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ABSTRACT 
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The current mobile system, namely 4G, has limitations in applications where 
low latency and high data rates are needed. In addition, new applications re-
quire a very precise user positioning, which 4G is not able to provide with high 
availability. In order to face these problems, a new mobile system is being de-
veloped, namely 5G. The 5G system is likely to be designed as a joint commu-
nication and positioning system. This thesis focuses on couple of performance 
criteria in the context of 5G systems, namely the accuracy of the estimation of 
time-delay, which is directly proportional to the positioning accuracy, and the 
Quality of Service (QoS) of the communications, measured here in terms of the 
Bit Error Rates (BER). Our studies are based on three different waveforms pro-
posed in the context of future 5G and mmWave frequencies (3-300GHz). The 
analysis is performed in two different scenarios, outdoor and indoor, and with 
different modulation orders. For each scenario, a channel model has been de-
veloped. The outdoor channel model is based on the channel model created for 
the 5G system in the European METIS project. For the indoor scenarios, the 
indoor maps of one multi-floor building in Tampere University of Technology are 
used. The results show that the modulation order has no influence on the posi-
tioning accuracy, but it is very important in the communication QoS. In addition, 
minor differences are observed from the selected three waveforms in terms of 
the joint positioning and communication performance, in such a way that there 
is no clear advantage in terms of positioning accuracy of one waveform over the 
other, among the three considered cases. The performance difference is higher 
at the communication side, where a difference of 1dB between the waveforms is 
obtained to achieve the same BER value, the best being CP-OFDM. 
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1. INTRODUCTION  

The mobile systems have been evolving since the first mobile generation was created in 

1980s. These systems have had a great impact in the evolution of the society, technolo-

gy, and in the last years, also in the business fields. In the first generation, only few 

people could afford to carry a mobile phone due to the high cost of the device and its 

unsuitable size. Nowadays, in the 4G era, the mobile phones are everywhere and are not 

used only for making voice calls, they are also used to access the Internet and the appli-

cations related with it. All these have led to an increase in the number of users and ap-

plications.  

The growth of the applications brought the term Internet of Things (IoT). This term in-

troduces the connection of different devices, which belong to different applications, to 

the network, i.e., not only humans will be connected to the network. Thus, a massive 

connection of devices has been foreseen, creating new network requirements to handle 

this fact and its consequences. These new requirements will be fulfilled with the new 

5G mobile wireless system [2], [4]-[8]. 

The IoT is not the only reason for developing a new mobile system. The introduction of 

other technologies, such as cloud computing [62], [63] and big data [64], [65] have had 

a big impact in the decision. These new technologies have created some requirements 

that the current network architectures are not able to fulfil, e.g. a need for higher compu-

ting power and mobile connectivity at high speed. Users will be also influenced by the 

new technologies, they will not only consume data; users will become also data produc-

ers. 

Among the new requirements, the localization or positioning of the devices is consid-

ered one of the key factors for the next mobile generation system [4], [6]. Until now, the 

positioning system has been an add-on feature to the standards, i.e., it has always been 

designed and optimized separately from the communication system. In the 5G mobile 

system, this will change: the communication and positioning systems will most likely be 

jointly designed and developed, giving support to the positioning natively [58], [59]. 

This is the topic that will be analyzed in this thesis. 

When positioning and communication systems are jointly developed, it must be consid-

ered that each one of the systems has its own requirements. For the communication sys-

tem, the optimization comes from the point of view of the data rate or capacity and the 

quality of service (QoS). However, in the positioning system, the timing accuracy is the 

key parameter of the optimization, which is directly related with the effective bandwidth 
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(i.e., the root mean square bandwidth or RMS BW) of the signal. In some cases, the 

RSM BW is low, and thus, the timing accuracy used for the positioning will be reduced. 

An Orthogonal Frequency Division Multiplexing (OFDM) system splits the carrier fre-

quency bands into many small frequencies, namely subcarriers, where the data is car-

ried. To improve a low RMS BW, and considering an OFDM system, the subcarriers 

can be used to achieve the desired timing accuracy. However, if a big number of data 

subcarriers is allocated to the positioning system, less data subcarriers will be available 

for the communication, worsening the characteristics of the communication. Thus, both 

positioning and communications are impaired features, i.e., the performance of one fea-

ture improves at the expenses of the other one. Consequently, in 5G, two impaired fea-

tures, positioning and communications, are wanted to be improved jointly.   

In this thesis work, different metrics, which are explained in chapter 3 and 4, will be 

measured. With the obtained results, a performance analysis will be done for the joint 

communication and the positioning systems. 

During this thesis, another issue has been considered, the one of finding out which 5G 

waveform is best suited for joint positioning and communication standards. Currently, 

there is no waveform defined for the 5G system due to the lack of the final standards. 

Different companies and entities are proposing different waveforms, such as: Wideband 

Cyclic-Prefix Circular Offset Quadrature Amplitude Modulation (WCP-COQAM), ze-

ro-tail - discrete Fourier transform -spread orthogonal frequency division multiple ac-

cess (ZT-DFT-s-OFDMA), and cyclic-prefix orthogonal frequency division multiple 

access (CP-OFDMA). 

In addition, with the introduction of the 5G system, new frequency bands have been 

proposed to be used, from 3 to 300GHz, namely millimeter wave (mmWave) band. As 

this kind of waves will provide a higher channel bandwidth, higher data rates will be 

achieved easily. In this project, this frequency band will be used to analyze the perfor-

mance of the waves at these frequencies. 

1.1 Objectives 

The main objectives of this thesis have been to implement, using Matlab, a 5G transmit-

ter-receiver system and the supporting channel models, which will be used to analyze 

the joint behavior of the communication and positioning systems. More detailed objec-

tives were as follows: 

• Understanding the need of developing a joint communication and positioning 

system, and identifying the needed performance metrics to analyze the system. 

• Building some channel simulators valid for outdoor and indoor scenarios and 

able to serve some of the future 5G signals. 
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• Defining certain target criteria in terms of positioning and communication and 

optimizing the signal parameters in such a way that the best tradeoff among the 

target criteria is achieved. 

• Investigating which of the currently proposed 5G waveforms (from various 

white papers and publications) are best suitable for both positioning and com-

munication purposes. 

• Computing the chosen performance metric of the communication and position-

ing systems jointly. 

• Analyzing the obtained results by comparing the performance obtained with dif-

ferent waveforms and with the theoretical results obtained from the literature 

and getting the conclusions.  

1.2 Author’s contribution 

In short, the main contributions of the thesis are the followings: 

• The author collected and summarized the information about the current mobile 

system and their characteristics, as well as the different existing positioning sys-

tems. 

• The author collected and analyzed the information about different 5G transmit-

ters and receivers, and their implementation in Matlab, based on the following 

three waveforms: WCP-COQAM, CP-OFDMA, and DFT-s-OFDMA.  

• The author implemented two channel models, one for outdoor scenarios and an-

other one for the indoor scenarios. The outdoor channel model was based on the 

Mobile and Wireless Communications Enablers for the Twenty-Twenty Infor-

mation Society (METIS) project [2]. The indoor channel model was based on a 

simplified path loss model included wall and floor losses in a 4-floor building of 

Tampere University of Technology. 

• The author simulated the bit error rates (BER) and the Cramer Rao Lower 

Bound (CRLB) time error variance in order to study the positioning and com-

munication performances, and also estimated the simulation-based positioning 

error. The positioning accuracy was analyzed at the link level, i.e., the distance 

estimation was implemented using one transmitter and one receiver and the es-

timated propagation time delay between the two only. 

1.3 Structure of the document 

This thesis is organized in 9 chapters as follows. In this first chapter, the introduction to 

the topic is done. It is explained also here the need for analyzing the joint communica-

tion and positioning systems simultaneously. In addition, the objectives of this thesis 

and the author’s contributions are explained.  

In chapter 2, the context of the field is explained, i.e., the evolution of the mobile com-

munication systems since it began in the 1980s. Here, all mobile systems will be ana-
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lyzed, including 5G and the future mobile systems (5G+). The analysis is done from 

two points of view, the communication and the positioning. 

Chapter 3 explains the main targets that the 5G communication system needs to fulfil to 

reach the defined requirements in [4], [6], and [8]. Not all of these targets are analyzed 

in this thesis due to lack of time. The targets that are used in the thesis work are more 

extensively used 

In chapter 4 the positioning and navigation requirements are explained for the 5G mo-

bile system.  

In chapter 5, the current literature about the joint communication and positioning sys-

tems is briefly explained. Also, the channel models that are used in the literature for 5G 

signals are overviewed. 

In the two following chapters, 6 and 7, the simulation environment is explained, i.e., the 

whole simulator, the waveform generator, the channel models, and the performed 

changes. The basic graphical user interface (GUI) created in Matlab is also explained. 

In chapter 8, the simulation parameters are explained and the obtained results are 

shown. This thesis ends by explaining the conclusions reached in this thesis work. The 

conclusions are shown in chapter 9, where some open issues and future work are also 

discussed. 
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2. EVOLUTION OF THE MOBILE SYSTEMS 

In this section, the background of the mobile communication system is briefly ex-

plained, from the first generation of mobile systems, namely 1G or Advance Mobile 

Phone System (AMPS), until the present one, known as 4G or Long Term Evolution 

(LTE). The explanation is not limited to the communication systems, but the positioning 

is also explained, in case it is supported by the discussed communication system. After 

the background analysis, the main characteristics of the upcoming 5G systems are ex-

plained and the future of the mobile systems is discussed.  

2.1 Evolution of the mobile communication systems 

In the 1980s, the first mobile communication system was implemented, namely 1G. The 

main technologies used were: the AMPS in North America, the Nordic Mobile Terminal 

(NMT) in the Nordic countries of Europe and Russia, and the Total Access Communi-

cation System (TACS) in UK. Although all these technologies were mainly designed for 

voice calls, it was possible to send text messages by connecting the mobile terminal 

(MT) to an external device with a keyboard.  

This first mobile system, 1G, was an analog system, a fact that affected to the QoS of 

the system. The presence of the noise during the transmission of the signal was a huge 

disadvantage. Thus, a new mobile wireless system was needed. 

In the 1990s, a new communication system was implemented, namely 2G or the Global 

System for Mobile communications (GSM). In this new system, new features and tech-

nologies were introduced, but the main difference with 1G was that the system became 

digital. The modulation used in GSM is mainly Gaussian minimum shift keying 

(GMSK), even if in Enhanced Data rates for GSM Evolution (EDGE) enhancement of 

GSM, also the 8PSK modulation could be used [68]. This digitalization allowed to 

transmit more information in the same signal bandwidth, increasing the data rates to a 

maximum value of 384kbps [67]. 

2G is the first mobile system supporting user positioning to some extent. It was an add-

on feature, i.e., it was developed separately from the communication system, and it was 

implemented after the 2G system. The accuracy obtained was of few hundred of meters 

[19], [21]. 

In the 2000s, together with the 2.5G and 2.75G systems, the 3G was introduced, also 

known as the Universal Mobile Telecommunication Service (UMTS). The 3G system 
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was implemented because a higher speed, higher capacity, and a good QoS were needed 

[17], [67]. 

The main features of 3G were the use of techniques based on spread spectrum, and the 

higher security. The spread spectrum techniques were used also in 2G, but 3G is mainly 

based on these techniques. 

The introduction of the spread spectrum techniques in 3G allowed the use of a wider 

frequency band, increasing the bandwidth to 5MHz, which made possible to reach peak 

data rates of 48Mbps. As described in [3], this was achieved with the evolved High-

Speed Packet Access (HSPA+), using the 64QAM modulation. HSPA is the evolution 

of UMTS, consisting in a collection of mobile protocols that improve the performance 

of the protocols of UMTS [67]. 

Regarding the positioning, in 3G there was not a specific waveform used solely for user 

positioning purposes. But the techniques used in 2G were improved, achieving a resolu-

tion of few tens of meters with the 3G system [19], [21]. 

Regardless of all the advantages obtained in the 3G systems, there were still some criti-

cal problems to be solved, such as the high-power consumption, low network coverage 

and high cost of the spectrum license. Adding these problems to an increased number of 

users, a new mobile wireless system was needed to provide a high quality, high capaci-

ty, and low cost services. For this purpose, an all-IP based system was build, namely the 

4G mobile system. 

The 4G system was implemented in 2011, replacing the spread spectrum techniques, 

acquired in the 3G system, by the Orthogonal Frequency-Division Modulation (OFDM) 

multi-carrier signals. This helped to achieve very high data rates despite the extensive 

multipath propagation. This kind of waveforms, which are based on efficient Fast Fou-

rier Transform (FFT) algorithm and frequency domain equalization, made possible to 

control the bandwidth of the spectrum in a flexible way. 

Regarding the positioning part, it is in the 4G when the system introduces, for the first 

time, specific waveforms for the user positioning, namely Positioning Reference Signals 

(PRS). PRS signals are used for Observed Time Difference of Arrival (OTDOA) User 

Plane Location Support (UPLS) and are transmitted with a periodicity of 160, 320, 640, 

or 1280ms [26]. At each transmission occasion, the position reference signals are sent in 

consecutive downlink subframes. More about OTDOA and PRS signals will be dis-

cussed later in this chapter. 

