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Multialternative Decision by Sampling: A Model of Decision Making
Constrained by Process Data

Takao Noguchi
University College London

Neil Stewart
University of Warwick

Sequential sampling of evidence, or evidence accumulation, has been implemented in a variety of models to
explain a range of multialternative choice phenomena. But the existing models do not agree on what, exactly,
the evidence is that is accumulated. They also do not agree on how this evidence is accumulated. In this article,
we use findings from process-tracing studies to constrain the evidence accumulation process. With these
constraints, we extend the decision by sampling model and propose the multialternative decision by sampling
(MDbS) model. In MDbS, the evidence accumulated is outcomes of pairwise ordinal comparisons between
attribute values. MDbS provides a quantitative account of the attraction, compromise, and similarity effects
equal to that of other models, and captures a wider range of empirical phenomena than other models.

Keywords: attraction effect, compromise effect, evidence accumulation, sequential sampling, similarity
effect

One overarching idea in decision research is that people accumu-
late evidence for alternatives over time, with a decision reached when
the evidence reaches a decision criterion. This sequential accumula-
tion of evidence has proven effective in explaining neural activity
during decision (see, e.g., Gold & Shadlen, 2007, for review) and in
capturing the time course of perceptual judgments (see, e.g., Ratcliff
& Smith, 2004; Teodorescu & Usher, 2013, for reviews). Evidence
accumulation provides a general framework for decisions, where
values need to be integrated over time or across attributes. Within the
multialternative decision making, many implementations of evidence
accumulation have been proposed, as listed in Table 1.

One primary difference between the models concerns what,
exactly, the evidence is that is accumulated on each step. In some
models, transformed attribute values are accumulated. In other
models, differences in (raw or transformed) attribute values are

accumulated. Other major differences concern the stochastic fluc-
tuation of attention and the choice of decision criterion, as sum-
marized in Table 1.

The contribution of this paper is to present a new model, which
we call multialternative decision by sampling (MDbS). This model
is an extension of decision by sampling (DbS; Stewart, Chater, &
Brown, 2006). The MDbS model differs from the other sequential
sampling models of multialternative choice primarily in that the
evidence accumulated is pairwise ordinary comparisons on single
attribute dimensions. For example, consider a decision between
cars: a Ford, a BMW, and a Nissan. The Ford may have a lower
price than the BMW, resulting in one unit of evidence accumulated
for the Ford. Then, in the next step, the Ford beats the Nissan on
fuel efficiency, resulting in one unit of evidence accumulated for
the Ford. These steps continue until one car is sufficiently far
ahead in evidence units, whereupon a choice is made.

We have used findings from process tracing studies, in partic-
ular those on eye-movements, to provide some constraints on how
evidence is accumulated. The MDbS model is guided by three
constraints in particular. First, the existing literature shows that, in
multialternative decision, people’s attention fluctuates between
pairs of alternatives on single attributes at one time (Russo &
Leclerc, 1994; Russo & Rosen, 1975). So, in the MDbS model, the
evidence accumulated is the outcome of a series of evaluations of
pairs of alternatives on single dimensions. The link between the
attention fluctuation and decision is reported in process-tracing
studies (Noguchi & Stewart, 2014; Stewart, Gächter, Noguchi, &
Mullett, 2016). The second constraint is that more similar alterna-
tives receive more attention (Noguchi & Stewart, 2014). So, in the
MDbS model, more similar alternatives are more likely to be
selected for comparison. Third, the distribution of time taken to
make a decision (response time) is generally positively skewed
and, toward the end of a decision, people attend more to the
alternative which they are going to choose (the gaze cascade
effect; Shimojo, Simion, Shimojo, & Scheier, 2003; Simion &
Shimojo, 2007). Mullett and Stewart (2016) show, in a series of
simulations, that positively skewed response times and the gaze
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cascade effect are consistent only with a decision criteria based on
a relative difference in the evidence for each alternative, rather
than the absolute evidence for an alternative. So, in the MDbS
model, we use a relative decision criteria.

Having used process data to set what would otherwise be
arbitrary assumptions about the evidence accumulation in
MDbS, we then seek to explain a different set of phenomena:
decisions in multialternative choice. Initially we focus upon the
so-called big three context effects: the attraction, compromise,
and similarity effects. The effects have driven the development
of models of multialternative decision because of their theoret-
ical importance and because of the challenge in producing a
simultaneous account of all three. We will show that the
MDbS’s quantitative account of the big three context effects is
as good as two key competing models which also have closed-
form solutions for decision probability: multialternative deci-
sion field theory (MDFT; Roe, Busemeyer, & Townsend, 2001)
and the multiattribute linear ballistic accumulator model
(MLBA; Trueblood, Brown, & Heathcote, 2014). We then
broaden our consideration of phenomena using a systematic
literature survey, and consider the ability of the MDbS model,
and other models, to capture the breadth of phenomena. The
MDbS model captures almost all of these phenomena without
any further assumptions. To begin, we describe the MDbS
model.

Multialternative Decision by Sampling

Overview

In the MDbS model, evidence is accumulated from a series of
ordinal comparisons of pairs of attribute values. The attribute
values are drawn from the current choice and from long-term
memories of attribute values encountered previously. For example,
in evaluating the price of Car A people may compare the price
against prices sampled from other alternatives in a choice set: the
price of Car B also on offer. People may also compare the price of

Car A against prices sampled from long-term memory: prices of
other cars they have seen before. No matter the source of the
comparison attribute, if the price of Car A is preferable in the
pairwise comparison, one unit of evidence is accumulated toward
deciding on Car A. This pairwise comparison is considered ordi-
nal, in the sense that evidence is increased one single unit amount
regardless of how large the difference is. These ordinal compari-
sons of pairs of attribute values are sequentially sampled, and drive
the evidence accumulation process until the evidence for one
alternative is sufficiently far ahead of the evidence for the other
alternatives. Below, we expand on this overview.

Working Memory

In the original DbS model, and in MDbS, working memory con-
tains the attribute values from the choice set and may also contain
attribute values retrieved from long-term memory. All of the attribute
values, regardless of their source, are processed in exactly the same
way. G. D. A. Brown and Matthews (2011) and Tripp and Brown
(2015) have integrated a computational model of memory with deci-
sion by sampling, but this complexity is not needed to explain the
multialternative decisions in this article. Here, working memory is
simply the pool of attribute values the decision maker has in the front
of their mind. We will see how context effects caused by the addition
or removal of alternatives from the current choice set and context
effects caused by exposure to attribute values before the current
choice are explained by the same mechanism in MDbS.

Similarity Dependent Comparison Probability

In the earlier formulation of the DbS model, all attribute value
comparisons are equally likely. But process tracing studies suggest
that context influences people’s attention. For example, eye-
movement studies find that people attend more frequently to
alternatives which share attribute values with other alternatives or
have similar attribute values (Noguchi & Stewart, 2014; Russo &
Rosen, 1975). Figure 1 shows the number of eye-fixation transi-

Table 1
Evidence Accumulation Models in Decision Making

Model Evidence accumulated Stochastic attention Decision criterion

AAM Transformed values on one attended attribute One attribute is stochastically selected
for each step of evidence
accumulation

Absolute threshold

LCA Differences in transformed attribute values, aggregated over attributes Not assumed External stopping time
MADDM Pre-choice attractiveness ratings, weighted by visual attention One alternative is selected for each step

of evidence accumulation
Relative threshold

MDFT Differences in attribute values between the alternative and the
average of the other alternatives, on one attribute

One attribute is stochastically selected
for each step of evidence
accumulation

Relative threshold

MLBA Differences in transformed attribute values, aggregated over attributes Not assumed Absolute threshold
RN Transformed attribute values, aggregated over attributes Not assumed Not specified
MDbS Ordinal comparisons between a pair of alternatives on single

dimensions
A pair and an attribute are stochastically

selected for each step of evidence
accumulation

Relative threshold

Note. The model names are abbreviated as follows: AAM � associative accumulation model (Bhatia, 2013); LCA � leaky competing accumulators
(Usher & McClelland, 2004); MADDM � multialternative attentional drift-diffusion model (Krajbich, Armel, & Rangel, 2010; Krajbich & Rangel, 2011);
MDFT � multialternative decision field theory (Roe, Busemeyer, & Townsend, 2001); MLBA � multiattribute linear ballistic accumulator (Trueblood,
Brown, & Heathcote, 2014); RN � range-normalization model (Soltani, De Martino, & Camerer, 2012); MDbS � multialternative decision by sampling.
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tions between the three alternatives from an experiment by Nogu-
chi and Stewart (2014) which presented attraction, compromise,
and similarity choices, using different cover stories for each
choice. The most frequent transitions are between the most similar
alternatives. We describe the attraction, similarity, and compro-
mise effects below in detail, but for now note that in the attraction
choice set {A, B, D}, transitions are most frequent between pair A
and D, prior to a decision. In the compromise choice set {A, B, C},
transitions are most frequent between pair A and B and pair A and
C. In the similarity choice set {A, B, S}, transitions are most
frequent between pair B and S.

Therefore, in MDbS, the probability of evaluating the value of
Alternative A on Dimension i is proportional to the similarity to the
other attribute values in working memory:

p(evaluate Ai) � �
Xi�Ai

Xi��i

exp��� D(Ai,Xi)�, (1)

where Ai is the attribute value for Alternative A on Dimension i, �i

is the set of attribute values from Dimension i in working memory,
and D is a distance function discussed below.

In MDbS, the probability of evaluating A against B can be
different to the probability of evaluating B against A. When
averaging over the direction of comparison, MDbS produces the
qualitative pattern of comparison frequencies illustrated in Fig-
ure 1. The gray dots represent predicted frequencies. In a
similarity choice, for example, Equation 1 will assign higher
evaluation probabilities to Alternatives B and S than to Alter-
native A, because B and S both have a high summed similarity
to the other alternatives whereas Alternative A does not. Thus,
the comparisons which are more frequently made are B against
A, B against S, S against A, and S against B. Comparisons of A
against B or A against S are less frequent. Because comparisons
of B against S and of S against B are both frequent, comparisons
between B and S are most frequent, as we see in Figure 1.

Pairwise Ordinal Comparison

In the MDbS model, the rate at which evidence is accumulated
for an alternative is determined by two factors: the probability that
the alternative is compared on a particular attribute dimension (as
described in the previous section), and the probability that the
alternative wins the comparison. Formally, the accumulation rate
for Alternative A is given by:

p(Evidence is accumulated toward A)

� �
i��

p(evaluate Ai) p(Ai wins a comparison)

� �
i��

p(evaluate Ai)

� ��
Xi�Ai

Xi��i

p(Ai is compared against Xi) p(Ai is favored over Xi)�,

(2)

where � is the set of attribute dimensions along which alternatives
are described (e.g., price, comfort and fuel efficiency), and Ai is the
attribute value of Alternative A on Dimension i, and �i is the set
of attribute values on Dimension i in working memory.

The pairwise comparison process is supported by process-
tracing studies (e.g., Noguchi & Stewart, 2014; Payne, 1976;
Russo & Dosher, 1983; Russo & Leclerc, 1994). These studies
show that people move their eyes back and forth between a pair of
alternatives on one single attribute value before moving on to the
next comparison.

Our assumptions about the ordinality of comparisons—that the
evidence accumulation is insensitive to the magnitude of differ-
ence between compared values—were grounded in findings from
the field of psychophysics, as was the case for the original decision
by sampling model (see Stewart et al., 2006). For example, pre-
vious research demonstrates that people are rather good at discrim-
inating stimuli (e.g., vertical lines of different lengths, or auditory
tones of different loudness) from one another, but rather poor at

Figure 1. The frequencies of eye-fixation transitions between alternatives for the attraction, compromise, and
similarity choices. The labeling of alternatives is shown in the left panel. The second, third, and forth panels
show eye-fixation transition frequencies as black dots and MDbS’s predictions of the number of comparisons as
gray dots. Error bars are 95% highest posterior density intervals. The frequencies of eye-fixation transitions are
redrawn from data reported in Noguchi and Stewart (2014), and the MDbS’s predictions are made with
parameter values � � 3, �0 � 0.1, �1 � 50, and � � 1.
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identifying or estimating the magnitude of the same stimuli (e.g.,
estimating line length or tone loudness; Laming, 1984; Shiffrin &
Nosofsky, 1994; Stewart, Brown, & Chater, 2005), which suggests
that ordinal comparisons are relatively easy. In the context of
decision making, these studies indicate that people are rather good
at judging whether they prefer one attribute value over another, but
rather poor at stating exactly how much more they appreciate that
attribute value. For example, people are able to clearly state that
they prefer the comfort of driving a Mercedes to the comfort of
driving a Toyota, but people may not be able to state how much
more (e.g., 1.7 times) they prefer the comfort of the Mercedes to
the comfort of the Toyota.

Differences as Fractions

People often behave as if differences are perceived as fractions,
as embodied in Weber’s Law. Weber’s Law says that the incre-
ment which can be added to a stimulus and just noticed is a
constant fraction of the stimulus magnitude. In the context of
judgment and decision making, Tversky and Kahneman (1981)
report that people are willing to make an extra trip to save $5 on
a $15 purchase but unwilling to make the same trip to save $5 on
a $125 purchase. This finding suggests that the discount is judged
as a fraction and not an absolute value. Although the saving is $5
in both cases, the $5 discount is 33% reduction from the price of
$15 but is only 4% reduction from the price of $125. The 4%
reduction may not be meaningful enough to influence a decision.
Consistent with this finding, changing prices by a small fraction
often has only a very small impact on sales (Kalwani & Yim, 1992;
Kalyanaram & Little, 1994). Also, studies on employees’ judg-
ments of salary increases find that the increment expressed in a
fraction is a better predictor of employees’ judgments of mean-
ingfulness of the increment (Futrell & Varadarajan, 1985; Hene-
man & Ellis, 1982) and also employees’ subsequent spending and
saving decisions (Rambo & Pinto, 1989).

