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Brain-inspired Bayesian perception for biomimetic robot touch

Nathan F. Lepora, J. Charlie Sullivan, Ben Mitchinson, Martin Pearson, Kevin Gurney, Tony J. Prescott

Abstract— Studies of decision making in animals suggest
a neural mechanism of evidence accumulation for competing
percepts according to Bayesian sequential analysis. This model
of perception is embodied in a biomimetic tactile sensing
robot based on the rodent whisker system. We implement
simultaneous perception of object shape and location using two
psychological test paradigms: first, a free-response paradigm
in which the agent decides when to respond, implemented
with Bayesian sequential analysis; and second an interrogative
paradigm in which the agent responds after a fixed interval,
implemented with maximum likelihood estimation. A benefit
of free-response Bayesian perception is that it allows tuning
of reaction speed against accuracy. In addition, we find that
large gains in decision performance are achieved with unforced
responses that allow null decisions on ambiguous data. Thus,
free-response Bayesian perception offers benefits for artificial
systems that make them more animal-like in behavior.

I. INTRODUCTION

A view being advanced in psychology and neuroscience

is that human and animal perception corresponds to statisti-

cally optimal inference from noisy and ambiguous sensory

data [1], [2]. One notable series of experiments considers

neuronal activity in parietal cortex as monkeys make percep-

tual judgements of the direction of motion for drifting ran-

dom dots, and finds individual neurons that noisily ramp-up

their firing rates until reaching a threshold when a decision

is made [3], [4]. These processes appear well described by

the statistical approach of sequential analysis [5], [6], which

applies Bayes’ rule to accumulate evidence for competing

perceptual hypotheses over time series of sensory data until

a preset threshold for the posterior probability is reached [7].

This study implements these principles of biological per-

ception in a biomimetic robot based on the rodent whisker

system [8]. There are two main motivations for this re-

search. First, animals far surpass present-day robots in their

perceptual abilities. Thus, by utilizing biological principles

one hopes to develop better methods for robot percep-

tion. Second, uncovering the principles underlying biological

perception is a key goal of the biosciences. Hence, the

development of biomimetic robot experiments to test these
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Fig. 1. (A) The BIOTACT sensor (yellow module) is mounted as an
end-effector to a 7-dof robot arm. (B) Close-up of the sensor and whisker
modules contacting a test object (30 mm diameter hemi-cylinder).

biological theories could give new, complementary insights

to those from psychological and neuroscientific investiga-

tions of humans and animals. For both of these reasons, we

use a robot that closely mimics the biological system in its

interaction with objects that it is sensing.

Our principal hypothesis is that this type of Bayesian

perception leads to flexible, efficient and accurate sensory

processing in robots and animals. In this study, we demon-

strate that Bayesian sequential analysis gives an effective

approach for simultaneous perception of object shape and

location. These are important percepts for manipulating

objects – for example, knowing object shape is key for

grasping, while the object location is required to position

a manipulator. The present study also builds on recent work

in which we showed that similar probabilistic methods for

classifying textural stimuli gave improved performance over

non-probabilistic methods commonly used in robotics [9].

A main benefit of Bayesian perception is that it allows

the decision making procedure to respond more fully to the

sensory processing. In particular, the tradeoff between speed

and accuracy is set directly to permit caution when penalties

for mistakes are high and fast reactions when delays are

critical. Then, once this tradeoff is set, reaction times are

faster for unambiguous percepts and slower with ambiguity.

Bayesian perception also allows the option of a null decision

on ambiguous data after a deadline, which we find can

greatly increase both reaction speed and accuracy. Given that

these behaviors are characteristic of animals, we expect that

these Bayesian methods can improve the sensing abilities of

artificial systems in a way that mimics animal perception.



