Efficient Monitoring of Parametric Context-Free Patterns

Patrick O’Neil Meredith and Dongyun Jin and Feng Chen and Grigore Rosu
University of Illinois at Urbana-Champaign
{pmeredit, djin3, fengchen, grosu} @cs.uiuc.edu

Abstract

Recent developments in runtime verification and mon-
itoring show that parametric regular and temporal logic
specifications can be efficiently monitored against large
programs. However, these logics reduce to ordinary finite
automata, limiting their expressivity. For example, neither
can specify structured properties that refer to the call stack
of the program. While context-free grammars (CFGs) are
expressive and well-understood, existing techniques of mon-
itoring CFGs generate massive runtime overhead in real-
life applications. This paper shows for the first time that
monitoring parametric CFGs is practical (on the order of
10% or lower for average cases, several times faster than
the state-of-the-art). We present a monitor synthesis algo-
rithm for CFGs based on an LR(1) parsing algorithm, mod-
ified with stack cloning to account for good prefix matching.
In addition, a logic-independent mechanism is introduced to
support partial matching, allowing patterns to be checked
against fragments of execution traces.

1 Introduction

Runtime verification (RV) is a relatively new formal
analysis approach in which specifications of requirements
are given together with the code to check, like in tradi-
tional formal verification, but the code is checked against
its requirements at runtime, like in testing. A large
number of runtime verification approaches and systems,
including JPax[19], TemporalRover[17], JavaMaC[22],
Hawk/Eagle[16], Tracematches[4, 6], J-Lo[9], PQL[25],
PTQL[18], MOP[14], etc., have been developed recently. In
a runtime verification system, monitoring code is generated
from the specified properties and integrated with the sys-
tem to monitor. Therefore, a runtime verification approach
consists of at least three interrelated aspects, namely (1) a
specification formalism, used to state properties to monitor,
(2) a monitor synthesis algorithm, and (3) a program in-
strumentor. The chosen specification formalism determines
the expressivity of the runtime verification approach and/or
system, and is fundamental.

Monitoring safety properties can be arbitrarily

complex[27], but recent developments in runtime ver-
ification show that regular and temporal logic formal
specifications can be efficiently monitored against large
programs. As shown by a series of experiments in the
context of Tracematches[6] and JavaMOP[14], parametric
regular and temporal logic formal specifications can be
monitored against large programs with little runtime
overhead: on the order of 10% or lower. However, both
regular expressions and temporal logics reduce to ordinary
automata when monitored, so they have an inherently
limited expressivity: more specifically, most runtime verifi-
cation approaches and systems consider only flat execution
traces, namely, execution traces without any structure.
Consequently, users of such RV systems are prevented from
specifying and checking structured properties, referring to
the structure of the program. Examples of such structured
safety properties include ‘““a resource should be released in
the same method which acquired it” or “a resource cannot
be accessed if the unsafe method foo is in the current call
stack”. A more concrete example is given below.

1.1 Example

An important and desirable category of properties that
cannot be expressed using regular patterns (with or with-
out complement) is one in which pairs of events need to
match each other, potentially in a nested way. For example,
suppose that one prefers to use one’s own locking mech-
anism for thread synchronization. As usual, for multiple
reasons including the allowance of re-entrant synchronized
methods (in particular to support recursion), locks are al-
lowed to be acquired and released multiple times by any

@ =acquire
X =release

Second violation:
Relevant trace Unmatched release

starts here

First violation:
No release before end

Figure 1. Example trace for structured
acquire and release of locks



given thread. However, the lock is effectively released, so
that other threads can acquire it, only when the lock re-
leases match the lock acquires. One may want to impose
an even stronger locking safety policy, namely that the lock
releases should match the lock acquires within the bound-
aries of each method call. This property is vacuously sat-
isfied when locks are acquired and released in a structured
manner using synchronized blocks or methods, like in Java
1.4+, but it may be easily violated when one implements
one’s own locking mechanism or uses the semaphores avail-
able in Java 5. For example, Figure 1 shows an execution
violating this basic safety policy twice (each deeper level
symbolizes a nested method invocation): first, the policy is
violated when one returns from the last (nested) method in-
vocation, because one does not release the acquired lock;
second, the policy is also violated immediately after the re-
turn from the last method invocation, because the lock is
released twice by its caller but acquired only once.

Supposing that the system is instrumented to emit events
begin and end when methods of interest are started and
terminated, and events acquire and release when the lock
of interest is acquired and released, respectively, then here
is a straightforward way to express this safety policy as a
context-free grammar:

S — €| Sacquire M release A
M — €| M begin M end | M acquire M release
A — €| Abegin| Aend

In other words, the pairs of events begin/end and ac-
quire/release should match in a potentially nested way,
respectively. S left-recursively refers to itself so that the
pattern may be repeated. The non-terminal M stands for
“matched” sub-traces, i.e., traces in which all the pairs be-
gin/end and acquire/release are properly matched, and
A stands for sequences of (not necessarily matched) begin
and end events. A is necessary because the first event seen
will be acquire! and we do not want to report violations for
end’s due to the lack of a matching begin.

Itis clear that any (finished or unfinished) execution trace
that is not a prefix of a word in the language of S in the CFG
above is an execution that violates the safety policy. The
CFG runtime verification technique presented in this paper
and implemented as a logic-plugin in JavaMOP is able to
monitor safety properties expressed as CFGs like above?.
MOP and JavaMOP, the Java implementation of MOP, are
discussed in Section 3.

Figure 2 shows this safe lock property expressed as a
JavaMOP specification, using the CFG logic-plugin dis-

'We wrote the CFG specification this way because we do not want the
expense of monitoring begin and end for a/l methods.

2Qur CFG plugin actually supports only the LR(1) language; when we
use the term context-free we actually mean LR(1), unless explicitly men-
tioned otherwise.

/%@
scope = global
logic = CFG
SafeLock (Lock 1) {
event acquire<l> : begin(call(x l.acquire()));
event release<l> : begin(call(x l.release()));
event begin : begin(exec (* x.x(..)));
event end : end(exec(* *.*(..)));
start symbol : S;
productions:
S -> epsilon | S acquire M release A,
M -> epsilon | M begin M end | M acquire M release,
A -> epsilon | A begin | A end
}
Violation Handler{
System.out.println ("Unsafe lock operation found!");
}
@x/

Figure 2. JavaMOP specification for the safe
lock safety property using the CFG plugin

cussed in this paper. This specification makes use of Java-
MOP’s generic approach to parametric specifications de-
scribed in[14]: specifications (and events) can be paramet-
ric, in this case in the lock 1, and there could be one or
more parameters. The logical formalisms in which proper-
ties are expressed need not be aware of the parameters (they
need provide no special support for parameters); parameters
are added automatically and generically by the JavaMOP
framework. Only events which can begin a legal trace are
monitor creation events, in other words, only the acquire
event above can create new monitor instances. The code
generated automatically from the JavaMOP specification in
Figure 2, following the technique described in the rest of
the paper, has more than 700 lines of (human unreadable)
code. We ran this property against a hand-crafted program,
which generated the trace in Figure 1. Both violations were
successfully caught because the CFG plugin throws away
invalid events like a parser for a programming language, al-
lowing it to catch multiple violations.

