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Abstract
In this paper we investigate the sensitivity complexity of hypergraph properties. We present a
k-uniform hypergraph property with sensitivity complexity O(ndk/3e) for any k ≥ 3, where n
is the number of vertices. Moreover, we can do better when k ≡ 1 (mod 3) by presenting a k-
uniform hypergraph property with sensitivity O(ndk/3e−1/2). This result disproves a conjecture of
Babai [9], which conjectures that the sensitivity complexity of k-uniform hypergraph properties
is at least Ω(nk/2). We also investigate the sensitivity complexity of other weakly symmetric
functions and show that for many classes of transitive-invariant Boolean functions the minimum
achievable sensitivity complexity can be O(N1/3), where N is the number of variables. Finally,
we give a lower bound for sensitivity of k-uniform hypergraph properties, which implies the
sensitivity conjecture of k-uniform hypergraph properties for any constant k.
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1 Introduction

In order to understand the effect of symmetry on computational complexity, especially in
the decision tree model, Boolean functions with certain symmetry have been extensively
investigated. It is observed that symmetry usually implies high complexity or makes the
problem harder in the decision tree model. An illustrative example is the well known
evasiveness conjecture, which asserts that any non-constant monotone transitive Boolean
function is evasive, and it has attracted a lot of attention [29, 13, 25, 6]. Rivest and
Vuillemin [32] showed that any non-constant monotone graph property is weakly evasive.
Kulkarni et al. [26] showed an analogous result for 3-hypergraph properties. Black [10]
extended these results to k-uniform hypergraph properties for any fixed k.

Sensitivity complexity is an important complexity measure of Boolean functions in the
decision tree model, and sensitivity complexity of Boolean functions with certain symmetry

∗ This work was supported in part by the National Natural Science Foundation of China Grant 61222202,
61433014, 61502449, 61602440, the 973 Program of China Grants No. 2016YFB1000201 and the China
National Program for support of Top-notch Young Professionals.

© Qian Li and Xiaoming Sun;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 51; pp. 51:1–51:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


51:2 On the Sensitivity Complexity of k-Uniform Hypergraph Properties

has also attracted a lot of attention. One of the most challenging problem here is whether
symmetry implies high sensitivity complexity. The famous sensitivity conjecture, which asserts
sensitivity complexity and block sensitivity are polynomially related, implies s(f) = Ω(nα) for
transitive functions with some constant α > 0 since it has been shown that bs(f) = Ω(n1/3)
for transitive functions [34]. Turan [38] initiated the study of sensitivity of graph properties
and proved that the sensitivity is greater than n/4 for any nontrivial graph property, where
n is the number of vertices, and this relation is also tight up to a constant factor. He also
pointed out that for symmetric functions, s(f) ≥ n/2 ≥ bs(f)/2. Recently the lower bound
has been improved to 6

17n by Sun [35], and further been improved to bn2 c for sufficient large
n by Karpas [24]. Gao et al. [18] investigated the sensitivity of bipartite graph properties as
well. In 2005, Chakraborty [14] constructed a minterm cyclically invariant Boolean function
whose sensitivity is Θ(n1/3), which answers Turan’s question [38] in the negative. He also
showed this bound is tight for minterm transitive functions.

For hypergraph properties, Biderman et al. [9] present a sequence of k-uniform hypergraph
properties with sensitivity Θ(

√
N), where N =

(
n
k

)
is the number of variables. Babai

conjectures that this bound is tight, i.e., s(f) = Ω(
√
N) for any nontrivial k-uniform

hypergraph property f .

Our Results. In this paper we disprove this conjecture by constructing k-uniform hypergraph
properties with sensitivity O(ndk/3e).

I Theorem 1. For any fixed k ≥ 3, there exists a sequence of k-uniform hypergraph properties
f such that s(f) = O(ndk/3e), where n is the number of vertices.

Moreover, we can give better constructions when k ≡ 1 (mod 3).

I Theorem 2. For any fixed k ≥ 4 satisfying k ≡ 1 (mod 3) , there exists a sequence of
k-uniform hypergraph properties f such that s(f) = O(ndk/3e−1/2), where n is the number of
vertices.

More generally, we also investigate the sensitivity of k-partite k-uniform hypergraph prop-
erties. Actually, the constructions of k-uniform hypergraph properties are inspired by the
constructions of k-partite k-uniform hypergraph properties.

I Theorem 3. For any k ≥ 3, there exists a sequence of k-partite k-uniform hypergraph
properties f : {0, 1}nk → {0, 1} such that s(f) = O(ndk/3e).