Fig. 2. (A) Whisker deflection data recorded as the robot head moves slowly over a test hemi-cylinder (diameter 50 mm) while actively whisking against
the surface at a constant frequency of 2 whisks/s. The range of head positions spanned 100 mm over 202 s, giving 404 whisks spaced every 0.25 mm.
Tickmarks are shown every 5 mm displacement, or 20 whisks. Data from the four whiskers are represented in distinct colors. (B-E) Examples of deflection
data for individual whisks taken from panel (A) at 5 mm, 35 mm, 65 mm and 95 mm head displacement (whisk number 20, 140, 260 and 380).

II. METHODS

A. Robot experiments

In rats, the long facial whiskers (macrovibrissae) form a

grid on each side of the snout, with each whisker mounted

in a specialized hair follicle that sits within an area of dense

muscular tissue. From an engineering perspective, the facial

whiskers resemble tapered elastic beams that deform easily

upon contact with objects. Mechanoreceptors at the base

of the whisker shaft respond when it is deflected and are

transduced into patterns of neural firing that may encode

information about the nature of the contact. When the rat is

exploring its environment, the long facial whiskers are swept

back and forth many times per second in a motion that is

actively modulated by contacts with impeding objects.

The G1 (Generation 1) BIOTACT sensor was designed

to mimic these aspects of the rat whisker system [8]. The

robot consisted of a truncated conical head holding up

to 24 whisker modules arranged in 6 radially symmetric

rows of 4, oriented normally to the cone surface. The head

is mounted as the end-effector of a 7-degree-of-freedom

(dof) robot arm (Fig. 1A) that allow it to be moved to

positions of interest. The whiskers were swept back-and-

forth to repeatedly contact surfaces akin to animal whisking

behavior [10]. Whiskers towards the front of the head were

shorter than at the back (lengths 50 mm, 80 mm, 115 mm and

160 mm), and were designed with a taper from a 1.5 mm base

to a 0.25 mm tip. The deflections upon contacting objects

were measured with a hall effect sensor at the base of the

whisker [11], with processing/controlling software executed

under the BRAHMS Modular Execution Framework [12].

For the present experiments, the head was fitted with a

total of 4 whiskers in one row appropriate for sensing axially

symmetric shapes such as cylinders aligned perpendicular to

the whisker row (Fig. 1B). Six rigid plastic hemi-cylinders

with diameters of curvature 30 mm, 40 mm, 50 mm, 60 mm,

70 mm and 80 mm were used as test objects. They were

mounted with their curved surfaces facing upwards on bases

of appropriate height to ensure equal vertical dimensions.

The orientation of the BIOTACT sensor head was such that

the four whiskers contacted the cylinders along the horizontal

and perpendicular to the cylinder axis (Fig. 1B). When

contacting a horizontal surface, the whisker tips were ap-

proximately 30 mm apart, spanning a distance from 100 mm

to 190 mm perpendicular to the head axis. The depth of the

contacts was arranged to be equal for all trials and only

contacting the curved sections of the test objects.

The data sets were collected while moving the robot head

horizontally at constant speed of 0.5 mm/sec over each test

object. In each case a range of 100 mm was considered, with

constant whisk frequency of 2 whisks per second. This gave

404 whisks per object at increments of 0.25 mm. Example

whisker deflection data for the four whiskers contacting the

cylinder of 50 mm diameter is shown in Fig. 2. One training

and one test set was collected for each of the six cylinders.

B. Analysis

Bayes’ rule states that the posterior probability P (Cl|xn)
for a new measurement xn being from one of the N classes

Cl is equal to likelihood P (xn|Cl) times the prior normalized

by the marginal probability. In sequential analysis, the prior

is the posterior probability for the preceding measurement,

giving a sequential update rule

P (Cl|xn) =
P (xn|Cl)P (Cl|xn−1)

P (xn|xn−1)
. (1)

The likelihoods P (x|Cl) are assumed identically distributed

and independent of when the measurements are taken. The

marginal probabilities are explicitly denoted as conditioned

on the preceding measurement and are found from summing

over all N classes

P (xn|xn−1) =

N∑

l=1

P (xn|Cl)P (Cl|xn−1) (2)



to satisfy the constraint
∑N

l=1
P (Cl|xn) = 1. Taking a se-

quence of measurements x1, · · · , xn thus results in sequence

of posteriors P (Cl|x1), · · · , P (Cl|xn) for each class, which

are calculated by iterating over the relations (1,2) starting

from uniform priors P (Cl) = P (Cl|x0) = 1/N .