The 4G system has functional limitations, such as not being able to provide services 

requiring both real-time response and big data sizes. Thus, the high-quality video expe-

rience that can be provided is limited to a number of users simultaneously. This is an 

inconvenience, considering that videos with a resolution of 4K (4000 pixels) and 8K 
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(8000 pixels) ultra-high definition (UHD) and holograms are expected to become popu-

lar and accessible in the future [2]. 

The introduction of the term IoT also had a big consequence in the 4G system context. 

This means that a huge number of devices will be connected to the network. In fact, the 

connected devices are expected to grow exponentially [25]. All these are translated in a 

need of a higher data capacity, so a new mobile wireless system will be needed soon. 

The 5G mobile wireless system is expected to be implemented in the 2020s. Nowadays, 

there is no standard released, but there are many companies and entities working on the 

topic and many white papers have been published [4]-[7] . Despite the fact that there is 

no standard, the requirements to be fulfilled have been defined already. Some of the 

specific requirements for the 5G systems are shown below [6], [8]: 

• Ultra-high reliability: it should be less than one packet lost out of 100 million. 

• Ultra-low latency: it should be as low as 1ms. 

• Ultra-high data rates: it should be multi-Gbps. 

• Ultra-positioning: it should have an accuracy from 10m to less than 1m at 80% 

of occasions, and better than 1m for indoor deployments. 

To achieve these requirements, new techniques will be needed, such as massive multiple 

input-multiple output (MIMO), mmWaves, and machine-to-machine (M2M) connectivi-

ty. M2M will allow the communication between machines or devices without the need 

for the human interaction, this kind of applications is directly related to the IoT. 

Massive MIMO and mmWaves technologies1 have a number of favorable properties, 

and this is the reason for adopting them in the 5G system. For example, the use of carri-

er frequencies operating above 30GHz will allow to use larger bandwidths [9]. But still 

there are several challenges related to the mmWaves. The main problem is that, because 

of the higher carrier frequency, the propagation loss is relatively higher compared to 

other communication systems [11]. 

Having a relatively high frequency, means that the wavelength is relatively small, they 

are inversely proportional, 𝜆 =
𝑐

𝑓
. A small wavelength means that the system is more 

vulnerable to various interferences and it is easier to suffer blockage or shadowing, de-

grading severely the performance of the system [11]. Other effects such as rain attenua-

tion and atmospheric and molecular absorption are also relatively higher in the case of 

mmWaves [11]. 

The waveforms to be used in this system are not specified yet. There are some proposals 

as the ones that are used in this this thesis: wideband cyclic-prefix circular offset quad-

                                                 
1 mmWaves: millimeter-waves are electromagnetic waves that are located in the frequency spectrum 

between the 30 and 300GHz. In this frequency band, the available bandwidth is higher, up to 7GHz in 

some countries [11]. 
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rature amplitude modulation (WCP-COQAM) [12], [15], zero-tail discrete Fourier 

transform-spread orthogonal frequency division multiple access (ZT-DFT-s-OFDMA) 

[13], [14], [71] cyclic-prefix orthogonal frequency division multiple access (CP-

OFDMA) [15], [16], [71], filtered OFDM (F-OFDM) [69], windowing OFDM (W-

OFDM) [69], filter bank multicarrier (FBMC) [12], [15], [16], [69], universal filtered 

multicarrier (UFMC) [12], [72], filtered multitone (FMT) [70], Universal filtered 

OFDM (UF-OFDM) [12], [71], and generalized frequency domain multiplexing 

(GFDM) [73].  

In the future 5G system, the positioning will most likely not be an add-on feature, i.e., 

the communication and positioning systems will be implemented and developed at the 

same time. This is because the positioning has become one of the main features in some 

future applications. The main applications of the positioning in 5G are the autonomous 

cars, and for that, many different waveforms have been proposed in [16] for these spe-

cific applications.  

The next mobile wireless system to be implemented will be the 6G system. In this gen-

eration, the 5G mobile system will be integrated with the satellite network [17], [18]. 

The satellite network will be comprised by three satellite networks: telecommunication 

satellite network, Earth imaging satellite network, and navigation satellite network. The 

telecommunication satellite network allows the data, internet, video and voice broad-

casting. The second one, the Earth imaging satellite network, is the one that collects 

information about the weather and the environment. Finally, the last satellite network, is 

the one used for the global positioning, that is comprised by four systems: GPS (USA), 

Galileo (Europe), GLONASS (Russia), and COMPASS (China). 

Integrating all these four networks means that the satellite systems and the mobile sys-

tem will have to be interconnected. Therefore, the main problem to be solved in this 

generation will be the handover and the roaming [17], [18].  

Even if the 6G system will support local voice coverage and other services, in the 7G 

system, there will likely be a research on issues such as the use of mobile phone during 

moving conditions from one country to another [17]. In this situation, it has to be con-

sidered that the satellites are also moving in a constant speed and in a specific orbit. The 

research will also be oriented to the standards and protocols related to the satellite to 

satellite and mobile to satellite communications. So, in 7G the mobile and satellite net-

work will offer a global coverage and will define the satellite functions for mobile 

communications [18]. 

Once 7G is implemented, the data capacity, coverage, and handover problems will be 

most likely solved. However, a new issue will be present: the cost of the mobile phones, 

the calls, and the services. This is an issue that further (7G+) mobile communication 

systems will have to manage [17], [18]. 
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In Table 1, the comparison between the different generations of mobile systems is 

shown. Future mobile generations are taken into consideration. 

Cellular 

generation 
1G 2G-2.75G 3G-3.75G 4G-4.5G 5G 5G+ 

Added features 

respect to the 

previous 

generation 

- 
Digital modu-

lation 

Higher securi-

ty, spread 

spectrum 

OFDM modula-

tion, MIMO, 

smart antenna 

arrays 

mmWave, 

massive 

MIMO, M2M 

connectivity 

Interconnection 

between mo-

bile and satel-

lite networks 

Technology 
AMPS, 

TACS, NMT 

GSM, IS-95, 

GPRS, EDGE 

UMTS, HSPA, 

HSPA+, 

CDMA2000 

LTE To be defined To be defined 

Carrier Fre-

quency (GHz) 
0.15 and 0.8 

0.8, 0.9, and 

1.8 

0.85, 1.9, and 

2.1 

0.7, 0.8, 0.9, 1.8, 

and 2.6 
1-100 To be defined 

Bandwidth 

(MHz) 
0.03 0.2 5 1.4-20 

To be defined 

(hundreds) 
To be defined 

Modulation FM 

GSMK, 

8PSK (EDGE) 

BPSK, QPSK, 

16QAM, 

64QAM 

4QAM,16QAM, 

64QAM 
To be defined To be defined 

Multiple 

Access 
FDMA 

TDMA, 

CDMA 
WCDMA 

OFDM, 

SC-OFDMA 

To be defined To be defined 

TDD/FDD FDD FDD Both Both Both To be defined 

Data rates 2-14.4kbps 64-384kbps 2-48Mbps 1Gbps 10Gbps To be defined 

Latency (ms) - >150 100 50 1 To be defined 

Positioning 

supported? 
No 

Yes, add-on 

feature 

Yes, add-on 

feature 

Yes, add-on 

feature 

Yes, native 

support 

Yes, native 

support 

Positioning 

waveforms 
No No No Yes (PRS) 

Yes (to be 

defined) 

Yes (to be 

defined) 

Positioning 

accuracy 
- 

Few hundred 

meters 

Few tens of 

meters 
Few meters <1m To be defined 

Services Voice calls 

Digital voice, 

SMS, narrow-

band Internet 

Video confer-

encing, mobile 

TV, broadband 

Internet 

Real-time applica-

tions, ultra-

broadband Inter-

net 

4K-8K UHD 

video, tele-

surgery, au-

tonomous cars 

To be defined 

Table 1: Comparison between the different generations of mobile system 

2.2 Positioning methods in cellular networks 

The 2G mobile wireless system was the first cellular system introducing the user posi-

tioning as an add-on feature. Since then, many methods have been developed in order to 
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implement the user positioning, but the most important ones are shown in Table 2, with 

the approximate accuracy that can be reached in each method [19]-[21]: 

Technology Urban env. Rural env. 

CGI >100m <35km 

RSS >100m 30m 

CGI+TA >100m 550m 

UL-TOA 150m 50m 

U-TDOA 50m 80m 

IP-DL 

OTDOA 
>100m 20m 

E-OTD 200m 60m 

A-GPS 20-30m 3-10m 

5G (to come) <1m 1 m 

Table 2: Main cellular positioning technologies and their accuracy 

All these positioning systems are divided in two categories, network-based positioning 

systems and mobile station-based positioning systems. Among the network-based posi-

tioning systems, the following positioning methods can be found: Cell Global Identity 

(CGI), Received Signal Strength (RSS), Angle of Arrival (AOA), Timing Advance 

(TA), CGI+TA, Uplink Time of Arrival (UL-TOA), and Uplink Time Difference of 

Arrival (U-TDOA). The mobile station-based positioning systems are represented only 

by the Observed Time Difference of Arrival-Idle Period on the Downlink (OTDOA-

IPDL), Enhanced observed time difference (E-OTD), and Assisted GPS (A-GPS). 

2.2.1 Network-centric positioning system 

CGI is the most basic and imprecise method for positioning, but it can be very useful in 

case other methods fail [20], [21]. This method consists in obtaining the identification 

of the cell in order to locate geographically the mobile terminal (MT). 

Another method is implemented by the use of the received signal strength (RSS). When 

a signal is received, its strength can be used to estimate the location of a MT. Consider-

ing that theoretically the signal strength can be calculated as shown in (1) [22]: 

𝑅𝑆𝑆 = 𝑇𝑥 − (𝐿𝐿𝑆 + 𝐿𝑀𝑆 + 𝐿𝑆𝑆) [𝑑𝐵], (1) 

where 𝑇𝑥 is transmitted signal strength, 𝐿𝐿𝑆 is the attenuation due to large-scale propa-

gation effects (i.e., path loss), 𝐿𝑀𝑆 is the attenuation due to medium-scale propagation 

effects (e.g. shadowing), and 𝐿𝑆𝑆 is the attenuation caused by small-scale propagation 

effects (e.g. multipath). 

In RSS based positioning methods, it is considered that the strength of the signal de-

creases exponentially as the distance increases. However, there are many objects that 

can disturb the signal, and thus, the accuracy obtained with positioning methods based 

on RSS is very low. 
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Regarding the 𝐿𝐿𝑆 in (1), for outdoor environments, the path loss can be calculated for 

example using Hata’s model, which is developed for macrocells on the experimental 

results of Okumura [23]. It can also be calculated using the free space loss formula 

shown in (2). 

𝐹𝑆𝐿 = 20 log10 (
4𝜋𝑑

𝜆
), (2) 

 

where λ is the wavelength of the carrier frequency and 𝑑 is the distance between trans-

mitter and receiver. 

The losses caused by medium-scale propagation, i.e., shadowing, are calculated using 

Gaussian statistics [22]. Finally, the losses caused by small-scale propagation, i.e., mul-

tipath, can be modelled using the Rayleigh distribution [22]. 

Another common positioning method is the Angle of Arrival (AOA). This helps to im-

prove the positioning obtained by locating the receiver within a section of the entire 

cell. This section will be delimited by the estimation of the received signal’s direction, 

and thus, directional antennas are needed for a high accuracy. To estimate the user posi-

tion, at least two base stations or access nodes are needed with directional antenna or 

antenna arrays [20], [21], [24]. In AOA, the intersection of 2 lines of direction defines 

the position where the MT is supposed to be located. The method is illustrated in the 

figure below: 

 
Figure 1: AOA method 

The Timing Advance (TA) is another positioning method based on the propagation de-

lay compensation [20]. This technology is based on the Time Division Multiple Access 

(TDMA) characteristic, where different time slots are assigned to different users. To 

arrive at the correct time, the MT must send the data earlier, and this amount of time is 

calculated by the base station (BS) and communicated to the MT. The TA is directly 
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related to the distance between the MT and the BS. If TA is combined with CGI 

(CGI+TA), the position of the MT will be confined to an arc of a circle with a resolu-

tion of 550m. 

The Uplink-Time of Arrival (UL-TOA) is a better or more accurate positioning method. 

To be implemented, at least four BSs need to be close to the MT [20], [21]. The time of 

arrival measurement method is shown in Figure 2. 

 

Figure 2: Time of Arrival method 

In the Time of Arrival (TOA) technique, the measured signal propagation delay is used 

in order to calculate the distance between BS and MT. 

TOA assumes the LOS propagation, drawing a circumference at the calculated distance, 

as shown in Figure 2. If two BSs are used to estimate the position in two dimensions, 

two circumferences would be calculated, and the intersection of two circumferences 

would give generally two points, so there is ambiguity in the user position. Thus, at 

least 3 BSs are needed to estimate the user position in 2D, and at least 4 for 3D position-

ing. To implement this method, the positions of the BSs must be known also [20], [21]. 

For positioning the expression in (3) is used per each received signal. 

