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Abstract
Various combinatorial/algebraic parameters are used to quantify the complexity of a Boolean

function. Among them, sensitivity is one of the simplest and block sensitivity is one of the most
useful. Nisan (1989) and Nisan and Szegedy (1991) showed that block sensitivity and several
other parameters, such as certificate complexity, decision tree depth, and degree over R, are
all polynomially related to one another. The sensitivity conjecture states that there is also a
polynomial relationship between sensitivity and block sensitivity, thus supplying the “missing
link”.

Since its introduction in 1991, the sensitivity conjecture has remained a challenging open
question in the study of Boolean functions. One natural approach is to prove it for special
classes of functions. For instance, the conjecture is known to be true for monotone functions,
symmetric functions, and functions describing graph properties.

In this paper, we consider the conjecture for Boolean functions computable by read-k formulas.
A read-k formula is a tree in which each variable appears at most k times among the leaves and
has Boolean gates at its internal nodes. We show that the sensitivity conjecture holds for read-
once formulas with gates computing symmetric functions. We next consider regular formulas
with OR and AND gates. A formula is regular if it is a leveled tree with all gates at a given level
having the same fan-in and computing the same function. We prove the sensitivity conjecture
for constant depth regular read-k formulas for constant k.

1998 ACM Subject Classification F.1.3 Relations among complexity measures

Keywords and phrases sensitivity conjecture, read-k formulas, analysis of Boolean functions

Digital Object Identifier 10.4230/LIPIcs.MFCS.2016.16

1 Introduction

Sensitivity and block sensitivity are two important complexity parameters of Boolean func-
tions. The sensitivity conjecture states that these two parameters are polynomially related.
A long-standing open question is to prove (or disprove) this conjecture. In this paper, we
prove the conjecture for several subclasses of functions computable by read-k formulas.

The sensitivity s(f) of a Boolean function f is the maximum (over all inputs) number
of coordinate dimensions along which the value of the function changes. This notion was
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first introduced by Cook et al. [9] to prove lower bounds on the parallel complexity (in the
CREW PRAM model) of Boolean functions. Nisan [16] introduced the more general defini-
tion of block sensitivity. The block sensitivity bs(f) of a Boolean function f is the maximum
(again, over all inputs) number of disjoint subsets of coordinate dimensions such that flip-
ping all values of a given input in any of these subsets results in flipping the value of the
function. Nisan proved that block sensitivity asymptotically captures the CREW PRAM
complexity of all Boolean functions. Remarkably, Nisan also showed that several other com-
plexity parameters of Boolean functions such as certificate complexity, decision tree depth,
and randomized decision tree depth are polynomially related to block sensitivity. Subse-
quently, Nisan and Szegedy [17] showed that block sensitivity and degree of polynomials
(approximately) representing a Boolean function over R are polynomially related.

Hence, a number of combinatorial/algebraic parameters describing complexity of Boolean
functions are all polynomially related to each other, but sensitivity has so far resisted such
a polynomial equivalence with any of these other parameters. In fact, Nisan and Szegedy
posed this as the sensitivity vs. block sensitivity question and since then, this question has
come to be known as the “sensitivity conjecture”. More than two decades later, proving (or
disproving) this conjecture still remains a foundational challenge in the study of Boolean
functions. In recent times, this quest has become even more intriguing as other complexity
parameters such as quantum query complexity (both exact and two-sided error versions)
have been shown to be polynomially related to block sensitivity [5, 7]. At the same time,
the sensitivity conjecture has been shown to be related to a number of other conjectures
and open questions in Boolean function complexity, as illustrated in the survey [13].

The best known universal (applicable to all functions) upper bound on block sensitivity
remains exponential in sensitivity [19] (see [14], [3], [21] for more refined upper bounds).
In the other direction, Rubinstein [18] gives an example function where the gap between
sensitivity and block sensitivity is quadratic (see [4] and references therein for improvements
in constants). Thus the challenge is to close this gap between quadratic and exponential
relations between block sensitivity and sensitivity.

Several approaches have been proposed in the literature to attack the sensitivity conjec-
ture. Gotsman and Linial [12] showed that the degree vs. sensitivity problem is equivalent
to a combinatorial problem on the maximum degree of induced subgraphs of the Boolean
cube. Aaronson [1] (see also [6]) stated a problem about certain two-colorings of the in-
teger lattice whose solution would imply the sensitivity conjecture. Recently, Gilmer et
al. [10] formulated an approach to the degree vs. sensitivity problem using lower bounds
on a two-party communication game. Even more recently, Gopalan et al. [11] prove an
`2-approximate version of the degree vs. sensitivity conjecture (the original one needs an
`∞-approximation). They also formulate the notion of tree sensitivity and a robust analog
of the degree vs. sensitivity conjecture.