I Theorem 4. For any k ≥ 4 satisfying k ≡ 1 (mod 3) , there exists a sequence of k-partite
k-uniform hypergraph properties f : {0, 1}nk → {0, 1} such that s(f) = O(ndk/3e−1/2).

Let G be an Abelian group, the fundamental theorem of finite abelian groups states that
G ∼= Cm1 × · · · × Cml

, where Cm is the cyclic group of order m and |G| =
∏l
i=1 mi.

I Theorem 5. Let G ≤ Sn be a transitive Abelian group, then there exists a Boolean function
f : {0, 1}n → {0, 1} invariant under G such that s(f) ≤ αn1/3, where α is a number only
depending on l.

On the other side, Chakraborty [15] observed the following lower bound on k-uniform
hypergraph properties without showing the proof, which implies the sensitivity conjecture
of k-uniform hypergraph properties for any constant k. For the convenience of readers, the
proof will be given in the paper.

I Theorem 6. For any fixed k and any non-trivial k-uniform hypergraph property f , s(f) =
Ω(n), where n is the number of vertices.
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Similar lower bound holds for the sensitivity of k-partite k-uniform hypergraph properties.

I Theorem 7. For any fixed k and any non-trivial k-partite k-uniform hypergraph property
f , s(f) = Ω(n), where n is the number of vertices in one partition.

The sketch of the proof is as follows: we just pretend this function is a bipartite graph
property by dividing k partitions into two sets of size 1 and k − 1 respectively and then
follow the same argument in the proof of Theorem 2 in [18]. We omit the proof in this paper.

Related Work. Sensitivity complexity and block sensitivity are first introduced by Cook,
Dwork and Reischuk [16, 17] and Nisan [30] respectively, to study the time complexity of
CREW-PRAMs. Block sensitivity has been shown to be polynomially related to a number
of other complexity measures [12], such as decision tree complexity, certificate complexity,
polynomial degree and quantum query complexity, etc, except sensitivity. The famous
sensitivity conjecture, proposed by Nisan and Szegedy [31], asserts that block sensitivity
and sensitivity complexity are also polynomially related. On one side, it is easy to see
s(f) ≤ bs(f) for any Boolean function f according to the definitions. On the other side,
it is much more challenging to prove or disprove that block sensitivity is polynomially
bounded by sensitivity. Despite of a lot of effort, the best known upper bound is exponential:
bs(f) ≤ max{2s(f)−1(s(f) − 1

3 ), s(f)} [3]. Recently, He, Li and Sun further improve the
upper bound to ( 8

9 + o(1))s(f)2s(f)−1 [23]. The best known separation between sensitivity
and block sensitivity is quadratic [4]: there exists a sequence of Boolean functions f with
bs(f) = 2

3s(f)2 − 1
3s(f). For an excellent survey on the sensitivity conjecture, see [22]. For

other recent progress, see [11, 2, 1, 5, 19, 36, 20, 21, 37, 8, 28, 33, 7].

Organization. We present some preliminaries in Section 2, and give the proofs of Theorem 1
and Theorem 2 in Section 3. We give the constructions of k-partite k-uniform hypergraph
properties (Theorem 3 and 4) and the proof of Theorem 5 in Section 4 and give the proof
of Theorem 6 in Section 5. Finally, we conclude this paper with some open problems in
Section 6.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function and [n] = {1, 2, · · · , n}. For an input
x ∈ {0, 1}n and a subset B ⊆ [n], xB denotes the input obtained by flipping all the bit xj
such that j ∈ B.

I Definition 8. The sensitivity of f on input x is defined as s(f, x) := |{i|f(x) 6= f(x{i})}|.
The sensitivity, 0-sensitivity and 1-sensitivity of the function f are defined as s(f) :=
maxx s(f, x), s0(f) = maxx∈f−1(0) s(f, x) and s1(f) = maxx∈f−1(1) s(f, x) respectively.

I Definition 9. The block sensitivity bs(f, x) of f on input x is the maximum number of
disjoint subsets B1, B2, · · · , Br of [n] such that for all j ∈ [r], f(x) 6= f(xBj ). The block
sensitivity of f is defined as bs(f) = maxx bs(f, x).