Here we compare and contrast decision making based

on two paradigms typical of psychological experiments on

decision making [6]. The first involves fixed duration stimuli

after which participants are expected to answer, thus con-

straining their reaction times. This case is referred to as an

interrogation paradigm. The second paradigm is termed free-

response, with participants allowed to respond in their own

time. In the latter, both error rates and reaction times vary

as participants implicitly choose a speed-accuracy tradeoff.

These paradigms for decision making are implemented

here by supplementing the posterior update rule (1,2) with a

stopping condition for when to report the decision:

(I) Interrogation paradigm: A fixed number of measurements

n are specified in advance (here the number of whisks).

(II) Free-response paradigm: The number of measurements

n are determined in reaction to the posterior values. Here we

use the condition that at least one posterior crosses a preset

threshold P (Cl|xn) > p for any class Cl.

Note that a decision can be aborted when using a free-

response paradigm if, for example, a preset ‘boredom’ dead-

line is reached before crossing the probability threshold. Fol-

lowing the psychological terminology, we refer to situations

where decisions must always be made as forced choices, and

those where null decisions are allowed as unforced choices.

It is also necessary to specify an appropriate decision rule

for which choice to make. For simplicity, we use the maximal

a posteriori (MAP) estimate common in Bayesian analysis

C = argmax
Cl

P (Cl|xn), (3)

where argmax refers to the argument (the class) that maxi-

mizes the posterior.

In this study, the above analysis is applied over multiple

whisker contacts of a test object. Therefore we consider the

likelihoods P (xn|Cl) as single probability values derived

over the nth whisk of the four whiskers. There are many

ways of estimating this probability, depending upon how the

contact information is compared with training data. Here we

use a method based on a probabilistic classifier demonstrated

previously to accurately discriminate whisker contacts under

various circumstances [8], [9], [13], [14].

The whisker deflections have a time series y(1), · · · , y(T )
over a whisk, where T is the number of samples per whisk.

The histogram of deflection values then defines a probability

distribution for each whisker k

Pk(y) =
ny∑
y ny

, (4)

where ny is the total number of times that the value y occurs

for whisker k. (Implicit in this description is a binning of

the measurements y, here taken at 1 mV intervals.) This

transformation from time series to probability distribution

is used to estimate the likelihoods in the Bayesian update

Fig. 3. Examples of the accumulating/depreciating posterior probabilities
for the (120) distinct percept classes as whisker deflection data from more
whisks is included. The (winning) percept after 20 whisks is shown in green.
Panel (A) shows an example with a clear winner and panel (B) of ambiguity.

rule (1), over two phases:

(I) Training phase: The conditional probability distributions

Pk(y|Cl) for class Cl are estimated by taking the mean over

the probability distributions (4) from the whisks in a training

data set for that class. This training is repeated for all classes.

(II) Testing phase: Each new test whisk (denoted xn in the

Bayesian update rule) is used to estimate the log likelihood

as a mean over the log probability distributions

logP (xn|Cl) =
1

4T

4∑

k=1

T∑

i=1

logPk(y(i)|Cl). (5)

Taking the sum over logs is equivalent to multiplying the

probabilities, by treating the samples y(i) as independently

and identically distributed. The 1/4T factor is from using

the average log likelihood as an estimator and assures that

the multiplication over sample probabilities Pk(y(i)|Cl) does

not produce a vanishingly small likelihood [9].