𝑑𝑖 = 𝑐 · (𝑇𝑖 − 𝑇0) + 𝜀𝑏 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2 + 𝜀𝑏, (3) 

where 𝑑𝑖 is the distance between the transmitter and the i –th receiver, and 𝑐 is the speed 

of light. The transmission and reception time are given by 𝑇0 and 𝑇𝑖, respectively, and 

they are needed to estimate the propagation delay. The position of the i –th BS is given 

by (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), and the unknown position of the MT by (𝑥, 𝑦, 𝑧). It is possible to calcu-

late the position of the MT in two dimensions by removing from (3) the term (𝑧 − 𝑧𝑖)
2. 

When using the expression above, there is a distance error introduced by the clock bias, 

i.e., there is a time difference between the transmitter and the receivers. This distance 

error represented with the term 𝜀𝑏. 
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During this thesis, the distance estimation between a BS and the mobile station will be 

calculated based on TOA measurements. The estimated propagation delay will be calcu-

lated with the autocorrelation and the delay obtained in samples will be translated into 

the distance estimation. More about this will be explained in the chapter 6. 

Another network-based positioning method is the Uplink-Time Difference of Arrival 

(U-TDOA). The principle is the same as with UL-TOA, but instead of using the propa-

gation delay, it uses the propagation delay differences. These propagation delay differ-

ences are translated in distance differences, and the distance differences will define sev-

eral hyperbolas. The intersection of different hyperbolas will give the position of the 

MT. 

The distance difference between two BSs is given by the expression below: 

𝛥𝑑𝑖,𝑗 = 𝑑𝑖 − 𝑑𝑗 = 𝑐 · (𝑇𝑖 − 𝑇0) − 𝑐 · (𝑇𝑗 − 𝑇0) = 𝑐 · (𝑇𝑖 − 𝑇𝑗) = 𝑐 · 𝛥𝑇𝑖,𝑗, (4) 

where 𝛥𝑇𝑖,𝑗 is the propagation delay difference. The advantage of this method is that 

there is no need to use the time of the BS (𝑇0) [19]. 

2.2.2 Device-centric positioning systems 

Regarding to the device-centric positioning, there are three main methods: Idle Period 

Downlink- Observed Time Difference of Arrival (IPDL-OTDOA), Enhanced Observed 

Time Difference (E-OTD), and Assisted-Global Positioning System (A-GPS). The first 

one is very similar to U-TDOA, but it works in the other way round, i.e., it is a down-

link technique, where the positioning is computed at the MT side, based on the observed 

time differences. In this case, the synchronization bursts are used for estimating the po-

sition of the MT [22]. 

The Assisted Global Positioning System (A-GPS) is the most accurate method used for 

user positioning in cellular systems, according to [21], [22]. This method uses at least 4 

satellites. A-GPS uses the mobile network to send corrections to the MT regarding 

ephemeris, ionospheric delays, tropospheric delays, etc. [20]-[22]. The network tells the 

MT which satellites are in view, by providing their approximate positions and clock 

times. With this information, the MT can start to calculate the position immediately (the 

acquisition search space becomes lower than for non-assisted case). This way, the per-

formance and power consumption are greatly improved [22]. 

In the 4G system, the Observed Time Difference of Arrival (OTDOA) method was im-

plemented with the help of the PRS signals to calculate the user positioning, another 

device-centric positioning method. In OTDOA, the Reference Signal Time Difference 

(RSTD) measurement is calculated. The RSTD defines the relative timing difference 
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between two cells, the reference cell and a measured one [26], and the expression is 

given in (5). 

𝑅𝑆𝑇𝐷𝑖,1 =
√(𝑥𝑡 − 𝑥𝑖)2 + (𝑦𝑡 − 𝑦𝑖)2

𝑐
−

√(𝑥𝑡 − 𝑥1)2 + (𝑦𝑡 − 𝑦1)2

𝑐
+ (𝑇𝑖 − 𝑇1)

+ (𝑛𝑖 − 𝑛1), 
(5) 

where (𝑇𝑖 − 𝑇1) is the transmit time offset between the two BSs, and 𝑛𝑖 and 𝑛1are the 

TOA measurement errors between the MT and the two BSs. 

To implement OTDOA for 2D positioning, at least two neighbor cells measurement are 

needed, which gives two equations with two unknowns (𝑥𝑡, 𝑦𝑡). For this method, it is 

assumed that the coordinates of the BSs (𝑥𝑖, 𝑦𝑖) and the transmit time offsets (𝑇𝑗 − 𝑇𝑖) 

are already known. In a synchronized network, the term (𝑇𝑖 − 𝑇1) of the equation above 

should be zero, defining this way the TDOA positioning method. The distance accuracy 

achieved is of the order of ten meters, according to [26] where they showed an achieva-

ble OTDOA error of 9.8m. 

OTDOA can be implemented with any downlink signal, e.g., synchronization signals, 

but it suffers from poor hearability [26]. To solve the problem, PRS signals have been 

introduced in 4G, allowing proper timing measurements, and thus, improving the posi-

tioning performance of OTDOA. PRS signals are pseudo-random QPSK sequences 

[26]. OTDOA is also used in 3G networks. In there, the hearability problem is solved 

via an Idle Period Down-Link (IP-DL) transmission [21].  

  



26 

3. COMMUNICATION TARGETS 

In this chapter, the typical communication targets for a good performance of the 5G 

communication system will be overviewed. Once the targets are defined, the mathemat-

ical definition or measurement method will be discussed regarding how such target per-

formance criteria are computed. During this chapter, five applications that will likely be 

implemented in the 5G system will be explained and connected to the communication 

targets. 

3.1 Key performance indicators for communication targets 

The communication targets are quite difficult to define in a comprehensive manner, 

because for each type of applications, different targets are considered. Thus, accom-

plishing this task is not easy, because future applications need to be also considered 

when targets are defined. To increase even more the difficulty of this task, the Internet 

of Things (IoT) communications will be supported in the 5G system, which means that 

a massive connection of devices is expected [25]. These devices will need to fulfil dif-

ferent targets, which will depend on their working purpose, i.e., in what they are being 

used. All these new types of applications must also be taken into consideration when 

defining the communication targets. 

To simplify the definition of those targets, each company and/or entity have made a 

classification of the different services. Some examples of this classification are shown 

below: 

• 5G HyperService Cube: is the classification made by Huawei in [5]. In this 

classification, the services are located inside a cube where each axis represents 

the throughput, the number of links, and the delay of the service needed for each 

application or service, respectively.  

• Service and technical challenges: are the two classifications made by 5G Fo-

rum in [4]. The different applications and services are grouped inside general 

services, which are: Mobile Contents Streaming Services, Social Knowledge 

Sharing Services, High-Density User Services, Smart Transportation & Robots 

Services, Public Safety Services and 5G Extension Services for Avionic, Mari-

time and Space Communications. After this classification, the general services 

are linked to at least one of the following technical challenges: hyper-

transmission, hyper-connectivity, hyper-mobility, hyper-response, hyper-

positioning, hyper-reliability, hyper-energy saving, and hyper-cost effectiveness. 

• Scenarios with extreme use cases: is the classification made by METIS [27]. In 

this classification, METIS defines the challenges to be solved in applications 
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with extreme needs, and this way, it defines also the goals of the 5G system. The 

scenarios are the following ones: amazingly fast, great service in a crowd, ubiq-

uitous things communicating, best experience follows you, and super real-time 

and reliable connections. 

When a service or application is going to be evaluated, the success of the service or ap-

plication is analyzed, i.e., the performance is measured. To realize these measurements, 

some key performance indicators (KPIs) are defined.  

In this thesis, the performance of the 5G system is going to be analyzed for 3 different 

waveforms, and from the point of view of the communication and the positioning sys-

tem. So, regarding to the communication targets, the KPIs that are defined for the 5G 

system [27] are shown in Table 3. 

KPIs Measurement parameters 

Traffic volume density Data volume per area unit 

Experienced end-user 

throughput 

Data throughput 

Data rate 

Latency 
One-way Trip Time(OTT) latency 

Round Trip Time (RTT) latency 

Reliability 

BER 

SER 

PER 

SNR 

SINR 

Outage probability 

Availability and 

retainability 

Availability 

Retainability 

Energy efficiency 

Spectrum efficiency 

Energy efficiency 

Energy per information bit 

Power per area unit 

Table 3: KPIs defined for the 5G system 

The first KPI is the traffic volume density. This KPI describes the total data volume 

transferred to/from the user equipment during a predefined time period in a given area. 

The area will be defined by the area covered by the radio nodes, that will belong to the 

Radio Access Network (RAN) [27].  

It has been stated in [27] that the 5G system will have to support 1000 times higher traf-

fic volume density compared to today’s network. This increase has been defined con-

sidering the expected growth of mobile traffic volume [27]. 

There is not a mathematical way of defining the traffic volume density, but it can be 

computed in an empirical way. The computation is done by summing the traffic vol-

umes that has been produced by a user equipment, and then dividing it by the overall 

service area. This traffic volume will strongly depend on the environment and user den-

sity, and on the day time.  
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The second KPI, namely the experienced end-user throughput, is the data throughput a 

user achieves in the MAC layer averaged during a predefined time period. The data 

considered for the throughput calculation is the one belonging to the user plane only. 

This KPI can be used to measure the quality of experience (QoE) level of the user for a 

certain service. The experienced throughput depends on the number of users and the 

amount of data they generate. The main goal is to increase the data rate from 10 to 100 

times [27]. 

For a mathematical definition, let’s consider that the user 𝑖 have the packet 𝑘, which is 

𝐿𝑖,𝑘 bits long. If the end-to-end delay is 𝑇𝑖,𝑘, the throughput for this packet is defined as 

follows: 𝑅𝑖,𝑘 =  𝐿𝑖,𝑘/𝑇𝑖,𝑘. Thus, the expected packet throughput is calculated with the 

expression shown in (6). 

𝑇ℎ𝑖 = 𝐸𝑘[𝑅𝑖,𝑘] = 𝐸[
𝐿𝑖,𝑘

𝑇𝑖,𝑘
], (6) 

where the expectation is taken over a time period specific to the application.  

In MIMO, and thus, beamforming environments, the achievable data rate can be meas-

ured as a metric for the end-user throughput. For that the expression in (7) is used. 

𝑅 = 𝐸[𝑊𝑑𝑎𝑡𝑎 log2(1 + 𝟙𝑎𝑙𝑖𝑔𝑛 · 𝑆𝑁𝑅𝑑𝑎𝑡𝑎)], (7) 

where, 𝑊𝑑𝑎𝑡𝑎 is the total available bandwidth, 𝟙𝑎𝑙𝑖𝑔𝑛 is the indicator function of beam 

alignment, and 𝑆𝑁𝑅𝑑𝑎𝑡𝑎 is the Signal-to-Noise ratio (more about this expression in 

[75]). 

Regarding to the latency, two different types are defined, the end-to-end (E2E) latency, 

or one-trip time (OTT) latency, and the round-trip time (RTT) latency. The OTT latency 

refers to the time a data packet needs to cross the network. This measurement considers 

the transmission time of the packet and the reception time. This measurement is 

achieved in the link layer, the delays added by the MAC layers are not considered [27]. 

The RTT latency, unlike the OTT latency, measures the time that a packet need to reach 

to its destiny and the time that is needed to receive the acknowledgment of the transmit-

ted packet. This measurement, alike the OTT latency, is also achieved in the MAC lay-

er, without considering the higher layers [27]. 

The goal to reach with the 5G technology is to provide a 5 times reduced OTT latency 

compared to the latency obtained in 4G. When the latency is measured, it must be con-

sidered that the entire network has effect in the latency. 

To define the latency mathematically, as it is done in [27], two peers, which can be a BS 

and a MT, two BSs, or even two MTs, are considered, peer 1 and peer 2. The transmis-

sion of the data packet will start in the instant 𝑇𝑆1 from the peer 1, and will be received 
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at the instant 𝑇𝐴2 in the peer 2. With this information, the OTT latency can be calculated 

by using the expression (8). 

𝑇𝑂𝑇𝑇 =  𝑇𝐴2 − 𝑇𝑆1. (8) 

After the data packet is received in the peer 2, the acknowledgement packet will be sent 

back to the peer 1. Considering that the acknowledgement packet is received in the peer 

1 at the instant 𝑇𝐴1, the RTT latency can be calculated with the expression in (9). 

𝑇𝑅𝑇𝑇 =  𝑇𝐴1 − 𝑇𝑆1. (9) 

The reliability is used to describe the quality of a radio link connection from the service 

point of view, i.e., describes the QoS of the radio link. There are many different metrics 

that help to analyze the QoS of a service at the PHY/MAC layer, such as signal to inter-

ference plus noise ratio (SINR), bit error rate (BER), symbol error rate (SER), packet 

error rate (PER), and outage probability.  

The SINR gives the ratio between the power of the received signal and the sum of the 

interfering signal and the background noise powers. This metric will measure how much 

signal you have relative to your noise and interfering signals. This metric is usually ex-

pressed in dB. The SINR is calculated with the expression below [28]: 

𝑆𝐼𝑁𝑅 =  
𝑃𝑅𝑋

𝑃𝐴𝑊𝐺𝑁+∑ 𝑃𝑖𝑖
, (10) 

where 𝑃𝑅𝑋is the power of the received signal, 𝑃𝐴𝑊𝐺𝑁 is the power of the additive white 

Gaussian noise, and 𝑃𝑖 is the power of the 𝑖-th interfering signal. In this thesis, the inter-

ferences have not been considered; only the additive white Gaussian noise has been 

considered; more about this is given in chapter 6.  

