78 research outputs found

    On the sensitivity of Zero-tail DFT-spread-OFDM to small bandwidth allocations

    Get PDF

    Generalized DFT-s-OFDM Waveforms Without Cyclic Prefix

    Get PDF

    Performance analysis of interference measurement methods for link adaptation in 5G New Radio

    Get PDF
    5G New Radio (NR) is coming faster than expected with early deployments which take place early 2019. It is more than a new mobile generation that offers higher data rates compared to previous generations, although it’s still the main driver. It will enable many new use cases and deployment scenarios that can be put into three main categories: enhanced mobile broad band (eMBB), ultra-reliable low latency communications (URLLC) and massive machine type communications (mMTC). 5G NR aims to further increase frequency resources utilization and efficiency. Cell edge users usually suffer from high levels of interference known as inter-cell interference. This phenomenon results in lower performance for the cell edge users and inefficient utilization of radio resources. Link adaptation techniques aim to increase cell edge performance by exploiting varying channel conditions and interference level at user equipment (UE). In this thesis channel state information (CSI) is studied as an essential part of link adaptation process. Channel quality indicator (CQI) is the main component of CSI reports from UE that gives recommendations about the next transmission modulation order and code rate. The accuracy of reported CQI depends on the accuracy of channel and interference measurements. In this thesis two different interference measurement methods based on two reference signals are studied: CSI interference measurement (CSI-IM) and non-zero power CSI reference signal (NZP CSI-RS). In this thesis performance with different configurable factors, different channel models and UE speeds are considered. Overall system overhead is also studied to give recommendation about the configuration of lower system overhead. Simulation results has shown that CSI-IM based interference measurement is more efficient compared to NZP CSI-RS method and operates well in different channel scenarios and different UE speed. While NZP CS-RS shows sensitivity to frequency selective channels and in higher user mobility cases. On the other hand, from overall system overhead perspective, CSI-IM based configuration is the best solution

    D4.1 Draft air interface harmonization and user plane design

    Full text link
    The METIS-II project envisions the design of a new air interface in order to fulfil all the performance requirements of the envisioned 5G use cases including some extreme low latency use cases and ultra-reliable transmission, xMBB requiring additional capacity that is only available in very high frequencies, as well as mMTC with extremely densely distributed sensors and very long battery life requirements. Designing an adaptable and flexible 5G Air Interface (AI), which will tackle these use cases while offering native multi-service support, is one of the key tasks of METIS-II WP4. This deliverable will highlight the challenges of designing an AI required to operate in a wide range of spectrum bands and cell sizes, capable of addressing the diverse services with often diverging requirements, and propose a design and suitability assessment framework for 5G AI candidates.Aydin, O.; Gebert, J.; Belschner, J.; Bazzi, J.; Weitkemper, P.; Kilinc, C.; Leonardo Da Silva, I.... (2016). D4.1 Draft air interface harmonization and user plane design. https://doi.org/10.13140/RG.2.2.24542.0288

    Convergence of packet communications over the evolved mobile networks; signal processing and protocol performance

    Get PDF
    In this thesis, the convergence of packet communications over the evolved mobile networks is studied. The Long Term Evolution (LTE) process is dominating the Third Generation Partnership Project (3GPP) in order to bring technologies to the markets in the spirit of continuous innovation. The global markets of mobile information services are growing towards the Mobile Information Society. The thesis begins with the principles and theories of the multiple-access transmission schemes, transmitter receiver techniques and signal processing algorithms. Next, packet communications and Internet protocols are referred from the IETF standards with the characteristics of mobile communications in the focus. The mobile network architecture and protocols bind together the evolved packet system of Internet communications to the radio access network technologies. Specifics of the traffic models are shortly visited for their statistical meaning in the radio performance analysis. Radio resource management algorithms and protocols, also procedures, are covered addressing their relevance for the system performance. Throughout these Chapters, the commonalities and differentiators of the WCDMA, WCDMA/HSPA and LTE are covered. The main outcome of the thesis is the performance analysis of the LTE technology beginning from the early discoveries to the analysis of various system features and finally converging to an extensive system analysis campaign. The system performance is analysed with the characteristics of voice over the Internet and best effort traffic of the Internet. These traffic classes represent the majority of the mobile traffic in the converged packet networks, and yet they are simple enough for a fair and generic analysis of technologies. The thesis consists of publications and inventions created by the author that proposed several improvements to the 3G technologies towards the LTE. In the system analysis, the LTE showed by the factor of at least 2.5 to 3 times higher system measures compared to the WCDMA/HSPA reference. The WCDMA/HSPA networks are currently available with over 400 million subscribers and showing increasing growth, in the meanwhile the first LTE roll-outs are scheduled to begin in 2010. Sophisticated 3G LTE mobile devices are expected to appear fluently for all consumer segments in the following years

