
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-2010

Block Sensitivity versus Sensitivity Block Sensitivity versus Sensitivity

Karn Seth
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Seth, Karn, "Block Sensitivity versus Sensitivity" (2010). Dartmouth College Undergraduate Theses. 65.
https://digitalcommons.dartmouth.edu/senior_theses/65

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/65?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Block Sensitivity versus Sensitivity

Karn Seth
Advisor : Amit Chakrabarti

Senior Honours Thesis
Submitted to the faculty in partial fulfillment of the

requirements for a Major in Computer Science

Dartmouth Computer Science Technical Report TR2010-673

June 1, 2010

Abstract

Sensitivity and block sensitivity are useful and well-studied measures of computational complexity, but
in spite of their similarities, the largest possible gap between them is still unknown. Rubinstein showed that
this gap must be at least quadratic, and Kenyon and Kutin showed that it is at worst exponential, but many
strongly suspect that the gap is indeed quadratic, or at worst polynomial.

Our work shows that for a large class of functions, which includes Rubinstein’s function, the quadratic
gap between sensitivity and block sensitivity is the best we can possibly do.

Contents

1 Introduction 2
1.1 Boolean Functions . 2
1.2 Decision Trees . 2

2 Sensitivity and Block Sensitivity 5

3 Previous Results 7
3.1 Rubinstein’s Construction . 7
3.2 Kenyon and Kutin’s results . 8
3.3 Other results . 8

4 An Alternative Proof of Kenyon and Kutin’s result 10

5 Rubinstein’s Function is the Best in its Class 14

6 Concluding remarks 17
6.1 Discussion of results . 17
6.2 Open Problems . 17

1

Chapter 1

Introduction

The field of computational complexity is concerned with understanding how difficult functions are to com-
pute. Difficulty is generally defined in two ways: how much computational power is needed to compute a
function, and how much of the input needs to be looked at in order to determine the functions value. We will
be primarily concerned with the latter sort of difficulty. There are a variety of models used by researchers in
this field, and in this chapter we will introduce some of them.

1.1 Boolean Functions

Boolean functions are functions of the form f : {0, 1}n → {0, 1}. They serve as a simple, yet powerful class of
functions that allow us to investigate the broader field of functional complexity in a simplified environment.
We will be focusing only on Boolean functions throughout our work, and for convenience and later use, we
will define some useful notation relating to them:

For an input x ∈ {0, 1}n, we define xi to be the ith bit of the input.
We define the weight of x, written as |x|, to be the number of i such that xi is 1.
For any subset S ⊆ [n], we write 1S to denote the characteristic vector of S , defined as the vector (string)

x in {0, 1}n for which xi = 1 ⇐⇒ i ∈ S . We will sometimes abuse notation slightly, writing f (S) instead of
f (1S).

We define xS to be x ⊕ 1S , which is simply the input x with each bit in the subset S flipped. For sets
consisting of a single bit, we will shorten x{i} to xi.

Some simple examples of Boolean functions are as follows:
and: f (x) = 1 ⇐⇒ xi = 1 for all i
or: f (x) = 1 ⇐⇒ xi = 1 for at least one i
dictator: f (x) = 1 ⇐⇒ xi = 1 for a fixed particular i, the dictator.
threshold: f (x) = 1 ⇐⇒ |x| ≥ t, where t is the threshold.
With the exception of dictator, all the above functions are symmetric, meaning that the value of f (x)

depends only on |x|.

1.2 Decision Trees

Decision trees are an important and useful model of boolean functional complexity. A decision tree is an
algorithm to compute a Boolean function f : {0, 1}n → {0, 1} by making single-bit queries to the input. Each

2

Figure 1.1: A decision tree for the and function on 4 bits

x1

0 x2

0 x3

0

10

x4

query asks for the value of bit xi, with the answer to the query being the value of this bit. The algorithm is
adaptive, that is, the bit requested in the kth query may depend on the answers of the previous k − 1 queries.

The algorithm can be pictured as descending a binary tree in which the nodes are marked with indices
in [n] and the leaves are marked with either 1 or 0. We descend the tree as follows: when we reach a node
marked i, we query bit xi, taking the left branch if the query returns 0 and the right branch if it returns 1.
When we reach a leaf, we take the value of the leaf as the output of the function.

For a Boolean function f , we define its deterministic decision tree complexity D(f) to be the height of
the smallest decision tree required to compute f exactly. In other words, D(f) is the minimum number of
queries that an optimal deterministic algorithm for f needs to make, in order to be able to correctly calculate
the value of the function on all inputs in {0, 1}n. A low decision tree complexity means that we need need
to examine only a small portion of the input bits in order to correctly determine the functions value on that
input.