The interested reader can synthesize code for the spec-
ification in Figure 2 as well as any other, including all
those discussed in the remainder of this paper, using Java-
MOP’s online interface[1](the above property is called
SafeLock_CFG).

1.2 Contributions

Several approaches have been proposed to monitor
context-free properties. For example, PQL[25] is based on
context-free languages and Hawk/Eagle[16] uses a fix-point
logic. These approaches propose rather complex solutions
for monitoring CFG patterns and generate inefficient moni-
toring code in many cases, thus preventing the practical use
of monitoring context-free properties. This paper shows
that monitoring (the LR(1) subset of) parametric context-
free patterns is practical. Our algorithm modifies an LR(1)
parsing algorithm to generate monitors instead of parsers
for the defined CFG and is totally different from the CFG
monitoring algorithm in the PQL system[25]. We modify



the LR(1) parsing algorithm with a stack cloning process,
which is needed to test for matches of prefix traces with-
out altering the main monitor stack. In addition, generic
partial trace matching is added to JavaMOP. Partial match-
ing is defined as matching against every suffix of a given
trace, and is the mode of matching used in PQL[25] and
Tracematches[6]. We also describe optimizations that make
partial matching more efficient.

An extensive evaluation of the CFG monitoring algo-
rithm has been carried out, using the same benchmark (Da-
Capo) and some of the properties used previously for eval-
uating runtime verification systems[14, 10] (but now ex-
pressed as CFGs). Even when monitored using the CFG
plugin, however, these regular pattern based specifications
still use constant space. We thus perform an evaluation
of three strictly context-free properties — which use theo-
retically unbounded space — to show that, even with such
properties, the overhead is reasonable, and to show that
monitoring context-free properties is useful. The results
of this analysis compare favorably with PQL and Trace-
matches, two state-of-the-art runtime monitoring systems.
One of these properties (ImprovedLeakingSync) is express-
ible in neither PQL nor Tracematches, for reasons that will
be explained in Section 6. Another of the properties (Safe-
FileWriter), while expressible in PQL, is not expressible in
Tracematches, because Tracematches only has limited abil-
ity to express structured properties, rather than the full gen-
erality of (deterministic) context-free languages.

Over both the adapted regular properties and the new
strictly context-free properties, the overhead of JavaMOP
with CFGs is, on average, over 6 times less than Trace-
matches on properties that Tracematches is able to ex-
press, and over 10 times less than PQL on properties that
can be expressed in PQL. On all but 9 of the 66 bench-
mark/property pairs, the overhead is less than 5% in Java-
MOP with CFGs.

1.3 Paper Outline

The remainder of the paper is as follows: Section 2 il-
lustrates related work. Section 3 gives a brief overview of
MOP and JavaMOP. Section 4 describes partial matching
together with its novel, optimized implementation in the
context of JavaMOP. Section 5 explains our CFG monitor
synthesis technique in JavaMOP, including considerations
for partial matching. Section 6 explains our experimental
setup and the results of our experiments. Section 7 con-
cludes the paper and describes some future work.

2 Related Work

Many approaches have been proposed to monitor pro-
gram execution against formally specified properties. In-
terested readers can refer to[14] for an extensive discussion
on existing runtime monitoring approaches. Briefly, all run-
time monitoring approaches except MOP have their speci-

\ Approach \ Logic

Scope \ Mode \ Handler

JPax[19] LTL class | offline | violation
TemporalRover[17] MiTL class inline violation
JavaMaC|[22] PastLTL class | outline | violation
Hawk[16] Eagle global | inline | violation
Tracematches[6] Reg. Exp. global | inline | validation
J-Lo[9] LTL global | inline violation
PQL[25] modified CFG | global | inline | validation
PTQL[18] SQL global | outline | validation

Table 1. Runtime Verification Breakdown

fication formalisms hardwired and no two of them share the
same logic. This observation strengthens our belief under-
lying MOP, that is, there probably is no silver-bullet speci-
fication formalism for all purposes. Also, most approaches
focus on detecting either violations or validations (matches)
of the desired property and support only fixed types of mon-
itors, e.g., online monitors that run together with the moni-
tored program or offline monitors that check the logged ex-
ecution trace. On the contrary, MOP was designed to be
flexible for maximum extensibility and configurability.

Specifically, there are four orthogonal attributes of a run-
time monitoring system: logic, scope, running mode, and
handlers. The logic answers which formalism is used to
specify the property. The scope answers where to check
the property; it can be class invariant, global, interface, etc.
The running mode answers where the monitor runs; it can
be inline (weaved into the code), online (operating at the
same time as the program), outline (receiving events from
the program remotely, e.g. over a socket), or offline (check-
ing logged event traces)’. The handlers answer what to do
if; there can be violation and validation handlers. It is worth
noting that for many logics, violation and validation are not
complementary to each other, i.e., the violation of a for-
mula does not always imply the validation of the negation
of the formula. For example, for JavaMOP’s extended reg-
ular expression plugin[14], one cannot use the validation of
the pattern “~(a b)” (~ is the negation operator) to detect
the violation of “a b”, because, for example, an incomplete
trace, “a”, will cause a validation of “~(a b)” but should
not cause the violation of “a b since the monitor needs the
next event to decide. Moreover, the negation of a context-
free pattern may not even be context-free.

Most runtime monitoring approaches can be captured by
instantiating the above attributes, as partly illustrated in Ta-
ble 1. For example, JPax can be regarded as a monitor tech-
nique that uses linear temporal logic (LTL) to specify class-
scoped properties, whose monitors work in offline mode
and only detect violations.

Of the systems mentioned in Table 1, only PQL[25] and
Hawk/Eagle[16] can handle arbitrary context-free gram-
mars. Hawk/Eagle adopts a fix-point logic and uses term
rewriting during the monitoring, making it rather inefficient.

30ffline implies outline, and inline implies online.



It also has problems with large programs because it does not
garbage collect the objects it uses to monitor. In addition,
Hawk/Eagle is not publicly available*. Because of this, we
cannot compare our CFG plugin with Hawk/Eagle. In ad-
dition to PQL, we decided, also, to perform comparisons
with Tracematches[6], as it is able to monitor a very limited
set of context-free properties using compiler-specific sup-
port provided by their special Aspect] compiler, ABC[5],
and also because it is a very efficient system.

3 MOP Revisited

MOP is an extensible runtime verification framework
that provides efficient and logic-independent support for
parametric specifications. JavaMOP is an implementation
of MOP for the Java programming language. By encapsu-
lating our monitor synthesis algorithm for non-parametric
CFG patterns in a JavaMOP logic plugin, we have achieved
an efficient runtime monitoring tool for universally quanti-
fied parametric CFG specifications.