To make progress on our understanding of this problem, researchers also studied the
conjecture on special classes of Boolean functions. It is trivial to see that the conjecture
holds for monotone functions and symmetric functions. A natural question, then, is if the
sensitivity conjecture holds when the function is invariant under other groups of symme-
tries. Turán [22] proved that for Boolean functions that describe graph properties (edges
are the Boolean variables) sensitivity is Ω(

√
n) and hence the conjecture holds for graph

properties. Chakraborty [8] studied minterm-transitive Boolean functions and showed that
for such functions sensitivity is Ω(n1/3), thus showing the conjecture for this class of func-
tions. Sun [20] studied block sensitivity for Boolean functions invariant under any transitive
permutation group and showed that such functions must have block sensitivity Ω(n1/3).
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Our Results: We prove the sensitivity conjecture for another restricted class of Boolean
functions, namely certain functions computed by read-k formulas. A read-k formula is a
tree whose internal nodes are Boolean gates, e.g., AND and OR, and leaves are literals of
input variables with the restriction that each variable (as negated or non-negated literal)
appears at most k times among the leaves. Such a formula computes a Boolean function in
a natural way from the leaves to the root. A formula is called regular if all gates at a given
depth are the same type and have the same fan-in.

In what follows, we will mainly focus on formulas composed of OR and AND gates. In
particular we show that the sensitivity conjecture is true for read-logn regular formulas
whose bottom fanins are sufficiently large.

I Theorem 1. Regular read-logn with large bottom fanin. Let f be a Boolean func-
tion, dependent on n variables, computed by a regular read-(logn) formula with bottom fan-
in at least log2 n. Then s(f) ≥ Ω̃

(
bs(f)1/4), where the Ω̃ notation hides some logarithmic

terms.

We would like to remove the condition on the bottom fanin. We succeed in doing so
when the read and depth of the formula are constants.

I Theorem 2. Regular read-constant and constant depth. Let f be computed by a
regular read-k formula of depth-d for constants k and d such that all internal gates compute
non-constant AND-OR functions. Then s(f) = Ωk,d(

√
bs(f)), where the hidden constant is

a (rapidly decreasing) function of k and d.

We present our main results (Theorem 1 and 2) on regular read-k formulas with AND
and OR gates in Section 4. A crucial ingredient of our proofs is an application of the Lovász
Local Lemma (LLL) to show that some literals can be assumed to occur in their positive
form in such a formula without increasing the function’s sensitivity and ensuring that any
satisfying assignment of such a formula must have a large Hamming weight. However, in
order to apply LLL, we need the bottom fan-in of such formulas to be large enough. So,
we first prove the conjecture for formulas with large bottom fan-in. We then remove the
restriction on the bottom fan-in by switching AND’s of OR’s to OR’s of AND’s (or vice
versa). The idea is that if the formula is sufficiently large and the depth small, there has to
be a layer L with large fanin. Then, by switching, we expand the layers under L and put L
close to the bottom.

When specialized to read-once formulas with symmetric gates or to read-k DNF’s our
lower bounds on regular read-k formulas yield better dependence on k.

I Theorem 3. Read-once with symmetric gates. Let f be a Boolean function dependent
on n variables and computed by a read-once formula with symmetric gates. Then, s(f) ≥

√
n.

We note that Hiroki Morizumi [15] proved a similar lower bound for read-once AND-OR
formulas.

I Theorem 4. Read-k DNF. Let f be a Boolean formula dependent on n variables and
computed by a read-k DNF. Then s(f) ≥ n1/3/(k + 2). In particular, if k ≤ n 1

3−ε − 2, then
s(f) ≥ nε ≥ bs(f)ε.

Our proof of the conjecture for read-once formulas with symmetric gates appears in
Section 3. The results on DNF’s appear in Section 5.

MFCS 2016
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2 Notations and Preliminaries

In this paper, log will always denote the logarithm to base two.
We will always assume that f is a Boolean function on n variables and moreover that it
depends on all its variables.

2.1 Measures on Boolean functions
Let f : {0, 1}n → {0, 1} be a Boolean function. For x ∈ {0, 1}n and S ⊆ [n], we denote
by xS the vector obtained by flipping all the coordinates on x in S. For x ∈ {0, 1}n and
z ∈ {0, 1}, we denote by |x|z the number of coordinates of x with the value z.

