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Abstract

We present new formal definitions, algorithms, and motivating applications for three natural
cryptographic constructions. Our constructions are based on a special type of algebraic
group called bilinear groups.

1. Re-Signatures: We present the first public key signature scheme where a semi-trusted
proxy, given special information, can translate Alice’s signature on a message into Bob’s
signature on the same message. The special information, however, allows nothing else,
i.e., the proxy cannot translate from Bob to Alice, nor can it sign on behalf of either
Alice or Bob. We show that a path through a graph can be cheaply authenticated
using this scheme, with applications to electronic passports.

2. Re-Encryption: We present the first public key cryptosystem where a semi-trusted
proxy, given special information, can translate an encryption of a message under Alice’s
key into an encryption of the same message under Bob’s key. Again, the special
information allows nothing else, i.e. the proxy cannot translate from Bob to Alice,
decrypt on behalf of either Alice or Bob, or learn anything else about the message. We
apply this scheme to create a new mechanism for secure distributed storage.

3. Compact E-Cash with Tracing and Bounded-Anonymity: We present an offline
e-cash system where 2¢ coins can be stored in O(£ + k) bits and withdrawn or spent in
O(£ + k) time, where k is the security parameter. The best previously known schemes
required at least one of these complexities to be O(2¢ - k). In our system, a user’s
transactions are anonymous and unlinkable, unless she performs a forbidden action,
such as double-spending a coin. Performing a forbidden action reveals the identity
of the user, and optionally allows to trace all of her past transactions. We provide
solutions without using a trusted party. We argue why features of our system are
likely to be crucial to the adoption of any e-cash system.

Thesis Supervisor: Ronald L. Rivest
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Chapter 1

Introduction

Cryptography is an ancient art [129], historically used for securely communicating. In the
days of Julius Caesar (100 BC), the Roman army scrambled the letters in their communi-
cations, according to a secret code, to prevent enemies from intercepting and reading the
messages. During World War II, the Allies’ successful interception and break of the Ger-
man secret codes is credited with helping win the war. Today, cryptography has many uses
beyond military ones. Indeed, it is employed by millions of users daily to purchase goods
over the Internet. Cryptography even has applications beyond secure communication, such
as electronic cash.

There are two main categories of cryptographic communication protocols: symmetric
(also called private key) and asymmetric (also called public key). Before 1976, it was gen-
erally believed that for two parties, say Alice and Bob, to securely communicate it was
necessary that Alice and Bob share some common secret. Such protocols are called sym-
metric, because both parties must know the same secret. In 1976, Diffie and Hellman [88]
authored a seminal publication called “New Directions in Cryptography,” in which they es-
rablished the foundation of asymmetric protocols. Diffie and Hellman described a method by
which Alice and Bob could agree on a common secret, even if an eavesdropper overheard all
the messages passing between them! Such a protocol was dubbed a key exchange protocol.

In 1978, Rivest, Shamir and Adelman [165] proposed the first asymmetric encryption
algorithm. named RSA after its authors. The conceptual breakthrough in RSA is that Alice
can privately send Bob a message without the two of them ever agreeing on a common secret!
[nstead. to receive private messages, Bob first generates two values called a public key and a
secret key. He then broadcasts his public key to everyone, e.g., posts it on the Internet, and
keeps the secret key for himself. Now, using Bob’s public key, Alice can encode a message
i such a way that only Bob with his secret key will be able to read it.

Both the Diffie-Helliman and RSA results came from key observations about the properties
of certain algebraic groups. A mathematical group has three compouents: a set of elements,
a group operator (such as multiplication), and an identity element (such as one. where for
any element @ in the group, x multiplied by one is x.). In the case of Diffie-Hellman, the
group elements are the set of integers modulo a large prime. In the case of RSA, the group
elements are the set of integers modulo the product of two large primes. (In both cases,
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the group operator is multiplication and the identity is one.) The key idea is that different
groups offer different mathematical properties which, with human ingenuity, can be leveraged
to construct new cryptographic functionalities.

In this thesis, we advance the state-of-the-art for three natural cryptographic function-
alities: re-signatures, re-encryption, and electronic cash. Our constructions are based on
an algebraic group called bilinear groups, where the group elements are (typically) the set
of points on an elliptic curve. For each of the functionalities we consider, currently no
constructions, comparable in terms of either security or efficiency, are known beyond the
ones we present using bilinear groups. An interesting open question is whether or not these
functionalities can be achieved using other algebraic groups.

For the remainder of this introduction, let us first discuss bilinear groups in more detail.
We will then cover the definition, the technical advance, and the practical application of
each of our works in re-signatures, re-encryption, and electronic cash.

1.1 Bilinear Groups

Bilinear groups are a set of three abstract algebraic groups, G;, G2 and G, together with
a deterministic function e, called a bilinear map, that takes as input one element from
G, and one element from G, and outputs an element in Gp. Suppose all three groups
have order @, element g; generates group Gy, and element gy generates group G,. Then,
one special property called bilinearity of the map e is that for all a,b < @, we have that
e(g9%, %) = e(g1,92)®°. This new element, e(g;, g2)?, is in group Gr. The key observation
is what happens to the exponents, a and b, during the mapping: they are multiplied. The
group G is distinct from both G, or Go; thus the output of the mapping cannot be fed back
into the map e as input. At first glance, this may seem like a simple algebraic trick between
three groups, however, it has proven to be a powerful cryptographic building block.

We said above that bilinear groups are abstract groups, meaning that any three algebraic
groups, whatever their set of group elements, etc., which satisfy the abstract definition can
be called bilinear. The best known realization of bilinear groups come from elliptic curve
groups, where the group elements are the set of points on an elliptic curve (plus one additional
point). That is the set of (z, %) solutions to the equation y? = x*+ax +b, plus one additional
point at infinity. Here the group operation is defined geometrically. (We will discuss more
technical details of bilinear groups and elliptic curves in more detail in Chapter 2.)

Elliptic curve groups were introduced into cryptography long before the potential of
their bilinear properties was recognized. In 1985, Miller first mentioned using elliptic curve
groups iu cryptography [146] to implement the Diffie-Hellman key exchange protocol with
the objective of obtaining better security and efficiency. To see this, consider the discrete
logarithm (DL) problem for a group G of order ) with generator g, which is: given (g, g*),
compute a < Q. The DL problem is believed to be hard in many algebraic groups, meaning
that any adversary that solves the problem must run exponentially in the bit length of Q).

The security of the Diffie-Hellman key exchange protocol rests in part on the hardness
of the DL problem in the group used to implement it. Although. this protocol was (and still
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is) believed to be secure when implemented using the groups originally proposed by Diffie
and Hellman, some attacks against the DL problem in these groups run super-polynomially,
but sub-exponentially in the bit length of @. Thus, larger groups (i.e., more bits to comprise
a larger () must be used to guarantee a desired level of security with respect to the best
known attacks.

Miller [146] argued that because these DL attacks were not (and still are not) generally
effective against elliptic curve groups, an elliptic curve implementation could offer a better
security guarantee while costing fewer bits per group element. A similar proposal was made
in 1987 by Koblitz [135]. By 1998, an elliptic curve signature scheme, ECDSA, was adopted
as a US standard [4]. Indeed, elliptic curve groups appear, so far, to have withstood the
test of time against more effective DL attacks against them. In Chapter 2, we discuss in
more detail the particular time and space savings that they offer compared to other common
cryptographic groups.

Up to this point, we have only discussed the introduction of elliptic curve groups in
cryptography. The entrance of bilinear groups G, G, and G joined by a mapping function
e, however, appears to be more revolutionary. Interestingly, bilinear groups have a similar
history to the advent of public key cryptography in general. In 2000, Joux [126] sparked
interest in the bilinear properties of elliptic curve groups by using them to implement an
optimized version of the Diffie-Hellman key exchange protocol, where three people could
agree on a key instead of only two. However, it was the 2001 identity-based encryption
(IBE) scheme of Boneh and Franklin [30, 29] that triggered an explosion of bilinear schemes
in cryptography.

The reason was largely that constructing a polynomial-time IBE scheme had been an open
problem since proposed by Shamir in 1984 [172]. The IBE scheme of Boneh and Franklin
was not only polynomial-time, but competitive with popular encryption schemes, such as El
Gamal. (Shortly after the Boneh and Franklin result was published, Cocks [82] showed how
to build a polynomial-time IBE scheme based on quadratic residues, i.e., no bilinear groups
needed. While this was a theoretical breakthrough, the Cocks scheme is not efficient enough
to be used in practice.)

Thus, Boneh and Franklin re-energized the cryptography community with the hope of
realizing desirable protocols that had been open problems for years and the possibility of
realizing previously unthought of functionalities. Since the Boneh and Franklin result [30]
appeared in 2001, over 300 academic publications covering a wide range of applications of
bilinear groups in cryptography emerged. It would be a daunting task indeed to survey all
of these results.

To add perspective to the contributions of this thesis, let us sample some of the recent
exciting applications of bilinear groups (in chronological order of publication within the
categories). Results of the author are in italics. Random oracles are a heuristic often used
in proofs of security, which are known to be unsound theoretically [66, 115].

Signatures:

1. Short signatures [35, 34]
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Unique signatures [140]

Aggregate and verifiably encrypted signatures [31]

Efficient signatures without random oracles [25, 54]

Proxy re-signatures [10], Chapter 4

Logarithmic-size group signatures without random oracles [39]
Aggregate and multi-signatures without random oracles [138]
8. Constant-size group signatures without random oracles 6]

I IR A i o

Encryption:

Identity-based encryption (IBE) [30, 29]
Forward-secure public-key encryption [67]
Encryption with keyword search [28]

Unidirectional proxy re-encryption [8, 9], Chapter 5
IBE without random oracles [180]

Fuzzy IBE [167]

Traitor tracing schemes [69]

(Almost) doubly homomorphic encryption [33]
Broadcast encryption [32]

0N DOt

©

Other Algorithms and Protocols:

1. Pseudorandom and verifiable random functions [140, 92, 95]
2. Electronic cash [49, 50], Chapters 6 and 7
3. Perfect non-interactive zero knowledge for NP [120]

Boneh and Silverberg [36] also explored applications of multilinear groups. For instance,
suppose there are four groups G, Gy, G3, Gr and a mapping e that takes one element from
cach of the first three groups and maps it to an element of the fourth group such that the
exponents multiply. Boneh and Silverberg amply motivate the utility of multilinear groups
in cryptography; unfortunately, no such candidate implementations are known. Thus, we
will restrict our focus to bilinear groups only.