    Low-Complexity Multicarrier Waveform Processing Schemes fo Future Wireless Communications

    Get PDF
    Wireless communication systems deliver enormous variety of services and applications. Nowa- days, wireless communications play a key-role in many fields, such as industry, social life, education, and home automation. The growing demand for wireless services and applications has motivated the development of the next generation cellular radio access technology called fifth-generation new radio (5G-NR). The future networks are required to magnify the delivered user data rates to gigabits per second, reduce the communication latency below 1 ms, and en- able communications for massive number of simple devices. Those main features of the future networks come with new demands for the wireless communication systems, such as enhancing the efficiency of the radio spectrum use at below 6 GHz frequency bands, while supporting various services with quite different requirements for the waveform related key parameters. The current wireless systems lack the capabilities to handle those requirements. For exam- ple, the long-term evolution (LTE) employs the cyclic-prefix orthogonal frequency-division multiplexing (CP-OFDM) waveform, which has critical drawbacks in the 5G-NR context. The basic drawback of CP-OFDM waveform is the lack of spectral localization. Therefore, spectrally enhanced variants of CP-OFDM or other multicarrier waveforms with well localized spectrum should be considered. This thesis investigates spectrally enhanced CP-OFDM (E-OFDM) schemes to suppress the out-of-band (OOB) emissions, which are normally produced by CP-OFDM. Commonly, the weighted overlap-and-add (WOLA) scheme applies smooth time-domain window on the CP- OFDM waveform, providing spectrally enhanced subcarriers and reducing the OOB emissions with very low additional computational complexity. Nevertheless, the suppression perfor- mance of WOLA-OFDM is not sufficient near the active subband. Another technique is based on filtering the CP-OFDM waveform, which is referred to as F-OFDM. F-OFDM is able to provide well-localized spectrum, however, with significant increase in the computational com- plexity in the basic scheme with time-domain filters. Also filter-bank multicarrier (FBMC) waveforms are included in this study. FBMC has been widely studied as a potential post- OFDM scheme with nearly ideal subcarrier spectrum localization. However, this scheme has quite high computational complexity while being limited to uniformly distributed sub- bands. Anyway, filter-bank based waveform processing is one of the main topics of this work. Instead of traditional polyphase network (PPN) based uniform filter banks, the focus is on fast-convolution filter banks (FC-FBs), which utilize fast Fourier transform (FFT) domain processing to realize effectively filter-banks with high flexibility in terms of subcarrier bandwidths and center frequencies. FC-FBs are applied for both FBMC and F-OFDM waveform genera- tion and processing with greatly increased flexibility and significantly reduced computational complexity. This study proposes novel structures for FC-FB processing based on decomposition of the FC-FB structure consisting of forward and inverse discrete Fourier transforms (DFT and IDFT). The decomposition of multirate FC provides means of reducing the computational complexity in some important specific scenarios. A generic FC decomposition model is proposed and analyzed. This scheme is mathematically equivalent to the corresponding direct FC imple- mentation, with exactly the same performance. The benefits of the optimized decomposition structure appear mainly in communication scenarios with relatively narrow active transmis- sion band, resulting in significantly reduced computational complexity compared to the direct FC structure. The narrowband scenarios find their places in the recent 3GPP specification of cellular low- power wide-area (LPWA) access technology called narrowband internet-of-things (NB-IoT). NB-IoT aims at introducing the IoT to LTE and GSM frequency bands in coexistence with those technologies. NB-IoT uses CP-OFDM based waveforms with parameters compatible with the LTE. However, additional means are needed also for NB-IoT transmitters to improve the spec- trum localization. For NB-IoT user devices, it is important to consider ultra-low complexity solutions, and a look-up table (LUT) based approach is proposed to implement NB-IoT uplink transmitters with filtered waveforms. This approach provides completely multiplication-free digital baseband implementations and the addition rates are similar or smaller than in the basic NB-IoT waveform generation without the needed elements for spectrum enhancement. The basic idea includes storing full or partial waveforms for all possible data symbol combinations. Then the transmitted waveform is composed through summation of needed stored partial waveforms and trivial phase rotations. The LUT based scheme is developed with different vari- ants tackling practical implementations issues of NB-IoT device transmitters, considering also the effects of nonlinear power amplifier. Moreover, a completely multiplication and addition- free LUT variant is proposed and found to be feasible for very narrowband transmission, with up to 3 subcarriers. The finite-wordlength performance of LUT variants is evaluated through simulations