Thus, in MDbS, the distance between Ai and Xi is defined as a
fraction:

D(Ai,Xi)
�

| Ai � Xi |
| Xi | . (3)

Although this form will behave pathologically when Xi ap-
proaches zero, it is sufficient for our purposes. This distance
function is used above in Equation 1 for the probability that an
attribute value is selected for comparison. It is also used in Equa-
tion 4 below for for the probability that an attribute value wins a
comparison.

Probability of Winning a Comparison

The probability that the selected attribute value wins a compar-
ison (i.e., is favored over another value) is given by

p(Ai is favored over Xi) � �F��1�D(Ai,Xi)
� �0�� if Ai 	 Xi

0 otherwise,

(4)

where F is a logistic sigmoid function with �0 � 0.1 and �1 � 50
in the simulations below. These parameter values mean that an
advantage of 10% is favored with .50 probability, and that an

advantage of 20% is favored with � .99 probability. Our choice of
�0 � 0.1 is based on the previous theoretical preposition that
people are more sensitive to a difference greater than 10% (Brand-
stätter, Gigerenzer, & Hertwig, 2006). In using the logistic func-
tion, we are replacing the hard comparison between attribute
values in the original DbS model with a softer comparison.

To illustrate the softer comparison, suppose we have two iden-
tical attribute values and gradually increase one of them. As the
difference between the two values grows, it becomes more likely
for the larger value to be favored with the soft comparison. This
gradual increase in the probability of favoring the value is not
possible with the hard comparison, where a small difference is
completely ignored and the larger value suddenly becomes favored
when the difference grows sufficiently large. We note, however,
that Equation 4 can emulate the hard comparison with extremely
large �1.

Thus far we have defined all of the terms in Equation 2. That is,
we have defined what, exactly, the evidence is that is accumulated
in MDbS. More detailed walk-throughs of the numerical compu-
tation are provided in Appendixes B and C. What remains is to
define the stopping rule.

A Relative Stopping Rule, and a Closed-Form Solution
for Decision Probabilities

In models of evidence accumulation, a decision is reached when
accumulated evidence satisfies a decision criterion. Empirical ev-
idence suggests that stopping is based upon one accumulator being
sufficiently far head of the others (i.e., a relative stopping rule)
rather than when the highest accumulator hits a fixed threshold
(i.e., an absolute stopping rule; Teodorescu & Usher, 2013). In
particular, Mullett and Stewart (2016) used a series of simulations
to explore the ability of relative and absolute stopping rules to
account for two phenomena: (a) the ubiquitous positively skewed
distribution of response times and (b) the gaze cascade effect in
which eye fixations are biased more and more strongly toward the
alternative ultimately chosen in the second or so before a choice
(Shimojo et al., 2003; Simion & Shimojo, 2007). The intuition is
as follows, and is based upon the assumption of increased evidence
accumulation for the alternative being fixated (Krajbich, Armel, &
Rangel, 2010; Krajbich & Rangel, 2011). In an absolute stopping
model, the final fixation should be toward the chosen alternative,
as that is when the accumulated evidence for that alternative hits
the threshold. But the earlier fixations can be in any order. They
could be a run of fixations to the nonchosen alternative and then a
run to ultimately chosen alternative which catches up, overtakes,
and then hits the absolute threshold. Or alternation between the
nonchosen and ultimately chosen alternatives, so that the alterna-
tives are neck and neck until the very last fixation. Or many other
patterns. But a relative stopping model, where stopping occurs
when the evidence for one alternative gets sufficiently far ahead of
the evidence for the other, requires a run of fixations to the
ultimately chosen alternative. Only a run of fixations produces the
gradually emerging gaze cascade effect—the gaze cascade effect is
thus a unique empirical signature of a relative stopping rule.
Mullett and Stewart (2016) demonstrate this intuition with a com-
prehensive series of simulations. (Note, also, that the argument is
separate from the issue of whether there is a causal effect from
accumulated evidence to fixations—it is not required that people
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are more likely to look at the thing they prefer.) In summary, only
a relative stopping rule is consistent with the process tracing
evidence, and so, in MDbS, we assume a relative stopping rule (see
also, Nosofsky & Palmeri, 1997).

For a decision between more than two alternatives, the criterion
is likely to be either (a) a difference between the maximum and
next-best evidence or (b) a difference between a maximum and a
mean-average evidence (for discussion, see Teodorescu & Usher,
2013). Further experimental work is required to discriminate be-
tween these possibilities. Here, for computational feasibility, we
assume that a decision is made when a difference between a
maximum and a mean-average evidence reaches a threshold � �
0.1. This threshold value means that, on average, 2.5 comparisons
are made prior to a decision in attraction, compromise, similarity
choices. By conceptualizing the evidence accumulation as a ran-
dom walk over accumulator states, we have been able to follow
Diederich and Busemeyer (2003) and develop a closed form so-
lution for the decision probabilities. Appendix A gives the deriva-
tion.

Testing DbS Mechanisms

In this section, we discuss earlier studies which tested the DbS
mechanisms. This work focused upon the predictions the DbS
model makes when the attribute values in working memory are
manipulated.

Incidental Value Effect

In the DbS and MDbS models, the attribute values that happen
to be in working memory determine how much a given attribute
value contributes to accumulation rates. Suppose that a decision
maker happens to have £1, £2, and £7 in working memory. A
target value of £5 will win in each pairwise comparison against £1
and £2, but will lose the comparison against £7 (assuming these
differences are sufficiently large). Thus the target £5 will win in
two out of three comparisons. Then the probability that the £5
alternative wins a comparison is 2/3 � .67.

More generally, the probability that an attribute value wins a
comparison is closely related to its relative rank within values in
working memory. A relative rank is the proportion of attribute
values to which a target value compares favorably. In the above
example, the relative rank of £5 is .67. When a relative rank is
high, an attribute value is more likely—by definition—to win a
comparison, leading to a higher accumulation rate and ultimately
contributing to a higher decision probability for the alternative.

This predicted relation between a relative rank and decision was
tested by Ungemach, Stewart, and Reimers (2011), who offered a
decision between two probabilistic pay-offs to consumers as they
left a supermarket. One alternative offered a .55 probability of
£0.50 and otherwise nothing; and the other offered a .15 proba-
bility of £1.50 and otherwise nothing. Ungemach et al. (2011) used
the supermarket receipt as a proxy for the values that the customer
had recently experienced and would likely be in his or her working
memory. Ungemach et al.’s (2011) results show that the more
values on the receipt that fell between the £0.50 and £1.50 prizes,
the more likely that the lottery for £1.50 was chosen. According to
DbS, this is because when more prices fall between the £0.50 and
£1.50 prizes, the relative rank of these prizes differs more. Of

course, the supermarket prices experienced should not have af-
fected the lottery decision, but, according to the DbS and MDbS
models, because these values remained in working memory at the
time of the lottery decision, they affected the relative ranks of
£0.50 and £1.50, and thus affected the lottery decision.

Attribute Distribution Effect

When people are faced with a series of questions, the attribute
values from earlier questions can remain in working memory and
affect subsequent decisions. Thus different distributions of attri-
bute values in earlier questions should have a systematic effect on
subsequent decisions. We illustrate this with an example from
Stewart, Reimers, and Harris (2015).

Stewart et al. (2015) compared two distributions. In the first,
monetary rewards in working memory were positively skewed,
with values £0, £10, £20, £50, £100, £200, and £500. In the
second, the values were uniformly distributed, with values £0,
£100, £200, £300, £400, and £500. Consider one of the attribute
values common to both distributions, say £200. In the positively
skewed distribution, it has a relative rank of 5/7 � .71 because it
compares favorably to five of the seven attribute values (£0, £10,
£20, £50, and £100). In the uniform distribution, it has a relative
rank of 2/6 � .33 because it compares favorably with only two out
of the six attribute values (£0 and £100).

Figure 2 plots the subjective value functions for money for these
positively skewed and uniform distribution conditions. These sub-
jective values are computed as the average accumulation rate for
the target attribute value (Equation 2). The general principle is that
the probability that a target attribute value wins a comparison
increases most quickly, and thus a subjective value increases most
quickly, in the most dense parts of the attribute value distribution.
(Note that the slight deviation from linear for the uniform distri-
bution condition and there is also slight variation in the positive
skew condition which is harder to see. This is caused by the effects
of similarity on the rate at which targets are selected for compar-
ison, as is the crossing of the lines near £400–£500.)

To test this prediction, Stewart et al. (2015) asked participants to
make a series of risky decisions between probabilistic pay-offs.
Different participants had their pay-off amounts drawn from dif-
ferent distributions. Just as the MDbS model predicts, the esti-
mated value showed greater concavity when the distribution is
positively skewed than when it is uniformly distributed (or in other
experiments, negatively skewed). In the traditional expected utility
framework, the concavity of the subjective value (or utility) func-
tion indexes the level of risk aversion displayed. The profound
implication of Stewart et al.’s (2015) result is that the level of risk
aversion is a property of the questions the experimenter asks, and
not on the people making the decisions—at least to a large extent.

The question remains as to why then we typically see risk
averse, concave subjective value functions in most laboratory
experiments and in estimations from real-world decisions. Stewart
et al. (2006) observed that the distribution of attribute values is
very often positively skewed in a number of domains, including
credits and debits to bank accounts and supermarket prices (see
also, Stewart & Simpson, 2008; Stewart, 2009). If the real-world
has mostly positively skewed distributions, we should see mostly
risk averse, concave subjective value functions. Stewart et al.
(2006) also made similar observations linking the distribution of
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probabilities in the world to inverse-S-shaped weighting functions
and the distribution of delays in the world to hyperbolic-like
discounting functions. Changes in the distributions of attribute
value can also explain key phenomena in risky decision (e.g., the
common ratio effect, Stewart & Simpson, 2008; Stewart, 2009).

Loss Aversion

According to the DbS and MDbS models, the distribution of
values in working memory offers an explanation of loss aversion.
People often behave as if losses loom larger than gains (see
Camerer, 2005; Fox & Poldrack, 2014, for reviews). For example,
when offered a decision to play gambles with equal chance to win
or lose an amount people typically reject such an offer (also see
Gal, 2006). Famously, loss aversion was incorporated into the
subjective value function in prospect theory (Kahneman & Tver-
sky, 1979), which shows a steeper curve in the loss domain than in
the gain domain.

In the DbS and MDbS models, loss aversion is explained
through an asymmetry in the ranges of the distributions of gains
and losses typically used in measuring loss aversion. For example,
suppose gains are drawn from a uniform distribution between £0
and £40, but losses are drawn from a uniform distribution between
£0 and £20 (e.g., after Tom, Fox, Trepel, & Poldrack, 2007). An
increase from £0 to £10 covers one half of the values in the
£0–£20 distribution of losses but only one quarter of the values in
the £0–£40 distribution of gains. Thus the same amount should
perceived as larger in losses than gains: people should be more
sensitive to losses. When the distributions are reversed so that
losses are drawn from a uniform distribution between £0 and £40
and gains are drawn from a uniform distribution between £0 and
£20, this sensitivity should also be reversed.

The right panel of Figure 2 shows the predicted subjective value
function from the MDbS model, which shows exactly this pattern.
These predictions were tested by Walasek and Stewart (2015), who
showed the usual loss aversion when the range of losses was

narrower than the range of gains. When gains and losses were
symmetrically distributed weak or zero loss aversion was ob-
served, and when the distributions were reversed the opposite of
loss aversion was observed.

The three phenomena we have reviewed above were designed to
test predictions from the DbS model and were run by Stewart and
colleagues. Below, we review the empirical findings which were
not designed to test the DbS model, and discuss how the MDbS
model explains the findings.

The Big Three Context Effects: Attraction,
Compromise, and Similarity

The attraction, compromise, and similarity effects are central to
the psychology of multialternative decision because of their theo-
retical importance—their very existence rules out the most obvious
accounts of how people make decisions. For example, an obvious
class of model, foundational in normative economic models of
multialternative decision, is the class of simple scalable models. A
model has the property of simple scalability if the value of each
alternative can be represented by a single scalar (a single real
number), with the probability of choosing an alternative increasing
in its value and decreasing in the value of other alternatives (see
Roe et al., 2001, for a review).

A classic simple scalable model is Luce’s choice rule, where
the decision probability for Alternative A is given by p�A 

�A, B, C	� �

VA

VA�VB�VC
where the VXs are the values for each of the

X � {A, B, C} alternatives. The scalable models have the property
that adding an alternative to a choice set cannot reverse the
ordering of the decision probabilities for existing alternatives. For
example, if p(A | {A, B}) � p(B | {A, B}) then p(A | {A, B, C}) �
p(B | {A, B, C}). This property is called independence from irrel-
evant alternatives, and follows for the Luce model, for example,

because if p�A 
 �A, B	� �
VA

VA�VB
	

VB

VA�VB
� p�B 
 �A, B	� then VA �

VB, which means p�A 
 �A, B, C	� �
VA

VA�VB�VC
	

VB

VA�VB�VC
� p

Figure 2. Multialternative decision by sampling (MDbS) predictions for the attribute distribution effect (the
left panel) and the loss aversion effect (the right panel). Accumulation rates for a particular attribute value are
mean-averaged over all possible comparisons with other available values to derive the MDbS subjective value.
In both panels, dots represent the monetary pay-offs presented during the experiment, and a line connects all of
the amounts available within a condition.
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�B 
 �A, B, C	�. In a stricter form, Luce’s choice axiom states that

the ratio
p�A 
 ��

p�B 
 ��
is constant and independent of �.

These scalable models also imply that adding an alternative to a
choice set cannot increase the decision probability for any existing

alternative:
VA

VA�VB�VC
cannot be greater than

VA

VA�VB
for any positive

values of VA, VB, and VC. This property is called regularity. The
properties of independence from irrelevant alternatives and regu-
larity are not compatible with the big three context effects: as we
discuss below, the big three context effects demonstrate that peo-
ple can reverse their relative preference for two alternatives and
can become more likely to choose an existing alternative after a
new alternative is introduced. Thus the existence of the big three
context effects rules out the Luce choice model and all other
simple scalable models, such as the Thurstonian model (Thurstone,
1927) and multinomial logistic regression.