Our above sample of applications of bilinear groups in cryptography utilize these groups
in four major ways: (1) realize a new functionality for which no non-bilinear constructions,
however inefficient, are known; (2) achieve better time and/or space efficiency; (3) remove
trusted third parties; and (4) remove random oracles.

The first application is the most exciting one! Indeed, our re-signature and re-encryption
constructions in Chapters 4 and 5 fall into this first category. The second two applications
are also of great practical significance, and our advances in electronic cash in Chapters 6
and 7 will highlight how bilinear maps can be used to exponentially improve efficiency
and remove (for the first time) trusted third parties. Recall that since one of the goals
of cryptography is to eliminate the need to trust others, removing “trusted” parties from
systems is a fundamental goal.

The final application of bilinear groups, to remove random oracles, is one of its most
prevalent uses, including a work of the author [6]. The current trend is to replace random
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oracles by bilinear groups and a new (typically untested) complexitv assumption. The best
current method for providing some confidence in these new assumptions is to show that they
hold in the generic group model of Shoup [152, 173]. Oddly enough this generic group model
is subject to some of the same theoretical flaws as random oracles [87)! There is certainly
value in this final application of bilinear groups, but a further discussion on this topic is both
warranted and beyond the scope of this thesis.

Now that we have a better understanding of bilinear groups and the methods in which
they are often applied, let us overview the main contributions of this thesis. We present new
advances in the areas of re-signatures, re-encryption, and electronic cash.

1.2 Proxy Re-Cryptography

We begin with some basic definitions:

Definition 1.1 (Signature Scheme). A signature scheme is a tuple of algorithms (KeyGen,
Sign, Verify), where on input the security parameter 1%, the KeyGen algorithm outputs a public
and secret key pair (pk, sk). On input the secret key sk and a message m, the Sign algorithm
outputs a signature o. On input the public key pk, the message m, and a purported signature
o, the Verify algorithm accepts if o is a valid signature and rejects otherwise.

A signature scheme is the digital equivalent of physically signing a paper document with
a pen. The idea is that Alice (a user) generates a key pair for herself, publicizing pk and
keeping sk secret. Then, only Alice can sign messages that will verify against her public key
pk. Goldwasser, Micali, and Rivest provided the standard definition of security for digital
signatures [118]. The intuition is that even if an adversary is allowed to ask Alice to sign
messages of his choice, he is still unable to forge her signature on a new message.

Signatures are a fundamental building block of secure communication. For example, a
stockbroker needs to know that an order to “sell 10,000 shares” really came from his client.
Of course, the client and stockbroker also want to keep the contents of their messages private,
which brings us to the second fundamental building block: encryption.

Definition 1.2 (Encryption Scheme). An encryption scheme is a tuple of algorithms
(KeyGen, Enc, Dec), where on input the security parameter 1%, the KeyGen algorithm outputs
a public and secret key pair (pk, sk). On input the public key pk and a message m, the Enc
algorithm outputs a ciphertext w. On input the secret key sk and a valid ciphertext m, the
Dec algorithm outputs the message m.

An encryption scheme is the digital equivalent of Bob locking a paper document in one of
Alice’s lead-lined safes, which only she can open, and then putting the safe on a public train
headed in Alice’s direction. The idea is that Alice generates a key pair for herself, publicizing
pk and keeping sk secret. Then, anyone can encrypt a message for Alice using her public
key pk in such a way that only Alice (with her secret key sk) can recover the message.
Goldwasser and Micali provided the first standard definition of security for encryption [117],
with stronger definitions due to Dolev, Dwork, Naor and Yung [150. 96]. The intuition is
21
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that an adversary cannot distinguish encryptions of two messages, even if he gets to choose
those messages himself!

Proxy Cryptography. Signatures and encryption are two of the most widely used cryp-
tographic tools, and depending on how they are used in practice, it is often useful to consider
variations on the basic schemes. In 1996, Mambo, Usuda, and Okamoto [142] introduced the
concept of prozy signatures. In a proxy signature, Alice (a user) delegates her signing rights
to Bob (another user) but only if a special party called, the proxy, cooperates. Thus, Bob
and the proxy can jointly sign arbitrary messages on Alice’s behalf- if they work together
~but neither one can sign for Alice on his own. This is usually, but not necessarily, accom-
plished using threshold techniques; that is, by dividing Alice’s secret key sk into two shares
which are distributed to Bob and the proxy (each gets only one share). A signature from
Alice on a message is generated by combining two partial signatures on the same message
computed by Bob and the proxy under their own shares, respectively.

Thus, if Alice needs to go on vacation, she can have her friend Bob and her company’s
proxy sign messages on her behalf while she is away. Many proxy signature schemes are
known, based on Schnorr, El Gamal, and RSA signatures, with the best recent work due to
Dodis and Ivan [92].

In 1997, Mambo and Okamoto [141] also explored the concept of prozy encryption. In a
proxy encryption scheme, Alice (a user) delegates her decryption rights to Bob (another user)
but only if the proxy cooperates. Thus, Bob and the proxy can jointly decrypt ciphertexts
intended for Alice- if they work together —but neither one can read her messages on his own.
This is usually accomplished using the same ideas as proxy signatures, where Alice divides
her secret key sk into two shares which are distributed to Bob and the proxy (each gets only
one share). A ciphertext intended for Alice is first partially decrypted by the proxy and then
fully decrypted by Bob.

Again, while Alice is on vacation, she can have her friend Bob read her encrypted email,
so long as the proxy cooperates. (Imagine that Alice gives the proxy instructions only to
help Bob decrypt messages tagged “urgent.”) Many proxy encryption schemes are known,
based on El Gamal, RSA, and IBE techniques, with the best recent work again due to Dodis
and Ivan [92].

Proxy Re-Cryptography: A Strict Subset of Proxy Cryptography. In 1997 and
1998, Blaze, Bleumer, and Strauss [22, 21] (BBS) proposed proxy signature and encryption
schemes that have a special property: namely that the proxy’s role is to translate between
two user’s keys.

This is best understood by example. Suppose Alice and Bob are two users with two
independent encryption key pairs (pk 4, ska) and (pky, skg), respectively. BBS proposed
a proxy re-encryption scheme where the proxy is given special information that allows to
translate a ciphertext encrypted under Alice’s public key, Enc(pk 4, m), into a ciphertext
that can be decrypted using Bob’s secret key, Enc(pkg,m), containing the same message.
The proxy cannot. however. decrvpt and read the messages of either party.
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Bidirectional Unidirectional
Re-Signatures AH [10], Chapter 4 AH [10], Chapter 4
multi-use single-use
Re-Encryption BBS [22, 21] AFGH [8, 9], Chapter 5
multi-use single-use

Table 1.1: We present the known proxy re-cryptography results. As discussed subsequently,
the BBS re-signature scheme has some limitations.

Likewise, in a proxy re-signature, the proxy is given special information that allows to
translate a perfectly-valid and publicly-verifiable signature from Alice on a certain message,
Sign(sk 4, m), into one from Bob on the same message, Sign(skg, m). These signatures can
coexist and both can be publicly verified as being two signatures from two distinct people
on the same message. Notice that, in the case of re-signatures it is Bob who is delegating
signing rights to Alice, whereas in re-encryption it was Alice delegating to Bob.

Any proxy re-signature can be used to build a proxy signature, but the reverse is not
necessarily true. For instance, it is possible to build a proxy signature based on RSA (as Dodis
and Ivan do [92], by splitting Alice’s secret d into d; and do such that d = d;+ds) but it is not
possible to have a proxy re-signature scheme that translates between two publicly-verifiable
RSA signatures sharing the same modulus (because of the common modulus problem/attack).
The same reasoning shows that any proxy re-encryption scheme can be used to build a proxy
encrvption scheme, but the reverse is not necessarily true. Thus, proxy re-cryptography is a
strict subset of proxy cryptography.

Despite the ample work on proxy cryptography, the only schemes, prior to our work, that
had this special translation property were those proposed by BBS [22, 21]. BBS proposed one
re-encryption and one re-signature scheme, both of which were bidirectional, which means
that the proxy can translate from Alice to Bob and from Bob to Alice. BBS left as an open
problem how to realize schemes with the elusive unidirectional property, where the proxy’s
information only allows it to translate in one direction.

Thus, building unidirectional schemes remained open for seven years, and with the aid of
bilinear groups, this is where our contributions begin. We summarize the known construc-
tions in Table 1.1. One other important feature to note is whether a re-signed message or a
re-encrypted ciphertext can be re-signed or re-encrypted again. For example, can the proxy
translate from Alice to Bob and then from Bob to Carol and so on. We call such schemes
where this is possible multi-use, and otherwise refer to them as single-use.

1.2.1 Proxy Re-Signatures

In the area of proxy re-signatures, Ateniese and Hohenberger [10] made five distinct contri-
butions which we will expand on in Chapter 4. Roughly. these are:

1. Expose Weakness in BBS Scheme. In the BBS re-signature scheme [22, 21], anyone
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given an original signature and its re-signed value can compute the proxy key, the
special information that allows the proxy to translate. (We show this attack in Sec-
tion 4.3.2.) Moreover, from a proxy key between Alice and Bob, in the BBS scheme,
Bob can compute Alice’s secret key, and vice versa. Thus, after only one re-signature,
everyone is a proxy, and Alice and Bob have exchanged secret keys!

2. Provide Formal Definitions and Security Model. We formalize a security model
for proxy re-signatures that incorporates the desirable property of having the proxy
key safely stored at the proxy. In our unidirectional scheme in Section 4.3.4, we realize
a strong notion of security: Suppose Alice delegates to Bob, via a proxy, the ability to
change his signatures into hers. As one might expect, even when the proxy and Alice
collude, they cannot recover any information about Bob except his public key. More
surprisingly, we show that even when the proxy and Bob collude, they can only recover
a weak version of Alice’s secret key.

3. Provide Two Proxy Re-Signature Constructions. We present two different con-
structions based on bilinear groups. The first is a multi-use, bidirectional proxy re-
signature, which is very simple and efficient. Unlike the bidirectional BBS scheme,
here the proxy can keep his proxy keys private. The security of the scheme is based on
the Computational Diffie-Hellman (CDH) assumption, i.e., given (g, g%, ¢¥), it is hard
to compute ¢*¥, in the random oracle model.