    Optimization criteria for joint communication and positioning networks

    Get PDF
    The current mobile system, namely 4G, has limitations in applications where low latency and high data rates are needed. In addition, new applications require a very precise user positioning, which 4G is not able to provide with high availability. In order to face these problems, a new mobile system is being developed, namely 5G. The 5G system is likely to be designed as a joint communication and positioning system. This thesis focuses on a couple of performance criteria in the context of 5G systems, namely the accuracy of the estimation of time-delay, which is directly proportional to the positioning accuracy, and the Quality of Service (QoS) of the communications, measured here in terms of the Bit Error Rates (BER). Our studies are based on three different waveforms proposed in the context of future 5G and mmWave frequencies (3-300GHz). The analysis is performed in two different scenarios, outdoor and indoor, and with different modulation orders. For each scenario, a channel model has been developed. The outdoor channel model is based on the channel model created for the 5G system in the European METIS project. For the indoor scenarios, the indoor maps of one multi-floor building in Tampere University of Technology are used. The results show that the modulation order has no influence on the positioning accuracy, but it is very important in the communication QoS. In addition, minor differences are observed from the selected three waveforms in terms of the joint positioning and communication performance, in such a way that there is no clear advantage in terms of positioning accuracy of one waveform over the other, among the three considered cases. The performance difference is better on the communication side, where a difference of 1dB between the waveforms is obtained to achieve the same BER value, the best being CP-OFDM

    Capacity, coding and interference cancellation in multiuser multicarrier wireless communications systems

    Get PDF
    Multicarrier modulation and multiuser systems have generated a great deal of research during the last decade. Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation generated with the inverse Discrete Fourier Transform, which has been adopted for standards in wireless and wire-line communications. Multiuser wireless systems using multicarrier modulation suffer from the effects of dispersive fading channels, which create multi-access, inter-symbol, and inter-carrier interference (MAI, ISI, ICI). Nevertheless, channel dispersion also provides diversity, which can be exploited and has the potential to increase robustness against fading. Multiuser multi-carrier systems can be implemented using Orthogonal Frequency Division Multiple Access (OFDMA), a flexible orthogonal multiplexing scheme that can implement time and frequency division multiplexing, and using multicarrier code division multiple access (MC-CDMA). Coding, interference cancellation, and resource sharing schemes to improve the performance of multiuser multicarrier systems on wireless channels were addressed in this dissertation. Performance of multiple access schemes applied to a downlink multiuser wireless system was studied from an information theory perspective and from a more practical perspective. For time, frequency, and code division, implemented using OFDMA and MC-CDMA, the system outage capacity region was calculated for a correlated fading channel. It was found that receiver complexity determines which scheme offers larger capacity regions, and that OFDMA results in a better compromise between complexity and performance than MC-CDMA. From the more practical perspective of bit error rate, the effects of channel coding and interleaving were investigated. Results in terms of coding bounds as well as simulation were obtained, showing that OFDMAbased orthogonal multiple access schemes are more sensitive to the effectiveness of the code to provide diversity than non-orthogonal, MC-CDMA-based schemes. While cellular multiuser schemes suffer mainly from MAI, OFDM-based broadcasting systems suffer from ICI, in particular when operating as a single frequency network (SFN). It was found that for SFN the performance of a conventional OFDM receiver rapidly degrades when transmitters have frequency synchronization errors. Several methods based on linear and decision-feedback ICI cancellation were proposed and evaluated, showing improved robustness against ICI. System function characterization of time-variant dispersive channels is important for understanding their effects on single carrier and multicarrier modulation. Using time-frequency duality it was shown that MC-CDMA and DS-CDMA are strictly dual on dispersive channels. This property was used to derive optimal matched filter structures, and to determine a criterion for the selection of spreading sequences for both DS and MC CDMA. The analysis of multiple antenna systems provided a unified framework for the study of DS-CDMA and MC-CDMA on time and frequency dispersive channels, which can also be used to compare their performance

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements
    corecore