The decision tree complexity of some simple functions is easy to determine. Consider dictator, which
has value 1 if and only if the ith bit of the input is 1. This function can be computed by a decision tree that
has a single node. That node queries bit i and has a 1-leaf as its right child, a 0-leaf as its left child. Since
this tree has depth 1, D(dictator) = 1.

Now consider the and function on n bits, where f(x) = 1 if and only if all n bits of the input are 1. We will
see that any decision tree for this function must have depth n. Let T be any decision tree for and. Starting
at the root of T and taking the right-hand-side branch at each node (as we would if the input consisted of
all 1s), let S ⊆ [n] be the set of indices encountered at the query nodes along the way. Suppose i ∈ [n] is
not in S , and let x = 1[n], y = 1[n]−{i}. Then, since x and y agree at every bit except the ith, T will drive y
to the same leaf as x, namely the rightmost one, thus returning the same output for both of them. However,
f (x) = 1 and f (y) = 0, thus one of these answers must be incorrect. Hence our assumption that there is
an i < S must be false, and S = [n], implying that the right-most path must have at least n nodes. Hence
D(and) = n.

3

In order to better understand decision trees and decision tree complexity, a variety of related measures
have been defined and studied. These include certificate complexity, sensitivity, block sensitivity, the degree
of the representing polynomial, and the degree of an approximating polynomial. In addition, there are vari-
ants of decision trees, namely randomized and quantum decision trees. We are interested in two measures
in particular : sensitivity and block sensitivity. A full introduction to these measures can be found in [2].

4

Chapter 2

Sensitivity and Block Sensitivity

Definition 2.1. We define the sensitivity sx(f) of f on input x to be the number of i ∈ [n] such that f (x) ,
f (xi). The overall sensitivity s(f) of f is the maximum of sx(f) over all x.

In other words, sx(f) is the number of bits of x which, if flipped, would change the value of f(x). The
sensitivity of a function can vary over different inputs, sometimes quite dramatically.Taking OR for example,
we note that the input x =

−→
0 has sensitivity n, because f (x) = 0, while f (xi) = 1 for all i. However, the input

xi has a sensitivity of just 1, because flipping any bit x j such that j , i doesn’t alter the function’s value.

Definition 2.2. The block sensitivity bsx(f) of f on x is the maximum number t such that there is collection
B = {B1, . . . , Bt} of disjoint subsets of [n] with f (x) , f (xBi) for all i ∈ [t]. B is said to be a sensitive block
decomposition of f at x. The overall block sensitivity bs(f) of f is the maximum of bsx(f) over all x.

Note that sensitivity is just a special case of block sensitivity, where the block sizes are restricted to 1.
Thus sensitivity is a lower bound for block sensitivity.

There can be a significant gap between sensitivity and block sensitivity on particular inputs. Take f to
be the threshold function, for example, with the threshold set to 2. Then for the input x =

−→
0 , we can create

the sensitive block decomposition B = {B1, . . . , Bbn/2c}, where each Bi = {2i − 1, 2i}. Thus bsx(f) = bn/2c.
However, sx(f) = 0 because there is no single-bit flip that can change the weight of the input from 0 to
2. However, if we consider instead the input y = xi for any i, then the sensitivity becomes n − 1, because
f (y) , f (y j) for all j , i. The block sensitivity also jumps to n − 1, since sensitivity is a lower bound for
block sensitivity. So when we consider s(f) and bs(f), we have s(f) = bs(f) = n − 1.

We do not know what is the largest possible gap between s(f) and bs(f), but Rubinstein gives a function
with bs(f) = Ω(s(f)2).

We will sometimes differentiate between s0(f) and s1(f), which are the sensitivities of the function
restricted to inputs x for which f (x) = 0 and f (x) = 1 respectively. Similarly, we can also differentiate
between bs0(f) and bs1(f).

An important fact motivating these measures is that bs(f) provides a lower bound on D(f). This can be
shown as follows: consider the input x with bsx(f) = bs(f), and let B = {B1, . . . , Bt} be its sensitive block
decomposition. Let T be a decision tree for f . Then we will show that the path that x takes as it descends T
must query at least 1 bit from each block Bi. Suppose that for some i, no bit in Bi is queried by T along the
path taken by x. Then T will drive both x and xBi to the same leaf. But because x is block sensitive to Bi,
we know that f (x) , f (xBi). Thus T returns an incorrect answer for either x or xBi . Hence T must query at
least one bit for every block in B, implying that it has depth at least |B| = bs(f). Combining this with our

5

earlier observation, we have that
s(f) ≤ bs(f) ≤ D(f)

Nisan [5] showed that D(f) can also be upper bounded by s(f) · bs(f)2. This results in the following
chain of inequalities:

s(f) ≤ bs(f) ≤ D(f) ≤ s(f) · bs(f)2 ≤ bs(f)3

6

Chapter 3

Previous Results

Over the last few decades, there has been plenty of work relating to sensitivity and block sensitivity. One of
the earliest results is Rubinstein’s construction of a function f demonstrating a quadratic gap between s(f)
and bs(f)[6]. This is the largest known gap between these two measures.