The second scheme is single-use, but unidirectional. This is the first construction of a
unidirectional scheme since it was proposed as an open problem by BBS seven years
ago [21]. (In BBS, they refer to such schemes as asymmetric.) In this scheme, the proxy
key is leaked, just as in BBS. However, in the unidirectional setting, some important
security features can still be salvaged, and we provide natural applications for this
scheme. We also discuss how the proxy key can be kept private at an additional cost.
The security of this scheme is based on the CDH and 2-Discrete Logarithm (2-DL), i.e.,
given (g, g%, g”z), it is hard to compute x, assumptions in the random oracle model.

4. Apply to Create Ultra-Efficient Proof of Flow. We propose exciting new applica-
tions of proxy re-signatures in Section 4.4. One application of the bidirectional scheme
is a proof of flow through a set of nodes. Imagine that the government wants people to
visit three checkpoints A, B, and C| in that order, before obtaining a driver’s license.
The government could generate keypairs for each node, and then provide A with a
signing key, but only provide the subsequent nodes with a re-signing key. Then, node
(' only has to verify a single signature under a single public key from B even if several
nodes (not just A) precede B in the path.

Our technique requires some pre-configuration but provides several benefits: (1) all (but
the first) nodes do not store any signing key so that, even if a node is compromised, no
new messages can be injected into the flow, (2) only a single signature must be stored
at any one time, i.e., there is no need to accumulate signatures and public keys while
moving through the checkpoints. (3) no information about prior nodes is collected so
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that, if applications require it, the actual flow traversed by a message could remain
private, i.e., the last node of the path knows that the message followed a legitimate
path through the checkpoints but does not know which one (this property is optional).

We also discuss applications to certificate sharing and a weak form of group signatures.

5. Provide New Signature Scheme with Two Trapdoors. Finally, we note that our
unidirectional scheme introduces a new signature algorithm that may be of independent
interest, because it allows the signer to use two secrets (strong and weak) for a single
public key (more details in Section 4.3.4).

1.2.2 Proxy Re-Encryption

In the area of proxy re-encryption, Ateniese, Fu, Green, and Hohenberger [8, 9] made four
distinct contributions which we will expand on in Chapter 5. Roughly, these are:

1. Formal Definitions and Security Model. We formalize the security model for uni-
directional proxy re-encryption, where the proxy key remains private. We require only
chosen-plaintext (CPA) security in our definitions [117]. Obviously, CCA2-security [150,
96] would be very interesting, but we do not know of any scheme that meets such a
definition. In the CPA context, however, we are able to make strong security guaran-
tees. In particular, suppose Alice delegates to Bob, via a proxy, the ability to decrypt
her ciphertexts. Even when the proxy and Alice collude, they cannot recover any in-
formation about Bob except his public key. More surprisingly, we show that even when
the proxy and Bob collude, they can only recover a weak version of Alice’s secret key.

2. Provide Three Proxy Re-Encryption Constructions. We present three single-use,
unidirectional proxy re-encryption schemes where the proxy key is kept private, based
on different complexity assumptions. The security of our first two schemes is implied
by the (bilinear) y-DDHI assumption [25, 95], i.e., given (g. g’”,g””z,...,gxy,Q), de-
cide if Q@ = e(g,9)"/*. We can and do, however, prove their security under weaker
assumptions.

Our third scheme is designed to allow for temporary delegations. That is, at the
beginning of each time period, a trusted party broadcasts a value that invalidates all
re-encryption keys for the previous time period. This scheme is less efficient than
the previous two, but its security is based on the mild DBDH assumption, i.e., given

(9.9% 6" 9% Q), decide if Q = e(g, g)***.

Unlike re-signatures, here we will not require random oracles in our proofs of security.

3. Apply Scheme to Secure Distributed Storage. In many secure distributed file sys-
tems, such as Cepheus [102]. all of the files are stored encrypted under a single master
key. When a user requests a file, the access control server decrypts the file with the
master secret key and then encrypts the file under the user’s public key. This requires
complete trust in the control server. since it sees the contents of every requested file.
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Unfortunately, this makes the control server a prime target of hackers. Indeed, as we’ll
discuss in Chapter 5. in the recent break of Apple’s iTunes DRM, hackers managed to
steal the DRM-less versions of the songs during this decrypt-and-encrypt step [174].

We show that by using our proxy re-encryption technology, the access server need never
see the content of any of the files that it processes. This offers a large gain in security
for relatively little performance cost. We provide the first empirical performance mea-
surements of proxy re-encryption, and show that our algorithms take roughly double
the time of the decrypt-and-encrypt approach.

4. Provide New Encryption Scheme with Two Trapdoors. Finally, the base of our
unidirectional scheme is a cryptosystem that may be of independent interest, because
it allows to decrypt using two secrets (strong and weak) for a single public key. We use
this observation as a critical part of our electronic cash system in Chapter 6 (specifically,
enabling the efficient tracing feature).

1.3 Electronic Cash

Now, let us turn our attention to another exciting cryptographic system. We leverage the
power of bilinear groups build an efficient electronic cash system without trusted third par-
ties.

The concept of electronic cash was proposed by Chaum [73, 74] in 1982, and has been
extensively studied since [77, 100, 79, 40, 57, 41, 175, 99, 178, 19]. The main idea is that,
even though the same party (a bank) is responsible for giving out electronic coins, and for
later accepting them for deposit, the withdrawal and the spending protocols are designed
in such a way that it is impossible to identify when a particular coin was spent. Le., the
withdrawal protocol does not reveal any information to the bank that would later enable it
to trace how a coin was spent.

As a coin is represented by data, and it is easy to duplicate data, an electronic cash
scheme requires a mechanism that prevents a user from spending the same coin twice (double-
spending). There are two scenarios. In the on-line scenario [74, 75, 76], the bank is on-line
in each transaction to ensure that no coin is spent twice, and each merchant must consult
the bank before accepting a payment. In the off-line [77] scenario, the merchant accepts
a payment autonomously, and later submits the payment to the bank; the merchant is
guaranteed that such a payment will be either honored by the bank, or will lead to the
identification (and therefore punishment) of the double-spender.

In the area of off-line electronic cash (e-cash), Camenisch, Hohenberger, and Lysyan-
skaya [49, 50] made four distinct contributions which we will expand on in Chapters 6 and 7.
Some, but not all. require bilinear groups as we will discuss. Roughly, these are:

1. Formal Definitions for Electronic Cash. In Section 6.2, we formalize the security
model for electronic cash, building on the intuition of many previous works. We cap-
ture the intuition that. unless a user misbehaves, her transactions remain anonyimous
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and unlinkable, while at the same time the bank will never have to accept more coins
for deposit than were withdrew. Our definitions are property-based, however, they
would imply Universal Composability (UC) security [61, 63, 64] whenever the extrac-
tors and simulators are constructed appropriately. It remains open to model security
for electronic cash in the UC framework, however, we provide some intuition in this
direction.

2. Compact E-Cash System. We present an efficient off-line e-cash scheme where a user
can withdraw a wallet containing 2¢ coins each of which she can spend anonymously
and unlinkably. The complexity of the withdrawal and spend operations is O(¢+k) and
the user’s wallet can be stored using O(¢ + k) bits, where k is a security parameter.
The best previously known schemes require at least one of these complexities to be
O(2% - k)! In fact, compared to previous e-cash schemes, our whole wallet of 2¢ coins
has about the same size as one coin in these schemes. If a user double-spends a coin,
the bank can recover her identity. Our scheme also offers exculpability of users, that is,
the bank can prove to third parties that a user has double-spent. Our scheme is secure
under the Strong RSA and the y-DDHI assumptions in the random oracle model. In
some cases, e.g., the bank and the merchant are the same entity, our system is secure
in the standard model as we discuss in Section 6.6. We point out that this system
does not require bilinear groups, although they can be employed to achieve a constant
factor optimization in the system complexities.

3. Add Tracing without a Trusted Third Party. We then extend our scheme to our
second system, the first e-cash system that provides traceable coins without a trusted
third party. That is, once a user has double spent one of the 2¢ coins in her wallet,
all her spendings of from all of her wallets can be efficiently traced. This strikes a
balance between the needs of law enforcement and private citizens. If a user abuses
her anonymity by double-spending a coin, law enforcement officers can see what else
she has bought. At the same time, users who do not double-spend remain anonymous—
for the first time ~without fearing that a “trusted” third party is able to track them.

We present two alternate constructions, both requiring bilinear groups. One construc-
tion shares the same complexities with our first result but requires the XDH assumption
for bilinear groups (which is only conjectured to hold for ordinary elliptic curves). The
second construction works on more general types of elliptic curves, but the price for
this is that the complexity of the spending and of the withdrawal protocols become
O(¢- k) and O(Z - k + k?), respectively, and wallets take O(£ - k) bits of storage. This
scheme is also secure in the random oracle model.

4. Add Bounded-Anonymity without a Trusted Third Party. We then extend the
two results above to our third system, the first e-cash scheme that supports bounded-
anonymity without a trusted third party. In our previous schemes, a user can spend
each of her coins anonymously and unlinkably unless she abuses her anonymity by
double-spending a coin. In Chapter 7, however, we ask: what other abuses of the
svstem should be forbidden?



For some applications, it is desirable to set a limit on the dollar amounts of anonymous
transactions. For example, governments require that large transactions be reported for
tax purposes. In this work, we present the first e-cash system that makes this possible
without a trusted party. In our system, a user’s anonymity is guaranteed so long as
she does not: (1) double-spend a coin, or (2) exceed the publicly-known spending limit
with any merchant. The spending limit may vary with the merchant. Violation of
either condition can be detected, and can (optionally) lead to identification of the user
and tracing of her past transactions. While it is possible to balance accountability and
privacy this way using e-cash, this is impossible to do using regular cash!

To achieve this functionality, we do not add any complexity assumptions beyond the
ones employed in the previous result. We maintain the same asymptotic complexities
as the original system, although the constant roughly doubles.
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Chapter 2

Bilinear Groups

Notation: we write G = (g) to denote that element g generates group G.

We being with an abstract definition of bilinear groups and the map that connects them.
Galbraith, Paterson, and Smart [109] recently presented guidelines for cryptographers using
bilinear groups in an abstract fashion, which we will follow.

Definition 2.1 (Bilinear Map). Let algorithm Bilinear_Setup, on input the security pa-
rameter 1%, output parameters (e, q, g1, g2, G1, Ga, Gr) for a bilinear map where:

1. Gy, Gr are both (multiplicative) cyclic groups of prime order q = ©(2%);

2. each element of Gy, Gq, and Gt has a unique binary representation;

3. the parameters include a generator for the domain groups G, = (g1) and Gy = (g2).
4. e is an efficiently computable bilinear map e : G; x Gy — Gr such that:

e (Bilinear) for all g1 € Gy, g2 € Gy, and all a,b € Z2, e(g%, ¢3) = e(g1, 92)*;
e (Non-degenerate) if g1 is a generator of G and g» is a generator of G, then
e(g1, 92) generates Gr.