The bit error rate (BER), which is another possible performance criterion, compares the 

bits obtained from the received signal with those that are transmitted. Some of the bits 

obtained in the receiver may be different from the transmitted bits, which are considered 

errors. These errors can be caused by different effects, such as the channel noise, inter-

ferences, distortion, attenuation, wireless multipath fading, and bit synchronization 

problems. In this project, different SNR values have been selected to analyze the evolu-

tion of the BER in function of the SNR. More about this is shown in chapter 6. 

Considering that interferences and channel noise affect the SNR and SINR, there is a 

relation between these three metrics. The noise power affects both SINR and SNR, by 

decreasing them, and thus, by increasing the probability of having mismatches between 

the transmitted and received bits.  

The Symbol Error Rate (SER) and the Packet Error Rate (PER) are similar to the BER. 

The difference in the SER is that the ratio gives the number of symbols that are received 
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with error. The PER, however, gives the ratio of packets that have been receiver with 

error. The BER, SER, and PER are carried out within a predetermined time period. 

The outage probability defines the amount of time in which the service condition is be-

low to a defined system operational threshold, i.e., the given service performance is 

below an acceptable performance level [27]. 

The service availability describes the percentage of places within a coverage area where 

the service is provided to the end user with the requested Quality of Experience (QoE) 

level. It can also be described as the percentage of communication links that can fulfil 

the QoE requirements within a geographical area.  

The retainability, which is a special aspect of the availability, analyses if a service has 

been made available whenever the user needs it. 

Within the IoT systems, there is going to be a massive deployment of sensors, that will 

work with batteries, so energy efficiency is a KPI that must be considered. Reducing the 

energy consumption of the BSs is also an important consideration of the energy effi-

ciency [29]. 

The energy efficiency is defined as the aggregate bit rate that is achievable over 1Hz 

nominal bandwidth while consuming a given power. The mathematical expression for 

the energy efficiency is given in [30]: 

𝐸𝑒𝑓𝑓 =
𝑁𝑆𝐸

𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 1𝑘𝑚2
 (11) 

where 𝑁𝑆𝐸 is the network spectrum efficiency. 

The network spectrum efficiency is the network-level spectrum efficiency measure, 

which depends on the spatial reuse within an area. The mathematical expression for this 

is also given in [30]: 

𝑁𝑆𝐸 [
𝑘𝑏

𝑠
/

𝐻𝑧

𝑘𝑚2
] = (𝑐𝑒𝑙𝑙 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) · (𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑣𝑒𝑟 1𝑘𝑚2) 

(12) 

where the cell spectrum efficiency can be calculated by the use of the Shannon capacity 

bound. 

Another way of measuring the energy efficiency is by using the energy per information 

bit and the power per area unit [28]. The energy per information bit is widely accepted 

for urban environment, and the mathematical expression is shown below: 

𝜆𝐼 = 𝐸/𝐼 = 𝑃/𝑅 in [J/bit] or [W/bps], ( 13) 
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where 𝐸 is the consumed energy in a given observation time period 𝑇, 𝑃 is the con-

sumed power, 𝐼 is the information volume, and 𝑅, the information rate.  All the parame-

ters used in the expression above are measured at the MAC layer. 

The power per area unit, is typically applicable in suburban or rural environments, and 

the expression is shown below: 

𝜆𝐴 = 𝑃/𝐴 in [W/m2], ( 14) 

where 𝑃 is the power consumed, and 𝐴 is the covered area. 

3.2 Application examples 

With the introduction of the 5G system, new applications will be introduced. In this 

section, five of them will be briefly explained and they will be linked to few of the 

communication targets mentioned above. The communication targets that will be used 

in this thesis are: BER, data rate, latency, and the energy efficiency. The positioning 

targets will be described in Chapter 4. 

Regarding to the 5G applications, five applications are selected for the discussion here: 

i) autonomous cars, ii) flying drones, iii) remote surgery, iv) wearable sensors, and v) 

public safety services. In Figure 3, the relation between the applications and the targets 

is shown according to the Author’s view. A low level means that a certain performance 

criterion is not very important for that particular application, while a high level means 

that such a performance criterion is very important in the context of the target applica-

tion. As it can be seen in Figure 3, different applications have different requirements. 

For example, low latency is crucial is public safety applications, while positioning accu-

racy is highly needed for autonomous cars, or remote surgery. 

 
Figure 3: 5G application examples and their communication targets 
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The flying drones are used in many applications, such as packet delivery and video re-

cording in festivals and concerts. The positioning of the drone need to be accurate in 

case a packet need to be delivered, and also it is important when a video is being rec-

orded, thus we estimated a positioning need on level 4 (out of 5) for the drones applica-

tions. The communication exchange between the drone and the controller is huge, ex-

plicitly when a video is being recorded. Thus, the data rate should be high. The most 

important metric in a drone is the energy efficiency, the more energy efficient, the long-

er will be the battery duration. 

The autonomous cars are another of the current and most interesting applications for the 

5G system. These are cars that do not need the interaction with the driver to reach a pre-

defined location. Autonomous cars are equipped with a variety of sensors that will be 

used to avoid collisions between cars or between cars and the environment, so they will 

need to read the surrounding environment at every moment. The position of the car is a 

key factor for the collision avoidance system, which will use the position of the auton-

omous vehicle and the information provided by the surrounding vehicles. The infor-

mation provided will contain the position of the vehicles. In this kind of application, the 

data exchange is not high, so there is no need for a high data rate, but the low latency is 

a key factor.  

The wearable devices are small chips that will be used for example while doing sport to 

monitor the heart rate. This kind of devices do not send too much information, so the 

required data rate is low, but latency and the energy efficiency are key factor for this 

kind of devices. Continuing with the heart rate example, the better the latency, the faster 

will be updated the information about the heart rate that is being monitored. In addition, 

the better the energy efficiency, the longer will last the battery of the device. 

The remote surgery is a critical operation. With this application, the doctor will not need 

to be present in the surgery room to perform the surgery. It could be done remotely, 

with a robot in the surgery room that repeats the exact and precise movement that the 

doctor does. For this application, the positioning, data rate and latency are key factors, 

but also the BER is important if a lot of signaling or controlling data is to be exchanged. 

The minimum or a small error could trigger a fatal medical negligence. 

Finally, it is necessary to have a good positioning information of the emergency calls, 

so the positioning and the latency are critical factors in the good performance of these 

services. Positioning targets are discussed in the chapter 4. 
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4. NAVIGATION AND POSITIONING TARGETS 

In chapter 3, different KPIs were introduced for the communication targets. In this 

chapter, the KPIs for the navigation and positioning targets will be explained. Similar to 

the communication system, there are some error sources that affect the performance of 

the positioning. In this chapter, also the error sources in positioning will be briefly ex-

plained. 

To analyze the QoS for the positioning, there are several performance indicators that 

must be considered. The main KPIs are the positioning accuracy and response time 

[32]-[34]. There are also other KPIs that should also be analyzed, such as reliability, 

availability, and the energy efficiency in the context of the positioning engine [34]. 

4.1 Accuracy 

The positioning accuracy defines how close the estimated user or terminal location is to 

the real location of the MT. The closer the measured location to the real one, the more 

accurate is the measurement [34].  To evaluate the accuracy, the square root-mean-

square error (RMSE) is measured, which can be calculated with the expression below 

[34], [35], [42]: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ ([�̂�𝑘 − 𝑥]2 + [�̂�𝑘 − 𝑦]2 + [�̂�𝑘 − 𝑧]2𝑁

𝑘=1 ) (15) 

where N is the number of measurements and 𝑘 is the measurement index. The RMSE 

measurement depend on the real position of the device, (𝑥, 𝑦, 𝑧) and in the estimated, or 

measured, position, (�̂�𝑘, �̂�𝑘, �̂�𝑘). 

The accuracy, can be measured in horizontally or vertically, namely two-dimensional 

(2D) and three-dimensional (3D) accuracy, respectively [31], [34], [36]. The horizontal 

accuracy is mainly used in mobile positioning, where the altitude is sometimes ignored 

[51], [76] . The vertical accuracy refers to the height of the MT.  

The error probability of the distance error can also be used to set limits for the maxi-

mum accuracy error that is allowed. In the 2D cases, the circular error probability 

(CERP) is used [34], and for the 3D cases, the spherical error probability (SERP) is 

used [34]. For the 5G system, it has been stated that for the 80% of the time, the outdoor 

accuracy must be from 10m to less than 1m, and that for indoor scenarios, the accuracy 

must be below 1m [6].  
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In this project, the range estimation is achieved based on the signal propagation delay 

between a transmitter and a receiver. This estimation accuracy can be modeled also by 

using a Cramér-Rao lower bound (CRLB), which gives the achievable variance of any 

unbiased estimator [37]. For distance estimation in this thesis, the CRLB will be defined 

with the expression below [37]: 

𝜎𝐶𝑅𝐿𝐵
2 =

𝑐2

8𝜋2𝛽2 𝐸𝑠

𝑁0

 
(16) 

where 𝑐 is the speed of light, 𝛽 is the equivalent signal bandwidth and  
𝐸𝑠

𝑁0
 is the SNR. 

The equivalent signal bandwidth is calculated using the following expression [37]: 

𝛽2 =
∫ 𝑓2|𝑆(𝑓)|2𝑑𝑓

∫|𝑆(𝑓)|2𝑑𝑓
 

(17) 

where |𝑆(𝑓)|2 is the power spectral density function (PDF) of the transmitted signal. As 

proposed in [39], the two-dimensional or horizontal accuracy can be estimated using the 

CRLB for the estimated distance in the x axis and in the y axis. This method is proposed 

for DOA measurements and is given in the expression (18). 

𝑅𝑀𝑆𝐸 ≥ √𝐶𝑅𝐿𝐵𝑥 + 𝐶𝑅𝐿𝐵𝑦 =
𝑑 · 𝜎𝜑

√2
 (18) 

where 𝑑 is the inter-site distance between two access nodes and 𝜎𝜑 is the standard devi-

ation of the DOA estimation error.  

In many occasions, the lower bound that is estimated with the CRLB cannot be directly 

calculated with the given expressions (16) because there are many unknown parameters, 

e.g. in multipath environments, or when many transmitters are used. To overcome with 

this problem, the Fisher information matrix (FIM) can be used, as for example in [38], 

[40], and [41]. In addition, in [40] the CRLB expressions can be found for DOA, RSS 

and hybrid DOA-RSS positioning estimation. 

4.2 Response time or latency 

The response time, also named latency, is another of the parameters that measure the 

QoS of the navigation or positioning system. The latency, in the positioning context, 

defines the time since the position is requested, until the response is received with the 

estimated position [33]. The requirement of small latency will depend on the application 

type. There are many applications that need the location at the same instant it has been 

requested (real-time positioning). Such applications are also referred to as the “no de-

lay” applications [36]. In the “no delay” applications, either initial or last known loca-
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tion of the MT is provided. If there is no available positioning estimation, an error mes-

sage will be delivered and the procedures to obtain a position estimation will start, i.e., 

the positioning engine will restart.  

If the application can support a low-level delay, when the position is requested, the es-

timation will be calculated and sent back as soon as possible. In such applications, 

where a certain positioning delay can be tolerated, the positioning accuracy require-

ments may not be fulfilled due to the fast calculations [36].  

Finally, there are some applications that can tolerate high delay. For these applications, 

the MT will receive the requested information always with the accuracy requirements 

fulfilled [36]. 

The latency can also be defined as the time needed since the power-up of the MT is 

achieved, until the first location measurement is obtained [34]. 

4.3 Availability and reliability 

The availability defines the percentage of the total coverage area in which the required 

accuracy is achieved [77]. The factors that affect to availability of the positioning sys-

tem are many and have different effects, such as: the cell coverage, the geometry of the 

BS, and the signal propagation environment [34]. The availability can be measured with 

the expression shown in (19), which is provided by the authors in [77]. 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑛𝑢𝑚

𝑡𝑜𝑡𝑎𝑙
 𝑥 100%, (19) 

where 𝑛𝑢𝑚 is the number of measurement points where the obtained positioning accu-

racy fulfils the required accuracy, and 𝑡𝑜𝑡𝑎𝑙 is the number of total positioning points. 

The reliability reflects the ability of resisting huge measurement errors, and thus, the 

reliability gives the ratio of successful positioning attempts out of all attempts that have 

been made [34]. The positioning should be extremely reliable, and even more in emer-

gency cases. If the positioning systems fail quite often, or the estimated position is false, 

user will not trust in the positioning system. As it is proved in [32], the reliability is de-

pendent on the time of the day. 

4.4 Power consumption of the positioning algorithm 

The power consumption is another of the parameters to consider when analyzing the 

performance of the positioning or navigation. This is measured in the MT, and thus, it 

depends on the positioning method that is being used [31].  If the used positioning 

method is network-based, i.e., the calculations are carried out in the network and not in 

the MT, the power consumption will be low. Otherwise, if the position estimation is 
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carried out in the mobile terminal, it will be using its own resources, increasing the 

power consumption.   