3.1 Rubinstein’s Construction

First we define the function f on 2
√

n bits, with f (x) = 1 ⇐⇒ x2i = 1 and x2i−1 are both 1 for some
i ∈ [

√
n], and all other bits are 0. Then we define another function g which takes as its input the values of

√
n copies of f , and applies the OR function. The result is a tiered function F on 2n bits that has bs(f) = n

on the input ~0, with blocks Bi = {x2i, x2i−1} for all i ∈ [n].
To compute s(f), we consider first s0(F) and then s1(F). For s0(F), we look at inputs where the function

value is 0, but can be made 1 by turning on a single bit. This means that none of the outputs of the f s can
be 1, but all of them could potentially be made 1 with a single bit change. This means they must have either
a single bit on (in which case we can turn on its neighbour), or have 2 neighbouring bits on and some third
bit on (in which case we can turn off the third bit). In either case, we can have at most a single sensitive bit
for each copy of f , and so s0(F) =

√
n.

For s1(F), we look at inputs where the value of F is 1, meaning that at least 1 copy of f must have value
1. But if 2 or more f s have value 1, then they can’t all be made 0 in a single bit flip. This means that if
an input to F with value 1 can be made 0 in a single bit flip, then it must have exactly one f with output 1.
Then to change F to 0, we can simply flip any of the 2

√
n inputs to the active f , and this will ruin the pattern

Figure 3.1: Rubenstein’s function in tree form.

g

f f f f f.............

7

going into that f , making its output a 0. Thus s1(f) = 2
√

n.
For this function, bs(F) ≥ s(F)2, meaning that the gap between sensitivity and block sensitivity is

quadratic.
Note that this function can be visualized as a 2-level tree, where the top level is the function g, the nodes

in the middle level are the copies of f , and the leaves are the 2-bit blocks. It is a natural question whether
tweaking some part of this construction can improve the quadratic gap. There are three obvious changes that
can be made: changing the functions f and g, increasing the number of levels in the tree, or changing the
size of the blocks. We will show later on that changing any or all of these factors does not improve this gap.

3.2 Kenyon and Kutin’s results

Kenyon and Kutin[4] showed that for a function with high block-sensitivity, where the blocks are each of
size c or smaller for some constant c, s(f) = Ω(bs(f)1/c). A corollary of this fact is that when bs(f) = Ω(n),
s(f) must be polynomially related to bs(f). We will present an alternate version of their proof in a later
section.

The fact that the quality of the bound deteriorates as we increase the size of the blocks suggests that we
may be able to create a function that uses block sizes larger than 2 to create a superquadratic gap. In fact,
our alternative proof of Kenyon and Kutin’s result suggests a way to create such a function. However, we
will prove later that all such efforts will have holes, and will not help us increase the quadratic gap.

3.3 Other results

The results discussed in this section, while not directly relevant to our results, are still interesting because
they show the approach others have taken to studying sensitivity and block sensitivity.

The first of these results is a simple one showing that all non-constant symmetric functions have s(f) ≥
n/2. Recall that a symmetric function is one that depends only on the value of |x|. Since the function is
nonconstant, that means for some two different inputs x and y, f (x) = 0 and f (y) = 1. To show the lower
bound, we argue as follows:

Suppose, without loss of generality, that |x| < |y|. Then we can increase the weight of x by flipping single
0-bits to 1, until eventually we encounter an input x′ with weight t and f (x′) = 0, such flipping a single bit
in x′ from 0 to 1 to get y′ with weight t + 1 gives f (y′) = 1. If |x′| < bn/2c, then there are at least dn/2e
places to flip a zero to a one, changing the function value from 0 to 1. Alternatively, if |x′| ≥ bn/2c, then
y′ has at least dn/2e places to flip a one to a zero, changing the function value from 1 to 0. One of the two
cases holds, so s(f) ≥ dn/2e.

The above notion of symmetry is quite strong, and there are a variety of weaker notions of symmetry
that have also been studied for their sensitivity. It appears in general that functions with a high degree of
symmetry must have a high sensitivity. Some of the notions of symmetry studied are as follows:

Definition 3.1. A boolean function f :
(
V
2

)
→ {0, 1} is a graph property if each bit is in the input is associated

with an edge of a graph on V vertices, with xi = 1 ⇐⇒ the edge associated with xi is present in the graph.
Additionally, f (x) = 1 if and only if the underlying graph has a particular property that is invariant under
graph isomorphism.