In discussing the big three context effects below, we use an
example decision between cars illustrated in the left panel in
Figure 3. Available cars are described in terms of the two attri-
butes, price (in U.S. dollars) and fuel efficiency (in miles per
gallon). Here, Car A is better than Car B on the fuel efficiency but
Car B is better than Car A on the price (see Figure 3). Attribute
values were selected from the U.S. car market in May, 2015, such
that the MDbS model predicts indifference between Cars A and B
when only Cars A and B are in a choice set.

In simulating the big three with the MDbS model, we use a
fixed, single set of parameter values throughout this article. We set
the similarity parameter � � 3.0, the soft ordinal comparison
parameters for the logistic �0 � 0.1 and �1 � 50, and the decision
threshold � � 0.1, as described above. For brevity of explanation,
we assume that people are unfamiliar with the choice domain and

cannot sample values from long-term memory beyond those in the
immediate choice set. The significance of this assumption is ad-
dressed when we discuss how familiarity with choice domain
affects the strengths of the context effects.

The Attraction Effect

To illustrate the attraction effect, suppose a choice set contains
Cars A, B, and D. Car D is inferior to Car A in both attributes (see
the left panel in Figure 3). Thus Car D should be discarded from
consideration but, after adding Car D to the choice set, Car A
becomes more likely to be chosen than Car B (Huber, Payne, &
Puto, 1982). Adding Car D often increases the choice share for Car
A, which is a violation of regularity.

While noting that several explanations are possible, Huber et al.
(1982) primarily discussed the attraction effect in terms of shifts in
weights: addition of Car D would lead people to weight fuel
efficiency more heavily as this is where Car D (and also Car A) is
advantageous (Huber et al., 1982; see also Bhatia, 2013). This
weight-shift account has received mixed support from subsequent
studies (e.g., Wedell, 1991).

In the MDbS model, however, the attraction effect is explained
with changes in the probability of winning comparisons when Car
D is added. Table 2 has 12 rows that correspond to all of the
possible pairwise comparisons in the attraction effect choice set
(three cars can be target � two cars can be comparisons for each
target � two dimensions). The addition of Car D in a choice set
increases the probability that Car A wins attribute value compar-
isons, because Car A compares favorably with Car D on both price
and fuel efficiency, whereas Car B only compares favorably on
price. Also, as Cars A and D are similar, they are selected as

Figure 3. Cars to illustrate the big three contest effects (left panel) and the demonstration of the effects with
the multialternative decision by sampling (MDbS) model (the six right panels). The big three context effects
document that decision probabilities of Car A and B depend on the presence or absence of Car D, R, F, C, or
S in a choice set. The six right panels show that the decision probabilities predicted by the MDbS model: the
decision probability for Car A is higher than other cars with presence of Car D (top left), Car R (top middle),
Car F (top right), Car C (bottom left), and Car S (bottom middle). When only Cars A and B are in a choice set,
the decision probability for Car A is the same as that for Car B (bottom right).
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targets for comparison more often, as the bold in Table 2 indicates.
This amplifies the effect Car D has on Car A. It also increases the
selection of Car D as target, but as Car D has so few possible
favorable comparisons, Car D has the lowest rate of evidence
accumulation. The right panel of Figure 3 shows the predictions
for decision proportions, with Car A having a higher probability of
being chosen when Car D is added to the choice set. What Table
2 is illustrating is the balance between the changes in the favorable
comparisons when Car D is added and changes in the attention
each car receives when Car D is added.

Location of the Decoy. Previous research reports that the
strength of the attraction effect can depend on the location of the
decoy car (Huber et al., 1982; Wedell, 1991): Car A is more likely
chosen when a choice set contains Car R than Car F (see the left
panel in Figure 3 for the attribute values of each car). As a
potential explanation, Huber et al. (1982) suggest that the advan-
tage of Car B over Car A on price may be perceived smaller with
the presence of Car R, as the presence of Car R widens the range
of prices in the choice set.

The MDbS model’s explanation is in line with Huber et al.
(1982)’s suggestion. By widening the range of prices, the presence
of Car R increases the probability that Car A is favored in a
comparison on price. In addition, compared with Car F, Car R is
further away from Car B, and thus, Car B is less frequently
evaluated when Car R is in a choice set than when Car F is. The
infrequent evaluation of Car B means more frequent evaluation of
Car A. Overall, Car A is more frequently evaluated when Car R is
in the choice set than when Car F is. As a result, Car A has a higher
decision probability with Car R than Car F (the right panels in
Figure 3), explaining the varying strength of the attraction effect.

Distance to the Decoy. The attraction effect is also reported to
be weaker when the decoy car, which is inferior to Car A, is more
similar to Car A (Soltani, De Martino, & Camerer, 2012). To
explore this finding with the MDbS model, we move the decoy car
along the gray line in Figure 4, from Car E, through Car D, to Car
A. As the decoy car comes closer to Car A, the decoy car gradually
appears better on the fuel efficiency than Car B. As a result, the
decision probability for the decoy car initially increases. As the
decoy car becomes very similar to Car A, the advantage of Car A
over the decoy becomes less likely to be recognized because of the
soft threshold for winning comparisons. Thus, the decision prob-
ability for Car A gradually decreases, and the attraction effect
eventually diminishes.

The Compromise Effect

The addition of Car C to the choice set with Cars A and B
produces the compromise effect (see the left panel in Figure 3 for
the attribute values of each car). Car C has extremely good fuel
efficiency but comes with very high price. Importantly, Car C
makes Car A a compromise between the other cars and, with Car
C’s presence, Car A becomes more likely to be chosen than Car B
(Simonson, 1989).

This compromise effect has been associated with difficulty in
making a decision (Simonson, 1989): as people are uncertain about
which attribute dimension is more important, people find a deci-
sion on the compromise alternative (Car A) easiest to justify and
hence they are more likely to decide on Car A.

The MDbS model’s explanation is quite different. When a
choice set contains Cars A, B, and C, Car A is most frequently
evaluated. This is because Car A is most similar to other cars.
Table 2 shows that, although each car wins two of the four possible
comparisons, Car A is most frequently evaluated as a target,
leading to a higher decision probability for Car A than for Car B
or C (see the right panels in Figure 3). This higher frequency of
evaluation of more similar pairs is seen very clearly in the eye
tracking data from Noguchi and Stewart (2014), as shown in
Figure 1.

Table 2
Comparisons Within the Choice Set Made in MDbS and
Predicted Probability That a Comparison is Favorable to
the Target

Choice set Target Comparison Dimension

Probability
of favorable
comparison

Attraction A B Price —
Fuel efficiency >.99

A D Price .78
Fuel efficiency .42

B A Price �.99
Fuel efficiency —

B D Price �.99
Fuel efficiency —

D A Price —
Fuel efficiency —

D B Price —
Fuel efficiency .98

Compromise A B Price —
Fuel efficiency >.99

A C Price >.99
Fuel efficiency —

B A Price >.99
Fuel efficiency —

B C Price �.99
Fuel efficiency —

C A Price —
Fuel efficiency �.99

C B Price —
Fuel efficiency �.99

Similarity A B Price —
Fuel efficiency �.99

A S Price —
Fuel efficiency �.99

B A Price >.99
Fuel efficiency —

B S Price .13
Fuel efficiency —

S A Price >.99
Fuel efficiency —

S B Price —
Fuel efficiency .05

Note. Bold indicates comparisons which are more likely because the
target is similar to the other alternatives. A dash (—) indicates a 0
probability of a favorable comparison.
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The Similarity Effect

In the similarity effect, introducing Car S to a choice between
Cars A and B (see the left panel in Figure 3) robs decision
probability more from the similar Car B than the dissimilar Car A
(Tversky, 1972). This similarity effect was first explained with
elimination by aspects (Tversky, 1972), in which one attribute
dimension is attended at one moment, and all of the alternatives
which do not meet a certain criterion on the dimension are elim-
inated from consideration. When alternatives are similar, they tend
to be eliminated together or remain together. The elimination
process continues until all alternatives but one are eliminated. In
the choice set of Cars A, B, and S, people may attend to fuel
efficiency at one moment, judge Cars B and S to be poor, and
eliminate Cars B and S from consideration leaving Car A to win.
If people attend to price, however, Car A will be eliminated
leaving Cars B and S in consideration and ultimately to share
victory. Thus probability that Car A is chosen will be higher,
because when it remains it remains on its own and does not end up
sharing a victory.

In contrast, the MDbS model explains the similarity effect with
people’s tendency to ignore relatively small differences. Specifi-
cally, the differences between Cars B and S are so small that the
differences are not very likely to be recognized. Table 2 shows that
although Cars B and S are similar to each other and hence are more
frequently evaluated, the small differences reduce the probability
that Cars B and S are favored in pairwise comparisons. Conse-
quently, the decision probabilities for Cars B and S are lower than
the decision probability for Car A (the right panels in Figure 3).

Familiarity With the Choice Domain

Familiarity with the choice domain reduces strength of the attrac-
tion effect (Kim & Hasher, 2005) and the compromise effect
(Sheng, Parker, & Nakamoto, 2005). In our application of
MDbS model above, the attraction, similarity, and compromise ef-
fects emerge purely from the comparisons within the attribute values
from the choice set. But in addressing the Ungemach et al.’s (2011)
supermarket experiment, Stewart et al.’s (2015) attribute distribution

effects, and Walasek and Stewart’s (2015) malleability of loss
aversion the effects emerge from the comparison with attribute
values from earlier choices, which we assume remain in working
memory, or are recalled from long-term memory. The effects of
familiarity are also attributed to the sampling of attribute values
from long-term memory. It seems quite reasonable to assume that
those unfamiliar with the choice domain will have few values to
sample from long-term memory, and that experience will provide
more values to sample. As more values are sampled from long-
term memory, they dilute the effect of the comparisons within the
immediate context that were driving the big-three effects, reducing
their strength, consistent with the effects of familiarity. To dem-
onstrate, we modeled the attribute values in long-term memory
with multivariate normal distribution and examined how decision
probability changes as more samples are drawn from long-term
memory. The results are summarized in Figure 5: As the number
of values sampled from long-term memory increases, the big three
context effects become weaker.

Time Pressure

Previous studies report that the attraction, compromise, and
similarity effects are weaker when a decision is made under time
pressure (Pettibone, 2012; Trueblood et al., 2014). This is because
under time pressure, people may not have enough time to evaluate
each alternative, and a decision tends to be more random (Petti-
bone, 2012). We implement this time pressure effect in the MDbS
model by limiting the number of pairwise ordinal comparisons
made to reach a decision. Figure 6 reports these simulations. In the
simulations, when two or more cars accumulate the same strength
of evidence, one car is randomly chosen. When fewer comparisons
are made, decisions are made with less evidence and the big-three
effects diminish in size.

Correlations Between the Strengths of the Big Three
Context Effects

Since the specification and initial submission of the MDbS
model, we have applied it, unchanged, to new evidence about

Figure 4. Effects of varying distance between Car A and the decoy car. The decoy car is located along the gray
line in the left panel. The right panel plots the decision probability for each car as a function of the decoy car’s
location. The attraction effect briefly strengthens as the decoy car moves away from Car E, but gradually
weakens as the decoy car moves closer to Car A.
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the correlations across individuals of the strengths of the big-three
context effects. In a meta analysis, Tsetsos, Scheibehenne,
Berkowitsch, Rieskamp, and Mata (2017) show the size of the
attraction and compromise effects are positively correlated, and
that both are negatively correlated with the size of the similarity
effect.

These correlations can be explained with variety of mechanisms
(Tsetsos et al., 2017). In the MDbS model, one possible way to
capture these correlations is via individual differences in the sim-
ilarity parameter �. To demonstrate, we followed Tsetsos et al.
(2017) and computed the relative choice share of Alternative A
over B while varying the similarity parameter � from 0 to 5. The
MDbS predictions are illustrated in Figure 7, which shows that as
the similarity parameter becomes large, the attraction and compro-

mise effects become stronger, but the similarity effect becomes
weaker—mimicking the correlations seen in the meta analysis.

A Quantitative Comparison of Closed-Form Models of
the Big Three Context Effects

We have demonstrated that the MDbS model can produce a
qualitative account of the big three context effects using one
fixed specification of the model with one fixed set of parameter
values. In this section we offer a quantitative evaluation of the
predictive accuracy of the MDbS model. We use data from a
new experiment where participants chose between consumer
goods and simultaneously show all of the big three context
effects. We compare the predictive accuracy with those of
MDFT and MLBA models, two other models designed to cap-

Figure 5. Decision probability as a function of the number of attribute values sampled from long-term memory.
Each panel summarizes mean-average decision probability of 5,000 simulations for each number of samples.
With the number of samples from long-term memory, the attraction (left panel), compromise (middle panel), and
similarity (right panel) effects all become weaker. In this illustration, attribute values in long-term memory are
assumed to follow normal distribution whose mean is the attribute values of Car A, and standard deviation is the
absolute difference between Cars A and B. We also assumed that attribute values in long-term memory are
weakly correlated at Pearson coefficient � �.2. However, the findings of weakened effects with more long-term
memory samples are robust across many possible distributions.

Figure 6. Decision probability for each car after a fixed number of comparisons. The three panels show that
as the number of comparisons increases (i.e., time pressure is reduced), the attraction (the left panel),
compromise (the middle panel), and similarity (the right panel) effects become stronger.
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ture the big three context effects that also have closed form
solutions.

Multialternative Decision Field Theory (MDFT). Decision
field theory (Busemeyer & Townsend, 1993) was originally de-
veloped to explain decisions between two alternatives but was later
extended to explain decisions between more than two alternatives
(Roe et al., 2001). MDFT was the first simultaneous account of the
attraction, compromise, and similarity effects.

In MDFT, on each time step in the accumulation process,
attention is focused on one dimension and attribute value differ-
ences are accumulated for all alternatives. In the next time step,
attention can switch to a new dimension. During the accumulation
process, accumulators are subject to distance-dependent lateral
inhibition, where evidence accumulated for one alternative inhibits
evidence accumulated for another alternative, and the strength of
the inhibition depends on distance between two alternatives in
attribute space. The computational implementation of MDFT is
described in Appendix D.

