5,084 research outputs found

    ASSESSING AND IMPROVING THE RELIABILITY AND SECURITY OF CIRCUITS AFFECTED BY NATURAL AND INTENTIONAL FAULTS

    Get PDF
    The reliability and security vulnerability of modern electronic systems have emerged as concerns due to the increasing natural and intentional interferences. Radiation of high-energy charged particles generated from space environment or packaging materials on the substrate of integrated circuits results in natural faults. As the technology scales down, factors such as critical charge, voltage supply, and frequency change tremendously that increase the sensitivity of integrated circuits to natural faults even for systems operating at sea level. An attacker is able to simulate the impact of natural faults and compromise the circuit or cause denial of service. Therefore, instead of utilizing different approaches to counteract the effect of natural and intentional faults, a unified countermeasure is introduced. The unified countermeasure thwarts the impact of both reliability and security threats without paying the price of more area overhead, power consumption, and required time. This thesis first proposes a systematic analysis method to assess the probability of natural faults propagating the circuit and eventually being latched. The second part of this work focuses on the methods to thwart the impact of intentional faults in cryptosystems. We exploit a power-based side-channel analysis method to analyze the effect of the existing fault detection methods for natural faults on fault attack. Countermeasures for different security threats on cryptosystems are investigated separately. Furthermore, a new micro-architecture is proposed to thwart the combination of fault attacks and side-channel attacks, reducing the fault bypass rate and slowing down the key retrieval speed. The third contribution of this thesis is a unified countermeasure to thwart the impact of both natural faults and attacks. The unified countermeasure utilizes dynamically alternated multiple generator polynomials for the cyclic redundancy check (CRC) codec to resist the reverse engineering attack

    Integrated Safety and Security Risk Assessment Methods: A Survey of Key Characteristics and Applications

    Get PDF
    Over the last years, we have seen several security incidents that compromised system safety, of which some caused physical harm to people. Meanwhile, various risk assessment methods have been developed that integrate safety and security, and these could help to address the corresponding threats by implementing suitable risk treatment plans. However, an overarching overview of these methods, systematizing the characteristics of such methods, is missing. In this paper, we conduct a systematic literature review, and identify 7 integrated safety and security risk assessment methods. We analyze these methods based on 5 different criteria, and identify key characteristics and applications. A key outcome is the distinction between sequential and non-sequential integration of safety and security, related to the order in which safety and security risks are assessed. This study provides a basis for developing more effective integrated safety and security risk assessment methods in the future

    A Secured Model of E-Tendering Using Unified Modeling Language Approach

    Get PDF
    E-Tendering systems remain uncertain on issues relating to legal and security compliance, in which unclear security framework is one of the issues. In te current situation, tendering systems are lacking in addressing integrity, confidentiality, authentication, and non-repudiation. Thus, ensuring the system requirements, consider security and trust issues has to be regarded as one of the challenges in developing an e-Tendering system. Therefore, this paper a model of a secured e-Tendering system using Unified Modeling Language (UML) approach. The modelling process begins with identifying the e-Tendering process, which is based on Australian Standard Code of Tendering (AS 4120-1994). It is followed by identifying the security threats and its countermeasure. The use case approach has been proven reliable in determining appropriate requirements for handling security issues. Having considered that, the outcome of this paper is a secured e-Tendering model. The model can guide developers as well as other researchers

    An Approach to Select Cost-Effective Risk Countermeasures Exemplified in CORAS

    Get PDF
    Risk is unavoidable in business and risk management is needed amongst others to set up good security policies. Once the risks are evaluated, the next step is to decide how they should be treated. This involves managers making decisions on proper countermeasures to be implemented to mitigate the risks. The countermeasure expenditure, together with its ability to mitigate risks, is factors that affect the selection. While many approaches have been proposed to perform risk analysis, there has been less focus on delivering the prescriptive and specific information that managers require to select cost-effective countermeasures. This paper proposes a generic approach to integrate the cost assessment into risk analysis to aid such decision making. The approach makes use of a risk model which has been annotated with potential countermeasures, estimates for their cost and effect. A calculus is then employed to reason about this model in order to support decision in terms of decision diagrams. We exemplify the instantiation of the generic approach in the CORAS method for security risk analysis.Comment: 33 page

    Unified Description for Network Information Hiding Methods

    Full text link
    Until now hiding methods in network steganography have been described in arbitrary ways, making them difficult to compare. For instance, some publications describe classical channel characteristics, such as robustness and bandwidth, while others describe the embedding of hidden information. We introduce the first unified description of hiding methods in network steganography. Our description method is based on a comprehensive analysis of the existing publications in the domain. When our description method is applied by the research community, future publications will be easier to categorize, compare and extend. Our method can also serve as a basis to evaluate the novelty of hiding methods proposed in the future.Comment: 24 pages, 7 figures, 1 table; currently under revie

    A Unified Metric for Quantifying Information Leakage of Cryptographic Devices under Power Analysis Attacks

    Get PDF
    To design effective countermeasures for cryptosystems against side-channel power analysis attacks, the evaluation of the system leakage has to be lightweight and often times at the early stage like on cryptographic algorithm or source code. When real implementations and power leakage measurements are not available, security evaluation has to be through metrics for the information leakage of algorithms. In this work, we propose such a general and unified metric, information leakage amount - ILA. ILA has several distinct advantages over existing metrics. It unifies the measure of information leakage to various attacks: first-order and higher-order DPA and CPA attacks. It works on algorithms with no mask protection or perfect/imperfect masking countermeasure.It is explicitly connected to the success rates of attacks, the ultimate security metric on physical implementations. Therefore, we believe ILA is an accurate indicator of the side-channel security level of the physical system, and can be used during the countermeasure design stage effectively and efficiently for choosing the best countermeasure
    • …
    corecore