I Definition 10. A partial assignment is a function p : [n]→ {0, 1, ?}. We call S = {i|pi 6= ?}
the support of this partial assignment. We define the size of p (denoted by |p|) to be |S|. We
call x a (full) assignment if x : [n] → {0, 1}. We say x is consistent with p if x|S = p, i.e.,
xi = pi for all i ∈ S.1

1 The function p can be viewed as a vector, and we sometimes use pi to represent p(i).

STACS 2017
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I Definition 11. For b ∈ {0, 1}, a b−certificate for f is a partial assignment p such that
f(x) = b whenever x is consistent with p.

The certificate complexity C(f, x) of f on input x is the minimum size of f(x)-certificate
that is consistent with x. The certificate complexity of f is C(f) = maxx C(f, x).

The 1-certificate complexity of f is C1(f) = maxx∈f−1(1) C(f, x), and similarly we define
C0(f).

According to the definitions, it’s easy to see s(f) ≤ bs(f) ≤ C(f), s0(f) ≤ C0(f) and
s1(f) ≤ C1(f).

I Definition 12. Let p and p′ be two partial assignments, the distance between p and p′ is
defined as dist(p, p′) = |{i|pi = 1 and p′i = 0, or pi = 0 and p′i = 1}|.

I Definition 13. Let f : {0, 1}n → {0, 1} be a Boolean function and G be a subgroup of Sn,
we say that f is invariant under G if f(x1, · · · , xn) = f(xσ(1), · · · , xσ(n)) for any x ∈ {0, 1}n
and any σ ∈ G.

A Boolean function f is called transitive (or weakly symmetric) if G is a transitive group2.
A Boolean function f is called symmetric if G = Sn.

I Definition 14. A Boolean function f invariant under a transitive group G is called
minterm-transitive if there exists a partial assignment p such that f(x) = 1 if and only if x
is consistent with pσ := (pσ(1), pσ(2), · · · , pσ(n)) for some σ ∈ G. We call p the minterm of f .

A Boolean string can represent a graph in the following manner: x(i,j) = 1 means there is
an edge connecting vertex i and vertex j, and xi,j = 0 means there is no such edge. Graph
properties are functions for which the value is independent with the labeling of vertices, i.e.
two isomorphic graphs have the same function value.

I Definition 15. A Boolean function f : {0, 1}(
n
2) → {0, 1} is called a graph property if for

every input x = (x(1,2), · · · , x(n−1,n)) and every permutation σ ∈ Sn,

f(x(1,2), · · · , x(n−1,n)) = f(x(σ(1),σ(2)), · · · , x(σ(n−1),σ(n))).

Similarly, we define k-uniform hypergraph properties.

I Definition 16. A Boolean function f : {0, 1}(
n
k) → {0, 1} is called a k-uniform hypergraph

property if for every input x = (x(1,2,...,k), · · · , x(n−k+1,...,n−1,n)) and every permutation
σ ∈ Sn,

f(x(1,2,...,k), · · · , x(n−k+1,...,n−1,n)) = f(x(σ(1),σ(2),...,σ(k)), · · · , x(σ(n−k+1),...,σ(n−1),σ(n))).

Let p be a partial assignment and σ ∈ Sn, we define σ(p) the induced shift of p by σ, i.e.,
σ(p)S = pσ(S) for any subset of [n] of size k S. Here σ(S) = {σ(i)|i ∈ S}.

I Definition 17. A Boolean function f : {0, 1}nk → {0, 1} is called k-partite k-uniform
hypergraph property, if for every input x = (x(1,1,··· ,1), · · · , x(n,n,··· ,n)) and every σ =
(σ1, · · · , σk) ∈ S⊗kn ,

f(x(1,1,··· ,1), · · · , x(n,n,··· ,n)) = f(x(σ1(1),··· ,σk(1)), · · · , x(σ1(n),··· ,σk(n))).

It is easy to see that any (k-partite) k-uniform hypergraph property is transitive.

2 A group G ≤ Sn is transitive if for every i < j, there exists a σ ∈ G such that σ(i) = j.
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3 k-Uniform Hypergraph Properties

In this section, we give the proofs of Theorem 1 and Theorem 2.

I Theorem 1 (restated). For any fixed k ≥ 3, there exists a sequence of k-uniform hypergraph
properties f such that s(f) = O(ndk/3e), where n is the number of vertices.

Proof. The function we construct is a minterm function. Let p be the minterm defining f ,
and it is constructed as follows:

First, let k1 and k2 be two integers such that k1 + 2k2 = k and bk/3c ≤ k1, k2 ≤ dk/3e.
Let V = {v1, · · · , vn} be the set of vertices and B = {vn, vn−1, · · · , vn−k1+1}. For each
1 ≤ i ≤ 6, let Wi = {v(i−1)k2+1, · · · , vik2}, and C =

⋃
1≤i≤6 Wi, D = V \ (C ∪B).