Bilinear maps are also referred to as pairings, after the Weil and Tate [35, 108] pairing
typically used to implement them.

Definition 2.2 (Bilinear Groups). Let algorithm Bilinear_Setup, on input the security
parameter 1%, output parameters (e, q, g1, g2, Gy, Go, G7) for a bilinear map. Then we call
groups G|, Go, and Gr bilinear groups.

2.1 Elliptic Curves

The existence of an efficient bilinear mapping e is what distinguishes bilinear groups from
other algebraic groups commonly used in cryptography. The current candidate implementa-
tions for bilinear groups are constructed using elliptic curves.

Definition 2.3 (Elliptic Curve). An elliptic curve is a set of solutions (z,y) to the
cquation y* = x* + ax + b together with an extra point at infinity.
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. 4

Figure 2-1: The elliptic curve defined by 3% = 2* — z.




In Figure 2-1. we illustrate a sample elliptic curve where a = —1 and b = 0.

Definition 2.4 (Elliptic Curve Group). An elliptic curve group is the set of points
described above, together with:

1. an identity element O defined as the point at infinity.

2. an (additive) group operation defined geometrically. The definition of this operation
is dependent on the field over which the curve is implemented (e.g., real numbers, the
finite field modulo p). For cryptographic purposes, we often work over ¥y, the finite field
modulo p, where the group operation for adding two points S = (xs,ys) and T = (T4, Y;)
is defined as follows [68]. The negative of a point Z = (x,,y,) is —Z = (x,, —y, mod p).

(a) if S = =T, then output the identity O.

(b) if S=T and ys # 0, let z = (3z2 + a)/2y, mod p be the tangent line to the curve
at this point, where a is a parameter of the elliptic curve y*> = 3+ ax +b. Then
we have 25 = R, where z, = 2% — 2z, mod p and y, = ~y, + z(z, — z,) mod p.

(c) if S =T and ys = 0, then the tangent line does not intersect any other point on
the curve, and the output is the point at infinity O.

(d) if ST and (zs—z¢) # 0, let z = (ys—y:)/(zs — ;) mod p be the slope of the line
between the two points. Then we have S+ T = R, where x, = 2> — 25—z, mod p
and y, = —ys + 2(zs — z,) mod p.

(e) if S # T and (x5 — x;) = 0, then the slope of the line between the two points is
undefined, and the output is the point at infinity O.

Although the group operation is an additive one, we will follow the standard notation [35,
34] and express these groups using multiplicative notation. The reason this notation was
adopted is that, given a bilinear mapping e : G; x G — Gy, the group G is always a
multiplicative group. Thus, it is often easier to make sense of cryptographic protocols using
bilinear groups when all groups are expressed in the same notation.

2.2 Isomorphisms

We classify bilinear mappings based on the efficiently-computable isomorphisms existing
between the groups G; and G,. For our purposes, we are interested in the following two
cases:

1. Double Isomorphism: There exists a pair of distortion maps (¥,%') such that 1 is
an efficiently computable isomorphism from G2 to G;, with v)(g2) = g1, and v’ is an
efficiently computable is isomorphism from G; to G,, with ¢'(g;) = g9, and ¢/ = ™1

Candidate implementations: supersingular elliptic curves [179. 30. 29].

2. Single-or-None Isomorphisms: There does not exist an efficiently computable iso-
morphism ¥’ from G, to Gg; whereas an efficiently computable isomorphism v from
G to Gy may or may not exist.
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Candidate implementations: ordinary elliptic curves: Barreto-Naehrig [16], Brezing-
Weng [45], Cocks-Pinch [83], Freeman [101], Miyaji-Nakabayashi-Takano (MNT) [147].

It is well known that efficient isomorphisms exist for supersingular curves [179]. However,
it is conjectured that bilinear groups without at least one efficient isomorphism can be
realized using any of the ordinary curves listed above [71].

2.3 The DDH-CDH Gap

In 2001, bilinear groups first gained enormous popularity in cryptography due to the break-
through result of Boneh and Franklin in the area of identity-based encryption [30]. At that
time, Boneh and Franklin considered only double-isomorphism bilinear mappings, i.e., those
implemented using supersingular curves, where efficient double isomorphisms (¢, ') between
Gy and G, are known.

Given the existence of (1,v’), the (distinct) groups G; and G, were often treated ab-
stractly as a single group, with mappings being expressed as e : G x G — G7. Using this
simplified notation, it becomes clearer why the frenzy over bilinear groups began in cryp-
tography: the famous Decisional Diffie-Hellman (DDH) problem in G is now easy to solve,
while the Computational Diffie-Hellman (CDH) problem in G appears to remain hard. This
gap was first explicitly observed by Joux and Nguyen in 2001 [127].

Let us informally recall these problems. Let g be a random generator of group G.

e DDH: Given (g, ¢% ¢°,Q), decide if @ = g*° or not.
e CDH: Given (g, ¢% ¢°), compute g.

So, why is DDH easy in G? Recall that a bilinear map, by itself, is not sufficient to decide
DDH in either G; or GG,. Instead this property is obtained via the isomorphisms. When
such an isomorphism v : Gy — G is available, it can be used to decide DDH instances in
G, as: on input (go, g%, g5, Q), test if e(y(g2), Q) = e(¥(g%), g5). For bilinear groups where
such isomorphisms are not known, it is open whether the groups G, and G, are DDH-easy.

In Chapter 6, we will show how to optimize our e-cash system by assuming that DDH is
hard in G, for curves where the isomorphism ¢’ : G; — G4 is not known.

2.4 Security and Efficiency

There are two main reasons why elliptic curve groups are used in cryptography. The first
reason. which we covered above, is that they are the best known candidate implementations
of bilinear maps, a powerful cryptographic building block. This is the main focus of our
thesis.

The second reason is time and space efficiency, from which our protocols also benefit.
Indeed, the US National Security Agency (NSA) makes the following strong statement about
elliptic curve crvptography on their website [151]:
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Elliptic Curve Cryptography provides greater security and more efficient perfor-
mance than the first generation public key techniques (RSA and Diffie-Hellman,)
now in use.

Indeed, Miller proposed using elliptic curves to improve the time and space efficiency
of cryptographic protocols in 1985 [146] and in 1998, the Elliptic Curve Digital Signature
Algorithin (ECDSA) was adopted as a US standard [4], well before the explosion of bilinear-
based protocols in 2001. The observation motivating this interest in elliptic curves was that,
unlike other popular cryptographic groups like Z7 where n is an RSA modulus, the best
known methods for taking discrete logarithms (DL) in general elliptic curve groups were
the generic algorithms. By generic, we mean algorithms that do not take advantage of the
representation of the group and thus work in any finite algebraic group.

Indeed, since the 1985 introduction of elliptic curves in cryptography by Miller [146], less
progress has been made in attacking these groups than those algebraic groups proposed by
Diffic and Hellman [88] in 1976 and Rivest, Shamir, and Adelman [165] in 1978 [151].

According to Galbraith [106], there are over a half dozen algorithms for computing
discrete logarithms in elliptic curve groups, including Pohlig-Hellman, Shank’s baby-step-
giant-step, and Pollard’s method (especially the parallel Pollard method of van Oorschot
and Wiener). Due to the Pohlig-Hellman algorithm, one must always choose a generator g;
for group G, (or g, for group Gg) of large prime order. Using this precaution, however, the
only DL algorithms that apply generally are Shank’s baby-step-giant-step and Pollard’s [106].
Both algorithms take exponential time; although, there are a few sub-exponential (but super-
polynomial) algorithms for specific classes of curves.

For example, while supersingular curves can implement the bilinear map functionality,
they are not used for, say, obtaining short signatures, because they are a special class of curves
on which Coppersmith’s algorithm works effectively [35, 34]. Instead, ordinary curves, such
as MNT, are used for this purpose [35, 34].

2.4.1 Space Requirements for Elliptic Curve Keys and Elements

In Table 2.1, we list the National Institute of Standards and Technology (NIST) estimated
key sizes, as taken from the NSA webpage [151], for: (1) the symmetric ciphers, Data
Encryption Standard (DES) and Advanced Encryption Standard (AES), (2) RSA and Diffie-
Hellman. and (3) elliptic curve cryptosystems. An example Diffie-Hellman group is the cyclic
subgroup of Z7 of prime order ¢, where p = 2¢ + 1 and p, q are large primes.

NIST recommends that by December 31, 2008 all encryption algorithms use keys provid-
ing the equivalent security of 112 bit symmetric keys [154]. RSA Security makes the same
recommendation with a deadline of 2010 [130]. Thus, we see that using elliptic curves could
save an order of magnitude in data transmission in the coming years.

These key sizes can also serve as rough approximations of the size of group elements in
RSA and elliptic ecurve groups [151]. More accurate approximations would need to fix a curve,
take into account the embedding degree, and other considerations beyond the scope of this
work. As one example. in their work on short signatures. Bonel. Lynn. and Shacham [35. 34
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Symmetric Key Size | RSA and Diffie-Hellman | Elliptic Curve Key Size
(bits) Key Size (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 2.1: NIST estimated key sizes for an equivalent level of security.

Security Level (bits) | Ratio of Diffie-Hellman Cost : Elliptic Curve Cost

80 3:1
112 6:1
128 10:1
192 32:1
256 64:1

Table 2.2: Due to the shorter key sizes, standard arithmetic operations in elliptic curve
groups run more efficiently than comparable operations in Diffie-Hellman groups.

estimate that using MNT curves the security of their n-bit signature is roughly equivalent to
the discrete logarithm problem in a finite field of size 26™. Thus, to achieve 1024-bit security,
their signatures would be of length 1024/6 = 171 bits. Again, this represents an order of
magnitude space savings over RSA signatures! Fortunately, the signatures we present in
Chapter 4 inherit the Boneh, Lynn, and Shacham space efficiency.

2.4.2 Speed of Elliptic Curve Operations

Let us now discuss how fast elliptic curve operations are in practice. In Table 2.2, we list
an estimation of the relative cost of arithmetic operations (e.g., modular exponentiations,
modular multiplications) in traditional Diffie-Hellman and elliptic curve groups, as taken
from the NSA webpage [151].

Table 2.2 deals with standard group operations such as modular exponentiation and
multiplication. A separate issue of great interest is how efficiently one can compute the
bilinear mapping e. Several researchers have argued that an optimized version of the Tate
pairing over ordinary curves provides the fastest mapping [108, 15].