I Definition 5. Sensitivity:
The sensitivity of f at x is defined as the number of coordinates of x, which when flipped,
will flip the value of f : s(f, x) := |{i ∈ [n] : f(x) 6= f(xi)}|.
For z ∈ {0, 1}, the z-sensitivity of f is defined as the maximum sensitivity of f at an
input in f−1(z): sz(f) := max{s(f, x) : f(x) = z}.
Finally, the sensitivity of f is the maximum sensitivity of f among all inputs: s(f) :=
max{s(f, x) : x ∈ {0, 1}n} = max{s0(f), s1(f)}.

I Definition 6. The block sensitivity of f at x, denoted bs(f, x) is the maximum number of
disjoint subsets S1, . . . , Sb of [n] such that for every i, f(x) 6= f(xSi). The z-block sensitivity
and block sensitivity of f are defined similar to the case of sensitivity. In particular, bs(f) :=
max{bs(f, x) : x ∈ {0, 1}n}.

I Definition 7. A certificate of f on x is a subset S ⊆ [n] such that f(y) = f(x) whenever
yi = xi,∀i ∈ S. The size of the certificate S is |S|.

The certificate complexity of f on x denoted by C(f, x) is the size of a smallest certificate
of f on x. The certificate complexity of f denoted by C(f) is maxx C(f, x). For z ∈ {0, 1},
the z-certificate complexity of f denoted by Cz(f), is maxx∈f−1(z) C(f, x).

We will use the following known results.

I Lemma 8. For any Boolean function f and z ∈ {0, 1}, Cz(f) ≥ bsz(f) ≥ sz(f).

The first inequality above is from [16] and the second inequality is obvious from definitions.

I Theorem 9 ([4]). For any Boolean function f and z ∈ {0, 1}, Cz(f) ≥ 3bs1−z(f)
2s1−z(f) −

1
2 .

2.2 Formulas
I Definition 10. Regular Read-k Formulas:

A formula C is said to be (a1, . . . , ad)-regular if it is a layered tree of depth d whose
leaves are input variables or their negations and all internal nodes at a given layer i,
1 ≤ i ≤ d, are gates of the same kind and the same fanin ai. The layers are numbered
1 through d+ 1 from the root (output) to the leaves (inputs). We will often denote the
gates at the layer d by bottom gates. In this paper, we only consider both formulas of
alternating layers of AND and OR gates (we could start at the root with either gate and
then alternate) and formulas with symmetric gates.
A formula is read-k if each variable (either in its negated or non-negated form) appears
at most k times among its leaves.
One can argue that by replicating the arguments, we can always assume that the for-
mula is in regular form. However, this idea does not work here because by doing this
transformation, we would increase the read-multiplicity of the formula.
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2.3 Lovász local lemma
We will make use of the Lovász Local Lemmas:

I Lemma 11. [The Lovász Local Lemma: Symmetric Case] Let A1, . . . , An be events in an
arbitrary probability space. Suppose that each event Ai is mutually independent of a set of
all the other events Aj but at most d and that Pr[Ai] ≤ p for all 1 ≤ i ≤ n.

If ep(d+ 1) < 1, then Pr
[⋂

Ai
]
> 0.

We will also use the general version of this lemma. Both versions can be found, e.g.,
in [2].

3 Read-once formulas with symmetric gates

In this section, we prove the sensitivity conjecture for read-once formulas with symmetric
gates. The read-multiplicity is more restrictive than the model we will consider later but
the gates we allow are more powerful.

I Definition 12. Let g be a non-constant symmetric function on m inputs. We define τ(g)
to be the minimal weight of an input x ∈ {0, 1}m such that g(x) 6= g(~0):

τ(g) := min
{
i | |x|1 = i =⇒ g(x) 6= g(~0)

}
.

I Theorem 13. Let f be a Boolean function computed by a read-once formula C with sym-
metric gates. Then, s0(f)s1(f) ≥ n.

Proof. We prove it by induction on the depth of the formula C. If the depth of the formula
is 1, then f is a symmetric function on n variables.

Let z = f(~0) and t := τ(f). By Definition 12, when |x|1 = t − 1, f(x) = z and when
|y|1 = t, f(y) = 1 − z. It follows immediately that sz(f, x) ≥ n − t + 1 and s1−z(f, y) ≥ t.
So s0(f)s1(f) ≥ t(n− t+ 1) ≥ n.