For any S ⊆ C of size 2k2, p(B ∪ S) = 0, except S = Wi ∪ Wi+1 for i ∈ [5] where
p(B ∪ S) = 1.
For any S of size 2k2 and k2 ≤ |S ∩C| < 2k2, p(B ∪ S) = 1, except W3 or W4 ⊆ S where
p(B ∪ S) = 0.
All the other variables are ?.

If f(x) = 1 then x is consistent with some σ(p), which implies C(f, x) ≤ |p|. Thus
s1(f) ≤ C1(f) ≤ |p| =

∑2k2
i=k2

(6k2
i

)(
n−6k2−k1

2k2−i
)

= O(nk2). If f(x) = 0, then s(f, x) is at most
the number of shifts of p (i.e., σ(p)s) adjacent to x, thus according to the triangle inequality,
s0(f) is at most the maximum number of σ(p)s where the distance between any two of them is
at most 2. We claim that for any shift π(p), there are only O(1) σ(p)s satisfying π(B) = σ(B)
and dist(π(p), σ(p)) ≤ 2. It is easy to see that this claim implies s0(f) = O(nk1) since there
are

(
n
k1

)
= O(nk1) possible choices of the σ(B)s, and this will end the whole proof.

I Claim 18. For any π(p), there are only O(1) σ(p)s satisfying π(B) = σ(B) and
dist(π(p), σ(p)) ≤ 2.

Proof. It is easy to see that this claim is equivalent to show |{σ(p)|dist(p, σ(p)) ≤ 2 and
σ(B) = B}| = O(1). The case for k2 = 1 is a little special, and we discuss this case first.

Case for k2 = 1. We use Figure 1 to illustrate p. Note that the vertices in D are symmetric
and |C| = O(1), thus |{σ(p)|σ(C) = C and σ(B) = B}| = O(1). So we only need to consider
the set {σ(p)|σ(C) 6= C and σ(B) = B}, and we exclude each σ case by case:
1. σ(W3) or σ(W4) ∈ {W1,W2,W5,W6}.

W.l.o.g, assume σ(W3) = W1, then

dist(p, σ(p)) ≥ |{e ⊆ [n]|σ(p)(e) = 1, p(e) = 0, |e| = k, {W3, B} ⊆ e}|
≥ |{e ⊆ [n]|σ(p)(e) = 1, |e| = k, {W3, B} ⊆ e}|
−|{e ⊆ [n]|p(e) = {1, ?}, |e| = k, {W3, B} ⊆ e}|

= |{e ⊆ [n]|p(σ(e)) = 1, |e| = k, {W3, B} ⊆ e}| −O(1)
= |{e ⊆ [n]|p(e) = 1, |e| = k, {W1, B} ⊆ e}| −O(1)
≥ n−O(1) ≥ 3.

2. σ(W3) or σ(W4) ∈ D, and {σ(W3), σ(W4)}
⋂
{W1,W2,W5,W6} = ∅.

W.l.o.g, assume σ(W3) ∈ D, note that for any v, p(B ∪W3 ∪ v) 6= ?, and |{v 6= W4|p(B ∪
W3∪v) = 1}| = 1. While |{v 6= W4|σ(p)(B∪W3∪v}| = |{v 6= W4|p(B∪σ(W3)∪σ(v)}| = 4,
thus dist(p, σ(p)) ≥ 3.

3. σ(W3) = W3 and σ(W4) = W4.

STACS 2017
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W1 W2 W3 W4 W5 W6

· · ·
D

Figure 1 The graph to illustrate p for k2 = 1.

a. σ(W5) 6= W5 and σ(W2) 6= W2.
Since p(B ∪ σ(W2)∪ σ(W3)) = p(B ∪ σ(W4)∪ σ(W5)) = 0 and p(B ∪ σ(W3)∪ σ(S)) =
p(B∪σ(W4)∪σ(S′)) = 1, for some σ(S) = W2 and σ(S′) = W5, thus dist(p, σ(p)) ≥ 4.