In Chapter 5 (see Section 5.4), we present performance measurements for various bilin-
ear operations using the Tate pairings over supersingular curves. Our mapping estimates
confirm a rumor known to us before we started this work that the cost of computing one
(supersingular) mapping e : G x G — Gr is approximately equal to eight modular exponen-
tiations in G for a security level of 256 bits. In fact, in our tests, a mapping cost between
six to eight exponentiations and roughly five mappings for a 256 bit security level could be
computed per second on a 1.8Ghz computer.
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Chapter 3

Complexity Assumptions

Notation: we write G = (g) to denote that element g generates group G. Let z £ S denote
that the element z is chosen uniformly at random from the set S.

We now review the complexity assumptions made in this thesis. We begin with a classic
assumption that will only be used for our e-cash system in Chapter 6.

Assumption 3.1 (Strong RSA [14, 105]). Let n = pq be an RSA modulus, where p =
20" + 1 and q = 2¢' + 1 are k-bit primes, and p' and ¢ are also primes. Then, for all
probabilistic polynomial time adversaries Adv,

Prlz £ Zr: (y,e) « Adv(n,z) = (e > 1) A(y° =z mod n)| < 1/poly(k).

The next three assumptions appeared at the earliest days of public key cryptography.
Here the algebraic group G may or may not be a bilinear group.

Assumption 3.2 (y-Discrete Logarithm (y-DL)). Let G = (g) be of arbitrary order
q € ©(2%). Then, for all probabilistic polynomial time adversaries Adv,

R

Prja — Z, : a— Adv(G, g, g, g, . Lg% N] < 1/poly (k).

Note that when y = 1, the above assumption is the classic discrete logarithm assumption.
Assumption 3.3 (Computational Diffie-Hellman (CDH) [88]). Let G = (g) be of
arbitrary order q € O(2%). Then, for all probabilistic polynomial time adversaries Adv,

Prla, b i Zg © g™ Adv(G, g, g% ¢°)] < 1/poly(k).

The Co-CDH variant on the above involves two groups G, = (g1) and Gy = {gs), and
states that given (g, g¢, g2. ¢5), it is hard to compute gs°.

Assumption 3.4 (Decisional Diffie-Hellman (DDH) [97]). Let G = (g) be of arbitrary
order ¢ € ©O(2%). Then. for all probabilistic polynomial time adversaries Adv.

Prla,b Fil Zi; o = ¢°% LG oal {0.1}: d « Adv(G, g, 9% ¢". xq) -
d=d]<1/2+ 1/polv(k).



The Co-DDH variant on the above involves two groups G, = (g;) and G, = (go), and
states that given (gy, ¢¢. g2, g5, Q). it is hard to decide if Q = g3°.

The following assumnption was introduced by Boneh and Boyen [25]. To be well-defined,
it is set in a group of prime order.

Assumption 3.5 (y-Decisional Diffie-Hellman Inversion (y-DDHI) [25, 95]). Let

G = (g) be of prime order q € ©(2%). Then, for all probabilistic polynomial time adversaries
Adv,

Prla & Lg; o= g% 1 & G; d bid {0,1}; d' « Adv(G,g,g“,g(‘IQ), 99 xg)
d=d]<1/2+1/poly(k).

Alternatively, when in a bilinear setting, we have =y = e(g, g)"/* and z; drawn from the
target group [25, 95]. This variant is called the y-Decisional Bilinear Diffie-Hellman Inversion
(y-DBDHI) assumption.

This next assumption was introduced by Dodis [89], and will only be used for our e-cash
system in Chapter 6.

Assumption 3.6 (Sum-Free Decisional Diffie-Hellman (SF-DDH) [89]). Let G = (g)
be of prime order ¢ € ©(2%). Let L be any polynomial function of k. Let Oz(+) be an oracle
that, on input a subset I C {1,...,L}, outputs the value g° where f; = [],.; a; for some
a= (a,...,ar) € Zéﬂ Further, let R be a predicate such that R(J, I,...,I;) = 1 if and
only if J C{1,...,L} is DDH-independent from the I;’s; that is, when v(1;) is the L-length
vector with a one in position j if and only if 7 € I; and zero otherwise, then there are no
three sets I,, I, I, such that v(J) +v(l,) = v(ly) + v(l.) (where addition is bitwise over the
integers). Then, for all probabilistic polynomial time adversaries Adv®)

Prld = (ay,...,ar) < ZL; (J,0) < AdvO5(1); yo = gllier s 4y & G;
d& (0,1} d — AdvOT (1% gy, )+ d=d AR(J,Q)=1] < 1/2+ 1/poly(k),
where Q is the set of queries that Adv made to Og(+).

We now focus our attention on decisional assumptions purely in the context of bilinear
groups.

Assumption 3.7 (Decisional Bilinear Diffie-Hellman (DBDH) [30]). Let algorithm
Bilinear_Setup(1%) output the bilinear map parameters (e, q, g1, g2, G1, G2, Gr), where there is
an efficiently computable isornorphism ¢ from Gy to Gy. Then, for all probabilistic polyno-
maial time adversaries Adv,

Prla, b, c Rid Zg; o = e(g1. g2)": hia Gr: d Kid {0,1};
d'— Adv(g1. 92,65, 93, 95, 7a) = d=d| < 1/2+1/poly(k),
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Assumption 3.8 (Extended Decisional Bilinear Diffie-Hellman (eDBDH) [8]). Let
Bilinear_Setup(1*) output the bilinear map parameters (e, q, g1, g2, G1, Go, Gr). where there is
an efficiently computable isomorphism v from Gq to Gy. Then, for all probabilistic polyno-
mial time adversaries Adv,

Prla,b,c & Z2; 1o = e(g1, 92)™ 11 < Gr; d & {0,1);

d' — Adv(g1, 92, 9%, 95, 95, €(91, 92)* , za) : d = d'] < 1/2+ 1/poly(k),

This final assumption— requiring a single-isomorphism bilinear mapping --will only be
required for an optimization of our e-cash system in Chapter 6.

Assumption 3.9 (External Diffie-Hellman (XDH) [107, 171, 143, 27, 12]). Let
Bilinear_Setup(1*) output the parameters for a bilinear mapping e : Gy x Gy — Gp. The
XDH assumption states that, for all probabilistic polynomial time adversaries Adv, the DDH
problem s hard in G,. This implies that there does not exist an efficiently computable
1somorphism ' : G, — Ga.

This concludes the list of complexity assumptions on which our results are based.

3.1 Discussion of Assumptions

A cryptosystem is only as secure as the complexity assumptions on which it is based. If one
of these assumptions proves to be false, all confidence in the system is shattered. In this
thesis, we do not introduce any new assumptions. All of our schemes depend on complexity
assumptions previously used to build other cryptographic systems. We made an effort to
build our schemes from the simplest and longest-standing complexity assumptions possible.
For some of our schemes, one assumption may be substituted for another (perhaps at some
loss of efficiency); whenever substitutions are available, we will discuss the options.

Previously, we listed nine main assumptions. The first four assumptions— Strong RSA,
DL, CDH, and DDH -are long-standing, foundation assumptions in cryptography. The
DBDH and eDBDH assumptions are two very mild assumptions for bilinear groups. There
are some relations among these assumptions and the remaining others. It is easy to see
that DDH implies CDH, SF-DDH implies DBDH and eDBDH, and all five assumptions
imply DL (i.e., y-DL for y = 1). Boneh and Boyen [24] also showed that y-DDHI implies a
generalized form of DH problems which includes DDH, DBDH, and eDBDH. The relation
between y-DDHI and Sum-Free DDH is unknown.

As a method of evaluating and comparing the hardness of various assumptions, it has
become standard practice to provide a lower bound on the complexity of Diffie-Hellman
based assumptions in generic groups using Shoup’s method [152, 173]. Shoup originally
showed that for groups of order p where the adversary is allowed to perform ¢ group
operations an adversary’s probability of solving CDH is at most O(¢%/p) and DDH is at
most 1/2+ O(qz/p) [173]. Boneh and Franklin showed a bound of O(¢2/p) for DBDH [29],
which can be easily extended to provide the same hound for eDBDH. Boneh. Boven. and
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Goh also showed a bound of O((¢% -y +3*)/p) for y-DDHI [26]. We could not find a generic
group proof for Sum-Free DDH, although we conjecture that the bound is O((g% -y + y3)/p)
where the adversary is allowed to make y calls to oracle O;.

Finally, as mentioned earlier, Galbraith, Paterson, and Smart recently published an ex-
cellent guide for which assumptions are plausible for bilinear groups [109] to which we point
the more interested reader.
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Chapter 4

Proxy Re-Signatures

This chapter is an extended version of the joint work with Giuseppe Ateniese (Johns Hopkins
University) [10].

4.1 Introduction

In a proxy re-signature scheme, a semi-trusted proxy is given some information which allows
it to transform Alice’s signature on a message m into Bob’s signature on m, but the proxy
cannot, on its own, generate signatures for either Alice or Bob.

This primitive was introduced at Eurocrypt 1998 by Blaze, Bleumer, and Strauss [21]
and yet very little follow up work has been done, to our knowledge. One explanation is
that the BBS original construction [21] is inefficient and has limited features. Moreover,
the definition of proxy re-signature in the BBS paper [21] is informal and has created some
confusion between the notion of proxy re-signature and the distinct one of proxy signature
as introduced by Mambo, Usuda, and Okamoto [142].

Proxy signatures [142] allow Alice to delegate her signing rights to Bob but only if the
proxy cooperates in the signing. This is usually accomplished by dividing Alice’s secret
into two shares which are distributed to Bob and the proxy (each gets only one share). A
signature from Alice on a message is generated by combining two partial signatures on the
same message computed by Bob and the proxy under their own shares, respectively.

By contrast, in proxy re-signatures [21], a proxy “translates” a perfectly-valid and publicly-
verifiable signature from Alice on a certain message, which we’ll denote as g4(m), into one
from Bob on the same message, denoted as og(m). Notice that, in a proxy re-signature,
the original and re-signed signature as generated by the proxy, can coexist and both can
be publicly verified as being two signatures from two distinct parties on the same message.
Moreover, with additional setup, the proxy can convert a single signature into multiple
signatures of several and distinct signers. and vice-versa!