Note that with this likelihood definition (5), the Bayesian

update rule (1) with interrogation paradigm is formally

equivalent to the naive Bayes classification considered pre-

viously for robot whiskers [8], [13], [14]. The marginal term

in Bayes rule is then no longer relevant for decision making

over a fixed number of whisks because it is a common

normalization for all posteriors, and for flat priors the method

becomes equivalent to maximum likelihood estimation. This

contrasts with the free-response paradigm, where the division

over the marginal term is crucial for comparing the prob-

ability threshold with (appropriately normalized) posteriors

calculated from Bayes’ rule.

III. RESULTS

A. Initial observations

As described in the methods, whisker deflection data was

collected for six distinct hemi-cylinders (diameters 30 mm,

40 mm, 50 mm, 60 mm, 70 mm and 80 mm) by passing the

robot head slowly over each object whisking at a constant

rate (configuration shown in Fig. 1B). Over a 100 mm head

displacement, this resulted in 404 distinct whisker deflection



profiles. For the example data shown in Fig. 2A (50 mm

radius hemi-cylinder), at the start of the movement whiskers

1 and 2 are in contact (Fig. 2B), then whisker 3 contacts

and (Fig. 2C), then whisker 4 contacts and whiskers 1 then

2 detach (Fig. 2D), and finally whisker 3 detaches (Fig. 2E).

Notice that the pattern of whisker deflections depends on

both the curvature of the surface being contacted and the

position of the head over the object, permitting the simulta-

neous classification of object shape and location.

B. Training and test sets

The training and test data were each separated into 120

distinct percept classes, composed of the 6 hemi-cylinders

by 20 groups of similarly-positioned whisks (here over 5 mm

intervals, with 20 whisks each). We experimented with other

groupings, but found this choice a good tradeoff for giving

a large numbers of percepts with plenty of whisks in each

class. The tick-marks in Fig. 2A show the class delineations.

From the training data, the probability distributions over

the sensor values Pk(y|Cl) for each percept class Cl and

whisker k were estimated by averaging over all 20 whisks

in each class. This resulted in a total of 480 (4 whiskers and

120 classes) distinct probability distributions.

The test data was then used to construct sequences of

whisks to validate the Bayesian classifiers. A Monte Carlo

procedure was employed, in which percepts with known

shape and position were selected randomly from the test data

with a a data sequence drawn randomly from the 20 whisks

in that test percept class. Two methods of random sampling

were used: with replacement and without replacement, differ-

ing by whether whisks could be repeated in the test sequence.

In total, 2000 randomly generated whisk sequences were

constructed for each data point of the following results and

about 80000 sequences for each plot.

C. Interrogative perception

Interrogative perception is when a decision is forced after

a preset number of whisks (see Methods: Analysis). The

perceptual task is to identify which hemi-cylinder is being

sensed at what position using whisker deflection data over a

sequence of test whisks. The dependence on whisk number

was probed up to 20 whisks, corresponding to the number

of whisks in each percept class of the test data.

Examples of probabilities derived from whisk sequences

from two different test classes are shown in Fig. 3, which

plots the posteriors for each putative percept against the

whisk number. The probabilities begin at equality corre-

sponding to uniform priors and then evolve smoothly with

some rising gradually and others falling. In the first example

(Fig. 3A), the perceptual decision given by the largest

posterior remains the same after interrogating with 2 whisks

or more, while the second example (Fig. 3B) flips between

the two leading choices.

Decision errors after interrogating with 1 to 20 whisks

are shown in Fig. 4, giving accuracies for both shape

(hemi-cylinder diameter) and position. These errors decrease

strongly as more whisks are used, as expected by the greater

Fig. 4. Decision errors for interrogative perception. Mean classification
errors over all percept test classes are plotted against interrogation time
counted in whisks. Errors for shape classification are shown in panel (A)
and for head position in panel (B).