b. σ(W5) = W5 and σ(W2) = W2.
Since σ(C) 6= C, W.l.o.g, assume σ(W1) ∈ D, then p(B ∪ σ(W1) ∪ σ(W5)) = 1.
If σ(W6) ∈ D, then p(B ∪ σ(W2) ∪ σ(W6)) = 1 and p(B ∪ σ(S) ∪ σ(W5)) = p(B ∪
σ(S′) ∪ σ(W2)) = 0, for some σ(S) = W1 and σ(S′) = W6.
If σ(W6) = W6, then p(B ∪ σ(W1) ∪ σ(W6)) = 1, and p(B ∪ σ(S) ∪ σ(W5)) =
p(B ∪ σ(S) ∪ σ(W6)) = 0, for some σ(S) = W1.
If σ(W6) = W1, then p(B ∪ σ(W2) ∪ σ(W6)) = 1 and p(B ∪ σ(W6) ∪ σ(W5)) = 0.
Thus we always have dist(p, σ(p)) ≥ 3.

c. σ(W5) 6= W5 and σ(W2) = W2.
Note that p(B∪σ(W4)∪σ(W5)) = 0 and p(B∪σ(W4)∪σ(S)) = 1 for some σ(S) = W5.
If σ(W5) ∈ D ∪ {W1} , then p(B ∪ σ(W2) ∪ σ(W5)) = 1.
If σ(W5) = W6 and σ(W6) ∈ D ∪ {W1}, then p(B ∪ σ(W2) ∪ σ(W6)) = 1.
If σ(W5) = W6 and σ(W6) ∈W5, since σ(C) 6= C, thus σ(W1) ∈ D and p(B∪σ(W1)∪
σ(W5)) = 1.
Therefore we always have dist(p, σ(p)) ≥ 3.

d. σ(W2) 6= W2 and σ(W5) = W5.
Similar to the above one.

4. σ(W3) = W4 and σ(W4) = W3.
Similar to the case where σ(W3) = W3 and σ(W4) = W4.

Case for k2 ≥ 2. Similarly, since |{σ(p)|σ(C) = C and σ(B) = B}| = O(1), we only need
to consider the set {σ(p)|σ(C) 6= C and σ(B) = B}, and we exclude each σ case by case:
1. σ(W3) or σ(W4) /∈ {W3,W4}.

Assume σ(W3) /∈ {W3,W4}, note that for any S ∩ (B ∪W3) = ∅, p(B ∪W3 ∪ S) 6= ? and
there are only two such Ss to make p = 1. While no matter what σ(W3) is, it’s easy to
see there are at least five (actually many) such Ss to make p(B ∪ σ(W3) ∪ σ(S)) = 1,
thus dist(p, σ(p)) ≥ 3.

2. σ(W3), σ(W4) ∈ {W3,W4}
W.l.o.g, assume σ(W3) = W3 and σ(W4) = W4.
a. σ(W5) 6= W5 and σ(W2) 6= W2.

Now p(B∪σ(W3)∪σ(W2)) = p(B∪σ(W4)∪σ(W5)) = 0 and p(B∪σ(W3)∪σ(S)) = p(B∪
σ(W4)∪σ(S′)) = 1, for some σ(S) = W2 and σ(S′) = W5. Therefore, dist(p, σ(p)) ≥ 4.

b. σ(W5) = W5 or σ(W2) = W2.
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Assume σ(W5) = W5, since σ(C) ∩D 6= ∅, there exists some W ∈ {W1,W2,W6} such
that σ(W ) ∩D 6= ∅.
Moreover, for any S ⊆ W3 ∪ W4 ∪ W5 and S /∈ {W3,W4,W5} with |S| = k2, we
have σ(S) ⊆ W3 ∪W4 ∪W5 and σ(S) /∈ {W3,W4,W5} , thus p(B ∪W ∪ S) = 0 6=
p(B ∪ σ(W ) ∪ σ(S)) = 1, and note that there are at least

(6
2
)
− 3 = 12 such Ss. Thus,

dist(p, σ(p)) ≥ 3.
J

I Theorem 2 (restated). For any fixed k ≥ 4 satisfying k ≡ 1 (mod 3) , there exists a
sequence of k-uniform hypergraph properties f such that s(f) = O(ndk/3e−1/2), where n is
the number of vertices.

Proof. We still use minterm functions here.
Let k = 3l + 1. Note that in the above construction for (3l + 1)-uniform hypergraph

properties, s1(f) ≤ |p| = O(nl) and s0(f) = O(nl+1). Intuitively, we can pack
√
n minterms

together to get a super minterm, expecting to decrease the number of shifts of p satisfying
the distance constraint (i.e., where any of two shifts of p have distance at most 2). However,
just packing minterms naively doesn’t work here, we need to do more.