Now assume that the theorem is true for all depths ≤ d. We prove it for depth d+ 1.
So f = h(g1, . . . , gm), where h is symmetric and each gi is computed by a read-once

formula with symmetric gates, of depth at most d. Let every gi be a function on ni variables
with ai = s0(gi) and bi = s1(gi). By the inductive hypothesis, we know that aibi ≥ ni. Since
n =

∑m
i=1 ni, we have that,

∑m
i=1 aibi ≥ n. Without loss of generality, we may assume that

a1 ≥ a2 ≥ . . . ≥ am and bπ(1) ≥ bπ(2) ≥ . . . ≥ bπ(m) for a suitable permutation π of [m]. Let
Aj :=

∑j
i=1 ai and Bj :=

∑j
i=1 bπ(i). Let t := τ(h) so h(x) = z for all x with |x|1 = t − 1

and h(y) = 1− z for all y with |y|1 = t.
Since the formula is read-once, the gi depend on disjoint sets of variables, and so it is

easy to see that for all S with |S| = t− 1, we can find an assignment σ to all the variables
of f such that (i) gi(σi) = 1 for exactly those i ∈ S and (ii) for i /∈ S, gi(σi) = 0 and gi has
ai = s0(gi, σi) sensitive inputs.

It follows that sz(f) ≥ max S⊆[n]
|S|=m−t+1

{
∑
i∈S ai} = Am−t+1.

Similarly, s1−z(f) ≥ maxS⊆[n]
|S|=t

{
∑
i∈S bi} = Bt.

So, s0(f)s1(f) ≥ Am−t+1Bt = (a1 + . . .+ am−t+1)(bπ(1) + . . .+ bπ(t)).
Our proof is completed by the following claim whose proof is given in the full version.

I Claim 14. For any t, 1 ≤ t ≤ m, Am−t+1Bt ≥
∑m
i=1 aibi.

We therefore conclude that s0(f)s1(f) ≥ Am−t+1Bt ≥
∑m
i=1 aibi ≥ n.

J
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I Corollary 15. Let f be a Boolean function computed by a read once formula C with
symmetric gates. Then, s(f) ≥

√
n ≥

√
bs(f).

Furthermore, this bound is tight whenever n is a perfect square. To see the tightness of
the bound, consider an OR of fan-in

√
n over

√
n disjoint AND’s on

√
n variables each. It

is easy to see that both 0-sensitivity and 1-sensitivity of this function are exactly
√
n.

4 Read-k formulas

In the following, we will only consider AND-OR formulas (with positive and negative lit-
erals). In this section, we prove the sensitivity conjecture for read-k formulas with certain
restrictions.

I Theorem 16. Let f be computed by a regular read-k formula of depth d with constants
k and d such that any internal gate computes a non-constant function. Then, s(f) =
Ωk,d(

√
bs(f)), where the hidden constant is a (rapidly decreasing) function of k and d.

We prove this theorem in two stages:
In Section 4.1, we first prove a lower bound for s(f) in terms of bs(f) when f is computed
by a read-k regular formula with large bottom fanin.
Then, in Section 4.2, we remove the condition on the bottom fanin by defining a normal
form for formulas and then reducing a formula with small bottom fanin to one in the
normal form where the previous step applies.

Notation: When C is an (a1, . . . , ad)-regular formula with AND-OR gates we will use
A(C, j) to denote the product,

A(C, j) =
∏
l∈[j]

l is a ∧-gates level

al.

As most of the times, the function A will be used on the parameters C and j = d − 2, we
will denote A(C, d− 2) by A.

4.1 Large bottom fan-in
In this section, we give a lower bound for sensitivity in terms of block sensitivity for read-k
regular formulas with large bottom fanin.

4.1.1 1-Sensitivity when bottom gates are AND gates
We will first prove a lower bound on the 1-sensitivity of such formulas. We will show
that given a formula C it is possible to get an equivalent formula C′ which has certain nice
properties. Specifically, all inputs on which C′ evaluates to 1 have large Hamming weight,
which directly implies that the 1-sensitivity for this function is large.

I Definition 17. A parse tree P of a formula C computing f is a subcircuit which is
recursively defined as follows:

The output gate of C is in P .
If an ∧-gate belongs to P then all its children are also in P .
If an ∨-gate belongs to P then exactly one of its children is in P .
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It is easy to see that f evaluates to 1 on an input x if and only if C contains a parse tree
all of whose gates evaluate to 1. A simple induction also shows that every parse tree of a
regular formula has A(C, d− 1) bottom gates.