The relationship between these primitives is that proxy re-signatures are a strict subset
of proxy signatures. Any proxy re-signature scheme can be used to build a proxy signature
triviallv: Bob delegates to Alice by giving the proxy the ability to turn her signatures into
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his. However, the reverse is not necessarily true. For instance, it is possible to build a proxy
signature based on RSA (as Dodis and Ivan did [92], by splitting Alice’s secret d into d,
and dy such that d = d; + dy) but it is not possible to have a proxy re-signature scheme
that translates between two publicly-verifiable RSA signatures sharing the same modulus
(because of the common modulus problem/attack).

Another unique property of proxy re-signatures is that the “translation” from one signa-
ture to another can be performed in sequence and multiple times by distinct proxies without
even requiring the intervention of the signing entities. Thus, the valuable secret keys can
remain offline. The signatures generated in this process are all valid and publicly-verifiable
signatures on the same message from distinct entities.

We re-open the discussion of proxy re-signatures by providing four separate results:

1. We first motivate the need for improved schemes, by pointing out that the original
BBS scheme [21], while satisfying their security notion, is unsuitable for most practical
applications, including the ones proposed in their original paper.

2. We provide formal definitions and a security model.

We introduce provably secure proxy re-signature constructions from bilinear groups.

4. We present new applications and perform comparisons with other cryptographic prim-
itives.

w

Incidentally, we also introduce a new signature scheme based on bilinear groups where two
signing secrets are associated to a single public key. Let us briefly describe these results in
more detail.

1. Remarks on the BBS Scheme. The authors of the BBS paper introduced several
potential applications of proxy re-signatures. By taking a careful look at how one might
wish to use proxy re-signatures in practice, we noticed that the BBS construction [21] has
inherent limitations. In short, their scheme is actually “proxy-less” since it is possible to
recover the information that would be stored at the proxy (the re-signature key) by looking
at the original signature and its transformation. This precludes the possibility of having a
secure proxy in the first place since anyone would be able to impersonate the proxy itself
once a single re-signature is released. Moreover, the BBS scheme is what the authors called
symmetric [21], which means that, from the re-signature key (which is public!), Alice can
recover Bob’s secret key or vice-versa. We review the BBS scheme and prove these claims in
Section 4.3.2.

Finding secure schemes without these limitations turned out to be a very difficult task.
Many proxy re-signature schemes based on standard signature algorithms that we investi-
gated were found susceptible to the same type of problems. Several signature schemes based
on bilinear groups also failed or it was not clear how to turn them in proxy re-signatures.

2. Formal Definitions and Security Model. There is no formal definition of proxy re-
signatures in the BBS paper [21], which may have caused some of the problems mentioned
earlier.



In this chapter, we formalize the notion of a proxy re-signature and provide a security
model that incorporates the desirable property of having the re-signature key safely stored
at the proxy (so that it is reasonable to talk about prozies in this context). First, this allows
us to make meaningful claims about our schemes’ security. In particular, in Section 4.3.3, we
realize a strong notion of security: Suppose Bob delegates to Alice, via a proxy, the ability to
change her signatures into his. As one might expect, even when the proxy and Bob collude,
they cannot recover any information about Alice except her public key. More surprisingly,
we show that even when the proxy and Alice collude, they can only recover a weak version
of Bob’s secret key — that only gives them the power to compute what Bob had already
delegated to them. Secondly, our formal notion allows us to view the primitive abstractly,
for easier reasoning about its applications in Section 4.4.

3. Two Proxy Re-Signature Constructions. We present two different constructions
based on bilinear groups. The first is a bidirectional proxy re-signature in which the proxy
can translate from Alice’s signatures to Bob’s and vice-versa using a single proxy key. The
scheme is very attractive for its simplicity. Unlike the bidirectional BBS scheme, here the
proxy can keep its proxy keys private. This scheme also allows for multi-use, meaning that
a signature may be transformed from Alice to Bob, then from Bob to Carol, and so on. The
security of the scheme is based on the Computational Diffie-Hellman (CDH) assumption,
i.e., given (g, 9%, g¥), it is hard to compute ¢®¥, in the random oracle model.

The second scheme is unidirectional in that the proxy can be given information that allows
it to translate from Alice to Bob, but not from Bob to Alice. This is the first construction of a
unidirectional scheme since it was proposed as an open problem by BBS seven years ago [21].
(In BBS, they refer to such schemes as asymmetric.) Here, we allow the re-signature key to
be public so that anyone can act like a proxy but, at the same time, we ensure that certain
important security properties are guaranteed based on its unidirectional nature. (We also
provide some insight on how one might keep this proxy key private.) The security of this
scheme is based on the CDH and 2-Discrete Logarithm (2-DL) assumptions in the random
oracle model. Recall 2-DL: given (g, ¢*, g“"Q), it is hard to compute z.

Finally, we note that our unidirectional scheme introduces a new signature algorithm
that may be of independent interest, because it allows the signer to use two secrets (strong
and weak) for a single public key (more details in Section 4.3.4).

4. Applications. We propose exciting new applications of proxy re-signatures in Sec-
tion 4.4. In particular we show how to use proxy re-signatures to provide a proof that a
certain flow through a directed graph on a set of nodes occurred. In the simplest case, the
basic idea is that each node in the path (except the first) is only given a re-signature key
which allows it to translate signatures from predecessor nodes, but which is not a signing
key. For instance, given three nodes in a path A — B — C, we give the first node A’s
signing key, while the second node is only able to translate signatures from A into signatures
from B, without using (or storing) B’s signing key. Then, node C only has to verify a single
signature from B even if several nodes (not just A) precede B in the path.

Our technique requires some pre-configuration but provides several benefits: (1) all (but
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the first) nodes in the graph do not store any signing key so that, even if a node is compro-
mised, no new messages can be injected in the path, (2) only a single signature must traverse
the path, i.e., there is no need to accumulate signatures and public keys while traversing
the path, (3) no information on the path itself is collected so that, if applications require
it, the actual path traversed by a message could remain private, i.e., the last node of the
path knows that the message followed a legitimate path but does not know which one (we
stress that this property is optional). Indeed, in one of our constructions, scheme €; in
Section 4.3.3, original signatures and their re-signed values cannot be linked, which allows
for a strong privacy guarantee.

We will also introduce other interesting applications. For instance, we show how to use
proxy re-signatures to share existing public-key certificates and save the cost of obtaining and
distributing new ones. In particular, a signature o;(m), that can only be verified with a new
and/or uncertified public key pk,, could be transformed into o2(m) that can be verified with
a trusted and certified public key pk,. Depending on the application, translating between
signatures could be more convenient then requesting a certificate for pk, and distributing it
to several parties. Similarly, if a company wanted to set up a server that on input oq(m)
outputs oo(m), it is much more desirable to give the server a proxy key rather than a signing
key, as it makes the server a less attractive target for hackers.

We also show how to generate anonymous signatures that, much like group signatures,
can be used to provide anonymity while also providing accountability. Indeed, a proxy could
translate signatures from group members into signatures from the group manager. The
advantage here is that the proxy does not store any signing key and the key of the group
manager cannot get exposed even if the proxy is compromised.

4.1.1 Related Work

Proxy re-signatures [21] should not be confused with the similar sounding prozy signa-
tures [142, 92] as previously discussed. In particular, definitions in Dodis et al. [92] are
for proxy signatures: In their general construction, Bob’s signature is seen as a double sig-
nature which includes a signature from Alice and one from the proxy. There is clearly no
translation between valid signatures of Alice into valid signatures of Bob.

Proxy re-signatures share some properties with the transitive signatures as introduced
by Micali and Rivest [145] and extended by Bellare and Neven [17, 18], Molnar [148], and
Hohenberger [122]. In a transitive signature scheme, a single master signer signs edges of a
graph in such a way that anyone (i.e., not only a proxy) in possession of signatures on edges
ab and be can compute the master’s signature on edge ac. There is a symmetry between
these schemes: in a transitive signature, the verification key stays constant while the message
content changes, while in a proxy re-signature scheme the message content remains constant
while the verification key changes. Transitive signatures may also be appropriate for some
of our authenticated routing applications in Section 4.4.

Another signature variant that allows to transform one type of signature to another are
convertible undeniable (also called invisible). Chaum and Van Antwerpen introduced the
notion of undeniable signatures [80]. where instead of having a public verification algorithim.
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| og(m)

A (m) Proxy

\
]

rka—p = ReKey(pka, skp)

Figure 4-1: A high-level view of (unidirectional) proxy re-signatures. Here Bob is the del-
egator and Alice is the delegatee. The proxy obtains a re-signature key rka_.p from Bob,
and can then translate signatures from Alice, denoted o4(m), into ones from Bob, denoted

O'B(m).

a verifier runs a protocol with the signer to check the validity of a purported signature.
Later, Boyar, Chaum, Damgard and Pedersen [38] proposed convertible undeniable signa-
tures, where the signer can convert an undeniable signature, verifiable by one party at a
time, into a universally verifiable signature.

Our work is also related to multi and aggregate signatures. Multi-signatures [144, 23,
157, 155] allow n users, each with a public and private key pair (pk;, sk;), to all sign the same
message m and have the result be just one single signature. Similarly, aggregate signatures,
introduced by Boneh, Gentry, Lynn, and Shacham [31], allow each of the n users to sign
a distinct message such that the computed n signatures, on n distinct messages, can be
aggregated into a single one. Our multi-use proxy re-signatures can be used as an alternative
to multi-signatures, but not to aggregate signatures, given that we allow transformations to
be made only between signatures on the same message. In certain applications (e.g., those
requiring a chain of signers), multi and aggregate signatures have a potential drawback:
the verifier must possess and trust n public keys in order to verify the final compressed
signature. In Section 4.4, we discuss how, when proxy re-signatures are used instead, the
verifier need only possess and trust one public key. This cuts down on the storage needs and
key distribution headaches of some practical applications.

We notice that our first proxy re-signature scheme, in Section 4.3.3, uses a construction
similar to Boldyreva’s multi-signature [23] and Dodis and Reyzin’s “verifiably committed
signature” [94] constructions which are both based on the short signature of Boneh, Lynn,
and Shacham [35, 34]. However, the purpose, definition, and the security model of these
cryptographic primitives are different and unrelated.

4.2 Definitions

Now, we explain the different components of a proxy re-signature scheme, as partially illus-
trated in Figure 4-1.
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Definition 4.1 (Proxy Re-Signature). A proxy re-signature scheme is a tuple of (possibly
probabilistic) polynomial time algorithms (SysGen, KeyGen, ReKey, Sign, ReSign, Verify),
where:

~ The SysGen(1*) algorithm takes as input the security parameter 1¥ and returns the global
system parameters params.