Let p be the minterm defining f . p is constructed as follows:
The notions V , B, Wi, C and D are defined the same as in Theorem 1, where we let

k1 = k2 = l. Besides that, let D1 = {v6l+1, v6l+2, · · · , v6l+
√
n} and D2 = D \D1.

For any S ⊆ C of size 2l and any v ∈ D1, p(B ∪ S ∪ v) = 0, except S = Wi ∪Wi+1 for
i ∈ [5] where p(B ∪ S ∪ v) = 1.
For any S ⊆ C of size 2l and any v ∈ D2, p(B ∪ S ∪ v) = 1.
For any S satisfying l ≤ |S ∩ C| < 2l, |S| = 2l + 1 and S ∩D1 6= ∅, p(B ∪ S) = 1, except
W3 or W4 ⊆ S where p(B ∪ S) = 0.
All the other variables are ?.

It is not hard to see that |p| = O(nl+1/2), thus s1(f) ≤ C1(f) ≤ |p| = O(nl+1/2).
Similar to the argument in the proof of Theorem 1, we just need to show the following

claim to complete the proof.

I Claim 19. There are only O(
√
n) σ(p)s with the same π(B) = σ(B) satisfying

dist(π(p), σ(p)) ≤ 2.

Proof. By contradiction, suppose there are C
√
n such σ(p)s where C is a sufficient large

number, thus there must exist a vertex v such that σ(v) ∈ D1 for at least C such σ(p)s,
w.l.o.g, assume this set contains p. And we will argue that there are only O(1) such σ(p)s
satisfying dist(σ(p), p) ≤ 2, then it’s a contradiction, which completes the proof. J

Since the vertices in D1 or D2 are symmetric, thus |{σ(p)|σ(C) = C and σ(D1) = D1}| =
O(1).

If σ(C) = C and ∃v1 ∈ D1, v2 ∈ D2 satisfying σ(v1) = v2, then dist(σ(p), p) ≥ 3, since
almost all variables which contains v1, C and B are 0 in p, while all these variable are 1 in
σ(p).

If σ(C) 6= C, since σ(v) ∈ D1, then we find that p(S ∪ v) = p′(S) where p′ is the
minterm defined in Theorem 1 for 3l-uniform hypergraph properties. Similarly, σ(p)(S ∪v) =
p(σ(S) ∪ σ(v)) = p′(σ(S)). We only consider those Ss satisfying v /∈ σ(S) ∪ S and follows
the similar proof of Claim 1 in Theorem 1. Finally we can obtain dist(p, σ(p)) ≥ 3. J

STACS 2017
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Table 1 The table to illustrate p of k-partite k-uniform hypergraph properties.

~b = ~z1 ~z2 ~z3 ~z4 ~z5 ~z6 ~z7 · · ·
~a = ~z1 0 0 0 1 1 1 1 1
~z2 0 0 1 1 1 1 1 1
~z3 1 0 1 0 0 0 0 0
~z4 1 1 0 ? ? ? ? ?

~z5 1 1 0 ? ? ? ? ?

~z6 1 1 0 ? ? ? ? ?

~z7 1 1 0 ? ? ? ? ?

· · · 1 1 0 ? ? ? ? ?

4 k-Partite k-Uniform Hypergraph Properties and Abelian Groups

In this section, we give the constructions of k-partite k-uniform hypergraph properties first.

I Theorem 3 (restated). For any k ≥ 3, there exists a sequence of k-partite k-uniform
hypergraph properties f : {0, 1}nk → {0, 1} such that s(f) = O(ndk/3e).

Proof. The function we use here is also a minterm function. Let k1 and k2 be the integers
such that k1 + 2k2 = k and bk/3c ≤ k1, k2 ≤ dk/3e. We divide the k partitions into three
sets, and each of them is of size k2, k2 and k1. And they are indicated by ~a,~b ∈ [n]k2 and
~c ∈ [n]k1 respectively. Assume t is an integer, let ~zt (~zct respectively) be the t-th smallest
vector in [n]k2 ([n]k1 respectively) in the lexicographic order. We use Table 1 to illustrate
the minterm p:

For ~b = ~z1, ~z2 or ~z3, p(~z1,~b, ~z
c
1) = 0, otherwise p(~z1,~b, ~z

c
1) = 1.

For ~b = ~z1 or ~z2, p(~z2,~b, ~z
c
1) = 0, otherwise p(~z2,~b, ~z

c
1) = 1.

For ~b = ~z1 or ~z3, p(~z3,~b, ~z
c
1) = 1, otherwise p(~z3,~b, ~z

c
1) = 0.