Fig. 5. Decision errors for free-response perception. Mean classification
errors over all percept test classes are plotted against probability threshold
to make a decision in panels (A,B) and mean reaction time in panels (C,D).
A distinction is made between forced choices (black lines) and unforced
choices (red lines) depending upon whether a null decision is permitted.

information received, reaching a steady minimum after about

15 whisks. The minimum error of 4 mm for shape (Fig. 4A)

is about half the width of a cylinder class and considerably

less than the 18 mm error expected at chance. The minimum

error of 0.2 mm for position (Fig. 4B), compared with a 5 mm

class width and 33 mm error at chance, indicates that position

can be determined with high accuracy irrespective of whether

errors occur for shape.

D. Free-response perception with forced choices

Free-response perception is when the decision is reported

after a number of whisks that depend on the sensory data.

Here we used a responsive condition that the decision was

made when at least one of the posterior probabilities reached

a preset threshold, corresponding to Bayesian sequential



analysis [7]. A forced-choice situation was considered first,

in which the decision maker kept sampling sensory data until

a decision was made. Accordingly, a Monte Carlo sampling

method with replacement was used to generate test whisk

sequences of arbitrary length (Results: Training and test sets).

Decision errors for perceived shape and position were

examined over a range of probability thresholds from 0.05 to

0.95 (Figs 5A,B; black curves). These errors decreased with

higher probability thresholds, reaching a steady minimum of

4 mm for shape and 2 mm for position above threshold of

about 0.5. The values values of these minimum errors were

similar to those for interrogative perception (cf. Fig. 4).

In accordance with the perception being freely responsive,

the number of whisks to reach a decision had a reaction time

distribution (Fig. 6A). Increasing the probability threshold

increased the mean reaction time (Fig. 6B; black curve)

and decreased the decision errors. Treating the probability

threshold as an implicit parameter gave a direct plot of

decision error against mean reaction time (Figs 5C,D; black

curves). The performance against mean whisk number was

similar to interrogative perception (Fig. 4). However, free-

response perception with forced choices has out-performed

interrogative perception [9] for other data without replace-

ment sampling, so the present results might improve if more

whisks were available to sample. Moreover, free-response

perception has other benefits over interrogative perception in

allowing the speed-accuracy tradeoff to be set directly.

E. Free-response perception with unforced choices

Another type of free-response perception is when the

decisions are unforced, in that a decision is not always made.

We modeled this situation by including a null decision if the

probability threshold was not reached before a deadline. In

accordance to each percept class of the test data containing

twenty whisks, we used a Monte Carlo sampling method

without replacement to give this number of whisks as a

natural deadline (Results: Training and test sets).

Unforced free-response perception behraved qualitatively

like forced perception, with the mean reaction time increas-

ing (Fig. 6B; red curve) and the shape and position error

decreasing (Figs 5A,B; red curve) as the probability threshold

was raised. This speed-accuracy tradeoff was determined

directly by treating the probability threshold as an implicit

parameter in a plot of decision error against mean reaction

time (Figs 5C,D; red curves). In addition, unforced percep-

tion also has a null decision rate, which increases with the

probability threshold because of the requirement of larger

posterior probabilities (Fig. 7).

Evidently, the principal improvement of unforced over

forced free-response perception is that the decisions both

become faster (Fig. 6B) and more accurate (Fig. 5). The

improvement in reaction speed is due to an effective dead-

line of 20 whisks being imposed on the tasks, while the

improvement in accuracy is from permitting null decisions if

a decision cannot be made by the deadline. It seems that null

decisions occur on data that is hard to discriminate, so error

rates improve when the probability threshold can be reached.

Fig. 6. Reaction times for free-response perception. Panel (A) shows
example reaction time histograms with probability threshold p = 0.3 (grey),
p = 0.6 (white) for unforced choices. Panel (B) plots the mean reaction
time against probability threshold for forced (black curve) and unforced
choices (red curve), corresponding to the histogram means from panel (A).

Fig. 7. Null decision rates against probability threshold. Results are shown
for unforced free-response perception (red plot).

Fig. 8. Test percepts resulting in null decisions. Black regions show
percepts with high null decision rates and white regions show low rates.
Results are plotted for a probability threshold of 0.6.