Once analyzed the different KPIs, a how they are related with the positioning, it is pos-

sible to related the positioning methods explained in chapter 2, with the KPIs explained 

in this chapter. An example of these relations can be seen in the table below, based on 

Author’s understanding: 

 Coverage, 

Availability 

MT power con-

sumption 

Latency 

AOA Ubiquitous Low ≈10s 

RSS Ubiquitous Low <5s 

CGI Ubiquitous Low ≈10s 

CGI+TA Ubiquitous Low <5s 

UL-TOA (Sub)urban Medium <10s 

U-TDOA (Sub)urban Medium <10s 

IP-DL 

TDOA 
(Sub)urban Medium <10s 

E-OTD (Sub)urban Medium <10s 

GPS Ubiquitous Very high <35s 

A-GPS Outdoors High <5 s 

5G (to come) Ubiquitous Very Low < 1s 

Table 4: Positioning methods with corresponding availability and consumption 

4.5 Error sources in positioning 

Considering all the error sources, it is possible to classify them into three main groups, 

as shown in [44]: errors due to the wireless environment, errors due to the geometry of 

topology of the environment, and errors due to the computations and/or measurements 

processes. Among the error sources of the first group, wireless environment, is possible 

to identify different factors that affect physically to the transmitted signal. The error 

sources due to the wireless channel are: 

• Signal attenuation or path losses 

• Multipath or Non-Line of Sight (NLOS) propagation 

• Noise 

• Narrowband and wideband interference 

• Fading 

The signal attenuation or path losses in 5G are higher because of the higher frequencies 

that are used with the mmWaves. The atmospheric absorption and the rain attenuation 

are also higher, but the short links that will be implemented overcome those effects. The 

material absorption will be also much higher with the mmWaves than with the current 

waves, also for the higher frequency that is used [11].  



37 

The multipath is the most common factor inside the wireless environment category. The 

multipath consists of having different paths to reach the receiver. As the authors indicate 

in [78], there is a possibility to maximize the throughput and minimize the latency by 

sending the data via different paths, increasing also the available bandwidth.  

There is significant amount of available literature talking about how to solve the multi-

path problem, or how to use it for the user’s benefit. Some examples of how to use the 

multipath in the positioning system are the algorithms Simultaneous Target And Multi-

path Positioning (STAMP) [46], Multipath-assisted Indoor Navigation and Tracking 

(MINT) [50], Multiple Signal Classification (MUSIC) [79],  the EULOSTECH mitiga-

tion algorithm [80], and other NLOS mitigation algorithms shown in [79]: Weighted 

Least-Squares, Residual Weighting Algorithm, and Constrained Location.  Also, solu-

tions for different applications such as vehicle positioning [49], and assisted living [48] 

have been addressed. 

The noise and the interferences disturb the positioning signals. The interference power 

will depend on the cross-correlation properties of the signals that are used. Regarding 

the noise, this acts as a jitter of the estimations that are done, e.g., in TOA and TDOA, 

the noise will act as a jitter of the estimated time of reception [21]. 

The geometric error sources are related to the physical parameters of the BS, such as the 

physical location, i.e., the coordinates, the geometry, and the size of his cell, as well as 

to the beamforming parameters in MIMO systems. Positioning performance is typically 

different when the BS is in one or another of the following environments: remote, rural, 

suburban, urban, indoor or underground [34]. The deployment of the BSs, which de-

pends on the mobile operators, affects also to the positioning system, as it is mentioned 

in [32]. It has to be considered that the operators so far have not considered economical-

ly viable to invest in positioning, when the benefits are not going to be that high than 

the ones obtained from the communication. Nevertheless, this may change with the ad-

vent of 5G systems. 

Examples regarding the computation and measurement error sources are clocks and the 

limitations of the hardware and/or software. Inside this error source group, the most 

critical source is the clock bias between the network nodes and MT.  

Nodes and MTs are each equipped with an oscillator, and the internal clock reference is 

derived from this oscillator. This internal clock will be used to measure the “true” time. 

Because of some physical effects, the oscillators suffer from independent frequency 

drift. This small frequency drifts result in large timing errors [47]. To overcome with 

the clock synchronization errors, Kalman filters (KF) and extended Kalman filters 

(EKF), have been proposed to estimate the clock offset and this way minimize the posi-

tion error [51]. 
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Table 5summarizes the error categories that affect the positioning accuracy in a cellular 

system. 

Error category Error sources Typical error magnitude 

Wireless  

environment 

Multipath propagation few meters to few tens of meters 

Interference few meters to few tens of meters 

Noise few meters 

Fading few meters 

NLOS propagation few meters to few tens of meters 

Geometric 

BS location (coordinates) few tens of meters 

BS geometry few meters 

Cell Size Few meters 

Computation and  

measurement 

Clock synchronization few meters to few tens of meters 

HW limitation few meters to few tens of meters 

SW limitation few meters to few tens of meters 

Table 5: Accuracy error categories and error sources 
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5. JOINT POSITIONIG AND COMMUNICATION 

ARCHITECTURES 

This chapter reviews the state-of-the-art related to the joint communication and posi-

tioning system. If we consider OFDM signals, it is rather complicated to define an op-

timal waveform for both positioning and communication purposes. In the literature, 

several designs have been done showing for example that the optimal design in term of 

the RMSE, is the use of equi-spaced, equi-powered pilots [55].  

5.1 Aspects of the joint positioning and communication archi-

tectures 

The main aspects to consider in a joint positioning-communication architecture are: 

- the design of the optimal transmission waveforms both for signaling and traffic 

transmission purposes 

- the tradeoff between signaling overhead for positioning and the communication 

throughputs (optimal data-pilot allocation) 

- the low-cost highly efficient architectures 

In [54], the evaluation of the positioning capabilities is analyzed in realistic navigation 

channels. It is mentioned that many channel models have been defined and used widely 

for 5G system modeling. Some examples of these channel models are: Extended Pedes-

trian A (EPA) [54], [81], Extended Vehicular A (EVA) [54], [82], Extended Typical 

Urban (ETU) [54], [81], and Wireless World Initiative New Radio (WINNER) [54], 

[84], But the problem of these channel models is that they have been designed mainly 

for the communication system. This means that in these channel models, the time-delay 

offset between the BS and MT is not considered, and thus, there is no consideration of 

the bias introduced in the NLOS scenarios. New channel models have been developed 

[54], [83].  

The Joint Maximum Likelihood (JML) time-delay and channel estimation is analyzed in 

[55] for OFDM signals. For that, in the same way that it has been used in this thesis, the 

matched filter is used as the maximum likelihood estimator, see section 6.4. But in real 

scenarios, the multipath need also to be considered. The introduction of the reflected or 

NLOS signals has a big influence in the estimator, because of the delays of these re-

flected signals, the bias of the estimator becomes bigger.  
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Similar JML solutions as the ones on [55] have been implemented before, e.g., see [85] 

and [86], but were mainly designed for the communication system. The problem resides 

in that for communications, there is no need for a very accurate time-delay estimation. 

To solve the multipath effect, a hybrid estimation model is proposed in [55], where 

equi-spaced taps are used with an arbitrary tap between the first two. By the introduc-

tion of one more estimation parameter, i the characterization of the channel is improved, 

and this helps to increase the positioning accuracy in multipath environments. 

A similar study to the one done in [55] was achieved in [60] where the authors proposed 

a unified framework which solves the time synchronization and localization problems 

jointly in a wireless sensor network.  

Other studies mention the problems with the MT oscillator, which affect to the TOA 

estimation method. So, the authors in [51] proposed to use an extended Kalman filter 

(EKF) to improve both user position and the clock offset. In order to increase even more 

the user position estimation, the TOA is combined with the DOA estimation method. 

The conclusions were that the 5G is indeed able to reach the sub-meter accuracy range 

estimation, and that the joint DOA/TOA-EKF outperforms the existing DOA-only solu-

tions, while obtaining a high accuracy in the MT clock offset estimation. 

 In [58], the authors proposed a model for channel variability of different OFDM sym-

bols by varying, for a given channel power, the channel mean and the covariance. The 

effect of channel variability is investigated in the joint design of pilot and data power 

allocation. The results obtained from the investigation showed that for a given channel 

power, if the channel covariance is reduced and the channel mean is increased, the accu-

racy of the estimation of both the channel parameters and the time-delay is improved. 

They also proved that with this method, the channel capacity increases. So, the authors 

concluded that in an OFDM system with correlated OFDM symbols, the information 

from previous symbols can be used to improve the estimation accuracy and SINR. 

When OFDM signals are wanted to be used for joint communication and positioning, 

there is a challenge in finding the optimal data and pilot power allocations. In [59], the 

authors propose an optimization problem, and use asymptotic bounds to reduce the 

computational complexity of the optimization problem. In consequence, the number of 

subcarriers and channel taps is increased. The conclusion reached in this investigation is 

that the performance of joint communication and positioning is negligibly affected. Al-

so, it has been proven that the asymptotic bounds converge to the non-asymptotic 

bounds after certain number of subcarriers. 

The typical channel models are the single-tap model [54] , arbitrary-tap model [54], and 

periodic tap model [54], described in the next section. 
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5.2 Channel models 

The single-tap model is the simplest and most used channel estimation model [54]. It 

only adds attenuation and delay to the propagated signals. This is the one used in this 

thesis to develop the indoor channel model. The added delay will depend on the sam-

pling time of the transmitted signal, and is calculated with the expression (20), where 𝑡𝜖 

is the propagation delay, and 𝑇𝑠 is the sampling time of the transmitted signal.  

𝜏 = 𝑡𝜖/𝑇𝑠 [samples] (20) 

With single-tap channel models, a matched filter or a correlation-based estimator pro-

vides the optimal performance in the maximum likelihood sense. But in multipath envi-

ronment with high delay spread, it may not be appropriate to apply this kind of channel 

models [54].  

The arbitrary-tap model is the most accurate model due to the fact of estimating the 

amplitude, phase, and delay of every physical ray of the multipath channel. This fact 

makes it also the most complex model, but also the most realistic channel model com-

pared with the other three. The implementation complexity is one of the biggest con-

cerns [54].  

The periodic-tap model reduces the complexity of the channel estimation by placing 

the estimation taps in a periodic delay positions. The estimation taps can also be in equi-

spaced position. The purpose of placing the taps is to focus on the propagation time-

delay of the signal. This avoids the delay calculation of each physical ray. Thus, the 

channel model is less realistic than the arbitrary-tap model, but much simpler. By using 

this method, the resulting model is a sampled version of the channel impulse response.  

The most used channel model for the 5G system are the one created by METIS, which 

will be explained in the Section 7.1, and WINNER II [87]. One of the advantages of the 

WINNER II channel model is that it is possible to use it for different environments. It is 

able to model indoor channels, indoor to outdoor channels, and outdoor channels. Re-

garding to the positioning, WINNER II allows to know the departure and arriving an-

gles, the received power and the propagation delay [87]. An extension of the WINNER 

II channel model is Quadriga, which can be used for the terrestrial and satellite commu-

nications [87]. 
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6. SIMULATION ENVIRONMENT: WAVEFORMS 

In this chapter, the simulation environment will be explained regarding to the wave-

forms used. Our model started from the initial Matlab software package provided by our 

colleague at ELT, Dr. Jukka Talvitie and Dr. Toni Levanen. As this model is one of the 

core elements of the simulations used in this thesis, the implementation of the three 5G 

studied waveforms will be explained in this chapter. In the chapter 7, also the Matlab 

channel models and the developed Graphical User Interface (GUI) will be explained. 

During this project, three waveforms have been used: WCP-COQAM [12], [15], ZT-

DFT-s-OFDMA [13]-[15], [71], and CP-OFDMA [15], [16], [71]. These three wave-

forms have been selected for been an improvement of (or been used in) the current 4G 

waveforms, or because of their advantage over the OFDM, the case of WCP-COQAM 

[88].  

6.1 Block diagram of the 5G waveforms 

In this section, several 5G waveforms will be explained with the help of block dia-

grams. The waveforms that will be analyzed are: ZT-DFT-s-OFDMA, CP-OFDMA, 

and WCP-COQAM. 

The first waveform to be analyzed is CP-OFDMA, and its block diagram is shown in 

Figure 4. The information bits are the input of the transmitter. These are modulated and 

the constellation is converted from serial parallel. Having the information in parallel, the 

IFFT is applied, after that, the cyclic prefix (CP) samples are added and the output of 

this operation is the CP-OFDMA waveform. This is the block diagram of a classical 

OFDM signal [88], [89]. 

 

Figure 4: CP-OFDMA transmitter block diagram 

The second waveform to be analyzed is ZT-DFT-s-OFDMA. The method consists in the 

Discrete Fourier Transform (DFT) that is applied after modulating the incoming bit 

stream. Once the DFT, a predefined number of zeros are added at the beginning and in 
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the tail of the signal to be transmitted. After that, the IFFT is applied and the signal to 

be transmitted is obtained. The full block diagram can be seen in Figure 5. 

 

Figure 5: ZT-DFT-s-OFDMA transmitter block diagram 

The WCP-COQAM signal transmitter can be seen in Figure 6. The main difference be-

tween this waveform and the previous ones is that after the QAM modulation, this is 

converted to the OQAM baseband signal, in the QAM/OQAM conversion block in Fig-

ure 6. During this conversion, OQAM uses a linear convolution, but if a circular convo-

lution is applied instead, the result will be a COQAM modulation. When switching the 

linear convolution for a circular one, the COQAM modulation gets rid of the drawbacks 

of OQAM, while keeping almost all the benefits [88]. Once the COQAM signal is ob-

tained, it is prepared for the transmission, applying a windowing after the CP is intro-

duced.  