The explanation of the similarity effect is similar to that of
elimination by aspects. The switching of attention across attribute
values means that cars similar in attribute space receive correlated
inputs for their accumulators. For example, Cars B and S have
positive accumulation when price is attended and negative accu-
mulation when fuel efficiency is attended. Car A shows the oppo-
site pattern, having positive accumulation when fuel efficiency is
attended and negative accumulation when price is attended. This
means that Cars B and S tend to have very similar accumulated
evidence at each time point and thus end up competing for and
sharing wins when price happens to dominate the sampling of
attention. Car A however does not have such competition, and so
gets all of the wins when fuel efficiency happens to dominate the
sampling of attention.

The explanation of the compromise effect is that the distance-
dependent lateral inhibition creates a correlation in accumulated
evidence between Cars B and C. The logic is as follows. Because
the distant dependent inhibition is stronger between the more
similar Cars A and C and Cars A and B, the evidence accumulated
for these pairs tends to become anticorrelated. If C and B are both
anticorrelated with A, then they will become correlated with one
another. This means that Cars C and B end up sharing wins—as
when one does well so does the other. But Car A does not have to
share wins and thus has an advantage.

Finally, the explanation of the attraction effect also depends on
distance-dependent lateral inhibition. As Car D is inferior to Car A
in both attributes, attribute value differences tend to be negative for
Car D, causing the evidence accumulated for Car D to become
negative. This negative accumulation, when propagated through
the lateral inhibition, gives a positive boost for Car A’s accumu-
lator. Car B is sufficiently distant from Car D that Car B’s
accumulator is unaffected by inhibition from Car D’s negative
accumulation and thus Car B does not receive a boost. Thus only
Car A and not Car B is boosted by Car D, and so Car A has the
highest decision probability.

This explanation of the attraction effects was criticized as neu-
rally implausible because of the reliance upon negative accumu-
lator values (Usher & McClelland, 2004), although neurons can
drop below threshold levels of firing. Tsetsos, Usher, and Chater
(2010) also criticized the account of the attraction effect, pointing
out that introducing an extra decoy D’ dominated by Car D should
reverse the effect: The worse decoy Car D’ will eventually develop
negative evidence, which should lead to boosted accumulation for
Car D, which in turn should inhibit accumulation for Car A,
creating a reverse attraction effect. Under this reverse attraction
effect, Car B is more likely chosen over Car A. It seems improb-
able that the addition of another alternative inferior to Car A
decreases the probability of Car A being chosen, but this reverse
attraction effect has not been empirically examined.

The Multiattribute Linear Ballistic Accumulator (MLBA)
model. The linear ballistic accumulator model was originally
developed as a simplified model of evidence accumulation (Brown
& Heathcote, 2008) but later extended to account for the attraction,
compromise, and similarity effects as the MLBA model (True-
blood et al., 2014). In the MLBA model, evidence for each
alternative is accumulated at a constant but noisy rate. In the
MBLA model, the sequential sampling aspect of the accumulation
is dropped in favor of a ballistic accumulation process with rates
fixed over the duration of the accumulation. The MBLA model
also has no assumptions of lateral inhibition between accumula-
tors. Instead, the accumulation rate is determined by sum of
weighted advantage of an alternative’s subjective values. The
subjective value function in the MLBA model favors an alternative
with similar attribute values across dimensions. When attribute
values range from 0 to 10 on two dimensions, for example, the sum
of subjective values for attribute values (5, 5) is higher than that for

Figure 7. Correlations between the strengths of the attraction, compromise, and similarity effects over
individuals. A larger value indicates that the effect is stronger, a value of zero indicates that the effect is not
predicted, and a negative value indicates that the effect is reversed. The value of � is indicated with the interior
color of dots: white color represents the prediction with � � 0, and black color represents the predictions with
� � 5.
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attribute values (2, 8). In the weighting of advantages, the weight
is distance-dependent: a small difference in subjective values is
more heavily weighted than a large difference. Further, a disad-
vantage is more heavily weighted than an advantage. The compu-
tational implementation of the MLBA model is described in Ap-
pendix E.

The explanation of the attraction effect is through the distance-
dependent weights on advantages. As a small advantage is more
heavily weighted than a large advantage, the advantage of Car A
over Car D is more heavily weighted than the advantage of Car B
over Cars A or D. As a result, Car A has a higher accumulation rate
than Car B. This mechanism is analogous to the distance-
dependent lateral inhibition in the MDFT model. Just as the lateral
inhibition creates a positive boost only to Car A in the MDFT
model, only Car A gains from the presence of Car D in the MLBA
model.

The explanation of the similarity effect is through the distance-
dependent weights on disadvantages. Only Car A has no small
disadvantages—only two large disadvantages to Cars B and S on
price. In contrast, Car S has one small disadvantage to Car B on
price (the disadvantage to Car A on fuel efficiency is large).
Similarly Car B has one small disadvantage to Car S on fuel
efficiency (the disadvantage to Car A on fuel efficiency is large).
As small disadvantages are heavily weighted, Cars S and B are
disadvantaged whereas Car A, which has no small disadvantages,
is not. Thus Car A has the highest accumulation rate. Therefore
just as Cars B and S inhibit each other in the MDFT model through
the distance-dependent lateral inhibition, Cars B and S lower the
accumulation rates of each other in the MLBA model through the
distance-dependent weights on disadvantage.

For the compromise effect, the cars are more distant from one
another. The weight for the medium differences between Cars C
and A and Cars A and B is similar to the weight the large
differences between Cars C and B. The compromise effect is,
instead, explained through different weights on advantages and
disadvantages. In particular, Car B’s disadvantage to Car C on fuel
efficiency is given more weight than Car B’s advantage over other
cars on price. As a result, Car B has a small accumulation rate.
Similarly, Car C’s disadvantage to Car B on price is heavily
weighted, and thus, Car C has a small accumulation rate. On
average, Car A has smaller disadvantages over other cars, and as
a result, Car A has the largest accumulation rate. In addition, Car
A has a higher subjective value than Cars B and C. This is because
the subjective value function requires attribute values to be on the
same unit and range across dimensions, and when attribute values
are on the same unit and range, Car A has similar attribute values
for both dimensions.

The above explanation of the big three context effects stands
upon a fine balance between the weights. The MLBA model has
been criticized as being too sensitive to small changes in attribute
values. Tsetsos, Chater, and Usher (2015), in particular, show that
for all of the combinations of reasonable parameter values, it is
possible to reverse the attraction effect (i.e., to make Car B
preferable over Car A) by introducing small changes to the attri-
bute values (see also Trueblood, Brown, & Heathcote, 2015). As
we describe above, a reverse attraction effect has not been found.

Big three consumer choices experiment. To allow us to
compare the MDbS, MDFT, and MLBA models on their ability to

capture the big three context effects with consumer choices, we
have run a new experiment.

Method. We collected data from 503 participants (204 fe-
male, 298 male and 1 undisclosed, whose age ranges from 18 to 75
with the mean of 33) recruited through Amazon Mechanical Turk
(https://www.mturk.com). Each participant was paid $1.00 for
taking part.

We asked each participant to make eight decisions in a random
order: two control decisions between three alternatives, where one
alternative dominates the other two; three decisions between three
alternatives, each of which was intended to invoke the attraction,
compromise and similarity effects; and three decisions between
two alternatives. Each alternative was described in terms of two
dimensions. Two or three alternatives were displayed in a table,
and the participants made decisions by clicking on an alternative.
In the table, attribute dimensions were organized in rows, and
alternatives were organized in columns. The order of columns
(e.g., which alternative to appear on the left column) and the order
of dimensions (e.g., which dimension to appear on the first row)
was randomly shuffled for each participant for each trial.

The decisions in the experiment were between various consumer
products. We prepared eight consumer product cover stories (e.g.,
mouthwash, and boxes of chocolate; see Appendix F for the
complete list). Each cover story contained two alternatives, and
these alternatives were presented to participants for the two-
alternative decisions. For the three-alternative decisions, we ran-
domly selected one of the two alternatives and generated a third
alternative in a way that the context favors the selected alternative.

To generate a third alternative for an attraction choice, for
example, we first calculated the absolute differences between
Alternatives A’s and B’s attribute values on each dimension. To
create an attraction choice which favors Alternative A, we gener-
ated Alternative DA by subtracting 25% of the differences from
Alternative A’s attribute values, so that Alternative DA is inferior
to Alternative A in both dimensions. To create Alternative DB, we
subtracted the same 25% from Alternative B’s attribute values. To
generate a third alternative for a similarity choice to favor Alter-
native A, similarly, we subtracted 2% of the A-B difference from
Alternative B’s attribute value on one dimension and added 2% of
the A-B difference to Alternative B’s attribute value on the other
dimension.

As a result, each cover story has two versions of choice sets for
each of attraction, compromise, and similarity effects: one whose
context favors Alternative A and the other whose context favors
Alternative B.

We decided, in advance of data collection, to recruit 500 par-
ticipants and remove the data collected from the participants who
choose a dominated alternative in either or both of the control
choices.

Results and modeling. Of the 503 participants, 150 chose a
dominated alternative in one or two control choices, and we
removed the data collected from those participants, as we had
decided in advance of data collection. The data from the remaining
353 participants are summarized in Figure 8, which shows repli-
cation of the attraction, compromise, and similarity effects (see
Appendix G for an additional exploratory analysis). The far left
panel in Figure 8 shows that, across cover stories, Alternative A
was not strongly preferred or disliked over Alternative B. The
three right panels in Figure 8 show replications of the attraction,
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compromise and similarity effects: Alternative A is most often
chosen, when the third alternative (DA, CA, or SA) was positioned
in a way intended to favor Alternative A under the expectation of
replicating the attraction, compromise and similarity effects. In
contrast, when the third alternative (DB, CB, or SB) was positioned
in a way intended to favor Alternative B, Alternative B was most
often chosen.

Although the attribute values in the experiment have different
scales and units, the MDFT and MLBA models require attribute
values to be on the same scale and unit. Thus for the MDFT and
MLBA models, we linearly transformed attribute values, such that
Alternative A always had attribute values (3, 2) and Alternative B
had attribute values (2, 3).

In fitting the models, we used a hierarchical Bayes framework.
This framework allows parameter values to vary between partici-
pants but also pulls parameter values toward estimates at the group
level (see Appendix H for more details and estimated parameter
values). Thus, hierarchical Bayes allows the strengths of the con-
text effects to vary between participants, which has been previ-
ously reported (Berkowitsch, Scheibehenne, & Rieskamp, 2014;
Tsetsos et al., 2017).

With the parameter values estimated at the group level, we made
predictions on the data with the three models. The results are
summarized in Figure 9, which shows that the three models pro-
duce the qualitative patterns of context effects. Compared with
the observed proportion of decisions (gray dots replicated from
Figure 8), the MDFT model predicts strength of attraction effect
quite well but tends to underestimate the similarity and compro-
mise effects. The MLBA model, in contrast, predicts the compro-
mise effect well but underestimates the attraction effect and, to a
lesser extent, the similarity effect. Finally, the MDbS model pre-
dicts the compromise effect well but underestimates the attraction
effect and, to a lesser extent, the similarity effect. Overall, how-
ever, none of the models appears to provide superior predictions
across the three effects.

The performance of each model was quantitatively assessed
with the widely applicable information criteria (WAIC; Watanabe,
2013; see also, Gelman, Hwang, & Vehtari, 2014). By using
WAIC, we assess out-of-sample predictive accuracy: a model is
favored if the model makes a better prediction for a new data point.
An alternative approach, which we did not take, is to assess

in-sample error: a model is favored if the model provides a better
fit to the data we collected. This alternative approach often relies
on BIC or Bayes factor (please see Gelman et al., 2013, for more
discussion on the two approaches). WAIC is an estimate of ex-
pected predictive accuracy, and smaller values indicate that a
model’s prediction for a new observation is likely to be more
accurate. Thus, WAIC is larger for a model which over- or under-
fits the data. The results are summarized in Figure 10. Figure 10
shows overlapping error bars, indicating that in terms of performance,
the MDFT, MLBA, and MDbS models are not distinguishable. One
advantage for MDbS model is that it does not require attribute values
to be on the same scale and unit, but can still achieve performance
comparable with the MLBA and MDFT models.

Thus far, we have seen that the MDbS model can provide an
account of the big three context effects. The mechanisms in the
MDbS model were constrained by eye movement process data, but
MDbS generalized well to choice proportions for the big-three
choice phenomena. In fact, despite—or perhaps because of—these
constraints, MDbS’s quantitative account is about the same as that
offered by other the prominent accounts from the MDFT and
MLBA models. Below we turn to the additional multialternative
decision phenomena in the literature and consider the breadth of
accounts offered by the MDbS, MDFT, MLBA, and componential
context models.

A Qualitative Account of the Breadth of
Multialternative Decision Phenomena

In this section, we compare the models in their capabilities to
explain a broad range of multialternative decision phenomena
beyond the big three context effects. To identify other key phe-
nomena, we surveyed theoretical studies which discuss at least two
of big three context effects. All of the phenomena discussed in
these studies are listed in Table 3. Thus Table 3 represents the
range of phenomena of concern in the literature, and not a hand-
picked list of phenomena that the MDbS model can explain. The
first three rows concern experiments run by Stewart and colleagues
which we have described above. The remaining rows are about
experiments run by other researchers. We note in the main text and
the footnotes to Table 4 where minor modifications might be made

Figure 8. Choice proportions for each alternative in the big-three consumer choices experiment. Each panel
represents an experimental condition: the pairwise condition is where only two alternatives (A and B) were
presented. The attraction, compromise and similarity conditions are where three alternatives were presented to
replicate the attraction, compromise and similarity effects. A solid line connects a choice set, and error bars are
95% confidence intervals.
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to theories to capture effects—otherwise, effects are captured by
the “vanilla” models as presented here without any modification.

With these choice sets, we examined whether a model explains
the context effects by testing all of the possible combinations of
reasonable parameter values (see Appendix J for more details).
Then, we examined the maximum number of context effects a
model can explain. Given the purpose of the existing models, we
restrict our attention to the parameter values which produce the
attraction and compromise effects for the componential context
model (discussed below) and the attraction, compromise and sim-
ilarity effects for the MDFT and the MLBA model.