Definition 3.2. A boolean function f : {0, 1}n → {0, 1} is cyclically invariant if for all x = x1x2x3 . . . xn,
f (x1, x2, . . . , xn) = f (x2, x3, . . . , xn, x1)

8

Definition 3.3. A group of permutations on [n] is a set of permutations on n bits that is closed under
composition and taking inverses. A group of permutations G is said to be transitive if for every pair of
indices i, j ∈ [n], there exists a permutation π ∈ G such that π(i) = j.

Definition 3.4. A function f : {0, 1}n → {0, 1} is said to be weakly symmetric if it is invariant under the
action of a transitive group of permutations G, that is, for every input x, f (π(x)) = f (x) for every permutation
π ∈ G.

Turán[8] showed that all graph properties have s(f) = Ω(
√

n). He conjectured that a similar bound
holds in the case of all weakly symmetric functions. Kenyon and Kutin[4] made a similar conjecture, that
s0(f) · s1(f) = Ω(n) for all weakly symmetric functions.

Chakraborty[1] gave counterexamples to both these conjectures. He gave a cyclically invariant function
with s(f) = Θ(n1/3). (Note that all cyclically invariant functions are also weakly symmetric.) He also gave
an example of a weakly symmetric function with s0(f) · s1(f) = Θ(

√
n). In order to do so, he defined two

new classes of functions, minterm-cyclic functions (which are cyclically intransitive) and minterm-transitive
functions (which are weakly symmetric).

He also showed that for these classes of functions, s(f) = Ω(n1/3), and that the gap between bs(f) and
s(f) is at most quadratic. Sun[7] showed that all weakly symmetric functions have bs(f) = Ω(n1/3), while
in the special case of minterm-transitive functions, Drucker[3] gave a lower bound of Ω(n3/7) for block
sensitivity, also making an improvement to a function of Sun’s which made this lower bound almost tight.

9

Chapter 4

An Alternative Proof of Kenyon and Kutin’s
result

First, we reprove Kenyon and Kutin’s result showing that if bs(f) = Kn, then s(f) = Ω(nK/2) [4]. Our
strategy will be to take the highly block-sensitive input, and turn on a single bit in a large number of different
blocks, in such a way that the function remains block-sensitive to the remaining bits in those blocks. The
resulting input will now have a high block sensitivity, but with blocks of size one less than the original input.
We repeat this process, continually reducing the size of the blocks, until we an input with a large number of
blocks of size 1, meaning that this input will have high single-bit sensitivity.

The lemma that follows shows that we can perform the first step, that is, turn on a large number of bits
in different blocks, such that the resulting input is still block-sensitive to the remaining bits in those blocks.

Lemma 4.1. Suppose that the Boolean function f : {0, 1}n → {0, 1} has sensitivity s(f), and has a sensitive
block decomposition {B1, . . . , Bt}, at a certain input a, consisting of t blocks, each of size c or less, c ≥ 2.
Then there exists an input a′ such that f has a sensitive block decomposition at a′ consisting of t

8s(f) blocks,
each of size c − 1 or less.

Proof. We will begin by replacing f with the function x 7→ f (x⊕ a)⊕ f (a).This has the effect of shifting the
block-sensitive input from a to ~0, and also ensures that f (~0) = 0. The remaining structure of the function
is unchanged. Further, for convenience, we renumber the inputs to f , moving all the blocks of size c to the
front, so that we may assume that B1, . . . Br consist of blocks of size c, while Br+1, . . . , Bt consist of blocks
of size c − 1 or less, and further, that the blocks of size c each have Bi = {i, i + r, . . . , i + r(c − 1)} for each
i ∈ [r]. This means putting all the first bits of each block together at the front, followed by all the second
bits, and so forth. (This is simply for notational convenience).

Then, using set notation, we have

f (∅) = 0 and f (Bi) = 1 ∀ i ∈ [t] . (4.1)

For each i ∈ [r], we define Bi
′ to be all the bits in Bi except the very first.