— The KeyGen(params) algorithm outputs a user keypair (pk, sk). Let pk and sk contain the
system parameters params so that we do not have to explicitly give them to signers
and verifiers in future.

|

The ReKey(pk 4, skp) algorithm outputs a key rk4_,p for the proxy.

(NOTE: for bidirectional schemes, ReKey is a protocol between the two users and the
proxy, where the proxy obtains the key 7k 4..5.)

— The Sign(sk,m) algorithm outputs a signature o.

— The ReSign(rk 4.5, pk 4, 0, m) algorithm outputs B’s signature on message m if Verify(pk 4,
m, o) accepts and L otherwise.

The Verify(pk, m, o) algorithm accepts if o is a valid signature under key pk on message
m and rejects otherwise.

Correctness. The correctness property has two requirements. For any message m in the
message space and any key pairs (pk, sk), (pk’, sk') < KeyGen(params)? where params
SysGen(1%), let o « Sign(sk, m) and rk < ReKey(pk, sk’). Then the following two conditions
must hold:

Verify(pk,m,0) =1 and Verify(pk', m,ReSign(rk, o)) = 1.

That is, all signatures validly formed by either the signing or re-signing algorithms will
pass verification.

Internal and External Security. Our security model protects users from two types
of attacks: those launched from parties outside the system (FExternal Security), and those
launched from parties inside the system, such as the proxy, another delegation partner, or
some collusion between them (Internal Security). We now provide both intuition and a
formalization of these security notions.

External Security: Our first security notion protects a user from adversaries outside the
system (i.e., excluding the proxy and any delegation partners). This is the proxy
equivalent existential unforgeability against chosen message attack (where a forgery
must be on a new message) [118]. However, our constructions are capable of satisfying
the notion of strong existential unforgeability under adaptive chosen-message attack



(where an adversary cannot create a new signature even for a previously signed mes-
sage) [3]. We point out how to strengthen our core definition meet strong existential
unforgeability as well.

Formally, for any non-zero n € poly(k) and all PPT algorithms Adyv,

Prlparams « SysGen(1¥), {(pk,, sk;) — KeyGen(params)}ie[1 n],
(t,m, ) AdO O (k)
Verify(pk,,m,0) = 1A (1 <t <n)A(t,m) € Q] < 1/poly(k)

where the oracle Oy, takes as input an index 1 < 7 < n and a message m € M,
and produces the output of Sign(sk;, m); the oracle O,.sign takes as input two distinct
indexes 1 < 4,5 < n, a message m, and a signature o, and produces the output of
ReSign(ReKey(pk;, sk;), pk;, o,m); and @ denotes the set of (index, message) tuples
(t,m) where Adv obtained a signature on m under public key pk, by querying Og;gy, on
(t,m) or Oresign(-,t,m,-).

For strong unforgeability, let @ be the set of (index, message, signature) tuples (¢, m, o)
where Adv obtained the signature o on m under public key pk, by querying Og;gn, on
(t,m) or Opesign(-,t,m,*).

In the above security notion, the proxy is required to keep the re-signature keys private
(or it would be easy for an adversary to “win”). For some unidirectional schemes,
however, one might want these values to be public (i.e., making all users proxies).
When this is the case, there are no “external adversaries” to the system, and thus we
look instead to the internal security guarantee below.

Internal Security: Our second security notion protects a user, as much as possible, when
they are fooled into trusting a rogue proxy and/or delegation partner (who may be
colluding with each other). Intuitively, there are three guarantees to make.

1. Limited Proxy: If the delegator and the delegatee are both honest, then: (1)
the proxy cannot produce signatures for the delegator unless the message was first
signed by one of her delegatees, and (2) the proxy cannot create any signatures for
the delegatee. This is identical to the external security game, except that instead of a
re-signing oracle Os;gn, Adv may directly obtain the re-signature keys via Oy ekey-

Umidirectional: For any non-zero n € poly(k) and all PPT algorithms Adyv,

Pr[params «+ SysGen(1*), {(pk;, sk;) — KeyGen(params) }ici n,
(t, m7 O.) — AdVOﬂgn(".)’o’.dm’y(.‘-)({pki}ie[l,n]) :
Verify(pk,,m,0) = 1A (1 <t <n)A(t.m) ¢ Q] < 1/poly(k)
where the oracle O,exe, takes as input two distinct indexes 1 < ¢.7 < n and returns the

output of ReKey(pk;, sk;); and @ denotes the set of pairs (¢, m) where Adv obtained a
signature on m under public key pk, or one of its delegatee kev’s by querying Oggp,.
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Bidirectional: Since both parties mutually delegate, the set @ includes all messages
associated with any Oy, query.

2. Delegatee Security: If the delegatee is honest, then he is “safe” from a colluding
delegator and proxy. That is, they cannot produce any signatures on his behalf. We
associate the index 0 to the delegatee.

Unidirectional: For any non-zero n € poly(k) and all PPT algorithms Adv,

Pr[params — SysGen(1%), {(pk, sk;) — KeyGen(params)}icon,
(m,o) «— Advo“g"(0“)’0"“6”("*)(pko, {pk,, Ski}ie[l,n]) :
Verify(pky, m,0) = 1 Am & Q] < 1/poly(k)

where x # 0 and @ is the set of messages m such that Adv queried Oy, (0, m).

For strong unforgeability, let @) be the set of pairs (m, o) such that Adv queried
Osign(0,m) and obtained o.

Bidirectional: Since both parties mutually delegate, this property does not apply.

3. Delegator Security: If the delegator is honest, then she is “safe” from a colluding
delegatee and proxy. That is, there are two types of universally distinguishable signa-
tures, called first and second level signatures, that a signer can create that verify with
respect to the same public key. This property states that the colluding delegatee and
proxy cannot produce a first-level signature on the delegator’s behalf. We associate
the index 0 to the delegator.

Unidirectional: For any non-zero n € poly(k) and all PPT algorithms Adv,

Pr[params «— SysGen(1%), {(pk;, sk;) «— KeyGen(params)}icpi n)s
(m’ O') - Adv@sz’gn(0,')70,»ekey('>')(pko, {pk” Ski}ie[l,n]) .
Verify(pky,m,0) = 1 Am & Q] < 1/poly(k)

where o is a first-level signature, and @) is the set of messages m where Adv queried
Osign(0,m). Since a signer can produce two types of signatures, we let the adversary
tell Oy, whether it wants a first or second-level signature.

For strong unforgeability, let @) be the set of pairs (m, o) where Adv queried Ogig, (0, m)
to obtain o.

Bidirectional: This property is not required. In fact, we leave a proper formulation of
bidirectional delegator security, if such a thing makes sense, as an open problem.

This ends our formal definition of proxy re-signatures. Two limitations of this definition
are: (1) we consider only static adversaries: that is. Adv is not allowed to adaptively choose
which users to corrupt, and (2) we require a trusted key issuing entity; that is, users receive
their keypairs from an authority. We pursue schemes without these limitations as future
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4.2.1 Re-Signatures and Program Obfuscation

One alternative method for formalizing (and potentially realizing) proxy re-signatures is
to treat them as a special case of the more general problem of program obfuscation [13].
Informally, the goal in program obfuscation it to provide a (potentially malicious) party
with a program it can execute, where an adversary learns nothing more from having the
code of the program than she could have learned by having access to an oracle providing the
same functionality. More formally, treating the program as a circuit, we want that for all
adversaries Adv, there exists a simulator S, for all circuits C, such that the probability that
Adv, given an obfuscated version of C, outputs 1 is statistically indistinguishable from the
probability that the simulator, with access to an oracle computing C, outputs 1.

This notion of program obfuscation was first formalized by Barak, Goldreich, Impagliazzo,
Rudich, Sahai, Vadhan, and Yang [13]. While finding a general method for obfuscating an
arbitrary program is impossible [13, 116], it is known how to successfully obfuscate some
classes of programs, such as the point functions of Canetti [62] and Wee [181] and the mixnet
of Adida and Wikstrom [1]. The question for us is whether or not re-signature programs can
be obfuscated? This would allow us to define security for and reason about re-signatures in
a more general framework.

The results of this chapter get us closer to an answer. Consider the following circuits that
translate Alice’s signature o on message m into Bob’s. Assume the circuit for the algorithms
(Sign, ReSign, Verify) and public keys are known to all.

1. Circuit One: hard-wire Bob’s secret key skp into the instructions: (1) run Verify(pk 4,
m, o) on Alice’s purported signature, (2) if it verifies, return the output of Sign(skg, m).

2. Circuit Two: hard-wire the re-signature key rkas_p into the instructions: (1) run
Verify(pk 4, m, o) on Alice’s purported signature, (2) if it verifies, return the output of
ReSign(rkA_,B, 0').

Loosely speaking, circuit two is an obfuscation of circuit one, because circuit two does
not leak information that allows to sign arbitrary messages on Bob’s behalf (i.e., Bob’s secret
key). The question is: does circuit two meet the Barak et al. definition of obfuscation? Un-
fortunately, the answer appears to be no. Let us explain why. In our schemes in Section 4.3,
rk s—.p is a deterministic function of pk 4 and skp for unidirectional schemes, and of sk 4 and
skp for bidirectional schemes. Thus, in the obfuscation game of Barak et al. mentioned
above, the probability distributions could be distinguished by Adv outputting a hardcore bit
of rks_p (whereas S could only guess).

Indeed. we claim that our bidirectional scheme (€2;), as currently written, is not a valid
obfuscation under the Barak et al. definition.

In our unidirectional scheme (Q,,;), the proxy key rka_p can be computed from an
original signature and its re-signed value. Thus, by calling a re-signature oracle for this
scheme, the simulator would be able to compute the key rk .5 (note this is provably not
the case for p;.) Thus. Q,,; would trivially meet the obfuscation definition.

Of course, a valid question to ask is: is the Barak et al. definition of program obfuscation
the “right™ one for re-signatures? If unforgeability against chosen message attack holds even
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when proxy keys are known to the adversary, is that not enough? Perhaps the Barak et al.
definition can be relaxed to capture the idea the an obfuscated program does not give the
adversary any new abilities (such as the ability to sign arbitrary messages). We acknowledge
Ran Canetti and Guy Rothblum for useful discussions on this topic. We intend to continue
research in this direction, although we now wish to return to the focus of this thesis.

4.3 Proxy Re-Signature Schemes

We begin our discussion of proxy re-signature schemes by discussing the properties of these
schemes that are either necessary or simply desirable for our applications in Section 4.4.
Next, we motivate the need for improved schemes by detailing certain inherent limitations
of the original BBS [21] scheme. We then present two secure proxy re-signature schemes:
bidirectional and unidirectional. The bidirectional scheme (2;; is based on the short signatures
of Boneh et al. [35, 34]. The unidirectional scheme ,,; is a novel El Gamal-type algorithm

over bilinear groups. We also suggest an extension to the unidirectional scheme €27 ..