As with the quantitative comparison above, we normalized the
attribute values for all models, except the MDbS model which does
not require this. The normalized attribute values are listed in Table
J1 in Appendix J.

Below we describe the modeling of each phenomenon in detail.
We have reused the single set of MDbS parameter values from

earlier: � � 3.0, �0 � 0.1, �1 � 50, and � � 0.1. Overall, the
results highlight that the MDbS model predicts a wider range of
context effects than the existing models. First though, we introduce
the componential context model and briefly review other models.

The componential context model. We have included the
componential context model (CCM; Tversky & Simonson, 1993)
in the qualitative evaluation. We omitted it from the quantitative
evaluation of the big three effects because the model does not
account for the similarity effect (Roe et al., 2001) and because the
model does not produce decision probabilities. The CCM was
developed to explain the background contrast and the compromise
effects. In the CCM, the subjective value of an alternative is an
average of two quantities: a weighted sum of attribute values,
which explains the background contrast effect; and a relative
advantage of attribute values, which explains the attraction and
compromise effects. The CCM produces subjective values for each
alternative, and the alternative with the highest subjective value is

Figure 9. Mean predictions for the big-three consumer choices experiment, with the parameter estimates at the
group level. Gray represents the data as shown in Figure 8.
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chosen. Thus, unlike the other models we have discussed, the
CCM does not implement an evidence accumulation process. As a
result, the CCM does not explain the effects associated with time
pressure. Previously, Soltani et al. (2012) simplified the CCM and
show that the CCM predicts a stronger attraction effect with a
closer decoy, but without the simplification, the CCM correctly
predicts a weaker attraction effect with a closer decoy. The com-
putational implementation of the CCM is described in Appendix I.

Other models. Other evidence accumulation models often
require simulations to produce predictions. One simulation run of
such model produces one decision. It takes of the order of 1,000 or
more simulation runs to estimate decision probabilities with suf-
ficient precision. Such models include the leaky competing accu-
mulator model (Usher & McClelland, 2004) and the associative
accumulation model (Bhatia, 2013). Other models, which this
article does not review, include 2N-ary choice tree model
(Wollschläger & Diederich, 2012) and range-normalization model
(Soltani et al., 2012).

The Alignability Effect

In the alignability effect, attributes that are shared over alternatives
have a greater impact on decisions and valuations than attributes that
are unique to single alternatives (Markman & Medin, 1995; Slovic &
MacPhillamy, 1974; Zhang & Markman, 2001). For example, con-
sider a choice between two microwave popcorns. Popcorn A is
described in terms of calorie content and kernel size, and Popcorn B
is described in terms of calorie content and sweetness of taste. The
common calorie content attribute has greater impact on decisions than
the unique kernel size and sweetness attributes.

The alignability effect has been explained with the notion of
ease of comparison. A comparison between alternatives along the
common dimension is considered cognitively easier, and this ease
of comparison is considered to lead to greater reliance on the
common dimension (Slovic & MacPhillamy, 1974).

In the MDbS model, this ease of comparison is related to the
difference between attribute values that are already in working
memory because they are part of the problem and attribute values
that must be sampled from long-term memory. In the above
example, a comparison on calories is relatively likely, because
calorie values are available in working memory for both alterna-
tives. In contrast, when evaluating alternatives on noncommon
dimensions, people must sample relevant values from long-term
memory, but people do not appear to always do this sampling from
long-term memory (e.g., Kassam, Morewedge, Gilbert, & Wilson,
2011). People’s working memory, for example, may be already
fully loaded with attribute values sampled from other alternatives
in the choice set. Without sampling from long-term memory, the
noncommon attributes will not be used in comparisons and will not
contribute to the accumulation rates.

Further, there will be individual differences in the sampling.
When evaluating popcorn’s sweetness, for example, some people
may sample the extreme sweetnesses of candies from long-term
memory, whereas others may sample the more subtle sweetness in
fruits. Thus for some people the popcorn’s sweetness will be
evaluated favorably and for others it will be evaluated unfavorably.
Consequently, when averaged across people, attribute values on
noncommon dimensions will not appear to explain people’s valu-
ation and decisions.

The Attribute Balance Effect

The attribute balance effect is found when two attribute
dimensions are on the same scale range and unit. An example is
when available cars are rated on the scale from 0 to 100 for both
warranty and fuel efficiency (see the left panel in Figure 11).
Under this condition, people tend to decide on an alternative
which has the same ratings for both attributes (Chernev, 2004,
2005).

This attribute balance effect has been attributed to people’s
aversion to disperse values within an alternative (Chernev,
2005). For example, the attribute values for Car L in the left
panel of Figure 11 differ from each other by 20 � 70 (efficiency
rating) – 50 (warranty rating). This difference is considered to
reduce the attractiveness of Car L. Thus, this account postulates
that people collapse the attribute dimensions and compare at-
tribute values across dimensions. In support, Chernev (2004)
reports that when participants were primed to examine alterna-
tives attribute by attribute and not to collapse the dimensions,
their decisions do not show the attribute balance effect. In
addition, when the attribute dimensions are not collapseable
(e.g., because of different units), the attribute-balance effect is
not observed (Chernev, 2004).

The MDbS model explains the attribute balance effect by al-
lowing people to compare values across attribute dimensions when
attribute dimensions are commensurable. The efficiency rating of
Car L, for example, may be compared against the warranty rating
of Car Q. When attribute dimensions are collapsed, the balanced
alternative (i.e., Car Q) becomes the compromise alternative. In a
choice set with Cars K, L, and Q in Figure 11, the attribute values
after collapsing the dimensions are {40, 50, 60, 60, 70, 80}. The
middle two values, 60, belong to Car L. Then, the attribute-balance
effect emerges with the same mechanism as the compromise

Figure 10. Model performance measured with the widely applicable
information criteria (WAIC). Smaller value indicates better performance,
and error bar represents 95% confidence interval. Overall, model perfor-
mance is quite similar between the three models.
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effect: Car Q is most frequently evaluated, leading to a higher
decision probability for Car Q.

The explanation of the MDbS model is examined under the
same conditions as the experiments reported by Chernev (2004)
and Chernev (2005). Specifically, the attribute balance effect has
been reported in choice sets with three alternatives: Cars K, L and
Q; Cars L, Q, and U; and Cars Q, U, and W. Across the three
choice sets, the MDbS model predicts the highest decision prob-
ability for the balanced alternative, Car Q (see the right panel in
Figure 11).

The attribute balance effect is part of the motivation for the
choice of subjective value function in the MLBA model. Thus the
attribute balance effect is built into the MLBA model—there is no
independent explanation of the effect.

The Attribute Range Effect

In the attribute range effect (Mellers & Cooke, 1994), how
attractive people find one attribute value depends on a range of
values people previously saw in other choice sets. In one of the
experiments, participants were asked to rate attractiveness of many

apartments, each of which was described in terms of rent and
commute time. In one condition, attribute values have a narrow
range: for example, participants rated commute times ranging from
10 to 26 min. In another condition, attribute values have a wide
range: participants rated commute times ranging from 1 to 50 min.
The results show that a difference in attractiveness ratings between
10 min and 26 min was smaller when the commute time range was
wider.

The attribute range effect is attributed to the people’s tendency
to scale perceived attractiveness using the possible ranges in the
values they saw (Mellers & Cooke, 1994). Suppose the perceived
attractiveness ranges from 0 to 1, and that the commute time is
linearly transformed onto this attractiveness scale. Then, when the
commute time ranges from 1 to 50 min, the difference between 10
and 26 min commute covers about 30% (� 26�10

50�1 ) of the range. In
contrast when the commute time ranges from 10 to 26 min, the
difference between 10 and 26 min commute covers 100%, the
entire range. As a result, the difference in perceived attractiveness
between 10 and 26 min commute is smaller when the commute
time has a wider range.

Table 3
A List of Phenomena Collected From the Literature Review

Phenomenon

Tversky
and

Simonson
(1993)

Pettibone
and

Wedell
(2000)

Roe et al.
(2001)

Usher and
McClelland

(2004)

Tsetsos,
Usher, and

Chater
(2010)

Soltani et al.
(2012)

Wollschläger
and

Diederich
(2012)

Bhatia
(2013)

Trueblood et al.
(2014)

Tsetsos,
Scheibehenne,
Berkowitsch,

Rieskamp,
and Mata

(2017)

Not
discussed

in previous
work

Incidental value — — — — — — — — — — ✓
Attribute distribution — — — — — — — — — — ✓
Loss aversion — — — ✓ — — ✓ — — — —
Attraction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ —

Location of decoy — ✓ — — — — — ✓ ✓ — —
Distance to decoy — ✓ — — — ✓ — — — — —
Time pressure — — — — — — — ✓ ✓ — —
Familiarity — — — — — — — — — — ✓
Correlation with the

compromise effect — — — — — — — — — ✓ —
Anti-correlation with

the similarity
effect — — — — — — — — — ✓ —

Compromise ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ —
Time pressure — — — — — — — ✓ ✓ ✓ —
Familiarity — — — — — — — — — — ✓
Anti-correlation with

the similarity
effect — — — — — — — — — ✓ —

Similarity — — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ —
Time pressure — — — — — — — — ✓ —

Alignability — — — — — — — ✓ — — —
Attribute balance — — — — — — — — ✓ — —
Attribute range — ✓ — — — — — — — — —
Attribute spacing — ✓ — — — — — — — — —
Background contrast ✓ — — — — — ✓ — — — —
Centrality — — — — — — — — — — ✓
Less is more — — — — — — — ✓ — — —
Endowment — — — — — — — ✓ — — —
Perceptual focus — — — — — — — — — — ✓
Phantom decoy — ✓ — — ✓ — — ✓ — — —
Polarization ✓ — — — — — — — — — —

Note. We have included three phenomena addressed in earlier articles on DbS (top rows). For completeness we have also included the effect of familiarity
on the attraction and compromise effects, the centrality effect, and the perceptual focus effect. A check mark (✓) indicates which phenomenon were
discussed in which articles.
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This account is essentially identical to the relative rank account
offered by the MDbS model. A relative rank can only range from
0 to 1, because it is the proportion of attribute values to which a
target attribute is favorably compared. Thus, a difference in rela-
tive ranks between two fixed values tends to be smaller when
attribute values in working memory have a wider range, because
then fewer attribute attributes are positioned in between the two
fixed values.

The Attribute Spacing Effect

Similarly, in the attribute spacing effect (Cooke & Mellers,
1998) attractiveness ratings depend on spacing between values.
For example, holding the range of commute times constant, people
find a longer commute time like 18 min less attractive when
attribute values are densely distributed between 10 and 13 min
than when attribute values are densely distributed between 23 and
26 min.

This attribute spacing effect is attributed to range-frequency
theory (Parducci, 1965). In range-frequency theory, attractive-
ness ratings depend on two factors: the relative position in the
frequency distribution and the relative position in the range.
The former, relative position in the frequency distribution, is a
relative rank, and is sufficient to explain the attribute spacing
effect. This account with relative ranks is identical to the
MDbS’s explanation.

Background Contrast Effects

Decisions are influenced by the trade-offs that people have
made before. A set of alternatives used in an experiment reported
in Simonson and Tversky (1992) is illustrated in Figure 12. The
background contrast effect documents that a decision between A
and B depends on whether people previously considered a decision
between A= and B= or between A	 or B	.

This effect has been attributed to people’s tendency to learn a
trade-off rate (Simonson & Tversky, 1992; Tversky & Simonson,
1993). A trade-off between A= and B= is at the rate of $0.22 per KB
of RAM, while a trade-off between A and B is at the rate of $2.50
per KB of RAM. Thus after making a decision between A= and B=,
people may find the trade-off rate between A and B high and are
less likely to seek additional RAM for additional price. As a result,
people are less likely to choose a computer with larger RAM and
higher price, A, than the other computer, B. In contrast, after
making a decision between A	 and B	, where a trade-off is at the
rate of $17.50 per KB of RAM, people may find the trade-off rate
between A and B low and are likely to seek additional RAM for
additional price. As a result, people are more likely to choose the
computer with larger RAM and higher price, A, than the other
computer, B.

The learning of trade-off rate is, however, not required for the
MDbS model to explain this effect. When A= and B= are in
working memory, the relative rank of A on RAM, where A is
advantageous, decreases from 1.0 to .33, while relative ranks of B
on price and RAM stay the same. As a result, the probability that
Computer A is favored through comparison decreases, but the
probability that Computer B is favored stays the same. Although
B= and A are similar to each other and hence, A is more frequently
evaluated than B, the decrease in the probability of favorable
evaluation more than offsets this and the MDbS model predicts a
smaller decision probability for A (.38) than for B (.62; see
Appendix C for how these decision probabilities are computed).

In contrast, when A	 and B	 are in working memory, relative
ranks of A on price and RAM stay the same, while the relative
rank of B on price, where B is advantageous, decreases from 1.0
to .33. As a result, the probability that Computer A is favored
stays the same but the probability that Computer B is favored
decreases. Again although A	 and B are similar to each other
and hence, B is more frequently evaluated than A, the decrease
in the probability of favorable evaluation more than offsets this
and the MDbS model predicts a higher decision probability for
A (.71) than for B (.29).