 

Figure 6: WCP-COQAM transmitter block diagram 

6.2 Mathematical models 

In this section, the mathematical models are shown for the implementation of the differ-

ent waveforms that are used during the thesis. 

First of all, the CP-OFDMA and ZP-DFT-s-OFDMA waveforms are defined. To gener-

ate these waveform, a basic OFDMA waveform is need to be implemented. This ex-

pression is given in (21). 

𝑠𝑂𝐹𝐷𝑀[𝑘] = ∑ 𝑐𝑚𝑒
𝑗2𝜋𝑚𝑘

𝑀

𝑀−1

𝑚=0

 (21) 

where 𝑀is the number of subcarriers and 𝑐𝑚 the complex valued data symbols. Once 

the OFDMA waveform is generated, the corresponding proceedings shown in the sec-

tion 6.1 are applied to obtain the corresponding waveform. 
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Once the OFDMA waveform is obtained, the cyclic prefix (CP) is added, obtaining the 

following expression: 

𝑠𝐶𝑃−𝑂𝐹𝐷𝑀 =
[𝑠𝑂𝐹𝐷𝑀[𝑀 − 𝐺], 𝑠𝑂𝐹𝐷𝑀[𝑀 − 𝐺 + 1], … 𝑠𝑂𝐹𝐷𝑀[𝑀 − 1], 𝑠𝑂𝐹𝐷𝑀[0], …

𝑠𝑂𝐹𝐷𝑀[𝑀 − 1] … ]

𝑇

 
(22) 

where M is the number of subcarriers, and G the length of the cyclic prefix. 

The analytical expression of the ZT-DFT-s-OFDM signal is provided in (23). 

𝑟𝑍𝑇−𝐷𝐹𝑇−𝑠−𝑂𝐹𝐷𝑀𝐴[𝑘] =
1

√𝑀𝐼𝐹𝐹𝑇(𝑀 − 𝑀𝑡 − 𝑀ℎ)
𝑭 · 𝑻 · 𝑫 · 𝑥 

(23) 

 

where 𝑥𝑘 is the vector with the modulated symbols, D is a matrix that performs the DFT 

operation, 𝑻 is the mapping matrix for subcarrier assignment, and 𝑭 performs an 𝑀𝐼𝐹𝐹𝑇 

points IFFT operation. The 𝑀𝐼𝐹𝐹𝑇 parameters represents the number of points used in 

the IFFT operation, and 𝑀𝑡 and 𝑀ℎ are the number of zero valued symbols added in the 

tail and head, respectively. 

In order to generate a WCP-COQAM waveform, the first step is to generate a COQAM 

signal, which baseband expression is given below. 

𝑠𝑂𝑄𝐴𝑀[𝑘] = ∑ ∑ 𝑎𝑚,𝑛 𝑔[𝑘 − 𝑛𝑁1]𝑒𝑗
2𝜋
𝑀

𝑚(𝑘−
𝐷
2

)𝑒𝑗𝛷𝑚,𝑛

𝑛∈𝑍

𝑀−1

𝑚=0

 (24) 

where 𝑔 is the prototype filter, and is assumed to be real-valued and symmetrical; 𝑀 is 

the number of subcarriers; 𝑁1 = 𝑀/2 is the discrete-time offset; 𝛷𝑚,𝑛 is an additional 

phase term at subcarrier 𝑚 and symbol index 𝑛 which can be expressed as 
𝜋

2
(𝑛 + 𝑚). In 

the Matlab simulation, the design of the filter prototype is the first operation. Before 

obtaining the symbol map, the bits are grouped and the modulation takes place. The 

available modulations are 4QAM, 16QAM, and 64QAM. 

Once the OQAM symbols are obtained, the cyclic convolution is applied, as mentioned 

in the section 6.1. Analytically the COQAM symbols can be calculated with the expres-

sion (25). 

𝑠𝐶𝑂𝑄𝐴𝑀[𝑘] = ∑ ∑ 𝑎𝑚,𝑛 𝑔[𝑘 − 𝑛𝑁1]𝑒𝑗
2𝜋
𝑀

𝑚(𝑘−
𝐷
2

)𝑒𝑗𝛷𝑚,𝑛

𝐾′−1

𝑛=0

𝑀−1

𝑚=0

 (25) 

where K’ is the number of real symbol slots per each block. 

So, the WCP-COQAM expression is obtained after the adding the CP and the window-

ing. The analytical expression of WCP-COQAM is shown below. 
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𝑠𝑊𝐶𝑃−𝐶𝑂𝑄𝐴𝑀[𝑘] = ∑ 𝑠𝐶𝑂𝑄𝐴𝑀[mod(𝑘 − 𝐿𝐶𝑃, 𝑀𝐾)]

𝑙+1

𝑟=𝑙−1

 (26) 

where 𝐿𝐶𝑃 is the length of the CP and 𝑙 is the block index. 

6.3 Building the simulator 

The simulator that is implemented in this thesis is based on a transmitter, a receiver, and 

two channel models. The channel models will be explained in detail in the Chapter 7. A 

block diagram of the simulator and an explanation of its behavior is given in the section 

6.3.1. The different parameters that are needed to run the simulation are explained in the 

section 6.3.2. 

6.3.1 Block diagram 

In Figure 7 the block diagram of the developed simulator is shown. The transmitter is 

composed by three main blocks, the waveform generator, where the three waveforms 

used within this thesis are generated. From this block, the signal to be transmitted is 

obtained. The signal is oversampled, and then shaped with the Squared Root Rise Co-

sine (SRRC).  

 

Figure 7: Block diagram of the simulation 

The output of the SRRC, is the transmitted signal, which is used in one of the two chan-

nel models explained in Chapter 7. 

The receptor consists in a matched SRRC filter, that filters the signal as soon as it is 

received. After the filtering, the channel delay is estimated and compensated, this pro-
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cedure is explained in section 6.4. After that, the downsampling is implemented, obtain-

ing the same sample frequency than the one obtained at the output of the waveform 

generator. Finally, the signal reception is implemented, and the evaluation of the QoS is 

implemented.  

Part of this thesis is related to the distance estimation, and this has been achieved by 

incorporating the distance-based channel delay model in the simulator. In order to ob-

tain a better time-delay accuracy, the sampling frequency of the signals obtained in the 

previous section, has been increased 25.08kHz to 1.25MHz. To increase the sampling 

frequency, an oversampling factor was defined. The oversampling factor obtained in 

this thesis has been limited to 50, i.e., per each signal sample, 50 new samples have 

been added. This decision was taken due to the long simulation times and the insuffi-

cient computing resources. In actual systems, a higher sampling frequency than the one 

used in this thesis is used, but this will be discussed in the chapter 8. 

With an oversampling factor of 50, an accuracy of around 120m is achieved with the 

three waveforms. Each one of the waveforms has a different sample length, making 

them have different accuracy level. As shown in (20), the bigger the number of samples 

contained in the generated waveform, the bigger the number of samples to add in the 

channel delay modeling. As it is mentioned in [57], a sampling frequency of 153.6MHz 

is proposed to achieve the 1m accuracy, what is translated in an oversampling factor 

close to 6000 in the developed simulator. 

The simulations with such a high oversampling factor, namely 6000, require a huge 

computational load, and it takes long time to make the calculations for one iteration. So, 

in order to obtain fast and significant results, and considering that for each measurement 

50 independent realizations are performed, an oversampling factor of 50 has been cho-

sen. Table 6 shows the achievable positioning accuracy that is related to each over-

sampling factor. 

Oversampling factor [samples] Achievable positioning accuracy [m] 

50 120 

100 60 

500 12 

1000 6 

6000 1 

Table 6: achievable positioning accuracy for different oversampling factors 

The oversampling process requires a pulse shape filter. In this thesis, a square raise root 

cosine (SRRC) filter has been defined for shaping the oversampled signal. At the re-

ceiver side, the received signal is again filtered with a matched filter, namely another 

SRRC filter. After that, the delay estimation will be applied, based on the Maximum 

Likelihood theory, as shown in (27). 
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�̂� = arg max
𝜏

{|𝑅𝑦𝑥(𝜏)|
2

} (27) 

where 𝑅𝑦𝑥(𝜏) is the correlation function between the transmitted signal and the received 

signal after the matching filter [54]. Considering that the signals have the cyclic prefix, 

they introduce a circular symmetry in the signal at the output of the channel. The corre-

lation between the transmitted signal and the received one is defined in (28). 

𝑅𝑦𝑥(𝜏) =  ∑ 𝑦(𝑚) · 𝑥𝑠
∗(𝑚 − 𝜏)𝑁−1

𝑚=0 , (28) 

where 𝑥𝑠
∗(𝑚) is a circular shifted and conjugate version of the original 𝑥(𝑚). This oper-

ation will return the number of estimated delayed samples, which can be converted into 

the estimated distance. Before converting the estimated delay samples into the distance, 

the SRRC filter delays have also to be taken into account and removed.  

6.3.2 Simulation parameters 

Before generating any waveform, there are some general parameters that need to be 

defined, such as the number of independent data realization, which will be used in order 

to obtain representative results. In the Table 7, the general parameters that are not di-

rectly related with the waveform design are shown. 

Parameter name Parameter description Parameter values 

maxIndependentDataRealizations number of independent realizations 100 

modelPAEffect 
indicates if the power amplifier is mod-

eled in the transmitter 
True/false 

modelWindowedClipping 
indicates if the windowed clipping is used 

with power amplifier modeling 
True/false 

channelModel* defines the channel model to be used.  ‘unityChannel’ 

SNRVector** 
values of the snr to be used during the 

simulation 
From -20 to 30 

modulation  
the modulation to be used in the simula-

tion 
4QAM/16QAM/64QAM 

bitsPerSymbol 
the number of bits per symbol. It is linked 

to the modulation 
2/4/6 

* not used in this project 

**only used in BER measurements  

Table 7: General simulation parameters 

In the simulations, the used channel model is the “unityChannel”, which is the ideal 

channel, a delta with a weight of 1. The main reason of using this channel is that the 

channel models that are used in this thesis are not defined in within these files, are ex-

ternal. Thus, there will not be any overlapping between this channel model and the ones 

defines in Chapter 7. 

More general parameters are shown in Table 8, and they are related to the waveform 

design, with OFDM waveforms to be more precise. 
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Parameter name  Parameter description Parameter values 

nbrSubchannels (M) number of subchannels 2048 

nbrMCSymbols number of multicarrier symbols in the block 12 

CPChannelLen 
length of the cyclic prefix that is used to fight the 

channel interference 
115 

CPWindowLen length of the cyclic prefix used for windowing 0 

CPLen 

total length of the cyclic prefix. It is calculated 

with the following expression: 

𝐶𝑃𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐿𝑒𝑛 + 𝐶𝑃𝑊𝑖𝑛𝑑𝑜𝑤𝐿𝑒𝑛 

115 

CPGenerationOption 
indicates the algorithm for generating the cyclic 

prefix 

1: copies the CP length number of 

samples from the end to the 

beginning 

2: copies the CPChannel-

Len+CPWindowLen/2 number of 

samples form the end to the 

beginning and CPWindowLen/2 

from the beginning to the end 

3: the contrary operation of the 

option 2. 

waveformType indicates the waveform to be generated 

‘OFDMA’ 

‘OQAM’ 

‘DFT-s-OFDMA’ 

nbrSCPerRB number of active subchannels per resource block 160 

nbrRBs number of resource block 8 

activeRBs number of active resourceblocks 

Vector of ones and zeros of the 

length nbrRBs mentioning which 

resource blocks are active (1) or 

not (0). 

nbrSCPerGB number of subchannels acting as Guard Band 0 

Table 8: General waveform parameters 

In the Table 8, it is possible to see the general waveform parameters. With the parame-

ters described here, the main information is obtained for the waveform design, e.g., the 

number of subchannels, the number of resource block, the number of subchannels per 

resource block, the length of the cyclic prefix, etc. 

The cyclic prefix can be generated by different algorithms, and the use of each one will 

depend on the numerical value assigned to the parameter CPGenerationOption. The 

algorithm used in the simulations copies the same number of samples than the length of 

the cyclic prefix, which is the value of the parameter CPLen, from the end of the signal 

to the beginning. 

In the Table 9, the specific parameters for the WCP-COQAM waveform design are 

shown. In the simulations, the parameters useCircularAddition, windowSymbolBlock, 

and addSymbolBlockCP will be activated, so the waveform used in the simulations is 

WCP-OQAM.  
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Parameter name Parameter description Parameter values 

prototypeDesignOption prototype to design the waveform 

1->Nearly Perfect Reconstruc-

tion (NPR) filter bank 

2->Perfect Reconstruction (PR) 

filter bank 

{3,1}-> Root Rise Cosine pro-

totype filter with roll-off factor 

of 1 

{4,1}->Rise Cosine prototype 

filter with roll-off factor of 1 

overlapFactor 
overlap factor used in the filter bank 

design 

4 

useCircularAddition 

defines if circular addition is used in 

the signal construction. This will 

shorten the symbol block in time 

domain 

True/false 

addSymbolBlockCP 
determines if a cyclic prefix is added 

to the symbol block 
True/false 

windowSymbolBlock 
Determines if the symbol block is 

windowed 
True/false 

ReferenceSymbolDesign 
Defines the reference symbol used for 

channel estimation 
‘QAM’ 

Table 9: WCP-COQAM waveform parameters 

Table 10 shows the configuration parameters of the CP-OFDMA waveforms. For this 

waveform, it is possible to add a windowing and a cyclic-prefix. 