Bi
′ := {i + r, . . . , i + r(c − 1)}

Further, for each A ⊆ [r], we define JA as follows:

JA := { j ∈ [r] \ A : f (A ∪ B j) = 0}

10

We claim that there exists a “large” subset A ⊆ [r] consisting of ”first bits” of the blocks of size c, such
that satisfies the following four properties.

f (A) = 0 ; (4.2)

f (A ∪ Bi) = 1 , whenever i ∈ {r + 1, . . . , t} ; (4.3)

f (A ∪ Bi
′) = 1 , whenever i ∈ A ; (4.4)

|JA| ≤ 2 · |A| · s(f) . (4.5)

(4.2) ensures that the function value is still zero after all the bits in A have been turned on. (4.3) ensures
that the function is still block-sensitive to all the blocks of size c − 1 or fewer. (4.4) makes sure that the
input 1A is block-sensitive to the sub-block B′i for every block Bi which has its first bit included in A. Note
that each block mentioned in (4.3) and (4.4) has size c− 1 or less. Hence, if we can find an A large enough
so that |A| + (t − r) ≥ t

8·s(f) , then choosing a′ := 1A gives us the input satisfying the lemma.

To motivate (4.5), we note that in order for A to be able to grow large, there should be a large number
of bits that can potentially be added to A. Observe, however, that any bit in JA is an invalid addition to A
(because, for every j ∈ JA, A ∪ { j} violates (4.4) when i = j). Hence, the purpose of the condition in (4.5)
is to bound the size of JA, ensuring that there are a large number of potential additions to A.

We now prove that there exists an A satisfying (4.2) - (4.5) such that |A| + (t − r) ≥ t
8·s(f)

Observe that each of the above properties is satisfied for A = ∅, following from (4.1).

Suppose A is maximal satisfying the above properties, and that |A| + (t − r) < t
8·c·s(f) . We will show that

there is a bit j ∈ [r] \ A that can be added to A while still maintaining the above conditions.

Let C ⊆ [r] \ A denote the bits in [r] \ A which, if added to A, would violate (4.2), (4.3) or (4.4) (for
i , c). Note, however, that if c ∈ C violates (4.2), then f (A) = 0 but f (A ∪ c) = 1), hence f must be
sensitive to c on input 1A. But there can be at most s(f)cs that 1A can be sensitive to. Similarly, if c ∈ C
violates (4.3), then f must be sensitive to c on input 1A∪Bi for some i ∈ {r + 1, . . . , t}, and if c ∈ C violates
(4.4), then f must be sensitive to c on input 1A∪Bi for some i ∈ A. In total, there are |A|+ (t − r) + 1 ≤ t

8·c·s(f)
such inputs, and each of them can be sensitive to at most s(f) bits, it follows that

|C| ≤
t
8

As mentioned earlier, JA denotes the bits j ∈ [r] \ A that violate (4.4) for i = j. Define D as follows:

D := [r] \ (A ∪C ∪ JA)

11

Then, adding any bit from D to A would preserve (4.2), (4.3) and (4.4). Also

|D| = r − (|A| + |C| + |JA|)

= t − (|A| + (t − r) + |C| + |JA|)

≥ t −
(t
8 · s(f)

+
t
8

+ 2 ·
t

8 · s(f)
· s(f)

)
≥ t − (

t
8

+
t
8

+
t
4

)

≥ t −
t
2

=
t
2

We need to show that there is a way to choose j ∈ D so that A ∪ j satisfies (4.5). It suffices to find a j
such that it adds at most 2 · s(f) bits to JA.

What would cause a bit i ∈ [r] \ (A ∪ JA) to be added to JA? We know that this i is not already a
member of JA, hence f (A ∪ Bi) = 1. However, when j is added to A, i will be added to JA if and only if
f (A∪{ j}∪Bi) = 0. This means that the input 1A∪Bi is sensitive to the bit j. Thus, for each bit i ∈ [r]\(A∪JA),
we define:

S A(i) := { j ∈ D : f (A ∪ Bi ∪ j) = 0}

That is, S A(i) consists of all bits j that the input 1A∪Bi is sensitive to, and thus also all js such that if
j were added to A, then i would be added to JA. If we want as few bits as possible to be added to JA, we
should choose a j ∈ D such that it is in as few S A(i)s as possible. Noting that there are t S A(i)s and t/2 js in
D, and that each S A(i) can contain at most s(f) js, we can apply the pigeonhole principle to get a j that is in
at most 2 · s(f) S A(i)s.

Choosing this j means that A ∪ j satisfies all of (4.2) - (4.5). This contradicts our assumption that A is
maximal. Thus we can have A large enough so that |A| + (t − r) ≥ t

8·s(f) , which gives us the lemma.
�

We can now apply this repeatedly, continuously turning on single bits in blocks, until those blocks have
only one bit remaining in them. The function will then be sensitive to those single bits. This process is
captured in the following theorem.

Theorem 4.2. Suppose that the Boolean function f : {0, 1}n → {0, 1} has sensitivity s(f), and has a sensitive
block decomposition {B1, . . . , Bt}, at a certain input a, consisting of t blocks, each of size c or less, c ≥ 1.

Then s(f) ≥ t
1
c

8c−1 .

Proof. We will prove the theorem by induction on c.

