423 research outputs found

    Block Sensitivity of Minterm-Transitive Functions

    Get PDF
    Boolean functions with symmetry properties are interesting from a complexity theory perspective; extensive research has shown that these functions, if nonconstant, must have high `complexity' according to various measures. In recent work of this type, Sun gave bounds on the block sensitivity of nonconstant Boolean functions invariant under a transitive permutation group. Sun showed that all such functions satisfy bs(f) = Omega(N^{1/3}), and that there exists such a function for which bs(f) = O(N^{3/7}ln N). His example function belongs to a subclass of transitively invariant functions called the minterm-transitive functions (defined in earlier work by Chakraborty). We extend these results in two ways. First, we show that nonconstant minterm-transitive functions satisfy bs(f) = Omega(N^{3/7}). Thus Sun's example function has nearly minimal block sensitivity for this subclass. Second, we give an improved example: a minterm-transitive function for which bs(f) = O(N^{3/7}ln^{1/7}N).Comment: 10 page

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(x∧y)f(x \wedge y) and f(x⊕y)f(x\oplus y) with monotone functions ff, where ∧\wedge and ⊕\oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    Block Sensitivity versus Sensitivity

    Get PDF
    Sensitivity and block sensitivity are useful and well-studied measures of computational complexity, but in spite of their similarities, the largest possible gap between them is still unknown. Rubinstein showed that this gap must be at least quadratic, and Kenyon and Kutin showed that it is at worst exponential, but many strongly suspect that the gap is indeed quadratic, or at worst polynomial. Our work shows that for a large class of functions, which includes Rubinstein\u27s function, the quadratic gap between sensitivity and block sensitivity is the best we can possibly do

    On the Sensitivity Complexity of k-Uniform Hypergraph Properties

    Get PDF
    In this paper we investigate the sensitivity complexity of hypergraph properties. We present a k-uniform hypergraph property with sensitivity complexity O(n^{ceil(k/3)}) for any k >= 3, where n is the number of vertices. Moreover, we can do better when k = 1 (mod 3) by presenting a k-uniform hypergraph property with sensitivity O(n^{ceil(k/3)-1/2}). This result disproves a conjecture of Babai, which conjectures that the sensitivity complexity of k-uniform hypergraph properties is at least Omega(n^{k/2}). We also investigate the sensitivity complexity of other weakly symmetric functions and show that for many classes of transitive-invariant Boolean functions the minimum achievable sensitivity complexity can be O(N^{1/3}), where N is the number of variables. Finally, we give a lower bound for sensitivity of k-uniform hypergraph properties, which implies the sensitivity conjecture of k-uniform hypergraph properties for any constant k

    On the Sensitivity Conjecture for Read-k Formulas

    Get PDF
    Various combinatorial/algebraic parameters are used to quantify the complexity of a Boolean function. Among them, sensitivity is one of the simplest and block sensitivity is one of the most useful. Nisan (1989) and Nisan and Szegedy (1991) showed that block sensitivity and several other parameters, such as certificate complexity, decision tree depth, and degree over R, are all polynomially related to one another. The sensitivity conjecture states that there is also a polynomial relationship between sensitivity and block sensitivity, thus supplying the "missing link". Since its introduction in 1991, the sensitivity conjecture has remained a challenging open question in the study of Boolean functions. One natural approach is to prove it for special classes of functions. For instance, the conjecture is known to be true for monotone functions, symmetric functions, and functions describing graph properties. In this paper, we consider the conjecture for Boolean functions computable by read-k formulas. A read-k formula is a tree in which each variable appears at most k times among the leaves and has Boolean gates at its internal nodes. We show that the sensitivity conjecture holds for read-once formulas with gates computing symmetric functions. We next consider regular formulas with OR and AND gates. A formula is regular if it is a leveled tree with all gates at a given level having the same fan-in and computing the same function. We prove the sensitivity conjecture for constant depth regular read-k formulas for constant k
    • …
    corecore