The Centrality Effect

The centrality effect concerns the physical locations of alterna-
tives where they are presented to people: when alternatives in a

Table 4
A Model-by-Phenomenon Matrix Where Check Marks (✓)
Indicate That the Model Offers an Account of the Phenomenon

Phenomenon

Model

CCM MDFT MLBA MDbS

Incidental value — — — ✓
Attribute distribution — — — ✓
Loss aversion — — — ✓
Attraction ✓ ✓ ✓ ✓

Location of decoy ✓ ✓ ✓ ✓
Distance to decoy ✓ ✓ ✓ ✓
Time pressure — ✓ ✓ ✓
Familiarity — — — ✓
Correlation with the compromise effect — ✓ ✓ ✓
Anti-correlation with the similarity effect — ✓ ✓ ✓

Compromise ✓ ✓ ✓ ✓
Time pressure — ✓ ✓ ✓
Familiarity — — — ✓
Anti-correlation with the similarity effect — ✓ ✓ ✓

Similarity — ✓ ✓ ✓
Time pressure — — ✓ ✓

Alignability — — — ✓
Attribute balance — — — ✓
Attribute range — — — ✓
Attribute spacing — — — ✓
Background contrast ✓ — — ✓
Centrality — ✓b — ✓
Endowment — — — —
Less is more — ✓b — ✓
Perceptual focus — ✓ ✓ ✓
Phantom decoy — ✓b ✓c ✓d

Polarization ✓a — — —
Intransitive preference cycles — ✓ ✓ ✓

Note. Abbreviations of the model names are: CCM for the componential
context model, MDFT for decision field theory, MLBA for the multiat-
tribute linear ballistic accumulator model, and MDbS the multialternative
decision by sampling.
a The CCM needs a different function for one of the attribute dimensions
to produce the polarization effect. There is no a priori rule to select this
dimension. b MDFT can be extended to explain these context effects
(Tsetsos et al., 2010). c The MLBA model can produce the phantom
decoy effect with additional parameterization (Trueblood et al.,
2014). d The similarity parameter in MDbS needs to be larger to produce
the phantom decoy effect.
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choice set are equally valuable, the alternative placed in the ver-
tical or horizontal center is more likely selected (Christenfeld,
1995; Shaw, Bergen, Brown, & Gallagher, 2000). This centrality
effect is linked to attention: people are more likely to attend an
alternative located in the center (Atalay, Bodur, & Rasolofoarison,
2012; Shaw et al., 2000).

As the central alternative attracts more attention, the MDbS
model predicts that the central alternative is more frequently
evaluated. With an increasing frequency of evaluation, an alterna-
tive becomes more likely to accumulate evidence. This is because
each alternative is equally valuable and hence, is equally likely to
win a comparison. Thus, the MDbS model explains the centrality
effect with the bias in frequency of evaluation.

The Endowment Effect

The endowment effect concerns valuation of an object relative
to valuation of another object people already own. In the famous

mug experiment (Knetsch, 1989), participants were either given a
mug or a chocolate bar, at random. Later they were given a costless
and low effort opportunity to swap. No matter what the overall
preference for a mug or a chocolate bar, half of people should be
expected to swap—but few did. The classic explanation is that
endowing someone with an object makes it intrinsically more
valuable. This effect is also called the status quo bias (Tversky &
Kahneman, 1991; see also, Samuelson & Zeckhauser, 1988).

The endowment effect has been explained with loss aversion.
Compared with an object which people already own, a new object
has better aspects and poorer aspects, and thus an exchange be-
tween the objects result in gain on some aspects and loss on the
other aspects. Loss aversion means that the losses associated with
the exchange will outweigh the gains (Kahneman, Knetsch, &
Thaler, 1990). Further, when forced to make an exchange, people
are more willing to forgo the object they own for a similar object
than a dissimilar object to avoid a potentially large loss (Tversky
& Kahneman, 1991).

In the MDbS model, ownership of an object is not expected to
influence its evaluation. It could be that people sample different
values from long-term memory, depending on what is in their
possession. At the current formulation, however, the MDbS model
does not provide an explanation for the endowment effect. We
only note that the existence of the endowment effect is currently
under dispute (e.g., Plott & Zeiler, 2005).

The ‘Less Is More’ Effect

The ‘less is more’ effect can occur when an attribute, which
people do not find particularly valuable, is added to one alternative
in a choice set. This addition tends to reduce attractiveness for the
alternative (Simonson, Carmon, & O’Curry, 1994). For example,
the attractiveness of a car can be reduced after the car is bundled
with a relatively unattractive branded umbrella. This effect has
been attributed to an inference: people assume that the umbrella is
only bundled with unattractive cars, and then that the car must be
unattractive. This effect is also consistent with the information

Figure 11. The attribute balance effect. Here, each car is rated on efficiency and warranty, both of which range
from 0 to 100. Car Q is the balanced alternative with the same rating on both attributes (the left panel). The
multialternative decision by sampling (MDbS) model predicts a higher decision probability for Car Q, when
presented with Cars K and L, with Cars L and U, or with Cars U and W (the right panels).

Figure 12. A set of alternative computers used in the experiment by
Simonson and Tversky (1992). Participants first made a decision between
A= and B= or between A	 and B	 and then were asked to make a decision
between A and B.
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integration in impression formation, where people appear to take
an average of attributes (Anderson, 1965, 1981).

In the MDbS model, however, the ‘less is more’ effect is
explained within the comparison and accumulation processes. In-
troducing, or drawing attention to, an attribute that is not likely to
win comparisons will reduce the accumulation rate for the alter-
native to which it belongs.

The Perceptual Focus Effect

The perceptual focus effect has been reported with the choice set
illustrated in the left panel of Figure 13. Here, a previous study
reports that Car A is most frequently chosen (Hamilton, Hong, &
Chernev, 2007). In this choice set, importantly, Cars G, H, J and B
share the same value on the fuel efficiency, making Car A distinc-
tive on the fuel efficiency. This distinctiveness has been consid-
ered to facilitate people’s attention to be biased toward Car A,
leading people to decide on Car A (Hamilton et al., 2007).

The biased attention is also predicted by the MDbS model. As
the price of Car A is similar to two cars (Cars G and H), Car A is
frequently compared on its price. About half of this frequent
comparisons favors Car A, because price of Car A has a relative
rank of .50. In contrast, the price of Car B has a higher relative
rank of 1.0. Car B is, however, similar to only one car (Car J) and
thus less frequently compared.

The biased attention on price, however, provides only an in-
complete explanation by the MDbS model. On fuel efficiency, Car
A has a relative rank of 1.00 and is always favored in the com-
parisons. In contrast, comparisons on fuel efficiency never favor
the other cars. These differences in frequency of comparisons and
relative ranks result in the highest decision probability for Car A
(see the right panel in Figure 13).

The Phantom Decoy Effect

The phantom decoy effect can occur when one alternative in a
choice set is announced as unavailable. After this announcement,

an alternative, which is similar but inferior to the now unavailable
alternative, becomes more likely chosen than other alternatives
(Highhouse, 1996). In a choice set with Cars A, B, and R’, for
example, unavailability of Car R= tends to make Car A more likely
chosen than Car B (see Figure 14). Further, this effect is weaker in
a choice set with Cars A, B, and F’, where Car F= becomes an
unavailable alternative (Pettibone & Wedell, 2007).

This phantom decoy effect has been explained with a combina-
tion of two factors (Pettibone & Wedell, 2007; Tsetsos et al.,
2010): a change in reference point and loss aversion. After an
alternative becomes unavailable, this alternative becomes a refer-
ence point against which other alternatives are compared. In the
choice set with Cars A, B and R=, for example, Cars A and B are
evaluated against Car R’. The disadvantage of some alternatives
(i.e., Car B on fuel efficiency) become exaggerated due to loss
aversion. As competitive but dissimilar alternatives involve off-
setting a large loss against a large gain, loss aversion affects
dissimilar alternatives more. The exaggerated disadvantage re-
duces the probability of selecting the alternatives with large losses
(Car B in the above example).

The phantom decoy effect can potentially be explained with
the MDbS model. Here, because the unavailable alternative is
most similar to the alternative which is inferior to the unavail-
able alternative, the inferior alternative is most frequently eval-
uated. This more frequent evaluation leads to a higher accumu-
lation rate and produce the phantom decoy effect. This
explanation, however, depends on the extent to which the
evaluation frequency is influenced by similarity between attri-
bute values.

The phantom decoy effect as illustrated by the MDbS model
is summarized in the right panels of Figure 14. In this illustra-
tion, we treat attribute values of the unavailable alternative as
values in working memory. Here, parameter � dictates the
influence of similarity on the evaluation frequency. When the
parameter value is large and similarity has a strong influence on
the evaluation frequency, the MDbS model shows the phantom

Figure 13. The perceptual focus effect. In line with empirical findings, the multialternative decision by
sampling (MDbS) model predicts the highest decision probability for Car A.
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decoy effect: the decision probability for Car A is higher than
that for Car B. But note that we require the parameter � to be
larger than for all of the other simulations in this paper. The
MDbS model is unable to predict the weaker effect with Car F=
than with Car R=.

The Polarization Effect

To illustrate the polarization effect, suppose that people are
equally likely to decide on either of two cars: Car A with higher
price and better efficiency, and Car B with lower price and poorer
efficiency. In the polarization effect the addition of a compromise
alternative, whose price and efficiency is between Cars A and B,
to the choice set reduces the proportion of decisions made on Car
B. The proportion of decisions made on Car A, however, is not
affected. Consequently, Car A is most likely selected (Simonson &
Tversky, 1992).

The polarization effect has been attributed to people’s selective
extremeness aversion (Simonson & Tversky, 1992): people are
averse to low efficiency but not to high price. As Simonson and
Tversky (1992) point out, it is not clear why people show extreme-
ness aversion in one attribute dimension but not in another. As a
result, the explanation of this polarization effect requires additional
parameterization, specifically tailored for this effect (Tversky &
Simonson, 1993).

The MDbS model does not treat one attribute dimension
differently to other dimensions, and thus, does not provide an
explanation for this polarization effect. However, we note that
this effect is not compatible with the compromise effect: in
majority of the studies reported under the polarization effect
(Simonson & Tversky, 1992), a compromise alternative is least
frequently chosen, showing the opposite pattern to the compro-
mise effect, where a compromise alternative is most frequently
chosen. Thus, a model which can explain the compromise effect
requires additional mechanisms to explain the polarization
effect. Details of the additional mechanism await further re-
search.

Intransitive Preference Cycles

The MDbS model is readily applied to choices with more than
two attribute dimensions, some of which may contain missing
values. To illustrate, consider a choice between Alternatives V, Y,
and Z in Table 5. The attribute values in Alternatives V, Y, and Z
are systematically assigned, so that if a missing value is ignored, a
pairwise comparison between Alternative V and Y favors Alter-
native Y, a pairwise comparison between Alternatives Y and Z
favors Alternative Z, and a pairwise comparison between Alterna-
tive Z and V favors V. The MDbS model predicts a cycle of
intransitive preference in the set of choices between two of the
alternatives. Missing values are handled in the MDbS model with
zero probability to evaluate an alternative on the attribute dimen-
sion where its value is missing. Alternative Z in Table 5, for
example, has its price missing, so Alternative Z is never evaluated
on its price. In a ternary choice, however, each alternative is
equally likely to win a comparison, and the MDbS model predicts
that no alternative is strongly preferred in a ternary choice. This
intransitive pairwise choice but the indifferent ternary choice are
reported by Müller-Trede, Sher, and McKenzie (2015).

Related Models

Thus far, we have discussed how the MDbS model explains
various phenomena with the four principles: (a) people sample
relevant values from memory, (b) an alternative is evaluated

Figure 14. The phantom decoy effect. Here, a choice set contains either Cars A, B, and R= or Cars A, B, and
F=. Before people make a decision, Car R= or F= is announced unavailable. The right panels summarize predicted
decision probabilities in the multialternative decision by sampling (MDbS) model, for the choice set with Cars
A, B, and 	 (the top right panel) and the choice set with Cars A, B, and R= (the bottom right panel).

Table 5
Alternatives V, Y, and Z to Illustrate the Cycle of
Intransitive Preference

Measure V Y Z

Price (103 USD) 24 16 —
Fuel efficiency (MPG) — 24 32
Warranty rating 70 — 50

Note. Dash (—) indicates a missing value.
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through a series of pairwise ordinary comparisons, (c) the proba-
bility of comparing alternatives depends on similarity between
attribute values, and (d) relatively small differences in attribute
values are ignored. These principles of the MDbS model, however,
are not entirely novel and have been implemented in existing
models of decision making. In this section, we address how the
MDbS model relates to other models.

Like MDbS, the exemplar-based random walk (EBRW) model
(Nosofsky & Palmeri, 1997) implements the sampling from long-
term memory. The EBRW model is a model of classification,
where a new object is classified by sampling instances of contend-
ing categories from long-term memory. More similar instances are
more likely to be retrieved more quickly, and each retrieved
instance contributes one unit of evidence for its category. In
MDbS, similarity also influences the comparison process and one
unit of evidence is also accumulated at each time. In MDbS,
however, comparisons are made on single dimension, and values
across dimensions are not aggregated as they are in the EBRW
model.

Comparisons are considered to be an integral part of decision
processes by Simonson, Bettman, Kramer, and Payne (2013), who
proposed that decisions are based on the comparisons which are
task-acceptable and easy to make. According to Simonson et al.
(2013), the task-acceptability depends on whether the comparison
results are informative in judging which alternative is better. For
example, when choosing between Cars A and B, a comparison
between Cars A and X is not acceptable. This is because a
comparison between Cars A and X does not justify a decision on
Car A over B or Car B over A. Therefore, alternatives are com-
pared only within a choice set. In the MDbS model in contrast, an
alternative can be compared against attribute values sampled from
long-term memory. The other component of Simonson et al.’s
(2013) proposal, the ease of comparison, depends on a number of
factors, including computational ease and saliency of alternatives.
With this regard, we propose that similarity between attribute
values also determines probability of evaluation.

In the MDbS model, the comparison of attribute values is
insensitive to the magnitude of the differences, as long as the
difference is judged meaningful. Magnitude-insensitive compari-
sons are implemented in some of the existing models. In fuzzy
trace theory (Reyna, 2012), for example, a comparison is made on
representations of attribute values. The fuel efficiency of 32 mpg,
for example, can be represented as 32 mpg, some efficiency, or
better efficiency. The latter two representations discretize the numer-
ical values, and a comparison becomes magnitude-insensitive. This
comparison with discrete representation also ignores small differ-
ences in attribute values: when 32 mpg and 29 mpg are both
represented as some efficiency, the difference of 3 mpg disappears
in the representation.

Similarly in a model proposed by de Clippel and Eliaz (2012), each
alternative is ranked on each attribute dimension, and people decide
on the alternative whose minimum rank is the highest. Thus, the
procedure to rank alternatives is unbiased: unlike the MDbS model,
probability to evaluate alternatives is not influenced by similarity
between attribute values. de Clippel and Eliaz’s (2012) model, and
MDbS, are closely related to the improper linear models of Dawes
(1979), where regression weights are replaced with unit values of 
1
or �1 and the tallying heuristic (Gigerenzer & Gaissmaier, 2011) in
which favorable properties are just counted up.