I Definition 18. The parse-read of C is the maximum number of times any variable appears
in any parse tree.

We will now consider two models. The first model is a (natural) restriction of our model
of regular formulas: a variable can appear at most once under the same bottom gate. The
second model is the general one without this restriction.

I Lemma 19. Let (a1, . . . , ad) ∈ (N \ {0})d with ad ≥ 2 log 4k. Let f be a non-constant
function computed by an (a1, . . . , ad)-regular read-k and parse-read p formula such that the
bottom gates are ∧-gates and such that each variable appears at most once under any bottom
gate. Then

s1(f) ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.

Proof. By regularity, any bottom gate of C is the parent of ad literals. Let us group these
literals into groups of size α whose value will be chosen later. The last group will be of size
ad modulo α. So we get bad/αc groups of α literals under every bottom gate. We want to
modify C to C′ such that each group contains at least one positive literal.

Let us randomly negate each variable. Each variable is independently chosen as positive
or negative with probability 1

2 . Let Ai be the event that the i
th group has no positive literals

(where the ith group is taken over all groups under all bottom gates). So Pr [Ai] = 1
2α . Every

event Ai is dependent on at most kα other Aj ’s. Using the symmetric version of the Lovász
Local Lemma we get that, if e(kα+ 1) ≤ 2α then Pr

[⋂
Ai
]
> 0.

Notice that α = b2 log(4k)c satisfies the previous inequality for all positive integers k.
So there exists a new formula C′ such that every group will have at least one positive literal.
Let g be the function computed by C′. Note that we now have a fixed σ such that for all x,
f(x⊕ σ) = g(x).

On any input x ∈ g−1(1) we get at least one parse tree in C′ all of whose gates evaluate
to 1. Consequently, on any input x in g−1(1), there are at least A bottom ∧-gates of C′

which evaluate to 1. As each variable can appear at most p times in any parse tree, we have

that ∀x ∈ g−1(1), |x|1 ≥
⌈
A

p

⌊ad
α

⌋⌉
≥ A(ad − 2 log 4k + 1)

2p log 4k .

Taking the input x ∈ g−1(1) with least Hamming weight we get that,

s1(f, x⊕ σ) = s1(g, x) ≥ |x|1 ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.

J

It is interesting to notice that the proof can be turned into an algorithm for finding an
input which has high sensitivity given any 1-input x. Namely, one just have to run the
algorithmic version of Lovász Local Lemma to get the above bijection ⊕σ. Then find (by
flipping the 1’s from x) a locally minimal weight (under ⊕σ) assignment that still gives the
output 1.

We will now remove the condition that every variable can occur at most once under any
bottom gate. In doing so we will lose a factor of k in the lower bound while also demanding
a stronger constraint on the bottom fanin. This time around we use the general version
of the Lovász Local Lemma to transform C to C′. The rest of the proof then follows along
similar lines to the proof of Lemma 19. The proof can be found in the full version.

MFCS 2016
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I Lemma 20. Let (a1, . . . , ad) ∈ (N \ {0})d with ad ≥ k log(3k). Let f be a non-constant
function computed by an (a1, . . . , ad)-regular read-k and parse-read p formula such that the
bottom gates are ∧-gates. Then

s1(f) ≥
(
ad − k log(3k) + 1

kp log(3k)

)
A.

4.1.2 The Sensitivity Conjecture for large bottom fan-in case
We will now combine previously known results with the statements proved in the section
above to obtain some relations between sensitivity and block sensitivity.

The next lemma will help us relate the bound obtained for s1(f) to C1(f) of read-k
regular formulas. The proof follows by induction and can be found in the full version.

I Lemma 21. Let f be a Boolean function computed by an (a1, . . . , ad)-regular formula C.
Then, C1(f) ≤ A(C, d).

I Theorem 22. Let f be a non-constant Boolean formula computed by an (a1, . . . , ad)-
regular read-k formula with parse-read p such that its bottom fanin ad is larger or equal to
(3 log 4k) and such that any variable appears at most one time under each bottom gate. Then

s(f) ≥

√
bs(f)

10p log 4k .

Moreover, when a variable can occur multiple times under each bottom gate and the
bottom fan-in ad ≥ 2k log 3k, we have

s(f) ≥

√
3bs(f)

10kp log 3k .