In addition, we have implemented a novel extension of
MOP, in JavaMOP, to support partial matching monitoring,
also in a logic-independent way. We define partial match-
ing as matching against every suffix of a given event trace,
while total matching, also supported by JavaMOP, attempts
to match the entire trace seen at a particular point. It is no-
table that PQL and Tracematches both support only partial
matching, so in our experiments we use partial matching. In
this section, we briefly introduce MOP.

3.1 MOP in a Nutshell

Monitoring-Oriented Programming (MOP)[13, 11, 14] is
a formal framework for software development and analysis,
in which the developer specifies desired properties using de-
finable specification formalisms, along with code to execute
when properties are violated or validated. Monitoring code
is then automatically generated from the specified proper-
ties and integrated together with the user-provided code into
the original system. MOP is a highly extensible and config-
urable runtime verification framework. The user is allowed
to extend the MOP framework with his/her own logics via
logic plugins which encapsulate the monitor synthesis algo-
rithms. This extensibility of MOP is supported by an es-
pecially designed layered architecture[13], which separates
monitor generation and monitor integration. By standardiz-
ing the protocols between layers, modules can be added and
reused easily and independently.

In addition to choosing the formalism to use in the spec-
ification, one can also configure the behaviors of the gen-
erated monitor through different attributes[11]. Depending

4[6] makes an argument for the inefficiency of Hawk/Eagle. Since
Hawk/Eagle is not publicly available (only its rewrite based algorithm is
public[16]), the authors of Hawk/Eagle kindly agreed to monitor some of
the simple properties from[10]. We have confirmed the inefficiency claims
of[6] with the authors of Hawk/Eagle.

upon configuration, the monitors can be separate programs
reading events from a log file, from a socket, or from a
buffer, or can be inlined within the program at the event
observation points; monitors can verify the observed execu-
tion trace as a whole or check fragments of the trace. All
these configurations are generic to the formalism used to
specify the property. MOP also provides efficient and logic-
independent support for universally quantified parameters
in specifications[14], which is useful for specifying proper-
ties related to more than one object. This extension allows
associating parameters with MOP specifications, and gen-
erating efficient monitoring code from parametric specifica-
tions with monitor synthesis algorithms for non-parametric
specifications. MOP’s generic support for universally quan-
tified patterns simplified our CFG plugin’s implementation.

Unlike other approaches for parametric specifications,
e.g., PQL[25] and Tracematches[6], MOP currently re-
quires that all the parameters of a specification must be
available in the monitor creation events. This deliberately
accepted limitation allows for generating highly optimized
monitoring code [14]. Although it limits the way of spec-
ifying properties, we have been able to write all the prop-
erties we considered (including those in [10] and [25]; see,
as an example, the property in Figure 2) under this limi-
tation. Moreover, our experience is that a carefully writ-
ten specification can result in improved monitoring perfor-
mance. Therefore, we have pragmatic reasons to believe
that allowing “’incompletely parameterized” events to create
monitors is, perhaps, unnecessary. Nevertheless, the reader
who disagrees with us can regard the CFG monitoring ap-
proach presented in this paper as one optimized for the com-
mon case: when the monitor creation events instantiate all
parameters. It should also be noted that PQL allows for
an unbounded number of parameters, while both JavaMOP
and Tracematches are limited to a fixed number. We have
not considered monitoring such properties using logic plug-
ins in MOP, because (1) their handling is logic specific; and
(2) MOP allows “raw” specifications to deal with such rare
properties (see [14]).

The JavaMOP implementation provides several inter-
faces, including a web-based interface, a command-line in-
terface and an Eclipse-based GUI, providing the developer
with different means to manage and process MOP specifi-
cations. JavaMOP follows a client-server architecture[12]
to flexibly support these various interfaces, as well as for
portability reasons. AspectJ[21] is employed for monitor
integration: JavaMOP translates outputs of logic-plugins
into Aspect] code, which is then merged within the orig-
inal program by the Aspect] compiler. Five logic-plugins
are currently provided with JavaMOP: Java Modeling Lan-
guage (JML)[24], Extended Regular Expressions (ERE),
Past-Time and Future-time Linear Temporal Logics (LTL)
(see[12] for more details), and Context-Free Grammar



Monitor Set

()
@@

) )

Monitor for total matching Monitor for partial matching

Figure 3. From Total to Partial Matching

(CFG) that is introduced in this paper. Note that these plu-
gins can be supported by any implementation of MOP.

One might expect some loss of efficiency for MOP’s
genericity of logics. However, the JavaMOP-generated
monitors can yield very reasonable runtime overhead in
practice, even for properties requiring intensive runtime
checking: on the order of 10% or lower, and as efficient
as the hand optimized monitoring code in most cases[14].

4 Partial Matching in JavaMOP

According to different requirements of applications, one
may want to check the desired property against either the
whole execution trace or every suffix of a trace. The for-
mer is called total matching, adopted by many runtime ver-
ification approaches to detect violations of properties, e.g.,
JPax[19] and JavaMac[22], and the latter is called partial
matching, used mainly by monitoring approaches that aim
to find matches of specifications, e.g., Tracematches[6] and
PQL[25]. These two monitoring semantics can produce
very different results for the same property. For example,
for a regular pattern a*b, a trace abb will trigger a validation
at the first b and then a violation at the second b using total
matching, while it will generate two matches at both ’s us-
ing partial matching. Partial matching usually only makes
sense in conjunction with the validation of patterns, not the
violation. Consider the pattern ab* and the trace abbbb. This
trace seems tailor made for the particular pattern, but every
occurrence of b would generate a violation (even more con-
fusingly, each occurrence would also generate a validation).
Because of this we do not allow violation handlers in partial
matching specifications.

The previous design of JavaMOP supported only total
matching. One of our contributions here is that we have
implemented a logic-independent extension of JavaMOP to
support, also, partial matching. This extension is based
on the observation that, although total matching and partial
matching have inherently different semantics, it is not diffi-
cult to support partial matching in a total matching setting,
if one maintains a set of monitor states during monitoring
and creates a new monitor instance at each event. However,
the situation becomes more complicated when one wants to
develop a logic-independent solution, since different logi-
cal formalisms can have different state representations. For
example, the monitor state can be an integer when the mon-

itor is based on a state machine, a vector like the past-time
LTL monitor, or a stack such as the CFG monitor discussed
below. Hence, our solution is to treat every monitor as a
blackbox without assumptions on its internal state. Also, in-
stead of maintaining a set of monitor states in the monitor,
we use a wrapper monitor that keeps a set of total matching
monitors as its state for partial matching, as depicted by Fig-
ure 3. For simplicity, from now on, when we say ‘“monitor”
without specific constraints, we mean the monitor generated
for total matching. When an event is received, the wrapper
monitor operates as follows:

1. create a new monitor and add it to the “partial match-
ing” internal monitor set;
2. invoke every monitor in the monitor set to handle the
received event;
3. if a monitor enters its “violation” state, remove it from
the monitor set;
4. if a monitor enters its “validation” state, report the val-
idation.
The third step is used to keep the “partial matching” monitor
set small by removing unnecessary monitors.