Parameter name Parameter description Parameter values 

useTxSignalWindowing 
Indicates if the transmitted signal is 

windowed 
True/false 

useMCSymbolwiseWindowing 
Indicates that each OFDM symbol is 

windowed 
True/false 

addSymbolwiseCP 
Indicates if a cyclic prefix is added at 

the beginning of each symbol 
True/false 

useTxSignalFiltering 
Indicates if the transmitted signal is 

filtered 
True/false 

UseMCSymbolwiseFiltering 
Indicates if each OFDM symbol is 

filtered 
True/false 

Table 10: CP-OFDMA waveform parameters 

Table 11 and Table 12 show the dedicated waveform parameters for the ZT-DFT-

spread-OFDMA waveform.  
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Parameter name Parameter description Parameter values 

addZTInDFTInput 

indicates if there is a “Guard period” implement-

ed between separate symbol (a zero-tail part of 

the multicarrier symbol). 

True/false 

ZTGPLength length of the zero-tail guard period 90 

nbrZerosHead 
number of zeros subcarriers in the head of the 

DFT input 
1 

nbrZerosTail 
Number of zero subcarriers in the tail of the DFT 

input 
8 

referenceSymbolDesign Indicates the reference symbol design 

‘firstSymbol -Random’: a 

randomly generated sym-

bol place in the first sym-

bol of the frame 

channelEstimateFilter channel estimator filter ‘none’ 

Table 11: ZT-DFT-s-OFDM waveform parameters 

Table 12 shows the parameters used for the spectrum analysis, i.e., the PDF of the 

transmitted and the received signal. 

Parameter name Parameter description Parameter values 

useFFTBasedAnalysis 
indicates if the analysis is going to 

be based on the FFT 

True/false 

PSDFFTSize 
FFT size used for evaluating the 

power spectral density (PDF) 

2^(nextpow2(nbrSubchannels+8)) 

useFBBasedAnalysis 
indicates if the analysis is going to 

be based on the filter banks 

True/false 

nbrSubbandInSpectrumAnalysis 
number of subbands used in the 

spectrum analysis 

512 

outputInLog 

indicates if the power spectral 

density is given in logarithmic 

scale 

True/false 

normalizePSDToUnity 
normalizes the maximum compo-

nent of the PSD into unity 

True/false 

Table 12: Parameters used in the spectrum analysis 

6.4 Simulator performance criteria 

The performance criteria that are evaluated in this thesis are the BER for the QoS of the 

communications and the CRLB and distance estimation error for the positioning accura-

cy. 

6.4.1 BER 

To compute the bit error rate, a wide range of SNR values have been used. To obtain the 

value of this parameter, the demodulated bits are compared with the bits that are going 

to be transmitted. Obtaining the percentage of the received bits with errors, the BER is 

calculated. This is evaluated for the three waveforms used in this thesis, and for differ-

ent modulation orders, e.g., 4QAM, 16QAM, and 64QAM. 
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6.4.2 CRLB of distance error 

The CRLB is measured also in a wide range of SNR conditions. Considering that it will 

give the lower achievable variance of the estimator that is being used in the thesis, it is 

expected to obtain low distance error values. To calculate the CRLB, the expression 

(16) is used. Considering that it is inversely proportional to the SNR, the value of the 

CRLB decreases when the SNR increases. 

6.4.3 Distance estimation error 

This will measure the real distance error produced by the distance estimation process. 

Following the expression (27), the distance estimation depends on the number of esti-

mated delay samples. The number of estimated delay samples is multiplied by the sam-

pling time and the speed of light, obtaining the estimated distance. Knowing the esti-

mated distance and the real distance the distance error is computed. 

As mentioned, the estimated distance depends on the sampling time, i.e., the sampling 

frequency. So, increasing the sampling frequency, it is possible to improve the accuracy 

of the estimator. The relation between the sampling frequency and the achievable posi-

tioning accuracy is given in Table 6. 

The simulation results are shown in Chapter 8. 
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7. SIMULATION ENVIRONMENT: CHANNEL 

MODEL AND GUI 

In this chapter, the channel models and the GUI built in the thesis will be explained. 

Two channel models have been used, one for the outdoor environments, and another 

one for indoor scenarios. For the outdoor channel model, the starting point has been the 

METIS 5G channel model. For the indoor channel model, a simple indoor channel 

model based on a multi-floor building map has been developed. While the outdoor 

channel model supports multi-link configurations, the indoor channel model supports 

only single-link configurations. The map used for indoor channel model is based on the 

map of one of the buildings at Tampere University of Technology (TUT).  

7.1 Outdoor channel model 

The starting point of the outdoor channel model used in this thesis has been the 5G 

channel model developed in the European METIS project [53]. This channel model 

consists of rectangular buildings, with predefined width and height. The buildings do 

not need to have the same height, i.e., two building next to each other can have different 

height. The widths of the buildings and of the streets, however, are fixed and constant.  

The number of buildings in the scenario can also be configured. Considering that the 

scenario will involve a square area, the user will have the chance of defining the number 

of building in the X axis and in the Y axis. The Figure 8 a) shows an example of the 

METIS channel model in 2D, and the Figure 8 b) shows the same scenario but in 3D. 

The outdoor channel model is in 3D, thus the power map is measured at different 

heights, i.e., inside a building, per each floor one measurement will be done for a fixed 

(x,y) coordinate. If the measurement point is outside a building, its maximum height 

will be limited to 0 (ground level). The maximum height is thus defined in (29) . 

𝑍𝑚𝑎𝑥(𝑥, 𝑦) = {
0

ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 
       

𝑖𝑓 𝑥, 𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑟𝑒𝑒𝑡          
𝑖𝑓 𝑥, 𝑦 𝑖𝑛𝑠𝑖𝑑𝑒 𝑎 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

 (29) 

In (29), the height is represented in function of the values in the X and Y axis because 

they are used to determine if the measurement point is inside a building or outside. 
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Figure 8 .a) 2D view of the METIS channel model, b) 3D view of the METIS channel 

model 

The amount of the measurement points will depend on the resolution introduced previ-

ously by the user. This resolution will divide the area map in squares of same lengths in 

meters, i.e., if the value of the chosen resolution is 2, the resolution cell will be 2m x 

2m. 

The next step is to define the limits of the street, i.e., the x and y axis positions repre-

senting the street. This information is used to randomly locate the transmitter and the 

receiver in the street, i.e., it is not desired to locate them inside a building, as for that 

kind of measurements the indoor channel model has been developed. Once the transmit-

ter and receiver are located, the channel model will start to make the measurements. 

For that, first the exact location of the BS is needed, and for that, the channel model will 

check every horizontal and vertical street2 to check where the BS is. Once checked if the 

BS is in a vertical, horizontal, or intersection, the same procedure starts with the meas-

urement points. All the measurement points of the map are analyzed in order to calcu-

late the power received in those points. 

For that, first the street in which they are located is calculated, using the same method-

ology that is used for searching the street of the BS. After that, the straight line between 

the transmitter and the measurement point is calculated. Once the direction is known, 

the next step is to check if the transmitter and receiver are in a LOS path. If so, the path 

loss for that point is directly calculated, by means of the following path loss expression 

[2]. 

                                                 
2 If the Figure 8 a) is checked, the horizontal streets will be those with fixed y coordinates, i.e., those 

starting in the left and finishing on the right. The vertical streets, however, will be those with fixed x 

coordinates, i.e., those going form up to down. 
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𝐿𝑙𝑜𝑠 = 40 log10(𝑑) + 7.8 − 18 log10(ℎ𝑡𝑥𝑒𝑓𝑓) − 18log10(ℎ𝑟𝑥𝑒𝑓𝑓)

+ 2 log10(𝑓/1𝐺𝐻𝑧) 
(30) 

where 𝑑 is the distance difference between the measurement point and the center of the 

street; ℎ𝑡𝑥𝑒𝑓𝑓 and ℎ𝑟𝑥𝑒𝑓𝑓 are effective antenna heights of the transmitter and the receiv-

er, respectively, and f is the carrier frequency in GHz.   

If the transmitter and the receiver are not in a LOS path, it is checked if the receiver is in 

a perpendicular or parallel street. If the receiver is in a parallel street, it is considered 

that the received signal is below the functionality threshold of the receiver. 

However, if the transmitter is in a perpendicular street, the receiver is in NLOS, so a 

new expression must be used [53]. 

𝑃𝐿(𝑑1, 𝑑2) = 𝐿𝑙𝑜𝑠(𝑑1) + 17.9 − 12.5 𝑛𝑗 + 10𝑛𝑗 log10(𝑑2) + 3 log10(
𝑓

1𝐺𝐻𝑧
) (31) 

where 𝑑1 and 𝑑2 are the distances from the BS and MT to a cross section of the street, 

respectively. The parameter 𝑛𝑗  is calculated by the expression (32). 

𝑛𝑗 = max (2.8 − 0.0024𝑑1, 1.84). (32) 

The value that will be saved in the measurement matrix will always be the maximum 

value between the calculated path loss and the minimum coupling loss (MCL). The 

MCL will be also introduced by the user. In the thesis we chose, 0,  

This method is also used to estimate the received power in indoor environments. More 

information about this channel model can be found in the literature [53]. 

7.2 Indoor channel model 

This a simple channel model designed for indoor environments. This channel model, 

which is also implemented in MATLAB, is based in a building of TUT. An example of 

the map of the building can be seen in the Figure 9. 

The positions of the transmitter and the receiver are placed randomly inside the building 

walls.  
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Figure 9. a) TUT university building, floor view (2D) for the indoor channel model      

b) TUT university building, 3D view for the indoor channel model 

The next step is to calculate the received power in each of the MT locations, based on 

the corresponding BS. For this, a simplified path loss model has been implemented, 

where the path loss depends on the distance d and on a path loss parameter n only. 

𝐿𝑝 = 10 𝑛 log10 𝑑, (33) 

where 𝑛 is the path loss exponent, and 𝑑 is the distance between the transmitter and the 

receiver. To this propagation loss other effects are added, such as the loss due to the 

indoor walls, outdoor walls, or the losses due to the floor. The attenuation of each one 

of these effects, are introduced previously by the user.  

The losses due to the indoor walls are computed with an approximation. With the map 

of the building of TUT, the corners of the rooms have been provided. To compute the 

number of walls that a signal crosses inside the building, an estimation is done, in which 

the distance between the transmitter and the receiver, and the average length of the 

room are considered. First, the rooms are assumed to be squared, and thus, the average 

distance of the room is computed by applying the square mean root to the average area 

of all the rooms of the building. After that, the distance between the transmitter and the 

receiver is calculated in the X and Y plane only. Dividing this distance by the average 

distance of the room, the average number of indoor walls that the signal crosses is esti-

mated. Knowing the number of indoor walls and the losses that each indoor wall induc-

es to the signal, the total losses caused by the indoor walls are calculated.  

For the total losses caused by the outdoor walls, it is checked if the transmitter and the 

receiver are inside the building. This loss is applied only if the transmitter is inside the 

building and the receiver outside, and vice versa. The losses caused by the outdoor 

walls are introduced by the user. 
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The floor losses are applied only in the cases in which the transmitter and the receiver 

are in different floor of the building. In this case, the height of the user and receiver are 

used. It is checked each one in which floor they are located and the difference of the 

floors will give the value of the floor difference between the transmitter and the receiv-

er. The losses caused by the floor are also introduced by the user. 

The shadowing effect has been implemented as a variable that follows a Gaussian dis-

tribution, and with a variance introduced by the user. The total losses are finally com-

puted with the expression in (34). 

𝐿𝑇𝑂𝑇 = 𝐿𝑝 + 𝑛𝑖𝑤 · 𝐿1,𝑖𝑤 + 𝑛𝑜𝑤 · 𝐿1,𝑜𝑤 + 𝑛𝑓𝑙 · 𝐿1,𝑓𝑙 + 𝛹𝑓(0, 𝜎𝑓
2) (34) 

where 𝑛𝑓𝑙, 𝑛𝑖𝑤 and 𝑛𝑜𝑤 are the number of floor, indoor walls, and outdoor walls that 

crosses the transmitted signal, respectively, ,  𝐿1,𝑓𝑙, 𝐿1,𝑖𝑤 and 𝐿1,𝑜𝑤 are the losses caused 

by one floor, one indoor wall, and one outdoor wall, respectively, and 𝛹𝑓(0, 𝜎𝑓
2) is the 

losses caused by the fading, that follows a Gaussian distribution with 0 mean value and 

with a variance 𝜎𝑓
2, which will be introduced by the user. The losses of one floor, one 

indoor wall, and one outdoor wall are also introduced by the user, at the beginning of 

the simulation. 

7.3 GUI 

The developed graphical user interfaces within this thesis are simple interfaces that will 

help the user to introduce the requested parameters, which will be needed to run the 

simulations. Some examples of these parameters are: carrier frequency, the transmitted 

power, noise power spectrum density (𝑁0), and the number of users N. 