When c = 1 each sensitive block consists of a single bit, and so sensitivity = block sensitivity = t.

Now suppose c > 1 and that s(f) < t
1
c

8c−1 . Using the lemma, we can construct an input that has a sensitive

block decomposition into ≥ t
c−1

c ·8c−2 blocks of size c-1 or less. Using the inductive hypothesis on this input,

s(f) ≥
t

1
c · 8

c−2
c−1

8c−1 >
t

1
c

8c−1 ,

contradicting our assumption that s(f) < t
1
c

8c−1 .

12

Hence the theorem holds for all c ≥ 1, and is tight at c = 1. �

From the theorem, it follows that s(f) = Ω(bs(f)1/c) when the blocks are of size c or less for some
constant c. Also, sensitivity and block sensitivity must be polynomially related when bs(f) ≥ n/c for a
constant c, because the input with block sensitivity Kn must have atleast n/2c blocks of size 2c or less.

Notice that the input we created over the induction has a tiered form, where we first turn on lots of single
bits in large blocks, then turn on more single bits in a subset of those partially filled blocks, and so on,
throwing away some blocks at each level. An immediate question is whether we can generalize Rubinstein’s
function to get an example of a function that makes this theorem ”tight”, by causing us to throw away the
maximum number of blocks at each step. (Note that Rubinstein’s function makes this theorem tight for
c = 2). However, as our next result shows, all natural extensions of Rubinstein’s function to blocks of size
greater than 2 cannot improve the gap.

13

Chapter 5

Rubinstein’s Function is the Best in its Class

Here we will show that a large class of generalizations of Rubinstein’s functions fail to create a super-
quadratic gap. We will change Rubinstein’s function in the following ways:
• by increasing the number of levels
• by allowing a more general class of functions at each level
To create a function F corresponding to a tree of functions of height h, where h is some constant, at

each level i we will use intermediate functions of the form fi : Σ
ki
i+1− > Σi. Each fi will take the output of

ki copies of fi+1 as input. The root function f1, has its output alphabet Σ1 restricted to {0, 1}, and the leaf
function fh has input alphabet {0, 1} as well. The remaining Σis can be chosen arbitrarily, as long as they are
of at most constant size. This restriction ensures that F : {0, 1}n → {0, 1}, where n = k1 · k2 · · · · · kh

We add the additional restriction that the intermediate functions fi must also be symmetric, that is, their
output is determined solely by the number of occurrences of each variable in the input, without depending
on their position. We will call these functions SSAFs, for symmetric small-alphabet functions. We will call
the function F an HSF, for hierarchically symmetric function. We will show that every HSF, consisting of
a tree with SSAFs at each level, must have s0(f) · s1(f) = Ω(n). It follows from this that s(f) = Ω(

√
n),

meaning that HSFs can’t have more than a quadratic gap between s(f) and bs(f). Our proof strategy will
be to create an input such that every level is highly sensitive, either in the 0 → 1 direction or the 1 → 0
direction.

Note that some of the kis can be constant, and can simulate blocks if fi is the weight function. Then it is
clear that Rubinstein’s function is an HSF, where f1 = OR, f2 is the function that is 1 ⇐⇒ exactly 1 input
bit is 2 and the rest are all zero, and f3 is the weight function for 2 bits.

Also, observe that cyclically invariant functions and HSFs are are distinct classes of functions. There are
some functions that are both cyclically invariant and HSFs, such as the symmetric functions. But there are
HSFs that are not cyclically invariant (for example Rubinstein’s function), and also other functions that are
cyclically invariant but cannot be decomposed into HSFs. It is the case, however, that all HSFs are weakly
symmetric.

We will now define some notions that are useful for our proof.

Definition 5.1. Two variables Ai and Bi ∈ Σi are called adjacent if there is an input x ∈ Σi+1
ki such that

fi(x) = Ai, and there is a single variable change in x that produces x′ such that fi(x′) = Bi

Definition 5.2. For two adjacent variables Ai and Bi ∈ Σi, x ∈ Σ
ki
i+1 is a highly sensitive forward interface

(HSI) from Ai to Bi if fi(x) = Ai, and there are ≥ ki
2·|Σi+1 |

places where a single variable change from Ai+1 to

14

Bi+1 will create x′ with fi(x′) = Bi. (Here, Ai+1 are Bi+1 are elements of Σi+1). We call x′ a highly sensitive
backward interface (HSBI) from Bi to Ai.

Definition 5.3. A function fi is said to have a perfect subtree from Ai to Bi with input x ∈ Σ
ki
i+1, if x is either

an HSFI or an HSBI from Ai to Bi, and if the associated variables that are to be flipped in x are Ai+1 and
Bi+1, and if i , h, then fi+1 also has a perfect subtree from Ai+1 to Bi+1.