For ~a /∈ {~z1, ~z2, ~z3} and ~b = ~z1 or ~z2, p(~a,~b, ~zc1)) = 1.
For ~a /∈ {~z1, ~z2, ~z3} and ~b = ~z3, p(~a,~b, ~zc1) = 0.
Otherwise p(~a,~b,~c) = ?.

It’s easy to see s1(f) ≤ C1(f) ≤ |p| = O(nk2). By discussing case by case, it can be verified
that for any pπ there are at most O(1) pσs satisfying π(~c) = σ(~c) and dist(pπ, pσ) ≤ 2.
Observe that there are nk1 choices of π(~c), thus there are at most O(nk1) pσs such that the
distance between any two of them is at most 2. Similar to the argument in the proof of
Theorem 1, we can conclude s0(f) = O(nk1). The verifying procedure is straightforward but
tedious, and we omit it here. J

In the following, we give the proofs of Theorem 4 and Theorem 5.

I Theorem 4 (restated). For any k ≥ 4 satisfying k ≡ 1 (mod 3) , there exists a sequence of k-
partite k-uniform hypergraph properties f : {0, 1}nk → {0, 1} such that s(f) = O(ndk/3e−1/2).

Proof. We still use minterm functions here. Let k = 3l + 1 where l ≥ 1. We divide the k
partitions into four sets of size l, l, l and 1, and each set is indicated by ~a,~b,~c ∈ [n]l and
~d ∈ [n] respectively. Assume t is an integer, let ~zt be the t-th smallest vector in [n]l in the
lexicographic order. The minterm p is constructed as follows:

For any ~d ∈ [d
√
ne], and any ~a and ~b, p(~a,~b, ~z1, ~d) = p′(~a,~b, ~z1). Here p′ is the partial

assignment defined in the proof of Theorem 3.
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For any ~d /∈ [d
√
ne] and ~a,~b ∈ {~z1, ~z2, ~z3}, p(~a,~b, ~z1, ~d) = 1.

Otherwise p(~a,~b,~c, ~d) = ?.
It’s easy to see s1(f) ≤ |p| = O(nl+1/2). It is also not hard to verify that there are at most
d
√
ne pσs with the same σ(~c) and satisfying the condition that the distance between any two

of them is at most 2, thus s0(f) = O(nl+1/2). J

I Theorem 5 (restated). Let G ≤ Sn be a transitive Abelian group, then there exists a
Boolean function f : {0, 1}n → {0, 1} invariant under G such that s(f) ≤ αn1/3, where α is
a number only depending on l.

Proof. First note that the transitive action of a group G on [n] is equivalent to the action of
G by left multiplication on a coset space G/Stab1, here Stab1 is the stabilizer of the element
1 ∈ [n]. Since G is an Abelian group, Stab1=· · ·=Stabn, thus Stab1={e}. Therefore, the
action of G on [n] is equivalent to the action of G by multiplication on itself. So we can
relabel the variables (x1, · · · , xn) as (x(1,··· ,1), · · · , x(m1,··· ,ml)) to make (σ1 ⊗ · · · ⊗ σl)(x) =
(x(σ1(1),··· ,σl(1)), · · · , x(σ(m1),··· ,σl(m2))) for any σ1 ⊗ · · · ⊗ σl ∈ Cm1 × · · · × Cml

.
Let pm be the minterm of f : {0, 1}m → {0, 1} defined by Chakraborty in Theorem 3.1

in [14]. We define the minterm p as p(i1, · · · , il) =
⊕l

j=1 pmj
(ij). Here ?⊕ b = ?, for b = 0, 1,

or ?. It is easy to see s1(f) ≤ |p| =
∏l
j=1 |pmj | ≤ γn1/3, where γ is a number only depending

on l. Moreover, according to the construction of pm, it is easy to see that there are at most
βn1/3 σ(p)s where the distance between any two of them is at most 2. Here β is another
number only depending on l, thus s0(f) ≤ βn1/3. This completes the proof. J

5 Lower bounds

In this section, we give the proof of Theorem 6.

I Theorem 6 (restated). For any fixed k and any non-trivial k-uniform hypergraph property
f , s(f) = Ω(n), where n is the number of vertices.

Proof. W.l.o.g we assume that for the empty graph Kn, f(Kn) = 0. Since f is non-trivial,
there must exist a graph G such that f(G) = 1. Let’s consider graphs in f−1(1) = {G|f(G) =
1} with the minimum number of edges. Define m = min{|E(G)| : f(G) = 1}.