When running the simulation, three graphical interfaces will be shown: one will allow 

the user to choose between the outdoor channel model and the indoor channel model, 

the second one will allow the user to introduce the values of the indoor parameters, and 

the third one allows the user to introduce the values of the outdoor parameters.  
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Figure 10: Initial GUI window 

Once channel model type is selected, the GUI related with the corresponding channel 

model will be shown. In Figure 11 the GUI for the indoor channel model is shown. By 

this GUI, the user is requested to introduce all the information related to the losses due 

to the walls and ground. Also, the value for the noise power spectral density, the carrier 

frequency, and the transmitted power, as mentioned before in section 7.2. 

 

Figure 11: Indoor channel model GUI 

In the Figure 12 the GUI for the outdoor channel model is shown. Among the infor-

mation requested to the user, we can see some of the initial parameters mentioned in 
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7.1: the carrier frequency, the transmitter power, the number of buildings in the x axis 

and y axis, the resolution of the map, and the width of the street and the building. 

 

Figure 12: Outdoor channel model GUI 

In the following chapter, the simulation set-up and the results of the simulations are 

shown. 
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8. SIMULATION RESULTS 

This chapter focuses on the simulation results. The obtained simulations include three 

main aspects: the coverage, the distance estimation error, and the QoS of the communi-

cations. The coverage area is shown by means of a power map, where the received 

power is shown in the different places of the map. The distance estimation error is eval-

uated based on 3 different 5G waveforms by the means of the CRLB. Finally, the QoS 

is analyzed in terms of BER. 

In our simulations, the number of random data realizations has been set to 50 and the 

oversampling factor was set up to 50. 

8.1 Coverage areas 

First the coverage areas have been analyzed in the outdoor channel model. The results 

can be seen in Figure 13 for both 2D (left figure) and 3D (right figure) models. In these 

figures is possible to notice one red and one green point, which represent the transmitter 

and receiver, respectively. In both cases, the received power in all the points of the map 

is shown. The white zones mean that the received signal power is lower than the thresh-

old, which has been stablished to -100dBm, based on the typical sensitivity of a receiver 

[add refs that talk about 5G rx sensitivity]. This means that if the received signal power 

is lower than -100dBm, we assumed that the MT is not able to detect the signal. 

 

Figure 13. a) Outdoor channel model power map in 2D; b) Outdoor channel model 

power map in 3D 

The network configuration used for achieving this result is shown in  Figure 14: trans-

mission power of 1W, or equivalently 30dBm, and a carrier frequency of 10GHz, i.e., 
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inside the mmWave band. In the used configuration, the buildings are 150m wide and 

the height of the buildings, i.e., the number of floors is randomly assigned from 1 to 4, 

having a floor height of 3.7m. The chosen map size was not big, only 4 buildings in the 

x axis and another 4 in the y axis, making a total of 16 buildings in the deployed map 

for a clearer illustration. A resolution map of 1m x 1m has been chosen to make the 

power reception calculations. 

 

Figure 14: Network configuration for the outdoor channel model shown in Figure 13 

The results obtained from the outdoor channel simulation states that the distance be-

tween transmitter and receiver is 151.95m, and that at that distance, the received signal 

power is -89.29dBm. Considering that the transmitted signal power is 30dBm, the path 

losses are the difference of the signal power between the transmitter and the receiver, 

119.29dB. 

For the indoor channel model, the obtained results are shown in  Figure 15.  Similarly 

with the outdoor channel model, two points can be noticed, one red, which represents 

the transmitter location, and another one green, which represents the receiver location. 
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The configuration for this simulation is shown in the Figure 16; 10GHz carrier frequen-

cy, transmission power reduced to 0.01W, or 10dBm, and 1 m grid resolution. The loss-

es introduced here for the indoor and outdoor walls, and the ground are 6dB, 4dB, and 

9dB, respectively.  

 

Figure 15. a) Indoor channel model power map in 2D; b) Indoor channel model pow-

er map in 3D 

The obtained results for this configuration and this scenario are that for a distance of 

39.05m between the transmitter and the receiver, the received power level is -

74.72dBm. Considering the 10dBm of transmitted power, the losses are 84.72dB. From 

this 84.72dB, 56.4dB are due to the path loss, 6dB due to the ground, 8dB caused by the 

indoor or room walls, and the rest, 14.32dB caused by the shadowing. 

 

Figure 16: Network configuration for the indoor channel model shown in Figure 14 
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8.2 Positioning estimation error 

For the positioning estimation, two different types of simulations have been implement-

ed: one with increasing SNR values and fixed distance, and a second one with fixed 

SNR and increasing distance. To perform all these simulations, 50 independent data 

realizations have been used. 

The main objective of the first simulation was to understand the behavior of the three 

considered 5G waveforms for low, medium, and high SNR values. This way it will be 

possible to check which waveform has a better performance at low SNR values. These 

simulation-based results will be then checked with the CRLB computations.  

In Figure 17, it is possible to analyze the behavior of the CRLB for the implemented 

distance estimator. In Figure 17 a), the range of SNR values (from -16dB to 26dB), is 

shown and the CRLB value related to each SNR value for the three waveforms. In Fig-

ure 17 b) a zoomed look is given for low SNR values also for the three waveforms.  

From the CRLB point of view, the CP-OFDMA waveform has a slightly better accuracy 

than the other two. This is shown in the Figure 17. 

 

 

Figure 17. a) CRLB for a wide range of SNR values for the three waveforms b) 

zoomed look of the CRLB in a small range of SNR values 

With the second simulation, the performance of the different waveforms for different 

distances between the transmitter and the receiver was analyzed. For that, the estimated 

distance is computed based on the correlation between the incoming signal and a refer-

ence OFDM waveform. The results are shown in Figure 18. Several modulation orders, 

from 4-QAM till 64-QAM, were used in conjunction with the 5G OFDM waveforms. 
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As it is shown in the Figure 18, there is no influence of the user modulation order on the 

performance of the distance estimation. For the same 5G waveform, the same result has 

been achieved independently on the QAM modulation order that was used. 

 

Figure 18. a) estimated distance for a wide range of real distances values for the three 

waveforms and different modulations; b) zoomed look of the estimated distance in a 

small range of real distance values. 

Analyzing the Figure 18 closely, it seems that the waveform CP-OFDMA has the best 

accuracy of the three waveforms, as concluded also from the Figure 17. To have it 

clearer, the distance error as a function of the real distance is shown in Figure 19.This 

time, as it was previously concluded that the modulation order has no influence in the 

distance estimation, only the results relative to the modulation 4QAM are shown. 
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Figure 19. Distance error for the 3 different waveforms as a function of the distance 

between the access node and the mobile terminal. 

 

The values plotted in Figure 19 show the mean values computed over the 50 iterations. 

The obtained results show the distance error obtained after the distance estimation. Con-

sidering that for the working sampling frequency, 1.25MHz, the distance accuracy is 

about 120m, and this is the maximum values of the distance error obtained in Figure 19. 

So, if the distance between the transmitter and the receiver is below to the mentioned 

120m (the accuracy), the output of the autocorrelation function will be a delay of 0 

samples, and thus, the distance estimation will be 0m. Once the distance is bigger than 

120m, the transmitter will have 1 sample of delay, which is translated in a distance es-

timation of approximately 240m, making the distance error decrease.  

The obtained results confirm that CP-OFDMA is slightly outperforming the other two 

considered 5G waveforms, but that the differences in performance are very small. The 

mean values for the distance estimation error are 58.95m, 59.36m, and 56.1m for the 

WCP-COQAM, ZT-DFT-s-OFDMA, and CP-OFDMA, respectively. As the differences 

are of the order of cm for an error of the order of tens of meters, one could conclude that 

there is no significant difference between the three considered 5G waveforms in terms 

of positioning accuracy. 
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8.3 QoS in communications 

For the quality of service part, the performance of the different waveforms was ana-

lyzed. BER was selected as the comparative performance criterion. The results are 

shown in Figure 20,Figure 21,  and Figure 22, for three QAM modulation orders, name-

ly 4, 16, and 64, respectively. 

 

Figure 20. :a) BER for a wide range of SNR values for the three waveforms with 

modulation 4QAM; b) zoomed look of the BER in a small range of SNR values 

From the results in Figure 20, Figure 21, and Figure 22, the conclusion that can be taken 

is that, from the point of view of the QoS of a communication system, the ZT-DFT-s-

OFDMA is slightly outperforming the other two, but again the differences are not sig-

nificant  

 

Figure 21. a) BER for a wide range of SNR values for the three waveforms with 

modulation 16QAM; b) zoomed look of the BER in a small range of SNR values 
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Figure 22. a) BER for a wide range of SNR values for the three waveforms with 

modulation 64QAM; b) zoomed look of the BER in a small range of SNR values 

The difference between the use of different modulation orders is that, a higher SNR is 

needed to reach the same QoS requirement. This is shown in Figure 23, where the QoS 

of the system is shown for the different modulation orders and SNR values.  

 

Figure 23: BER performance for different modulation orders for ZT-DFT-s-OFDMA 

From the Figure 23 it can be concluded that in order to achieve the same BER perfor-

mance, the higher the modulation order, the higher the required SNR level. For exam-

ple, to obtain the same performance with 16QAM, about 7dB higher SNR is required in 
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comparison with the 4QAM modulation and about 15dB higher SNR is needed in the 

case of the 64QAM compared to 4QAM. This can be also analyzed with the other two 

waveforms, whose results are shown in the Figure 24 and Figure 25 for CP-OFDMA 

and WCP-COQAM, respectively. 

 

Figure 24: BER performance for different modulation orders for the CP-OFDMA 

 

 

Figure 25: BER performance for different modulation orders for the WCP-COQAM 
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9. CONCLUSIONS 

In this thesis, we addressed the issue of joint communication and positioning waveforms 

in 5G communications.  Three different waveforms where considered, namely WCP-

COQAM, ZT-DFT-s-OFDMA, and CP-OFDMA. In order to evaluate the positioning 

and communication targets, two channel models have been defined and implemented, 

one for outdoor scenarios, which is based on the channel model developed on the Euro-

pean METIS project, and another one for the indoor scenarios, based on the single-tap 

channel model and TUT building maps. 

With this simulation tool, the coverage areas have been studied, by visualizing with the 

help of a power map the RSS values of each point of the maps. For this purpose, the 

positions of the transmitter and the receiver have been randomly selected. The consid-

ered channel included the channel LOS delay, the path loss effects and AWGN. Future 

studies are dedicated to include multipath fading effects in each of these two channels. 

With the implemented channel, the positioning and communication performance of the 

three 5G waveforms was studied. The chosen performance criteria have been the posi-

tioning accuracy, expressed through distance-estimation error and CRLB of the distance 

estimate, and the communication QoS, expressed through BER curves.  

The results obtained from these simulations, show that the modulation order used has no 

influence in the distance estimation. With the different QAM modulations, similar re-

sults were obtained. Regarding the 5G waveform choice, we have also seen that there 

are only minor differences between the three considered waveforms both in terms of 

positioning and communication.  CP-OFDMA is slightly more accurate than the other 

two in terms of positioning performance, while the waveform with slightly better per-

formance than the other two in terms of communication performance at low SNR values 

is ZT-DFT-s-OFDMA. The obtained values here are also rather similar, with a differ-

ence of 1dB from one waveform to another to obtain the same BER value. In terms of 

communication, the change in the achievable BER with different QAM modulation or-

ders is significant, with a difference of about 7dB of SNR between the 4QAM and 

16QAM, and around 15dB between the values obtained with 4QAM and 64QAM. 

To implement the transmission, an oversampling factor of 50 has been used, in order to 

be able to increase the sampling frequency of the transmitting signal from 25.08 kHz to 

1.25MHz. The oversampling should be higher in order to obtain more accurate distance 

estimation, however due to very long simulation times and insufficient computing re-

sources, we have not studied in details the scenarios with more than 50 oversampling 
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factor. For example, with an oversampling factor 6000, more than one week of simula-

tions are needed for a reliable statistical result. 

 As mentioned in the section 6.4, the oversampled should be of around 6000 to reach to 

the sampling frequency that is desired to reach 153.6 MHz according to the [57]. With 

sampling rate, the accuracy will be reduced to 1.95m. Increasing the number of samples 

transmitted, the lower the sample duration, the bigger the number of samples sent, and 

thus, more accurate will be the position estimation.  

For future implementations, the oversampling factor can be increased to 400 or even 

more in order to obtain more suitable results. In addition, new 5G waveforms can be 

implemented, checking if the obtained results are still so close from one waveform to 

another. Also, it is possible to add new metrics to the measurements, such as, power 

efficiency or the data capacity. 

Regarding to the channel models, as it has been mentioned, the biggest problem in the 

position estimation is when the multipath occur. This can be analyzed in future projects, 

by implementing some of the solutions reported in the literature, such as the one shown 

in [54]. 

Another way of extending the results achieved in this thesis is to implement a complete 

TOA system, i.e., to implement at least four transmitters in order to have the user posi-

tion and not only the distance estimation between the transmitter and the receiver. Pro-

cessing the signals of the, at least, four transmitters the positioning accuracy will be 

improved. There is also the possibility of adding an AOA system in order to improve 

also the position accuracy. 
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