As we see, the recursive definition of perfect subtrees means that they have either HSFIs or HSBIs at
each level.

Notice that the perfect subtree property is reflexive, that is, if fi has a perfect subtree from Ai to Bi with
input x, then fi also has a perfect subtree from Bi to Ai for some input x′. To see this, simply flip the single
variable in x that can change the output of fi from Ai to Bi, and note that if x was an HSFI, then the resulting
x′ is an HSBI and vice versa.

Definition 5.4. For every function fi, starting with fh, we define 0i to be the variable in Σi that is output by
fi on the input ~0.

0h = fh(~0)

0i = fi(0i+1
ki) for i , h

Definition 5.5. A 0-sequence for a variable Ai ∈ Σi is a sequence of variables B1
i , B

2
i , ..., B

t
i with each B j

i ∈ Σi,
B1

i = Ai and Bt
i = 0i, where each pair B j

i , B
j+1
i is adjacent.

Definition 5.6. A perfect 0-sequence for a variable Ai ∈ Σi is a 0− sequence for Ai where each pair B j
i , B j+1

i
in the sequence has a perfect subtree.

Note that if two variables Ai and Bi both have perfect 0-sequences, then we can create a perfect sequence
of adjacent variables from Ai to Bi by concatenating the perfect 0-sequence for Ai with the reverse of the
perfect 0-sequence for Bi.

Lemma 5.7. Let F be a HSF of height h with intermediate functions of the form fi : Σ
ki
i+1 → Σi+1. Then, for

all i ∈ [h], each non-trivial variable Ai ∈ Σi has a perfect 0-sequence. (A non-trivial variable Ai is one that
has at least 1 input x such that fi(x) = Ai.)

Proof. We prove the claim by induction on the level of the tree, starting from the leaves.
At level h, notice that having a perfect subtree is the same as having either a HSFI or a HSBI.
0h has a trivial perfect 0-sequence. Choose any other nontrivial variable Ah, and let x be any input to fh

yielding Ah. Then we can turn off individual bits in x until we get to ~0. We let B1
h, . . . , B

t
h be all the values

the function fh takes as we do this, in order. We claim that every pair of adjacent variables in this sequence
has either an HSFI or an HSBI. It has an HSFI if there were more than kh/2 ones in the input at the time of
the flip, because there are kh

2 choices of 1 to change to 0. Similarly, if there were fewer than kh
2 ones in the

input, we have an HSBI. Note that this argument is nearly identical to the one used to show that symmetric
functions have sensitivity ≥ n/2.

Thus, we can construct a perfect 0-sequence for every variable at level h.
At level i, assume that for the function one level lower, fi+1, every variable Ai+1 ∈ Σi + 1 has a perfect

0-sequence. Again, 0i has a perfect 0-sequence. Pick any other nontrivial variable in Σi, say Ai, and let x be
an input for it. Choose the variable with the largest number occurrences in x, call this Ai+1. Then there are at
least ki

|Σi+1 |
variables with value Ai+1. Suppose B1

i+1, . . . , B
t
i+1 is the 0-sequence for Ai+1. Then change every

occurrence of Ai+1 to B2
i+1, one variable at a time. Then change every occurrence of B2

i+1 to B3
i+1, and so

on, following the perfect 0-sequence for Ai+1, until each of these variables has been turned into 0i+1. Then

15

there are at least ki
|Σi+1 |

such variables. Turn each occurrence of 0i+1 into the variable with the second-highest
frequency in the input, following the reverse of the perfect 0-sequence for that variable. Now there are at
least ki

|Σi+1 |
variables of this type. Repeat this process, moving to 0i+1 and back to the variable with the next

highest number of occurrences each time, until the entire input consists of a single variable. Finally, change
every input variable to 0i+1. Now the output of fi is 0i. Let the perfect 0-sequence for Ai be the values that
fi takes as we perform this process, in order.

To see that this is indeed a perfect 0-sequence, note that for every change between B j
i and B j+1

i in this
sequence, where we let the variable changed from be Ai+1, the variable being changed to be Bi+1, and the
input being changed from be x, we have that x must be either a HSFI or a HSBI from B j

i to B j+1
i . This is

because, by our ordering, there were at least ki
|Σi+1 |

copies of Ai+1 before we changed a single Ai+1 to a Bi+1,
and so at x, at least one of Ai+1 and Bi+1 appears ≥ ki

2·|Σi+1 |
times. If it is Ai+1, then x must be a HSFI, and

if it is Bi+1, then x is a HSBI. Further, because Ai+1 and Bi+1 are neighbours in a perfect 0-sequence, we
know that Ai+1 and Bi+1 must have a perfect subtree. It follows that B j

i and B j+1
i also have a perfect subtree,

with input x. Since this holds for all pairs B j
i and B j+1

i , the sequence is in fact a perfect 0-sequence. This
completes the inductive step.