Using our current implementation of partial matching
in JavaMOP, one may further improve the monitoring effi-
ciency if the monitor provides an optional interface, namely,
an equals method that compares two monitors with re-
gard to their internal states, and a hashCode method used
to reduce the amount of calls to equals. This interface is
used to populate a Java HashSet: the combination of the
definition of hashCode and equals ensures the moni-
tors in the HashSet are declared duplicates, and removed,
based on monitor state rather than memory location. This
interface can be easily generated by each JavaMOP logic
plugin, because it has full knowledge of the monitor seman-
tics. It is important to note that our approach does not de-
pend on the underlying specification formalism.

Moreover, JavaMOP already requires the logic plugin to
designate creation events that are the starting events of a
validating trace in order to avoid unnecessary monitor cre-
ation. A new monitor instance needs to be created only at
creation events. This feature is especially useful when com-
bined with partial matching, which requires creating a new
monitor at every event, if no creation events are chosen.

5 Context-Free Patterns in JavaMOP

We support the LR(1) subset of context-free grammars
(CFGs). LR(1) can only recognize a subset of the de-
terministic context-free languages, which are themselves
a strict subset of the context-free languages(CFLs)[3, 20].
LR(1), however, is a large subset. Notably, LR(1) is more
powerful than the standard mode of Bison[7], which pro-
vides LALR’. We base our implementation on the Knuth

5Bison also has a GLR mode, which can recognize all CFLs.



algorithm[23] for LR(1) parser table generation as pre-
sented in[3]. While the “action” and “goto” tables generated
are normal LR(1) “action” and “goto” tables, the algorithm
used to parse has been modified to work in the context of
monitoring, explained in more detail below.

5.1 Preliminaries

A CFG G, is formally defined as a tuple of the form,
G = (NT,%,P,S). ¥ is the alphabet of the CFG, of-
ten referred to as the set of terminals. NT is the set of
non-terminals. P is the set of productions, which define
what strings non-terminals can derive. NT U ¥ is often
called the set of symbols of the CFG. A production is al-
ways of the form A — , where A € NT and 7 is a string
that either consists of symbols, or is the empty string, e,
ie. v € (X UNT)*. We use the conventional alternation
operator, |: a production of the form A — ~p|y; can be
equivalently represented as two productions A — -y and
A — 7. S is the start symbol — that non-terminal from
which all strings in the language are derived. For exam-
ple, G = ({A},{a, b}, Py, A) where Py = {A — aAb|e}
is a simple CFG for the language {a"b"|X = {a,b}}. As
we can see, the non-terminal A represents the recursive na-
ture of the language, as A can derive a Ab an indeterminate
amount of times before deriving e.

Two important sets are defined for every non-terminal in
a grammar: the first and follow sets. These are used in “ac-
tion” table construction. The first set is also used to decide
which terminals in a given grammar define monitor creation
events (we shall be more specific about this below). The fol-
low set will be useful in illustrating the fundamental chal-
lenge of monitoring CFGs. The first set of a non-terminal
A, denoted first(A), is the set of all terminals ¢ such that
the sub-strings which reduce to A may possibly begin with
t. The follow set, denoted follow(A), is the set of terminals
which follow the strings which reduce to A. These termi-
nals signify a reduction by A, and follow(A), may contain $,
the end of input token.

A reduction is the step whereby a right hand side of a
production, 7, is replaced by the left hand side non-terminal
in the production. For example, if we have the string
aaabbb, and we are using our example grammar, G , we
can perform a reduction with v = e resulting in aaa Abbbd.
We can then perform another reduction with v = aAb re-
sulting in aa Abb, eventually we reach a Ab, which reduces
to A (and because A is the start symbol, aaabbb must be in
L(G), where L(G) represents the language derived by G).

5.2 CFG-plugin Implementation

The CFG plugin allows the user to specify a number of
events and a CFG specifying allowable event traces. The
events become the terminals of the CFG, i.e., X. The trans-
lation steps from specification to working Java code grad-
ually transform the specification into Aspect] join points

1 globals action_table, goto_table
2 initialize stack.push(initial _state)
3 procedure monitor(event, stack)
4 locals state, state’, stack’, A
5 while (true) {
6 switch (action_table[state,event].action_type) {
7 case shift :
8 state’ < action_table[state, event].next_state
9 if (state’ = error) {
10 violation
11 break while
12
13 stack.push(state’)
14 if (action_table‘[state’, $].action_type = reduce) {
15 stack’ < stack.clone()
16 monitor_event($, stack’)
17 }
18 break while
19 case reduce :
20 stack.pop(action_type[state, event].pop)
21 A < action_table[state, event].non_terminal
22 state’ «— stack.top()
23 stack.push(A)
24 stack.push(goto_table[state’, A])
25 break switch
26 case validation :
27 validation
28 break while
29 }
30 }

Figure 4. CFG Monitoring Algorithm

(the events) and aspects (the synthesized monitors), which
are then woven into the original application using any off-
the-shelf Aspect] compiler. We have implemented the CFG
logic plugin using the Maude term rewriting engine[15] and
it is available for download at[1]. The operations of the plu-
gin are described in the following sections.

5.3 CFG Simplification

The CFG plugin first simplifies the given grammar. The
first step of simplification is the removal of non-generating
non-terminals (A is non-generating if Vs € 3*, s cannot be
reduced to A in one or more reductions). The next step in
the simplification process is the removal of non-terminals
which are unreachable from the start symbol (A is unreach-
able from the start symbol if there is no string ~ that con-
tains A and reduces to the start symbol in any number of
steps). The last step removes e-productions from the gram-
mar. After ¢ has been removed from G, resulting in G’,
L(G") = L(G) — e. This is acceptable, as a monitor match-
ing the empty event trace has little utility.

5.4 Tables and Monitoring

After simplification, the tables are generated for a deter-
ministic push-down automaton (DPDA), that is, a determin-
istic finite automaton with a stack, which is to be used as a
monitor. When a new event arrives, the monitoring algo-
rithm must decide how to modify the stack.



The tables are given in a generic intermediate form,
which is converted by the Java shell into two Java ar-
rays. The tables are generated by an implementation of
the full Knuth algorithm as presented in[3]. This algorithm
is known to generate very large tables for complex gram-
mars (such as those for programming language syntax). We
believe that monitoring grammars will be relatively small,
none-the-less we plan to implement the table compaction
optimizations presented in[26] at a future date.

Pseudo-code for our monitoring algorithm is given in
Figure 4. The significance of lines 14-17 is explained in
the next section. An entry in action_table specifies, via the
action_type, the type of action: shift, reduce, or validate.
Each type of action also requires additional information in
order for the algorithm to process said action. An entry in
goto_table simply identifies the next state for the DPDA.