The counting of favorable properties is also an integral part of
query theory (Johnson, Häubl, & Keinan, 2007). In query theory,
the decision making process proceeds by considering, in order, a
number of queries and selecting the alternative favored by the most
queries. The theory is applied, often, to experiments in which
queries are rendered more or less accessible by experimental
manipulations. In MDbS, the nature of the queries is different—
they are binary ordinal comparisons typically between economic
attribute values. MDbS also does not make strong assumptions
about the ordering of the comparisons or queries, and has been
applied to different kinds of phenomena in risky choice, intertem-
poral choice, and other multiattribute consumer choices.

The influence of similarity has also been implemented in
models of risky decision (e.g., Buschena & Zilberman, 1999;
Leland, 1994; Rubinstein, 1989). For example, Buschena and
Atwood (2011) argue that people employ different decision
strategies depending on the similarity between alternatives.
Although in the MDbS model similar alternatives are evaluated
in the same manner as dissimilar alternatives, the similarity
between attribute values determines the probability of evalua-
tion.

The use of a threshold below which differences are ignored is
common in heuristic models. For example, among the models of
risky decision, the priority heuristic (Brandstätter et al., 2006)
implements the just meaningful difference. This heuristic pre-
dicts that people decide on the alternative if the alternative
exceeds another by 10%. Brandstätter et al. (2006) argue that
this 10% threshold is fixed. In contrast, the threshold is soft and
probabilistic in the MDbS model. This probabilistic threshold
has been implemented in models to explain how a change in
prices influences consumer behavior (e.g., Han, Gupta, & Le-
hmann, 2001) and also to explain decisions on transportation
(e.g., Cantillo, Heydecker, & Ortúzar, 2006; Cantillo & Ortú-
zar, 2006). And the logistic rule we use in Equation 4 for our
soft threshold is a special case of the ubiquitous softmax
function from probability theory, used in logistic regression and
neural networks.

The principles in the MDbS model have been employed in
various models. Our contribution to the exiting literature is to
highlight that these principles are grounded in empirical findings,
and to show that the combination of these principles explains the
broad range of phenomena in preferential decisions.

Conclusion

In this paper, we have extended the decision by sampling model
to multialternative decisions. Our extensions are grounded in re-
cent empirical findings from the process tracing literature. Specifi-
cally, we assume an evidence accumulation process where, in a series
of comparisons, pairs of alternatives are compared on single dimen-
sions, because empirical findings show that people’s eye move-
ments comprise a series of alternations between pairs of attribute
values. We also assume that more similar alternatives are selected
for comparison more often, because empirical findings show that
people attend to more similar alternatives more often. We assume
that the rule for stopping evidence accumulation and making a
decision is based on a relative comparison, because only a relative
comparison is compatible with the gaze cascade effect and posi-
tively skewed response times. Despite, or perhaps because of,
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these process tracing constraints, the MDbS model provides a
quantitative account of choice phenomena including the big three
attraction, similarity, and compromise effects—an account equal
to that of MDFT and the MLBA model. The MDbS model also
provides the most comprehensive coverage of a survey of multi-
alternative decision phenomena.
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Appendix A

Random Walk Details

This Appendix describes a closed form solution for decision
probabilities for MDbS. Over time, accumulators for each choice
alternative are incremented by a series of pairwise, ordinal com-
parisons. The decision criterion is the difference between the
maximum accumulator and the mean of all accumulators. Here we
follow Diederich and Busemeyer (2003) and conceptualize the
accumulation as a random walk over possible accumulator states.

For illustration purposes, suppose a choice set includes three
alternatives, A, B, and D, and that one comparison is made and
Alternative A is favored. Then, the accumulated evidence is 1
for Alternative A, and 0 for Alternatives B and D. The mean of
this accumulated evidence is therefore 1/3. Thus, the relative
evidence is 2/3 for Alternative A, and �1/3 for Alternatives B
and D. The relative evidence is updated each time a pairwise
ordinal comparison is made. When this relative evidence
reaches the threshold �, a decision is made.

For notation convenience, we multiply the relative evidences by
the number of alternatives in a choice set, so that the relative
evidences are always integers. We also multiply � by the number

of alternatives and round up to the nearest integer. In what follows,
we use �� to denote the transformed value of �. When three
alternatives are available, we define

�* � ceil(3�). (5)

By definition, the relative evidence always sums to 0. Leverag-
ing this property, we can formulate the evidence accumulation
with Markov chain, where a state is characterized by the relative
evidence. A state can be, for example (2, �1, �1), where the
relative evidence is 2 for Alternative A, �1 for Alternative B,
and �1 for Alternative D.

The Markov chain is defined by the probability of transitioning
from one state to another. This probability is organized in the
following matrix P with four submatrices.

P � 
 I 0
R Q �,

where R is the transition matrix for reaching the decision criterion:

(Appendices continue)
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R �

state (�*, �* � 2, �2�* � 2) (�*, �* � 3, �2�* � 3) · · · (�2�* � 2, �* � 2, �*) · · ·

(�* � 2, �* � 1, �2�* � 3) pA 0 · · · 0 · · ·

(�* � 2, �* � 2, �2�* � 4) 0 pA · · · 0 · · ·

(�* � 2, �* � 3, �2�* � 5) 0 0 · · · 0 · · ·
É

(�2�* � 3, �* � 1, �* � 2) 0 0 · · · pD · · ·

(�2�* � 4, �* � 1, �* � 2) 0 0 · · · 0 · · ·

and Q is the transition matrix for evidence accumulation:

Q �

state . . . (1, �2, 1) (�2, 1, 1) (�2, �2, 4) (2, �1, �1) (�1, 2, �1) (�1, �1, 2) (0, 0, 0)

É
(1, �2, 1) · · · p0 0 0 0 0 0 pB

(�2, 1, 1) · · · 0 p0 0 0 0 0 pA

(�2, �2, 4) · · · 0 0 p0 0 0 0 0
(2, �1, �1) · · · 0 0 0 p0 0 0 0
(�1, 2, �1) · · · 0 0 0 0 p0 0 0
(�1, �1, 2) · · · pA pB pD 0 0 p0 0
(0, 0, 0) · · · 0 0 0 pA pB pD p0

Here, pA, pB and pD are the probabilities to accumulate
evidence for Alternatives A, B, and D respectively, and p0 is the
probability that none of the alternatives accumulate evidence. In
the above matrices, a value on row i column j is the probability
of moving from State i to State j.

To compute decision probabilities, we also need to define a
vector, Z, to specify the starting state:

· · · (1, �2, 1) (�2, 1, 1) (�2, �2, 4) (2, �1, �1) (�1, 2, �1) (�1, �1, 2) (0, 0, 0)
Z � �· · · 0 0 0 0 0 0 1 
.

Then, the stationary probability of each state is given by

Z(I � Q)�1R.

The decision probability is derived by summing the relevant
cells in this stationary probability vector. For a more detailed

description of this approach, please see the tutorial by Diederich &
Busemeyer (2003).

(Appendices continue)
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Appendix B

Example Computation for the Attraction Effect

In this section, we describe the computation involved in the
MDbS account of the attraction effect: The choice set contains
Cars A, B, and D in Figure 3. We use subscripts x and y to denote
the price and the fuel efficiency, and we ensure that a larger value
indicates a better value by negating the price, such that Ax �
�24,000, Bx � �16,000, Dx � �27,000, Ay � 32, By � 24, and
Dy � 29.

First, we compute distances between the attribute values:

D(Ai,Xi)
�

| Ai � Xi |
| Xi | .

The computed distances are organized in matrices, such that the
cell at Column Ax and Row Bx represents the distance from Ax to
Bx (i.e., D�Ax,Bx�):

D �

Ax Bx Dx Ay By Dy

Ax �

Ax � Bx



Bx


Ax � Dx



Dx

� � �

Bx

Bx � Ax



Ax

�


Bx � Dx


Dx


� � �

Dx

Dx � Ax



Ax


Dx � Bx



Bx

� � � �

Ay � � � �

Ay � By



By


Ay � Dy



Dy

By � � �


By � Ay


Ay


�

By � Dy



Dy

Dy � � �


Dy � Ay


Ay



Dy � By


By


�

�

Ax Bx Dx Ay By Dy

Ax � 0.50 0.11 � � �
Bx 0.33 � 0.41 � � �
Dx 0.13 0.69 � � � �
Ay � � � � 0.33 0.10
By � � 0.25 � 0.17
Dy � � 0.09 0.21 �

.

(Appendices continue)
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Please note that a comparison is not made against the same value (e.g.,
Ax against Ax), so that we do not compute self-distance (e.g., D�Ax,Ax�

).
Using the distances calculated above, we compute similarity

between the attribute values:

S(Ai,Xi)
� exp��� D(Ai,Xi)�.

In this example, we use � � 3. Thus,

S �

Ax Bx Dx Ay By Dy

Ax � 0.22 0.72 � � �
Bx 0.37 � 0.29 � � �
Dx 0.68 0.13 � � � �
Ay � � � � 0.37 0.74
By � � � 0.47 � 0.60
Dy � � � 0.76 0.53 �

.

The row-wise sum of this matrix represents un-normalized
probability to evaluate each attribute value. After dividing with the
total sum of 5.80, we get p(evaluate Ax) � 0.16, p(evaluate Bx) �
0.11, p(evaluate Dx) � 0.14, p(evaluate Ay) � 0.19, p(evaluate
By) � 0.18, and p(evaluate Dy) � 0.22.

We now compute the probability that each attribute wins a
comparison, which is given by

p(Ai is favored over Xi) � �F��1 �D(Ai,Xi)
� �0�� if Ai 	 Xi

0 otherwise,

where F is a sigmoid function. We use the logistic function,
F�z� � 1

1�exp��z�, and we set �0 � 0.1 and �1 � 50. The proba-
bilities are organized in a matrix:

G �

Ax Bx Dx Ay By Dy

Ax � 0.00 0.64 � � �
Bx 1.00 � 1.00 � � �
Dx 0.00 0.00 � � � �
Ay � � � � 1.00 0.54
By � � � 0.00 � 0.00
Dy � � � 0.00 1.00 �

.

Then, the probability that each value wins a comparison is
computed as

p(Ai wins a comparison)

� �
Xi��i

p(Ai is compared against Xi) p(Ai is favored over Xi).

This is achieved by taking the row-wise mean of the G matrix
above:

p(Ax wins a comparison) � 0.32 , p(Bx wins a comparison) � 1.00,
p(Dx wins a comparison) � 0.00, p(Ay wins a comparison) � 0.77,
p(By wins a comparison) � 0.00, p(Dy wins a comparison) � 0.50.

Finally, the accumulation rate is given by

p(Evidence is accumulated toward A)

� �
i��

p(evaluate Ai) p(Ai wins a comparison).

Thus, we obtain p(Evidence is accumulated toward A) � 0.20,
p(Evidence is accumulated toward B) � 0.11, and p(Evidence is
accumulated toward D) � 0.11.

When one unit of evidence is accumulated toward an alter-
native, the relative evidence—the accumulated evidence minus
the mean evidence—is 1 � 1

the number of alternatives . When this value
is greater than threshold �, a decision criterion is satisfied soon
as one unit of evidence is accumulated toward one alternative.
In such case, decision probability is given by normalizing the
accumulation rate. Otherwise, the decision probability is com-
puted as described in Appendix A.

With � � 0.10, one unit of evidence is sufficient for a decision
criterion to be satisfied. Thus, the decision probability is .47 for
Car A, .27 for Car B, and .26 for Car D.

Appendix C

Example Computation for the Background Contrast Effect

In this section, we describe the computation involved in MDbS
when attribute values from previous choice sets are included in
working memory. As an example, we take the background contrast
effect: a choice is being made between Computers A and B, while

the attribute values of Computers A= and B= are in working
memory. Here, we use subscripts x and y to denote the price and
RAM, so that Ax � �1,200, Bx � �1,000, Ax= � �1,350,
Bx= � �1,250, Ay � 720, By � 640, Ay= � 1,200, and By= � 740.

(Appendices continue)
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Then, the distances between the attribute values are

D �

Ax Bx Ay By A�
x B�x A�y B�y

Ax � 0.2 � � 0.11 0.04
Bx 0.17 � � � 0.26 0.20
Ay � � � 0.12 � � 0.40 0.03
By � � 0.11 � � � 0.47 0.14

,

and the similarity is

S �

Ax Bx Ay By A�x B�x A�y B�y
Ax � 0.55 � � 0.72 0.89 � �
Bx 0.61 � � � 0.26 0.55 � �
Ay � � � 0.69 � � 0.30 0.92
By � � 0.72 � � � 0.25 0.67

.

After dividing the row-wise sum of S matrix with the total sum
of 7.31, we get p(evaluate Ax) � 0.29, p(evaluate Bx) � 0.22,
p(evaluate Ay) � 0.26, and p(evaluate By) � 0.22.

We now compute the probability that each attribute wins a
comparison:

G �

Ax Bx Ay By A�x B�x A�y B�y
Ax � 0.00 � � 0.64 0.05 � �
Bx 0.97 � � � 1.00 0.99 � �
Ay � � � 0.78 � � 0.00 0.00
By � � 0.00 � � � 0.00 0.00

.

Then, the probability that each value wins a comparison is
computed by taking the row-wise mean of the G matrix: p(Ax wins
a comparison) � 0.23, p(Bx wins a comparison) � 0.99, p(Ay wins
a comparison) � 0.26, and p(By wins a comparison) � 0.22.

Finally, we obtain p(Evidence is accumulated toward A) � 0.13
and p(Evidence is accumulated toward B) � 0.22. With � � 0.1,
a decision criterion is satisfied soon as one unit of evidence is
accumulated toward one alternative. Then, the decision probability
is .38 and .62 for Computers A and B, respectively.