These improvements impart near-perfect decision making

for probability thresholds greater than 0.6 (corresponding to

mean reaction times of 12 whisks or greater and null decision

rates greater than 60%).

Examining where the robot head was placed for the test

percepts leading to null decisions (Fig. 8) shows that these

occur mainly at the extreme head placements. Most of

these positions correspond to when only one or two outside

whiskers were contacting the test object (Fig. 2). Such

placements would be expected to be relatively information

poor compared to the central positions where many whiskers

are in contact and most test percepts result in clear decisions.



IV. CONCLUSIONS

We have implemented a biologically-inspired scheme of

Bayesian perception in a biomimetic robot based on the

rodent whisker system. The physical design of the robot is

based on the biology of how rats actively palpate (whisk)

their long facial whiskers against objects of interest [8].

The sensory processing system in the robot is grounded in

proposals for perception from neuroscience using Bayesian

decision theory and sequential analysis [1], [2], [5], [6].

Using this system we compare and contrast two approaches

for perception from experimental psychology termed the in-

terrogation and free-response paradigms [6]. In free-response

perception, the agent reacts when it has received enough

sensory information to make a decision; meanwhile, in

interrogative perception, the decision is instead reported after

a preset number of whisks.

The free-response perception implemented in this robot

study used Bayes’ rule to calculate the posteriors after each

new whisk from priors given by the posteriors from the

previous whisk, and relied on normalizing these posteriors

with the marginals so they may be properly compared with

preset probability thresholds [9]. Meanwhile, interrogative

perception with uniform priors can be considered maximum

likelihood estimation because it is based on comparing

only the likelihoods across the entire data, and can be

framed without using Bayes rule. (Note that this interrogative

method is equivalent to the Naive Bayes method considered

previously for robot whisker systems [8], [13], [14].) We

also considered two types of free-response perception, de-

pending upon whether the choices are forced or unforced.

Forced choices necessitate that a decision be made, whereas

unforced choices permit a null decision, which was modeled

here by a deadline after which a null decision is reported.

We found that Bayesian perception provided a simple and

effective method of simultaneously classifying both object

shape and position. Results for both interrogative perception

and forced free-response perception achieved mean accura-

cies near 0.2 mm for object localization over a 100 mm range

and 4 mm for cylinder diameter over a 30-80 mm range,

for sufficiently large decision thresholds or whisk counts.

In previous work on texture perception with whiskers, we

have found forced free-response perception to achieve better

accuracies than interrogative perception [9]. However, the

present study found little difference in maximal accuracy

between these perceptual methods. The validation methods

used in the previous study are distinct from the present ones

though (see Sec. IIID), so another robot experiment with, say,

more whisk data may reveal differences. It should also be

appreciated that free-response perception has other benefits

over interrogative perception, such as allowing the speed-

accuracy tradeoff to be set directly and having the decision

speed depend on the ease of discriminating sensory data.

Another main result was that unforced free-response per-

ception resulted in considerable gains in both reaction speed

and accuracy compared with forced decisions, at the expense

of a null decision being reported on ambiguous data. Near-

perfect decision making was obtained for sufficiently high

decision thresholds and null decision rates greater than one-

half. In free-response perception, ambiguous sensory data

results in slower decisions, so avoiding decisions when

there is ambiguity leaves the more easily discriminable data,

resulting in lower error rates. We comment that humans and

animals commonly avoid making decisions when sensory

data is hard to discriminate, often because a more urgent

situation arises that commands their attention.

Just as for biological organisms, a robot could find some

situations urgent and need to make quick but possibly

inaccurate perceptual decisions, other situations less time-

critical but requiring greater accuracy, and some situations

too ambiguous to make a decision in reasonable time. The

potential to tune the desired tradeoff between reaction times,

error rates and null decisions is an advantage of Bayesian

perception that could be as crucial for robots as the resulting

behaviors are for humans and animals interacting with their

complex and ever-changing environments.
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