The shift action entry contains the next state for the
DPDA in the next_state field. A shift action simply pushes
the next state on the stack, if the next state is not the error
state (lines 7-13). If, however, the table indicates that the
next state is the error state, the algorithm reports a violation
and breaks without touching the stack (lines 9-12). This
allows the algorithm to continue to find more violations if
total matching is in use. After a successful shift action, the
while loop is broken, so that execution of the monitored pro-
gram may continue until the next relevant event (line 18).

The reduce action is more complicated. The field
non_terminal describes which non-terminal (A) the produc-
tion A — ~ reduces to, while the field pop denotes how
many states to pop from the stack (|y]). The reduction
proceeds by popping the specified number of states from
the stack and consulting goto_table to decide the next state
(lines 19-25). The state used for indexing gofo_table is not
the current state, but rather the state at the top of the stack
after the specified number of states has been popped (line
20). An indeterminate number of reductions can happen in
a row, but there must be shift at the end of the reduction se-
quence before the algorithm can terminate for a given event.
The reductions happen before the shift to simulate the look-
ahead of one token specified by the 1 in LR(1). If there were
no shift operation for a given event, it would be effectively
ignored (such as when it causes a violation).

The validation action, which directs the DPDA to vali-
date the current input has no special fields, as no more in-
formation is necessary (lines 26-28).

5.5 Monitor Stack Cloning

Note that the LR(1) algorithm assumes that the string
of terminals to be evaluated is completely known ahead of
time. Thus, it knows where the end of the string (denoted
as $) is. This is important because some reductions happen
with the $ symbol as the look-ahead, and the validation state
can only be recognized when the next input is $. When the

terminals are events generated dynamically, the end of the
“string” (execution trace) cannot be known.

Our implementation of the algorithm attempts to reduce
with $ as the look-ahead after every valid shift (lines 14-
17). The problem with blindly reducing with $ as the look-
ahead where possible is that all state of the current trace
evaluation is lost. This means that the monitor can only
validate the minimal trace that matches the CFG pattern.
Since we desire to report validations for every sub-trace that
matches the pattern6, we must clone the stack before we
perform any reductions with $ as the look-ahead.

This cloning ensures that the stack is intact for the next,
and subsequent events, allowing for multiple validations.
For example, consider the language denoted by the regu-
lar expression ab*. While we would suggest using the ERE
plugin for such a language, it is a clear example to illustrate
the effect of cloning. With no cloning the algorithm would
validate for only a. Because it popped during the valida-
tion phase, if it sees a b it will report failure. With cloning
it will report success for a, and then success again on the
input of b, and for any subsequent input of b. An important
optimization to cloning is to only clone the stack if there
is a reduction with $ as the look-ahead, rather than blindly
for every shift operation. This optimization will not help
ab*, but it will help for many other languages. In fact, for
{a"b"|X = {a,b}}, only one clone is necessary no mat-
ter how long the input. Any grammar accepting unbounded
repetition at the end of the pattern (like ab*), will require
cloning on each input of the repeated character.

5.6 Correctness of CFG Monitoring Algo-
rithm

We next prove the correctness of our online monitoring
algorithm for CFG. It is achieved by showing that our al-
gorithm detects violations and validations of the observed
trace in the same way as the Aho, Sethi, Ullman (ASU)
parsing algorithm[3], as given in Figure 5.

Theorem 1. For every bounded prefix of a (possibly infi-
nite) trace and a CFG pattern, the MOP algorithm will no-
tify a violation of the pattern if the ASU algorithm would
notify a parse failure, and validation if ASU would notify
success, given that prefix as total input.

Proof. First, we construct a new parsing algorithm, as
shown in Figure 6. This new algorithm can be easily proved
to be equivalent to the one in Figure 5 as follows. The major
difference between these two algorithm is that the pointer
(ip) increment is moved to the outer loop in Figure 6. This
change does not affect the behavior of the algorithm:

OThis is irrespective of partial matching which actually generates mul-
tiple monitors.



1 globals stack, ip, at, gt
2 initialize stack.push(0), ip — 0
3 procedure parse()
4 locals state, state’, a
5 while (true) {
6 state «— stack.peek()
7 a «+— get_token_at(ip)
8 switch (at/state, a].action_type) {
9 case shift :
10 state’ < at[state, a].next_state
11 if (state’ = error) {
12 report_error
13 advance ip
14 continue while
15
16 stack.push(state’)
17 advance ip
18 continue while
19 case reduce :
20 stack.pop(at|[state, a].pop)
21 state’ «— stack.peek()
22 stack.push(gt[state’, at[state, a].non_nonterminal])
23 continue while
24 case accept :
25 accept
26 return
27 }
28 }

Figure 5. Aho, Sethi, Ullman Algorithm

1. For a shift action, both algorithms carry out the same
operation except that Figure 5 increases the pointer and
continues to the next action, while Figure 6 breaks the
inner loop, increases the pointer in the outer loop, and
then continue to the next action. Obviously, both are
equivalent.

2. For reduction, Figure 6 chooses to stay in the inner
loop, which is identical to Figure 5, which continues
the loop without increasing the point.

3. For acceptance, both algorithms are identical.

Now we can prove the correctness of the monitoring al-
gorithm in Figure 4 by comparing it with the modified pars-
ing algorithm in Figure 6.

The major difference distinguishing the monitoring al-
gorithm from the parsing algorithm is that the former has to
wait for the next event extracted from the execution of the
monitored program while the latter can actively retrieve the
next token, which is handled in the outer loop in Figure 6.
Therefore, we only need to prove that the monitor proce-
dure in Figure 4 produces the same result as the inner loop
in Figure 6, given the same state and event to process.

It is straightforward to compare both pieces of code and
the only difference between them is the stack cloning (line
14 to 17) in Figure 4. It is needed because we wish to con-
tinue parsing after an accept, and because we can never ac-
tually see $ as an event (an online monitor does not see the

1 globals stack, ip, at, gt
2 initialize stack.push(0), ip — 0
3 procedure parse()
4 locals state, state’, a
5 while (true) {
6 a «— get_token_at(ip)
7 while (true) {
8 state «— stack.peek()
9 switch (at[state, a].action_type) {
10 case shift :
11 state’ < at[state, a].next_state
12 if (state’ = error) {
13 report_error
14 break while
15
16 stack.push(state’)
17 break while
18 case reduce :
19 stack.pop(at/[state, a].pop)
20 state’ «— stack.peek()
21 stack.push(gt[state’, at[state, a].non_nonterminal])
22 continue while
23 case accept :
24 accept
25 return
26 }
27 }
28 advance ip
29 }

Figure 6. Modified ASU Algorithm

end of the execution). we clone the stack after a shift and
check for actions with $ as the input. The only actions pos-
sible on this recursive call are reduce and accept on this re-
cursive call, because $ can never be shifted’. Due to this, the
recursion is always bounded at depth one. This is the major
difference between the MOP and ASU algorithms. Because
$ can never be an event, we must speculatively guess the end
of input after every symbol seen. The recursive call must
happen once and only once for each symbol seen (that does
not cause an error). Because the algorithm repeats until a
shift action, error, or accept happens, we ensure that the re-
cursive call must happen, if it happens, after the processing
of each input®. Cloning the stack allows us to reduce and
accept, while still maintaining the original stack to continue
parsing events as if the end of input had not been seen. Thus
this change is equivalent to the ASU algorithm in terms of
language recognition because both possibilities (the arrival
or non-arrival of $) are explored. That is, the MOP algo-
rithm will report accept for a given prefix if ASU would,
given that prefix as its total input, and failure if it would re-
port failure, and that it additionally retains enough state to
continue parsing future prefixes.

