12,914 research outputs found

    On Synchronous and Asynchronous Monitor Instrumentation for Actor-based systems

    Full text link
    We study the impact of synchronous and asynchronous monitoring instrumentation on runtime overheads in the context of a runtime verification framework for actor-based systems. We show that, in such a context, asynchronous monitoring incurs substantially lower overhead costs. We also show how, for certain properties that require synchronous monitoring, a hybrid approach can be used that ensures timely violation detections for the important events while, at the same time, incurring lower overhead costs that are closer to those of an asynchronous instrumentation.Comment: In Proceedings FOCLASA 2014, arXiv:1502.0315

    Efficient Monitoring of Parametric Context Free Patterns

    Get PDF
    Recent developments in runtime verification and monitoring show that parametric regular and temporal logic specifications can be efficiently monitored against large programs. However, these logics reduce to ordinary finite automata, limiting their expressivity. For example, neither can specify structured properties that refer to the call stack of the program. While context-free grammars (CFGs) are expressive and well-understood, existing techniques of monitoring CFGs generate massive runtime overhead in real-life applications. This paper shows for the first time that monitoring parametric CFGs is practical (on the order of 10% or lower for average cases, several times faster than the state-of-the-art). We present a monitor synthesis algorithm for CFGs based on an LR(1) parsing algorithm, modified with stack cloning to account for good prefix matching. In addition, a logic-independent mechanism is introduced to support partial matching, allowing patterns to be checked against fragments of execution traces

    Static and Dynamic Detection of Behavioral Conflicts Between Aspects

    Get PDF
    Aspects have been successfully promoted as a means to improve the modularization of software in the presence of crosscutting concerns. The so-called aspect interference problem is considered to be one of the remaining challenges of aspect-oriented software development: aspects may interfere with the behavior of the base code or other aspects. Especially interference between aspects is difficult to prevent, as this may be caused solely by the composition of aspects that behave correctly in isolation. A typical situation where this may occur is when multiple advices are applied at a shared, join point.\ud In [1] we explained the problem of behavioral conflicts between aspects at shared join points. We presented an approach for the detection of behavioral conflicts. This approach is based on a novel abstraction model for representing the behavior of advice. This model allows the expression of both primitive and complex behavior in a simple manner. This supports automatic conflict detection. The presented approach employs a set of conflict detection rules, which can be used to detect generic, domain specific and application specific conflicts. The approach is implemented in Compose*, which is an implementation of Composition Filters. This application shows that a declarative advice language can be exploited for aiding automated conflict detection.\ud This paper discusses the need for a runtime extension to the described static approach. It also presents a possible implementation approach of such an extension in Compose*. This allows us to reason efficiently about the behavior of aspects. It also enables us to detect these conflicts with minimal overhead at runtime

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    A Monitoring Language for Run Time and Post-Mortem Behavior Analysis and Visualization

    Get PDF
    UFO is a new implementation of FORMAN, a declarative monitoring language, in which rules are compiled into execution monitors that run on a virtual machine supported by the Alamo monitor architecture.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic

    Get PDF
    Autonomous critical systems, such as satellites and space rovers, must be able to detect the occurrence of faults in order to ensure correct operation. This task is carried out by Fault Detection and Identification (FDI) components, that are embedded in those systems and are in charge of detecting faults in an automated and timely manner by reading data from sensors and triggering predefined alarms. The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques. In this paper, we present the first formal approach to the design of FDI components for discrete event systems, both in a synchronous and asynchronous setting. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical cases, and includes novel aspects such as maximality and trace-diagnosability. The language is equipped with a clear semantics based on temporal epistemic logic, and is proved to enjoy suitable properties. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. We propose an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the design approach on an industrial case-study coming from aerospace.Comment: 33 pages, 20 figure

    Replicode: A Constructivist Programming Paradigm and Language

    Get PDF
    Replicode is a language designed to encode short parallel programs and executable models, and is centered on the notions of extensive pattern-matching and dynamic code production. The language is domain independent and has been designed to build systems that are modelbased and model-driven, as production systems that can modify their own code. More over, Replicode supports the distribution of knowledge and computation across clusters of computing nodes. This document describes Replicode and its executive, i.e. the system that executes Replicode constructions. The Replicode executive is meant to run on Linux 64 bits and Windows 7 32/64 bits platforms and interoperate with custom C++ code. The motivations for the Replicode language, the constructivist paradigm it rests on, and the higher-level AI goals targeted by its construction, are described by Thórisson (2012), Nivel and Thórisson (2009), and Thórisson and Nivel (2009a, 2009b). An overview presents the main concepts of the language. Section 3 describes the general structure of Replicode objects and describes pattern matching. Section 4 describes the execution model of Replicode and section 5 describes how computation and knowledge are structured and controlled. Section 6 describes the high-level reasoning facilities offered by the system. Finally, section 7 describes how the computation is distributed over a cluster of computing nodes. Consult Annex 1 for a formal definition of Replicode, Annex 2 for a specification of the executive, Annex 3 for the specification of the executable code format (r-code) and its C++ API, and Annex 4 for the definition of the Replicode Extension C++ API
    corecore