Hence, all nontrivial variables in a HSF have a perfect 0-sequence.
�

Theorem 5.8. Let F be a nonconstant HSF of height h with intermediate functions of the form fi : Σ
ki
i+1 →

Σi+1. Then s0(F) · s1(F) = Ω(k1 · k2 · · · · · kh).

Proof. It follows easily from the lemma that there is a perfect subtree from 0 to 1 with some input x. Then
if x is a HSFI, there are k1

2·|Σ2 |
places to change some A2 to B2 to flip the function value from 0 to 1. If x is a

HSBI there may be at most 1 place to make such a change. Now look at each such A2 where we can make
such a change to B2. We know that there must be a perfect subtree from A2 to B2, with an input that is either
a HSFI or a HSBI. As for level 1, if it is a HSFI, there are at least k2

2·|Σ3 |
places to make a change in it to flip

the output of f2 from A2 to B2, whereas if it is a HSBI there may be at most 1 place to make such a change.
Continuing in this fashion all the way to the leaves, we see that if S ⊆ [h] is the subset of levels where the
flip in variables is in the HSFI direction, then we have

∏
i∈S

ki
2·|Σi+1 |

bits that can be flipped at the lowest level
to flip the function from 0 to 1, that is, s0(f) ≥

∏
i∈S

ki
2·|Σi+1 |

sensitive bits.
Now consider the input we get with a single sensitive bit flipped, so that F is 1, and can be changed to

0 in a single bit flip. Since the perfect subtree property is transitive, there is still a perfect subtree from 0
to 1. We can make the same argument as we did in the first case in this case as well, except observe that
everywhere we could change Ais to Bis in the first case, we must now change Bis to Ais. This means that all
the levels that had HSFIs in the first case are HSBIs in this case, and vice versa. If we go all the way down
the tree as we did in the first case, we get that s1(f) ≥

∏
i<S

ki
2·|Σi+1 |

.
Taking both equations together, we have that s0(F) · s1(F) = Ω(k1 · k2 · · · · · kh) = Ω(n).

�

16

Chapter 6

Concluding remarks

6.1 Discussion of results

Our results relate well to previous work in the field. Kenyon and Kutin conjectured that for ”nice” functions,
s0(f) · s1(f) = Ω(n). They were vague as to what was meant by ”nice”, but our results show that this exact
bound holds for a large class of generalizations of Rubinstein’s function.

It remains open whether a superquadratic gap between sensitivity and block sensitivity is possible, but
our work suggests that any function that creates such a gap must be significantly different from Rubinstein’s
function, and, arguably, more complex than it.

6.2 Open Problems

There are several improvements to our theorem that appear possible. One is to remove the restriction that
the intermediate alphabets Σi of HSFs be of at most constant size. We suspect that such an improvement
may be possible.

The most significant open problem is the same one we introduced at the very start, namely what the
largest possible gap between sensitivity and block sensitivity. We have provided a partial answer, but we
feel the question is still quite open.

17

Bibliography

[1] S. Chakraborty. On the Sensitivity of Cyclically-Invariant Boolean Functions. ECCC Report No. TR05-
020.

[2] H. Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a survey, Theo-
retical Computer Science, Volume 288, Number 1, 9 October 2002 , pp. 21-43(23)

[3] Andrew Drucker. Block Sensitivity of Minterm-Transitive Functions

[4] Claire Kenyon and Samuel Kutin. Sensitivity, block sensitivity, and l-block sensitivity of Boolean func-
tions. Information and Computation, vol 189 (2004), no. 1, 43-53.

[5] Noam Nisan. CREW PRAMs and decision trees. SIAM J. Comput. 20 (1991), no. 6, 999-1070.

[6] David Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinatorica 15 (1995), no.
2, 297-299.

[7] Xiaoming Sun. Block sensitivity of weakly symmetric functions. Theor. Comput. Sci. , 384(1):8791,
2007.

[8] György Turán. The critical complexity of graph properties. Inf. Process. Lett., 18(3):151153, 1984.

18

	Block Sensitivity versus Sensitivity
	Recommended Citation

	Introduction
	Boolean Functions
	Decision Trees

	Sensitivity and Block Sensitivity
	Previous Results
	Rubinstein's Construction
	Kenyon and Kutin's results
	Other results

	An Alternative Proof of Kenyon and Kutin's result
	Rubinstein's Function is the Best in its Class
	Concluding remarks
	Discussion of results
	Open Problems