TThis is a property of the table generation algorithm, which we use
without proof. We feel it is intuitive, however.

8 Accept need not be considered because it can only happen when the
input is $, which only occurs during a recursive call.



O

5.7 Partial Matching with CFGs

As described in Section 4, several features are needed for
monitors to support optimized partial matching.

The first is identification of monitor creation events’.
As already mentioned, monitor creation events are events
which, when encountered as the first event in a trace would
not lead to an immediate failure. For CFGs this would im-
ply an event that can begin a sub-string which reduces to the
start symbol. This is the same as the definition of first set as
given earlier. Thus, the monitor creation events for the CFG
plugin are those events which are in firs#(S), where S is the
start symbol for the grammar.

Additionally, it is necessary to define a hash encoding
for CFG based monitors because our partial matching al-
gorithm uses a HashSet to find monitors with potentially
equivalent states quickly. We decided that two simple defin-
ing aspects of CFG based monitors are stack depth and the
current state of the monitor (the top of the stack). We chose
to xor them together (a broadly used operation for combin-
ing two binary quantities into one quantity representative
of the two in the same number of bits). Lastly, we need
an equality method defining when two CFG based moni-
tors have actually equivalent states. Two CFG monitors can
only be equal iff they have the same stack contents. It will
be fairly rare for two CFG monitors to be equivalent, as they
do not have finite state like the other logic plugins of MOP.
Thus it is important for failed equality testing to be fast. Be-
cause of this, we check to see if two monitors have the same
stack depth before beginning element-wise comparisons.

6 Evaluation

We evaluated the CFG plugin on the Dacapo benchmark
suite[8]. Also, we evaluated PQL and Tracematches against
DaCapo using the same properties for comparison.

6.1 Experimental Settings

Our experiments were carried out on a machine with
1.5GB RAM and Pentium 4 2.66GHz processor. The oper-
ating system used was Ubuntu Linux 7.10. We used the Da-
Capo benchmark version 2006-10; it contains eleven open
source programs[8]: antlr, bloat, chart, eclipse,
fop, hsgldb, jython, luindex, lusearch, pmd,
and xalan. The provided default input was used together
with the —converge option to execute the benchmark
multiple times until the execution time falls within a coeffi-
cient of variation of 3%. The average execution time of last
six iterations is then used to compute the runtime overhead.
Therefore, Table 2 percentages should be read “+£3”.

9Though, as mentioned, this is also necessary for total matching.

6.2 Properties

The following general properties borrowed from[10]
were checked in the evaluation:

e HashMap: An object’s hash code should not be
changed when the object is a key in a HashMap;

e HasNext: For a given iterator, the hasNext ()
method should be called between all calls to next () ;

e Safelterator: Do not update a Collection when us-
ing the ITterator interface to iterate its elements.

We also defined three new properties to showcase the
power of the CFG plugin; they are all properly context-free:

e ImprovedLeakingSync: The original LeakingSync
specified in[10] only allows synchronized accesses to
synchronized collections. This causes spurious fail-
ures because the synchronized methods call the unsyn-
chronized versions. Our improved version allows calls
to the unsynchronized methods so long as they happen
within synchronized calls.

e SafeFilelnputStream: SafeFileInputStream is a mod-
ification of our SafelLock property from Figure 2. It
ensures that a FileInputStream is closed in the
same method in which it is created.

o SafeFileWriter: SafeFileWriter ensures that all writes
toaFileWriter happen between creation and close
of the FileWriter, and that the creation and close
events are matched pairs.

More properties have been checked in our experiments;
we choose the first three regular-language-based properties
(HashMap, HasNext, and Safelterator) to include in this pa-
per because they generate a comparatively larger runtime
overhead, and because they are all expressible in PQL!?.
We excluded those with little overhead in JavaMOP. For
every property, we provide overhead percentages for Java-
MOP, as well as PQL and Tracematches where possible.
We run the JavaMOP monitors in partial matching mode;
the decentralized indexing of monitors was used in all the
experiments[14]. We chose the Aspect] compiler 1.5.3
(AJC) in the evaluation to compile the JavaMOP generated
monitoring Aspect] code. For Tracematches we used the
most recent published version from[2]. All of these proper-
ties are available on the JavaMOP Online Interface[1]. Each
one is named Partial <PropertyName>_CFG.

6.3 Results

Table 2 shows the percent overheads of JavaMOP us-
ing the CFG plugin, PQL, and Tracematches. N/E refers
to specifications that were not expressible. Tracematches is

10Some of the other regular language properties we have evaluated re-
quire arbitrary side effects. PQL has no faculties for this.



HashMap HasNext Safelterator ImprovedLeakingSync || SafeFileInputStream SafeFileWriter

MOP ‘ PQL ‘ ™™ || MOP ‘ PQL ‘ ™ | MOP ‘ PQL ‘ ™ MOP ‘ PQL ‘ ™ MOP ‘ PQL ‘ ™ | MOP ‘ PQL ‘ ™

antlr 3 6 0 1 2 3 2 82 0 1 N/E N/E 3 113 -1 2 22 N/E
bloat 14 9 -2 1112 | 5929 | 2452 627 | 8694 | 11258 13 N/E N/E 1 128 0 27 97 N/E
chart -1 1 -1 -1 3 0 2 50 11 N/E N/E 0 29 1 0 37 N/E
eclipse 0 1 1 0 2 -1 -2 1 2 1 N/E N/E -2.5 3 0 -2 1 N/E
fop 3 2 0 0 2 -1 -1 24 5 1 N/E N/E -2 58 -1 -2 47 N/E
hsqldb 0 3 15 0 6 15 0 78 17 1 N/E N/E 1 280 21 2 95 N/E
jython 0 23 15 0 0 13 0 12 16 41 N/E N/E 0 937 12 1 crashes | N/E
luindex 1 8 1 -2 93 2 3 181 9 1 N/E N/E -1 233 6 0 33 N/E
lusearch 1 1 8 -1 59 9 4 132 34 2 N/E N/E -1 137 7 0 49 N/E
pmd -1 0 3 191 1870 | 52 178 | 1334 175 36 N/E N/E -1 547 1 2 658 N/E
xalan 0 5 1 0 0 2 1 53 10 3 N/E N/E -1 90 3 -2.5 164 N/E