Proof. Let us start by the first point of the theorem. By considering f or ¬f , we can assume
that the bottom layer is composed of ∧-gates. By Lemma 19, we have that,

s1(f) ≥
(
ad − 2 log 4k + 1

2p log 4k

)
A.

From Lemma 21 we have C1(f) ≤ adA. Since ad ≥ 3 log 4k, ad − 2 log 4k ≥ ad/3,

s1(f) ≥ 3A+ C1(f)
6p log 4k ≥ C1(f) + 1/2

6p log 4k .

Using Lemma 8 we get, s(f) ≥ s1(f) ≥ bs1(f)
6p log 4k . We also get by Theorem 9,

s(f)2 ≥ s1(f) · s0(f) ≥ bs0(f)
4p log 4k .

Since bs(f) = max(bs1(f),bs0(f)), 5s2 ≥ 2s2 + 3s ≥ bs0(f)
2p log 4k + bs1(f)

2p log 4k ≥
bs(f)

2p log 4k .

Consequently, s ≥

√
bs(f)

10p log 4k , proving the first part. The second part of the theorem

follows analogously using Lemma 20. J

The following corollary follows from the lower bound for sensitivity proved in [19]. A
detailed proof can be found in the full version of the paper.

I Corollary 23. Let f be a non-constant Boolean formula computed by an (a1, . . . , ad)-regular
read-(logn) formula with bottom fan-in at least log2 n. Then s(f) ≥ Ω̃

(
bs(f)1/4) where the

Ω̃ notation hides some logarithmic terms.
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4.2 Removing the condition on the bottom fan-in
In this section, we complete the proof of Theorem 16. We note that when the depth is
constant but the size of the formula is large enough, there has to be a level at which the
fanin is sufficiently large. If one of the last two fanins is large, we can apply an argument quite
similar to the one in the previous section. Otherwise, we can switch these two layers while
incurring a significant blow-up (but still only as a function of depth and read-multiplicity)
in certain circuit parameters, while reducing the depth of the circuit. We continue switching
the last two layers until one of their fanins is sufficiently large, which is ensured because the
circuit is of constant depth.

4.2.1 Normal form by switching:
For notational convenience, we number the layers of a depth-d circuit as L1, . . . , Ld with L1
being just the root (output) gate and Ld the bottom layer (with inputs feeding into them)
of gates. Also, we define the following function over N for later reference:

H(x) := 24 · (3x)2xx4 log 3x. (1)

As mentioned above, we will transform our formula into an equivalent formula where the
fanin in the last or the last but one layer is sufficiently large. Such a representation for
Boolean functions will be called a normal form:

I Definition 24. A formula is in (k; a1, . . . , ad)-normal form if the following properties hold:
1. the formula is alternating and (a1, . . . , ad)-regular, i.e., fanin of all gates in Li is ai,
2. the formula is read-k,
3. the bottom layer Ld is composed of ∧-gates,
4. at least one of the two following conditions on the fanins of the two bottom layers Ld−1

and Ld is true:
ad ≥ 2k log 3k,
under each ∨-gate in Ld−1, i.e., one layer above the bottom layer, there are at least
H(k) non-constant ∧-bottom gates.

As we will switch adjacent layers of the formula, let us start by bounding the increase
we get by such a procedure. Let the size and width of a DNF (respectively CNF) be the
fanin of its first layer and second layer respectively.

I Lemma 25. If f is a function computed by a read-k regular DNF (respectively CNF) of
size (top fanin) a and width b, then it is also computed by a read-(kb(a−1)) CNF (respectively
DNF) of size ba and width a.

Now we will focus on the last two layers we get after some number of switches in the
formula. We will recursively define certain functions Ti below. Intuitively, T1 is the fanin
of the bottom layer without any switches and Ti+2 is the fanin of the layer just above the
bottom layer after i switching steps. Note that a depth d circuit becomes a depth d − i
circuit after i switches and merges of adjacent layers (after switching) of gates of the same
type. Thus Ti+2 is the fanin of layer Ld−i−1 in the transformed circuit after i applications
of switching and merging.

Formally, the family of functions Ti : Ni → N, where i is a positive integer, is defined as
T0 = 1
T1(a) = a

Tp(a1, . . . , ap) = a1 · (Tp−2(a3, . . . , ap))Tp−1(a2,...,ap) if p ≥ 2.
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In what follows, the function Ti will almost always be evaluated on the fanins of the last
i layers of the formula. So, we will sometimes use the shorter notation Ti(a) to designate
Ti(ad−i+1, . . . , ad).

