9 research outputs found

    Threshold-optimal DSA/ECDSA signatures and an application to Bitcoin wallet security

    Get PDF
    While threshold signature schemes have been presented before, there has never been an optimal threshold signature algorithm for DSA. Due to the properties of DSA, it is far more difficult to create a threshold scheme for it than for other signature algorithms. In this paper, we present a breakthrough scheme that provides a threshold DSA algorithm that is efficient and optimal. We also present a compelling application to use our scheme: securing Bitcoin wallets. Bitcoin thefts are on the rise, and threshold DSA is necessary to secure Bitcoin wallets. Our scheme is the first general threshold DSA scheme that does not require an honest majority and is useful for securing Bitcoin wallets

    Provably secure digital signatures with additional property

    Get PDF
    制度:新 ; 文部省報告番号:乙2108号 ; 学位の種類:博士(理学) ; 授与年月日:2007/7/26 ; 早大学位記番号:新460

    Two-round nn-out-of-nn and Multi-Signatures and Trapdoor Commitment from Lattices

    Get PDF
    Although they have been studied for a long time, distributed signature protocols have garnered renewed interest in recent years in view of novel applications to topics like blockchains. Most recent works have focused on distributed versions of ECDSA or variants of Schnorr signatures, however, and in particular, little attention has been given to constructions based on post-quantum secure assumptions like the hardness of lattice problems. A few lattice-based threshold signature and multi-signature schemes have been proposed in the literature, but they either rely on hash-and-sign lattice signatures (which tend to be comparatively inefficient), use expensive generic transformations, or only come with incomplete security proofs. In this paper, we construct several lattice-based distributed signing protocols with low round complexity following the Fiat–Shamir with Aborts (FSwA) paradigm of Lyubashevsky (Asiacrypt 2009). Our protocols can be seen as distributed variants of the fast Dilithium-G signature scheme and the full security proof can be made assuming the hardness of module SIS and LWE problems. A key step to achieving security (unexplained in some earlier papers) is to prevent the leakage that can occur when parties abort after their first message—which can inevitably happen in the Fiat–Shamir with Aborts setting. We manage to do so using homomorphic commitments. Exploiting the similarities between FSwA and Schnorr-style signatures, our approach makes the most of observations from recent advancements in the discrete log setting, such as Drijvers et al.’s seminal work on two-round multi-signatures (S&P 2019). In particular, we observe that the use of commitment not only resolves the subtle issue with aborts, but also makes it possible to realize secure two-round nn-out-of-nn distributed signing and multi-signature in the plain public key model, by equipping the commitment with a trapdoor feature. The construction of suitable trapdoor commitment from lattices is a side contribution of this paper

    Approximate Lower Bound Arguments

    Get PDF
    Suppose a prover, in possession of a large body of valuable evidence, wants to quickly convince a verifier by presenting only a small portion of the evidence. We define an Approximate Lower Bound Argument, or ALBA, which allows the prover to do just that: to succinctly prove knowledge of a large number of elements satisfying a predicate (or, more generally, elements of a sufficient total weight when a predicate is generalized to a weight function). The argument is approximate because there is a small gap between what the prover actually knows and what the verifier is convinced the prover knows. This gap enables very efficient schemes. We present noninteractive constructions of ALBA in the random oracle and uniform reference string models and show that our proof sizes are nearly optimal. We also show how our constructions can be made particularly communication-efficient when the evidence is distributed among multiple provers, which is of practical importance when ALBA is applied to a decentralized setting. We demonstrate two very different applications of ALBAs: for large-scale decentralized signatures and for proving universal composability of succinct proofs

    Advances in signatures, encryption, and E-Cash from bilinear groups

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 147-161).We present new formal definitions, algorithms, and motivating applications for three natural cryptographic constructions. Our constructions are based on a special type of algebraic group called bilinear groups. 1. Re-Signatures: We present the first public key signature scheme where a semi-trusted proxy, given special information, can translate Alice's signature on a message into Bob's signature on the same message. The special information, however, allows nothing else, i.e., the proxy cannot translate from Bob to Alice, nor can it sign on behalf of either Alice or Bob. We show that a path through a graph can be cheaply authenticated using this scheme, with applications to electronic passports. 2. Re-Encryption: We present the first public key cryptosystem where a semi-trusted proxy, given special information, can translate an encryption of a message under Alice's key into an encryption of the same message under Bob's key. Again, the special information allows nothing else, i.e. the proxy cannot translate from Bob to Alice, decrypt on behalf of either Alice or Bob, or learn anything else about the message. We apply this scheme to create a new mechanism for secure distributed storage.(cont.) 3. Compact; E-Cash with Tracing and Bounded-Anonymity: We present an offline e-cash system where 2 coins can be stored in O(e + k) bits and withdrawn or spent in 0(f + k) time, where k is the security parameter. The best previously known schemes required at least one of these complexities to be 0(2t . k). In our system, a user's transactions are anonymous and unlinkable, unless she performs a forbidden action, such as double-spending a coin. Performing a forbidden action reveals the identity of the user, and optionally allows to trace all of her past transactions. We provide solutions without using a trusted party. We argue why features of our system are likely to be crucial to the adoption of any e-cash system.by Susan Hohenberger.Ph.D

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    Democracy Enhancing Technologies: Toward deployable and incoercible E2E elections

    Get PDF
    End-to-end verifiable election systems (E2E systems) provide a provably correct tally while maintaining the secrecy of each voter's ballot, even if the voter is complicit in demonstrating how they voted. Providing voter incoercibility is one of the main challenges of designing E2E systems, particularly in the case of internet voting. A second challenge is building deployable, human-voteable E2E systems that conform to election laws and conventions. This dissertation examines deployability, coercion-resistance, and their intersection in election systems. In the course of this study, we introduce three new election systems, (Scantegrity, Eperio, and Selections), report on two real-world elections using E2E systems (Punchscan and Scantegrity), and study incoercibility issues in one deployed system (Punchscan). In addition, we propose and study new practical primitives for random beacons, secret printing, and panic passwords. These are tools that can be used in an election to, respectively, generate publicly verifiable random numbers, distribute the printing of secrets between non-colluding printers, and to covertly signal duress during authentication. While developed to solve specific problems in deployable and incoercible E2E systems, these techniques may be of independent interest

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Essays in decentralized finance

    Get PDF
    corecore