Table 2. Average percent runtime overhead for JavaMOP CFG (MOP), PQL, and Tracematches (TM)
(average of 6 trials after convergence within 3%)

Property | HashMap | HasNext | Safelterator | ImprovedLeakingSync | SafeFileInputStream | SafeFileWriter
antlr 0 0 1990 8472 0 385
bloat 361519 | 146628987 | 75944328 5587905 259 0
chart 8773 0 569345 634260 0 0

eclipse 20888 0 32759 74630 930 0

fop 17265 0 49959 182407 12 0
hsqldb 0 0 0 0 0 0
jython 443 0 177554 23969673 544 0

luindex 9615 0 82162 1559386 1114 0

lusearch 416 0 405428 1291992 0 32
pmd 11354 36163717 25476563 26291289 10 0
xalan 124155 0 1009649 5146036 13604 0

Table 3. Number of events handled by JavaMOP with CFGs
Property | HashMap | HasNext | Safelterator | ImprovedLeakingSync | SafeFilelnputStream (**) | SafeFileWriter
antlr 0 0 0 0 0 385
bloat 361436 | 73232724 1894581 0 3 0
chart 8729 0 815 0 0 0

eclipse 15836 0 588 0 8 0
fop 16980 0 79 0 0 0

hsqldb 0 0 0 0 0 0

jython 443 0 50 0 48 0

luindex 9615 0 8788 0 0 0

lusearch 416 0 0 0 0 32
pmd 116 10093591 1950212 0 2 0

xalan 95252 0 0 0 0 0

Table 4. Number of instantiated total match monitors

10




Property | Original HashMap HasNext | Safelterator | ImprovedLeakingSync | SafeFileInputStream | SafeFileWriter
antlr 23/10.1 | 2.0/10.6 | 1.8/10.6 2.0/10.8 2.1/10.7 2.41/10.7 2.2/10.7
bloat 5.6/89 6.9/8.9 59/8.7 | 541.0/10.6 7.9/10.0 5.0/89 5.6/89
chart 20.1/11.3 | 20.8/11.4 | 17.0/11.3 | 20.7/11.5 17.0/11.3 17.8/11.3 164/11.3

eclipse | 27.0/22.1 | 30.7/22.2 | 27.4/22.1 | 28.6/22.3 28.9/22.1 30.7/22.1 27.1/22.1
fop 12.3/9.1 132/9.2 | 10.9/9.0 10.2/9.1 14.6/9.2 11.9/9.0 12.0/9.0

hsqldb 80.8/7.6 | 802/7.6 | 76.4/17.5 775/17.6 8721175 7821715 7937175
jython 39/19.0 | 41/19.0 | 3.8/19.0 39/19.1 4.0/19.2 4.0/19.1 3.6/19.1
luindex 4.2/6.9 4.0/7.0 4.6/6.9 47171 56/7.0 4.2/6.9 4.6/6.9

lusearch | 5.2/6.2 52763 5.71716.2 53763 58/64 56/6.3 57763
pmd 22.0/8.6 | 223/87 | 24.0/8.6 | 888.1/89 22.2/8.8 24.2/8.6 229/8.6
xalan 21.7/10.2 | 23.8/10.5 | 26.2/10.2 | 29.1/10.3 24.4/10.3 22.0/10.3 26.5/10.2

Table 5. Maximum memory usage in MB (Maximum Heap Memory Usage) / (Maximum Non-Heap

Memory Usage)

unable to support ImprovedLeakingSync because the prop-
erty is truly context-free. PQL is also unable to support
it because it requires events corresponding to the begin-
ning and end of synchronized method calls, and PQL can
only trigger events on the end of method calls. Trace-
matches cannot support SafeFileWriter because it is a pure
context-free specification. However, Tracematches can sup-
port SafeFileInputStream because it has the ability to access
call stack depth via the cf1owdepth pointcut term, which
is provided only by the ABC compiler for Aspect].

Over one running of the entire DaCapo benchmark suite,
over 355 million events (Table 3) are generated, creating
more than 87 million monitors (Table 4). Notably, the high-
est runtime overheads are associated with the larger num-
ber of monitors, more-so than the number of events (for ex-
ample, ImprovedLeakingSync monitors a large amount of
events but generates no monitors, so the overhead remains
fairly low). This is mainly due to the amount of time spent
in indexing and attempting to merge monitors.

The average overhead of JavaMOP over the 66 pro-
gram/property pairs is 34%. There are two considera-
tions here, however: (1) we chose specifically those prop-
erties that generated the largest overheads, (2) when the
two largest overheads are removed, the average over the re-
maining 64 pairs drops to a very reasonable 8%. Further,
the average JavaMOP overhead for properties expressible in
PQL was 39% over 55 pairs, while PQL’s overhead on these
same properties was 415%. Similarly, for Tracematches ex-
pressible properties JavaMOP’s, overhead was 48% over 44
pairs, while Tracematches was 322%. Tracematches, PQL,
and JavaMOP all feature the same two pairs which have ex-
tremely large overhead compared to the median (HasNext
and Safelterator in bloat). When these two pairs are re-
moved from the three averages, the average overhead for
JavaMOP with respect to PQL expressible properties is 8%,
while PQL still weighs in at 150%. Tracematches is compa-
rable to JavaMOP, with JavaMOP at 9% and Tracematches
at 11%. Since Tracematches does not support the full gen-

11

erality of (deterministic) context-free grammars, we view
comparable performance to Tracematches as favorable to
our approach, especially given that, in the overall data set,
our average overhead is over 6 times lower.

The largest overheads seen, across all three systems, are
for Safelterator and HasNext in bloat. This is due to bloat’s
extensive use of iterators. bloat is a bytecode optimizer,
which uses iterators to process bytecode. PQL and Trace-
matches perform worse on Safelterator than they do on Has-
Next, while our performance is the opposite. The reason for
this is that HasNext creates a far larger number of moni-
tors in JavaMOP, because it creates a monitor for every call
to next, while Safelterator only creates monitors on a call
to create. The pattern for Safelterator, however, is more
complex. This shows that JavaMOP has, relatively speak-
ing, more overhead in generating and handling the moni-
tor set for partial matching than it does matching the pat-
tern, while PQL and Tracematches overheads are more af-
fected by the complexity of the pattern. Table 4 supports
this claim, showing the HasNext generates far more mon-
itors than SafeFileInputStream. Note that JavaMOP with
CFGs far outperforms both PQL and Tracematches on these
2 program/property pairs.

