP2 heterojunction that manifests as a high-energy shoulder in the GaAs photoluminescence spectrum. Furthermore, the results of upconversion photoluminescence excitation spectroscopy demonstrate that the photon energy onset of upconversion luminescence coincides with the energy of the two-dimensional electron gas at the GaAs/InGaP2 interface, suggesting that charge accumulation at the interface can play a crucial role in the upconversion process

    Brain-inspired Bayesian perception for biomimetic robot touch

    Get PDF
    Studies of decision making in animals suggest a neural mechanism of evidence accumulation for competing percepts according to Bayesian sequential analysis. This model of perception is embodied here in a biomimetic tactile sensing robot based on the rodent whisker system. We implement simultaneous perception of object shape and location using two psychological test paradigms: first, a free-response paradigm in which the agent decides when to respond, implemented with Bayesian sequential analysis; and second an interrogative paradigm in which the agent responds after a fixed interval, implemented with maximum likelihood estimation. A benefit of free-response Bayesian perception is that it allows tuning of reaction speed against accuracy. In addition, we find that large gains in decision performance are achieved with unforced responses that allow null decisions on ambiguous data. Therefore free-response Bayesian perception offers benefits for artificial systems that make them more animal-like in behavior

    Evidence accumulation in a Laplace domain decision space

    Full text link
    Evidence accumulation models of simple decision-making have long assumed that the brain estimates a scalar decision variable corresponding to the log-likelihood ratio of the two alternatives. Typical neural implementations of this algorithmic cognitive model assume that large numbers of neurons are each noisy exemplars of the scalar decision variable. Here we propose a neural implementation of the diffusion model in which many neurons construct and maintain the Laplace transform of the distance to each of the decision bounds. As in classic findings from brain regions including LIP, the firing rate of neurons coding for the Laplace transform of net accumulated evidence grows to a bound during random dot motion tasks. However, rather than noisy exemplars of a single mean value, this approach makes the novel prediction that firing rates grow to the bound exponentially, across neurons there should be a distribution of different rates. A second set of neurons records an approximate inversion of the Laplace transform, these neurons directly estimate net accumulated evidence. In analogy to time cells and place cells observed in the hippocampus and other brain regions, the neurons in this second set have receptive fields along a "decision axis." This finding is consistent with recent findings from rodent recordings. This theoretical approach places simple evidence accumulation models in the same mathematical language as recent proposals for representing time and space in cognitive models for memory.Comment: Revised for CB
    corecore