Observe that most of the non-regular formulas can be converted into a regular one by
inserting gates or subtrees of gates that compute identically constant functions. Since we
want to avoid this, we will define purely regular formulas as regular formulas in which each
internal gate computes a non-constant Boolean function.

In the next claim, we compute the parameters of our new formula after several switches.
The proof of the claim is by induction on the number of switchings i and the details can be
found in the full version of the paper.

I Claim 26. Suppose f is computed by a purely (a1, . . . , ad)-regular read-k formula. Then
for all integers i ∈ [0, d − 2], f is computable by an (a1, . . . , ad−i−2, u, v)-regular read-(
kuv/(

∏d
j=d−i−1 aj)

)
formula where

u = Ti+2(ad−i−1, . . . , ad) and v = Ti+1(ad−i, . . . , ad)

such that under any gate in layer Ld−i−1, i.e., one layer above the bottom layer of gates,
there are at least ad−i−1 non-constant bottom gates.

Recall the function H(x) from (1). We inductively define Ri(k) as{
R0(k) = R1(k) = k

Rp(k) = k
∏p−1
j=1 Tj(H(Rj−1(k)), . . . ,H(R0(k)))Tj+1(H(Rj(k)),...,H(R0(k)))−1 if p ≥ 2.

Intuitively, the Ri(k)’s bound the read value of the formula after i− 1 switches of the
bottom layers. As the functions Rp will always be used on the parameter k (the read value
of the original formula), we will usually denote Rp(k) by the simpler notation Rp.

We are now ready to prove that we can transform a sufficiently large regular formula
into a formula in normal form. Proof of the following lemma appears in the full version.

I Lemma 27. If f is computed by a purely (a1, . . . , ad)-regular read-k formula with size
larger than H(Rd) then there exists i ∈ [0, d− 2] such that either f or ¬f can be computed
by a formula in (Ri+1; a1, . . . , ad−i−2, u, v)-normal form with

u = Ti+2(ad−i−1, . . . , ad) and v = Ti+1(ad−i, . . . , ad).

Moreover,
the index i is such that for any p ≥ d− i we have ap ≤ H(Rd−p), and
under each gate in one layer above the bottom one, i.e., Ld−i−1, there are at least ad−i−1
non-constant gates, where ad−i−1 ≥ H(Ri+1).

Now since our new formula’s last or last but one fanin is sufficiently large, we can prove a
lower bound on the sensitivity as was done in Theorem 22. The sketch of the proof is similar
to the one of Theorem 22, but the fact that we now consider the last two layers (instead of
the last layer only) makes details a bit more complicated.

I Theorem 28. If f is computed by a purely (a1, . . . , ad)-regular read-k formula with size
larger than H(Rd(k)), then

s(f) ≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2 = Ωk,d(
√

bs(f)).
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Since the function Rd−1(k) only depends on d and k, Theorem 16 immediately follows.
One can notice that the hidden constant in this theorem is approximatively the inverse of

the tetration 2d−2k = kk
··
k︸︷︷︸

2d−2

.

Proof of Theorem 28. By Lemma 27, we know that f (or ¬f) can be computed by a
(k′, a1, . . . , ad′−2, u, v)-regular formula in normal form where k′ = Rd−d′+1(k). Here d′ is
the depth of the new (equivalent) formula after applying d − d′ switches and merges. If
the bottom fanin is larger than 2k′ log(3k′) (the first condition for the fanins in the normal
form) then using Theorem 22 we get that,

s(f) ≥ 1
k′

√
3bs(f)

10 log 3k′ ≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2 .

Otherwise we have that under each gate in Ld′−1, there are at least ad′−1 ≥ H(Rd−d′+1)
non-constant bottom gates.

In this case, we want to give a similar argument as in proof of Lemma 19 for the last but
one layer instead of the last layer. Hence, we would like to have ∧-gates at the last but one
layer. So we will consider (¬f) if necessary. By Lemma 27, such a bottom ∧-gate of C is
the parent of at least ad′−1 non-constant bottom ∨-gates. Let us group these non-constant
∨-gates into groups of size α = bH(k′)/2c. We now get C′ from C so that each group contains
at least one ∨-gate which has only positive literals under it. Let g be the function computed
by C′.

Using a similar argument as in proof of Lemma 19 (proved in the full version),

I Claim 29. For all x in g−1(1)

|x|1 ≥
⌈
A′

k′

⌊ad′−1

α

⌋⌉
≥ A′(2ad′−1 −H(k′) + 1)

k′H(k′) with A′ = A(C, d′ − 2).