SafeFileInputStream is an interesting case: as a context-
free grammar it is required to match the begin and end
of methods. Instrumenting the begin and end of every
method would be atrociously slow, however. We per-
form a static analysis which finds those methods in which
FileInputStream’s are actually used. Then we in-
strument only those methods for begin and end. Because
Tracematches, also, is pointcut based, we are able to per-
form the same optimization for Tracematches, so the num-
bers shown are with the optimization enabled. PQL is not
pointcut based so the optimization cannot be applied; how-
ever, the PQL property does not match begins and ends of
methods (recall: PQL can only match the ends), so this is
not an issue. In PQL, we specify SafeFilelnputStream by
using an interesting PQL-specific feature called within.




The idea of within is that a property matches only within
a given method or methods matching a particular pattern
(in the case of SafeFileInputStream we use the pattern _. _
which specifies all methods of all classes). Additionally,
PQL will only instrument the same methods that JavaMOP
and Tracematches instrument, because within only in-
struments methods which may generate relevant events.

The memory overhead of monitoring is reasonable in our
experiments: overall, it is 33% on average with a 4% me-
dian (see Table 5 for a pair-wise breakdown). There are
two extreme cases about the memory overhead caused by
JavaMOP monitors, namely, bloat-Safelterator and pmd-
Safelterator. Our investigation shows that both programs,
bloat and pmd, make intensive use of some vectors and cre-
ate numerous iterators to do computation over the vectors
throughout the whole execution. Note that every creation
of the iterator leads to the creation of a monitor instance
for Safelterator using our technique. Hence, a huge num-
ber of monitor instances were created in these two bench-
marks. While the iterator object is usually used in a small
scope and then released, the vectors are not released un-
til the end of the execution, preventing the removal of the
created monitor instances. In other words, all the moni-
tor instances created during the execution of bloat and pmd
were kept alive until the execution ended, resulting in the
observed massive memory usage. On the contrary, we can
see that a large number of monitors were also created for
bloat-HasNext and pmd-HasNext but with much less mem-
ory overhead, because for HasNext, one monitor is created
for every iterator object and when the iterator is released,
the corresponding monitor will also be removed. Since
most iterators were released shortly after creation, only a
few monitors existed at the same time during the execution
and much lower memory overhead was caused. Compared
with the results of Tracehmatches, we believe there is still
some room for improvement with regard to memory usage
in our approach. We are working on a new technique that
is based on the idea of removing ’dead” monitors using
static analysis on the specification.

7 Conclusions and Future Work

We implemented a CFG pattern based logic plugin for
JavaMOP using a modified LR(1) parsing algorithm. Our
modification to the algorithm is based on the novel idea
of cloning the stack in order to “predict” a possible reduc-
tion with $ (end of string) as a look ahead without destroy-
ing the state of the monitor. We showed, empirically, that
our algorithm is efficient and faster than the state-of-the-
art for monitoring CFG properties. We also extended Java-
MOP with partial trace matching in order to fairly compare
JavaMOP with PQL, which uses a proprietary logic encom-
passing context-free languages, and Tracematches. Trace-
matches, however, cannot handle arbitrary CFG patterns.

We have also begun work on a logic called PtCaRet as

12

another specification formalism to support structured spec-
ifications. PtCaRet is past time temporal logic with calls
and returns. We plan to implement both static and dynamic
soon. Further, we intend to add the Pager[26] optimizations
to the CFG plugin table creation algorithm in order to re-
duce the size of the created action and goto tables.

References

[1] JavaMOP CFG website links. Java MOP CFG Plugin:
http://fsl.cs.uiuc.edu/index.php/JavaMOPCFEG,
JavaMOP Online Interface: http://fsl.cs.uiuc.edu/
index.php/Special:JavaMOPOnline.

[2] Tracematches Benchmarks. http://abc.comlab.ox.

ac.uk/tmahead.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers,
principles, techniques, and tools. Addison-Wesley,
1986. pages 215-246.

[4] C. Allan, P. Avgustinov, A. S. Christensen, L. Hen-
dren, S. Kuzins, O. Lhotak, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to Aspect]. In OOPSLA, 2005.

[5] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhotak, O. Lhotak, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. ABC: an
extensible Aspect] compiler. In AOSD, 2005.

[6] P. Avgustinov, J. Tibble, and O. de Moor. Making trace
monitors feasible. In OOPSLA, 2007.

(7]
(8]

Bison. http://www.gnu.org/software/bison/.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanovié, T. VanDrunen, D. von Dincklage, and B. Wie-
dermann. The DaCapo benchmarks: Java benchmark-
ing development and analysis. In OOPSLA, 2006.

[9] E. Bodden. J-lo, a tool for runtime-checking temporal
assertions. Master’s thesis, RWTH Aachen University,
2005.

E. Bodden, L. Hendren, and O. Lhotdk. A staged static
program analysis to improve the performance of run-
time monitoring. In ECOOP, 2007.

F. Chen, M. D’Amorim, and G. Rogu. A formal
monitoring-based framework for software develop-
ment and analysis. In ICFEM, 2004.



[12]

[13]

(14]

[15]

(16]

(17]
(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

F. Chen, M. D’ Amorim, and G. Rosu. Checking and
correcting behaviors of Java programs at runtime with
JavaMOP. In Runtime Verification, 2005.

F. Chen and G. Rosu. Towards monitoring-oriented
programming: A paradigm combining specification
and implementation. In Runtime Verification, 2003.

F. Chen and G. Rogsu. MOP: An efficient and generic
runtime verification framework. In OOPSLA, 2007.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-
Oliet, J. Meseguer, and C. Talcott. All About Maude
- A High-Performance Logical Framework: How to
Specify, Program, and Verify Systems in Rewriting
Logic. Springer-Verlag New York, Inc., 2007.

M. d’ Amorim and K. Havelund. Event-based runtime
verification of Java programs. SIGSOFT Software En-
gineering Notes, 30(4):1-7, 2005.

Temporal Rover. http://www.time-rover.com.

S. Goldsmith, R. O’Callahan, and A. Aiken. Rela-
tional queries over program traces. In OOPSLA, 2005.

K. Havelund and G. Rosu. Monitoring Java programs
with Java PathExplorer. In Runtime Verification, 2001.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Intro-
duction to automata theory, languages, and computa-
tion, 2nd edition. Addison-Wesley, 2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of Aspect].
In ECOOP, 2001.

M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-
MacC: a runtime assurance tool for Java. In Runtime
Verification, 2001.

D. E. Knuth. On the translation of languages from left
to right. Information and Control, 8(6):607-639, Dec.
1965.

G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and
B. Jacobs. JML: notations and tools supporting de-
tailed design in Java. In OOPSLA, 2000.

M. Martin, V. B. Livshits, and M. S. Lam. Finding ap-
plication errors and security flaws using PQL: a pro-
gram query language. In OOPSLA, 2005.

D. Pager. A practical general method for constructing
LR(k) parsers. Acta Information, 7:249-268, 1977.

F. B. Schneider. = Enforceable security policies.
ACM Transactions on Information System Security,
3(1):30-50, 2000.

13