Appendix D

The MDFT Model

In MDFT, the evidence for each alternative is accumulated over
time. Here, we assume Na alternatives, each of which is described
in terms of Nd attribute dimensions, in a choice set. Then, accu-
mulated evidence is organized in a Na � 1 matrix, P, and evidence
accumulation is formulated as follows:

P(t � 1) � SP(t) � V(t � 1),

where S is a Na � Na feedback matrix and V is a Na � 1
momentary valence vector.

The feedback matrix, S, characterizes distance-dependent lateral
inhibition between alternatives. The feedback from Alternative A
to B, for example, is computed as:

�
2exp(
1DAB
2 ).

Here, DAB is a distance between Alternatives A and B, which is
defined as:

DAB �
(Ax � Ay � Bx � By)

2

2 � �
(Ax � Ay � Bx � By)

2

2 .

The self feedback is computed as 1 � �2.
The momentary valence vector is computed with four matrices:

V(t) � CMW(t) � C�(t).

Here, C is a Na � Na matrix whose diagonal elements are 1 and
off-diagonal elements are 1

Na�1 , and M is a Na � Nd matrix with
attribute values, with each row corresponding to values of an
alternative and each column corresponding to an attribute di-
mension. The attention weight W is a Nd � 1 vector, whose
element is all 0 but one: when the first dimension is attended,
the first element in W is 1 and all of the other elements are 0.
We assume that all of the dimensions are equally likely at-
tended. Finally, � is a Na � 1 vector with independent Gaussian
noise whose variance is �2.

For computational tractability, we assumed an external stopping
rule to compute decision probability: a decision is assumed to be
made after T steps of evidence accumulation. As decision proba-
bility depends on T (Busemeyer & Johnson, 2004; Roe et al.,
2001), we treat T as a free parameter.

(Appendices continue)
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Appendix E

The MLBA Model

In the MLBA, evidence for each alternative is accumulated over
time, and the rate of accumulation is determined by the drift rate.
When Alternatives A, B, and D are in a choice set, for example, the
drift rate for Alternative A is computed as follows:

dA � VAB � VAD � I0,

where VAB is the value of Alternative A relative to Alternative B.
This relative value is given by the weighted sum of differences in
the subjective values. The relative value of Alternative A over B
on dimension x, for example, is given by

VAB � WAxBx�UAx
� UBx� � WAyBy�UAy

� UBy�,

where

WAxBx
��exp���1 | UAx

� UBx
| � if UAx

� UBx
,

exp���2 | UAx
� UBx

| � otherwise.

To compute the subjective values, we need to find the line of
indifference on the attribute space (the solid diagonal line in Figure
E1). Assuming that the attribute values are on the same unit, the
line of indifference is determined by the sum of attribute values. If
Ax 
 Ay is equal to Bx 
 By. Alternatives A is considered
indifferent from Alternative B. The line of indifference for Alter-
native A, for example, intersects the x axis at a � Ax 
 Ay and the
y axis at b � Ax 
 Ay.

The subjective value is the one that satisfies the following:

�UAx

a
�m

� �UAy

b
�m

� 1.

To find the subjective values, we need to compute the two
angles:

�x � arctan�Ay

Ax
� and �y � arctan�Ax

Ay
�.

Then, the subjective values are given by

UAx
� b

�tanm(�x) � �b
a�m
1⁄m and UAy

� a

�tanm(�y) � �a
b�m
1⁄m

.

This subjective value function may seem different from what
appeared in Trueblood et al. (2014), which described UAy

with �x

and not with �y. To see the equivalence, note that

tan(�x) � tan�arctan�Ay

Ax
���

Ay

Ax
� 
Ax

Ay
��1

� tan�1�arctan�Ax

Ay
��

� tan�1(�y).

Then,

(Appendices continue)

Figure E1. Illustration of the subjective value function in the MLBA. A
bold, solid diagonal line represents indifference. The dashed arc represents

�UAx

a �m
� �UAy

b �m
� 1.

540 NOGUCHI AND STEWART



UAy
� a

�tanm(�y) � �a
b�m
1⁄m

� a

�tan�m(�x) � �b
a��m
1⁄m

�
atan(�x)

b
a

�tan�m(�x) � �b
a��m
1⁄m

tan(�x)
b
a

�
btan(�x)

��b
a�m

� tanm(�x)
1⁄m
,

which Trueblood et al. (2014) have in their Appendix C. In the
implementation of the MLBA, UAy

is expressed with UAx
:

UAy
�

btan(�x)

��b
a�m

� tanm(�x)
1⁄m

� b� tanm(�x)

�b
a�m

� tanm(�x)
�1⁄m

� b�1 �
�b

a�m

�b
a�m

� tanm(�x)
�1⁄m

� b�1 � �UAx

a
�m�1⁄m

.

The MLBA parameters are m, 
1, 
2, and I0.

Appendix F

Attribute Values Used in the Experiment

The attribute values used in the experiment are listed in Table
F1. To explain each dimension, a short description was provided to
participants with each choice. These descriptions are listed below.

Mouthwash

Suppose you are about to buy a new mouthwash.
The attributes to consider are the number of hours that your

breath stays fresh after rinsing and the percentage of germs that the
mouthwash kills.

Exercise Class

Suppose you are going to choose an exercise class.
The class fee and the average calories burned per class are

described.

Box of Chocolate

Imagine you are about to buy a box of chocolate.
The variety and the total amount (in ounces) are described.

GPS

Imagine you are going to buy a GPS navigation system.
The position accuracy (in meters) and the update frequency (in

Hz) are described.

The shorter the accuracy is, the GPS can more precisely locate
where it is. Also, the higher the frequency is, the more easily the
GPS can identify where it is moving.

(Appendices continue)

Table F1
Attribute Values Used in the Experiment

Product Dimension

Alternative

A B

Mouthwash Breath 4.5 hours 7.2 hours
Germs killed 77% 56%

Exercise class Fee $9.49 $6.49
Calories 356kcal 259kcal

Box of chocolate Amount 26oz 33oz
Variety 9 5

GPS Update 3.04Hz 5.62Hz
Accuracy 4.97m 7.83m

Mobile battery Price $19.93 $13.49
Talk time 14.55 hours 9.25 hours

Light bulb Life 1309 hours 1923 hours
Price $1.35 $2.50

Air purifier Noise 64.7dB 39.3dB
Efficiency 325cfm 203cfm

Strawberry Quantity 407g 452g
Price $2.58 $2.85

Note. For the description of dimensions, please see the main text.
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Mobile Battery

Imagine you are going to buy a replacement battery for your cell
phone.

Below are the talk time battery life (in hours) and the price.

Light Bulb

Imagine you are going to buy a new light bulb.
The usage life (in hours) and the price are as follows.

Air Purifier

Suppose you are about to buy an air purifier.

Three purifiers are described in terms of the effectiveness (in
cubic feet per minute) and the noise level (in decibels).

Strawberry

Suppose you are going to buy a pack of strawberries at the
supermarket.

The quantity (in grams) and the price are described below.

Appendix G

Additional Exploratory Analysis on the Choice Response Data

In this section, we report additional analysis on the choice
response data requested by a reviewer. We did not plan to conduct
this analysis in advance of data collection. Thus, the results re-
ported in this section should be considered to be exploratory rather
than confirmatory.

In particular, we explored whether our a priori exclusion criteria
were retrospectively justifiable, by examining the difference in the
choice responses between the participants whose data we included
in the main analysis and the other participants. For this, we fit
mixed-effect logistic regressions to predict a decision on Alter-
native A against Alternative B. The regression models have two
independent variables: a binary variable to indicate the partic-
ipant exclusion (i.e., whether a participant’s responses were
included in the main analysis); and the context (whether the
context favored Alternative A or B). The effect of the context is

allowed to vary between attraction, compromise, and similarity
choices. The likelihood ratio test indicates that the effect of the
context differs between the participant groups: � � 0.75,
�2(1) � 9.00, p �.0028.

The data from the participants who were excluded from the
main analysis are summarized in Figure G1. The figure shows
that the attraction effect is observed: Alternative A is more
often chosen when Alternative DA, which is inferior to A, was
present then when Alternative DB, which is inferior to B, is
present. The compromise and similarity effects are not clearly
seen in Figure G1.

Thus, the exploratory analysis highlights the difference in
choice proportions between participants who passed versus failed
our attention check of avoiding a dominated alternative in our
control choices.

(Appendices continue)

Figure G1. Choice proportions for participants excluded from the main analysis in the big-three consumer
choices experiment. Each panel represents an experimental condition, a solid line connects a choice set, and error
bars are 95% confidence intervals.
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Appendix H

Technical Details for Model Fitting

With hierarchical Bayes framework, we let parameter values
vary between participants. In particular for parameters which can
take only integers, we let values be Poisson distributed at partic-
ipant level. The prior for this Poisson distribution (i.e., prior for
group-level estimate) is set to non-informative distribution:
Gamma(0, 0). For parameters which can take real values, we let
values be normally distributed at participant level. The prior for
this normal distribution (i.e., prior for group-level estimate) is also
set to non-informative: Normal(0, �) for parameter mean, and
Uniform(0, �) for standard deviation.

For each model, we used Markov chain Monte Carlo to draw
20,000 parameter values from the posterior distributions. Then we
discarded the first 10,000 samples as the burn-in and thinned the
remaining 10,000 samples to retain 1,000 samples. This procedure is
repeated four times, leaving us with 4,000 samples for each model.
The 4,000 samples for the group level estimates are summarized in
Table H1.

Appendix I

The CCM Model

In the CCM, subjective value of an alternative is determined by
the trade-off rate learned from previous decisions and the relative
advantage within a choice set. When there is no previous decision
to learn a trade-off, subjective value in the CCM reduces down to
the sum of attribute values and the relative advantage. The sub-
jective value for Alternative A, for example, is computed as
follows:

�
i

Ai � � Advantage(A)
Advantage(A) � Disadvantage(A), (6)

and

Advantage(A) � �
i

�
Xi��i

Advantage(i)(Ai, Xi) (7)

where �i is a set of attribute values on dimension i in a choice set.
The advantage of A over X along dimension i is given by:

Advantage(i)(Ai, Xi) � �Ai � Xi if Ai 	 Xi

0 otherwise.
(8)

Similarly, the disadvantage of A is computed as:

Disadvantage(A) � ���
i

�
Xi��i

Advantage(i)(Xi, Ai)�. (9)

The disadvantage function � is an increasing convex function,
which satisfies �(t) � t. Here, we use a convex function (i.e.,
�(t) � 
 log(t)). Previously, Soltani et al. (2012) used a linear
function for �: namely �(t) � 
t, (
 � 1) and report that the CCM
predicts a stronger attraction effect with a closer decoy. With
�(t) � 
log(t), however, the CCM predicts a weaker attraction
effect with a closer decoy. We also note that when �(t) � 
 t, the
CCM does not produce the compromise effect, which the CCM is
designed to explain.

(Appendices continue)

Table H1
Posterior Estimates of Mean Parameter Values at the
Population Level

Model Parameter Median 95% HDI

MDFT �1 .03 .01, 2.99
�2 .12 �.04, .35
� 1.03 .58, 2.50
� 20.80 3.87, 49.33
T 36.72 22.76, 114.48

MLBA m 41.27 �8.36, 72.08

1 .68 .42, 22.63

2 1.21 �5.31, 2.14
I0 2.10 �.18, 40.08

MDbS � 1.94 .15, 2.26
�0 .40 .05, .42
�1 53.73 2.93, 147.53
� .52 .22, 1.32

Note. HDI stands for highest density interval.
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Appendix J

Additional Details for the Qualitative Comparison

The attribute values used in the qualitative comparison are listed
in Table J1. The attraction effect is assessed with Alternatives A,
B, and D, and is considered to be present when decision proba-
bility for Alternative A is higher than the others. Similarly,
the compromise effect is assessed with Alternatives A, B, and C,
the similarity effect is assessed with Alternatives A, B, and S, the
perceptual distinctiveness effect is assessed with Alternatives A,
B, J, H, and G, and the attribute balance effect is assessed with
Alternatives K, L, Q, U, and W.

Some of the phenomena we discuss are not quantitatively spec-
ified well enough to allow us to simulate. These phenomena are the
alignability effect, the centrality effect, the endowment effect, and
the less is more effect. For these phenomena, we examined
whether a model’s mechanism could provide an explanation. Some
other phenomena are not readily simulated with certain models.
For example, the MDFT and MLBA models do not provide a
mechanism to simulate the incidental value effect, the attribute
distribution effect, the attribute range effect, the attribute spacing
effect, and the background contrast effect. We consider the MDFT
and MLBA models to be unable to explain these phenomena,
unless an explanation was discussed in previous studies.

For the MDFT model, the parameter values we tested are all of
the combinations of the followings: �1 � [0.01, 0.02, 0.03, . . . ,
0.10]; �2 � [0.05, 0.06, 0.07, . . . , 0.10]; � � [1, 3, 5, . . . , 19];
�2 � [0.01, 0.02, 0.03, . . . , 0.10]; and T � [10, 20, 30, . . . , 100].
When testing the effects of time pressure, we multiplied T with 2
to examine whether an effect becomes stronger.

For the MLBA model, the parameter values we tested are all of
the combinations of the followings: m � [0, 2, 4, . . . , 100]; 
1 �
[0.0, 0.2, 0.4, . . . , 10.0]; 
2 � [0.0, 0.2, 0.4, . . . , 10.0]; and I0 �
[0, 2, 4, . . . , 100].

For the CCM model, the parameter values we tested are all of
the combinations of the followings: � � [0.0, 0.1, 0.2, . . . , 10.0]
and 
 � [1.00, 1.01, 1.02, . . . , 10.00].
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Table J1
Attribute Values Used for the Qualitative Comparison

Alternative

Attribute value

Dimension x Dimension y

A 2.00 3.00
B 3.00 2.00
D 1.75 2.75
D= 1.90 2.90
F 1.75 3.00
R 2.00 2.75
C 1.00 4.00
S 2.90 2.10
J 2.90 2.00
H 1.90 2.00
G 1.80 2.00
K .50 4.50
L 1.50 3.50
Q 2.50 2.50
U 3.50 1.50
W 4.50 .50
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