Taking the input x ∈ g−1(1) with least Hamming weight we get that,

s1(g, x) ≥ |x|1 ≥
A′(2ad′−1 −H(k′) + 1)

k′H(k′) ≥ A′ad′−1 + 1
k′H(k′) ≥ A(C, d) + 1

k′H(k′)H(Rd−3)(d−d′+1)/2

since for any p ≥ d′ + 1 we have that ap ≤ H(Rd−p) ≤ H(Rd−3) and we only need to
consider alternate layers in the definitions of A and A′.

Since the circuit is in normal form we know that k′ ≤ Rd−d′+1(k) ≤ Rd−1(k). Using a

proof similar to Lemma 19 we get that, s(f) ≥

√
3bs(f)

5Rd−1(k)H(Rd−1(k))(d+1)/2 . J

5 Sensitivity Lower Bounds for DNFs

In this section, we get sensitivity lower bounds for functions computed by read-restricted
DNFs. A DNF is said to be minimal if no proper sub-formula of such a DNF computes the
same function.

Notation: For a DNF C let a1 denote its top fanin and a21, . . . , a2a1 its bottom fanins, with
a2 = a21 ≥ a22 ≥ . . . ≥ a2a1 .
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5.1 Regular read-k DNFs of large width
We can adapt Corollary 23 in the case where the DNF in question is regular and its width
is sufficiently large:

I Corollary 30. Let f be a Boolean function computed by a minimal regular DNF of size nc,

for some c > 0 with width larger than or equal to 6 + 3c logn. Then, s(f) ≥ bs(f)1/3

2
√

5 max(2, c)
.

5.2 Read-k DNFs of small size
In this section we will remove the constraints of regularity and large width for DNFs, thus
proving the sensitivity conjecture for all functions computed by read-k DNFs.

The first lemma ensures a lower bound on s0(f) for functions computed by read-k DNFs.
The proof can be found in the full version.

I Lemma 31. Let f be a Boolean formula computed by a minimal read-k DNF C. Then
s0(f) ≥ a1

ka2
.

The second lemma states that the sensitivity of a read-k DNF is lower bounded by a
function of its maximum bottom fanin.

I Lemma 32. Let f be a Boolean function computed by a minimal read-k DNF C.
Then s1(f) + (1 + k)s0(f) ≥ a2.

Proof. Let the bottom ∧−gates be W1, . . . ,Wa1 with fanins a2 = a21 ≥ . . . ≥ a2a1 respec-
tively. Let the variables under Wi be xi1, . . . , xia2i .

Let us define two sets:
z ∈ P1 if and only if W1(z) = 1 and for all j > 1, Wj(z) = 0,
y ∈ P2 if and only if W1(y) = 1 and y is sensitive on the variable x11.

By minimality of C, we can find an input
z0 in P1, otherwise removing the gate W1 would not modify the function,
y0 in P2, otherwise we can remove the leaf corresponding to x11 from W1.

In fact it would be great to find an input which belongs to both P1 and P2, but unfortunately,
it is not always possible. However, we show we can find such a pair (z, y) such that the
Hamming distance between them is small. The next two claims are proved in the full version.

I Claim 33. There exists a pair of inputs (z1, y1) ∈ P1×P2 such that the Hamming distance
between z1 and y1 is at most s0(f)− 1.

Let J ⊆ [2, a2] be the variables which appear under W1 and which are sensitive on z1, so
s1(f) ≥ |J |. Let J̄ = [2, a2] \ J . Hence, it is sufficient to show:

I Claim 34. s0 ≥ |J̄ | − ks0 + 1.

J

I Theorem 35. Let f be a Boolean formula computed by a read-k DNF.
Then (k + 2)s(f) ≥ n1/3. In particular, if k ≤ n 1

3−ε − 2, we get s(f) ≥ nε ≥ bs(f)ε.

Proof. Using Lemma 32 we get that, (k+2)s(f) ≥ s1(f)+(1+k)s0(f) ≥ a2. By Lemma 31
we know that, s0(f) ≥ a1

ka2
≥ n

ka2
2
. Combining these two inequalities we get,

s3(f) ≥
(

a2

k + 2

)2
n

ka2
2
≥ n

k(k + 2)2

and so (k+2)s(f) ≥ n1/3. In particular, when k+2 ≤ n 1
3−ε, we get s(f) ≥ nε ≥ bs(f)ε. J
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