We claim that if m ≥ 1
k+2n, then s(f) ≥ 1

k+2n. Let G be a graph in f−1(1) and
|E(G)| = m. Consider the subfunction f ′ where ∀e /∈ E(G), xe is restricted to 0, since G
has the the minimum number of edges, deleting any edges from G will change the values of
f(G), therefore, f ′ is an AND function. Thus, s(f) ≥ s(f ′) = m ≥ 1

k+2n.
In the following we assume m < 1

k+2n. Again let G be a graph in f−1(1) with |E(G)| = m.
Let us consider the isolated vertices set I, as

∑
v∈V deg(v) = k|E(G)| < k

k+2n, we have
|I| ≥ n −

∑
v∈V deg(v) > 2

k+2n. Suppose s(f) < 1
k+2n, we will deduce that there exists

another graph with fewer edges and the same value, against the assumption that G has the
minimum number of edges in f−1(1), which ends the whole proof.

Pick a vertex u with deg(u) = d > 0. Suppose in the graph G vertex u is adjacent to
(k − 1)-edges {e(k−1)

1 , e
(k−1)
2 , · · · , e(k−1)

d } and I = {u1, u2, · · · , ut}, where t = |I|.
Consider the t-variable Boolean function g1: {0, 1}t → {0, 1}, where

g1(x1, · · · , xt) = f(G+ x1(e(k−1)
1 , u1) + · · ·+ xt(e(k−1)

1 , ut)).

It is easy to see that g1 is a symmetric function. We claim that g1 is a constant function:
if not, we have s(g1) ≥ 1

2 t [38], which implies s(f) > 1
k+2n since g1 is a restriction of f . In

particular, g1(1, · · · , 1) = g1(0, · · · , 0), i.e. f(G1) = f(G), where G1 = G+
∑t
i=1(e(k−1)

1 , ui).

STACS 2017
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Define Gi = Gi−1 +
∑t
j=1(e(k−1)

i , uj) (i = 2, · · · , d). Similarly, we can show that

f(G) = f(G1) = · · · = f(Gd).

Next we will delete all the edges between {u, u1, · · · , ut} and {e(k−1)
1 , e

(k−1)
2 , · · · , e(k−1)

d }
from Gd by reversing the adding edge procedure of G → G1 → · · · → Gd. More precisely,
define H1 = Gd; for i = 2, · · · , d, define

Hi = Hi−1 − (e(k−1)
i , u)− (e(k−1)

i , u1)− · · · − (e(k−1)
i , ut),

and

hi(y0, y1, · · · , yt) = f(Hi + y0(e(k−1)
i , u) + y1(e(k−1)

i , u1) + · · ·+ yt(e(k−1)
i , ut)).

Similarly, by the fact s(f) < 1
k+2n we can show that all the functions h2, · · · , hd are constant,

which implies f(H1) = f(H2) = · · · = f(Hd). So we find another graph Hd with fewer edges
than G and f(Hd) = 1. J

6 Conclusion

In this paper, we present a k-uniform hypergraph property with sensitivity complexity
O(ndk/3e) for any k ≥ 3 and we can do better when k ≡ 1 (mod 3). Besides that, we also
investigate the sensitivity complexity of other transitive Boolean functions with certain
symmetry. All the functions we constructed in this paper are minterm transitive functions.
On the other side, Chakraborty [14] proved that the sensitivity complexity of any minterm
transitive Boolean function f : {0, 1}N → {0, 1} is at least Ω(N1/3). Kulkarni et al. [27]
pointed out that the existence of any transitive function f : {0, 1}N → {0, 1} with s(f) = Nα

where α < 1/3 implies a larger than quadratic separation between block sensitivity and
sensitivity. We conjecture that the examples here are almost tight.

I Conjecture 20. For any k ≥ 3 and for any non-trivial k-hypergraph property f , s(f) =
Ω(nk/3), where n is the number of vertices.

I Conjecture 21. For any k ≥ 3, there exists a sequence of k-uniform hypergraph properties
f with s(f) = O(nk/3), where n is the number of vertices.

A more general question is the following variant of Turan’s question proposed by
Chakraborty [14]: If f : {0, 1}N → {0, 1} is Boolean function invariant under a trans-
itive group of permutations, then is it true that s(f) = Ω(N c) for some constant c > 0? We
conjecture that the inequality holds for c = 1/3, which would imply Conjecture 20 and the
sensitivity conjecture of transitive functions.
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