4.3.1 Additional Properties We Need and Want

Let us first understand what properties we expect out of a proxy re-signature scheme in
addition to correctness and security from Section 4.2. We now informally list what are, in
our opinion, the most desirable properties of a proxy re-signature scheme. In Table 4.1, we
show which properties we are currently able to realize.

1. Unidirectional: The re-signature key rk4_,p allows the proxy to turn Alice’s signatures
into Bob’s, but not Bob’s into Alice’s. This property allows for applications where the trust
relationship between two parties is not necessarily mutual. Schemes that do not have this
property are called bidirectional.

2. Multi-use: A message can be re-signed a polynomial number of times. That is, signatures
generated by either the Sign or ReSign algorithms can be taken as input to ReSign. In
contrast, one might imagine weaker, single-use schemes where only signatures generated by
Sign can be inputs to ReSign.

3. Prwate Prozy: In a private prozy scheme, the re-signature keys can be kept secret by
an honest proxy. Thus, the proxy controls which signatures get translated. In public proxy
schemes, the re-signature keys can be recomputed by an adversary passively observing the
proxy.

4. Transparent: The proxy is transparent in the scheme, meaning that a user may not even
know that a proxy exists. More formally, we mean that the signatures generated by Alice
on a message m using the Sign algorithm are computationally indistinguishable from her
signatures on m generated by the proxy as the output of ReSign. Notice that this implies
that the input and the corresponding output of the ReSign algorithm cannot be linked to
each other. It is plausible that transparency could be revoked using trapdoor information.
For example. signatures could be original and re-signed signatures could be indistinguishable
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Property BBS [21] Q4 (Section 4.3.3) 2, (Section 4.3.4)
1. Unidirectional No No Yes
2. Multi-use Yes Yes No
3. Private Proxy No Yes No*
4. Transparent Yes Yes Yes*
5. Unlinkable No Yes No
6. Key Optimal Yes Yes Yes
7. Non-interactive No No Yes
8. Non-transitive No No Yes
9. Temporary No No Yes*

Table 4.1: We compare the properties of several proxy re-signature schemes discussed in
this work. The symbol * denotes that the property can be provably partially obtained or
obtained by adding additional overhead. For §, we provide some insight on how this might
be achieved.

to everyone except parties with knowledge of the signing key. We return to this point at the
end of this section.

5. Unlinkable: In an unlinkable scheme, a re-signature cannot be linked to the original
signature from which it was generated. This property should hold both for original signatures
generated under two different keys as well as original signatures under the same key using
different randomness (if the scheme is nondeterministic). For an example of a linkable
scheme, see the “Discussion of Schemes §2,,; and €2 .” in Section 4.3.4.

uni

6. Key Optimal: Alice is only required to protect and store a small constant amount of secret
data (i.e., secret keys) regardless of how many signature delegations she gives or accepts.
Here, we want to minimize the safe storage cost for each user. One might also wish to
consider the size and number of keys that a proxy is required to safeguard.

7. Non-interactive: Bob (the delegator) can create the re-signature key rk4_.p from his
secret key skp and Alice’s public key pk,, i.e., the delegatee does not act in the delegation
process.

8. Non-transitive: The proxy alone cannot re-delegate signing rights. For example, from
rka.p and rkg_¢, he cannot produce rk 4_.c.

9. Temporary: Whenever a party delegates some of her rights to another party, there is
always the chance that she will either need or want to revoke those rights later on. Since it
may not always be feasible for a delegator to change her public key after every revocation,
we are interested in schemes that minimize revocation overhead even when the proxy is not
fully trusted. Of course. if the re-signature proxy is trusted, then we can realize temporary
delegations for any re-signature scheme by issuing the appropriate instructions to the proxy.

Of course, one would want to formalize a definition with the right combination of these
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additional properties for a given application. Qur purpose here is start a discussion of what
additional properties may be desired and achieved.

Fuil-Stop Proxy Re-Signatures. An interesting possible extension is to the basic schemes
we’ve been discussing is to consider fail-stop proxy re-signatures. In regular fail-stop signa-
tures as introduced by Pfitzmann and Waidner [162], the signer can prove to third parties
that a forgery is in fact a forgery and not a signature that she created. Similarly, in some
applications, it may be desirable for a signer to be able to distinguish (and prove) which
signatures she created from those created by the proxy. This is especially useful if the proxy
is suspected of abusing its authority. It is conceivable that the signer’s secret information
could be used to distinguish signature types, and thus, the transparency property might be
simultaneously realizable.

4.3.2 Remarks on the BBS Scheme

In the BBS scheme, the re-signature key is necessarily public since it is not possible for
the proxy to keep it secure. Indeed, it is enough to just observe a valid signature and its
transformation to be able to retrieve the re-signature key and then impersonate the proxy
itself. Moreover, both parties are forced to mutually share their secret keys as these can be
easily computed from the (public or exposed) re-signature key and one of the parties’ secret
key. Let’s have a look, next, at the details of the BBS scheme so that it is easier to discuss
its limitations.

BBS Re-Signatures. Recall the BBS proxy re-signature scheme [21].
e System Parameter Generation (SysGen): On input the security parameter 1%,

output params containing (¢, g, G, H), where g is a generator of a group G of order
q = ©(2%) and H is a hash function mapping strings in {0, 1}* to elements in Z,.

e Key Generation (KeyGen): On input the parameters params, select a random a € Z,,
and output the key pair pk = g* and sk = a. (Assume params are also included.)

e Re-Signature Key Generation (ReKey): On input two secret keys sk4 = a, skp = b,
output the re-signature key k45 = a/b (mod ¢). (BBS did not describe a protocol
for this, but we will in Section 4.3.3.)

e Sign (Sign): On input a secret key sk = a and a message m, select random elements

Ti,...,Tk € Zf;’. Then, compute 7 = (¢*',...,¢%) and extract k pseudorandom bits
bi,...,b, from the output of H(r). Finally, output the signature ¢ = (r,s), where
s=(sy,...,s) and each s; = (z; — m - b;)/a (mod q).

e Re-Sign (ReSign): Ou input a re-signature key 1k 4_.p, a public key pk 4, a signature
o, and a message m, check that Verify(pk 4, m,o) = 1. If o verifies, set v’ = r and
st = si-rka_p (inod q), and output the signature o = (1, s), where s' = (s}, ..., s});
otherwise, output the error message 1.



e Verify (Verify): On input a public key pk,, a message m, and a purported signature
o = (r,s), compute H(r) and extract pseudorandom bits by, . ..,b;. For each g% € r
and s; € s, check that (pk ,)% = g% /g™, If all check pass, output 1; otherwise output
0.

Given any pair of signatures (o4,0p), where 04 was created by the Sign algorithm and
op is the result of the ReSign algorithm on o4, anyone can compute the re-signature key
rka—p as follows: Let o4 = (r,s) and og = (r,s") be signatures as described above, where
s=(s1,...,5¢) and 8 = (s,..., ;). Then, s}/s1 = a/b= rka_p (mod ¢) and thus, anyone
can become a rogue proxy. Moreover, from k45 = a/b, Alice (resp., Bob) can compute
Bob’s (resp., Alice’s) secret key as (a/b)~!-a mod q = b.

Although the BBS scheme satisfies their security definition (the scheme is called sym-
metric in [21]), it is clearly inadequate for many interesting applications, including those
suggested in the original BBS paper [21].

Alternatives? Finding suitable and secure proxy re-signature schemes required a sub-
stantial effort. Natural extensions of several standard signatures were susceptible to the sort
of problems above. To illustrate the intuition behind this, consider a naive proxy re-signature
construction based on the popular Schnorr [169] signature. Let || denote concatenation. Re-
call Schnorr signatures with key pairs of the form (pk 4, ska) = (g%, a) and signatures of the
form (r,s) = (¢g*,a - H(m||r) + k). One might think to give the proxy rk4_p = (b — a), so
that it can re-sign messages as (r',s') = (r,s + rka—p - H(m||r)). However, as in the BBS
scheme, anyone can compute rka_p = (s'—s)/H(m||r) = (b—a) from a signature (7, s) and
its re-signature (r, s’) on a message m.

We also considered a few new schemes (e.g. [54]), but it was not obvious how to turn
them into proxy re-signatures that provided a satisfying subset of the features described in
Section 4.3.1.

4.3.3 Q;: A Multi-Use Bidirectional Scheme

We now present a new proxy re-signature scheme, denoted €, using the signatures due to
Boneh, Lynn, and Shacham [35, 34].

This scheme requires a bilinear map, as discussed in Chapter 2. For simplicity, we
will present this scheme for a double isomorphism bilinear map e : G; x G; — Gr (e.g.,
implemented using a supersingular curve) where we treat G; = G2 and, as before, (g;) = G;
has prime order g. We can also use a single-or-none isomorphism bilinear map to obtain
short signatures, as we discuss at the close of this section. (Recall that by “short” we mean
that signatures of 171 bits have roughly the same security as 1024 bit RSA signatures [35].)

e System Parameter Generation (SysGen): On input the security parameter 1%, run
Bilinear_Setup(1*) — (e, q. g1, g2. G1, G2, G7) to obtain parameters for the bilinear map.
In addition, the global parameters params include a hash function H from arbitrary
strings to clements in G, as defined by Boueh and Franklin [29]. Output params.
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e Key Generation (KeyGen): On input the parameters params, select a random a € Z,,
and output the key pair pk = ¢¢ and sk = a. (Assume params are included too.)

e Re-Signature Key Generation (ReKey): On input two secret keys sk 4 = a, skg = b,
output the re-signature key rk4_.p = b/a (mod ¢). The three-party protocol between
Alice with sk 4, Bob with skg, and the proxy operates as follows:

1. the proxy sends a random 7 € Z, to Alice,
2. Alice sends r/a to Bob,

3. Bob sends b- (r/a) to the proxy,

4. the proxy computes (b-r)/(a-r) = b/a.

We are clearly assuming private and authenticated channels and no collusion. Bidirec-
tional schemes make no security guarantees in the event of collusion.

e Sign (Sign): On input a secret key sk = a and a message m, output o = H(m)®.

e Re-Sign (ReSign): On input a re-signature key 7k 4_.p, a public key pk 4, a signature
o, and a message m, check that Verify(pk 4, m,0) = 1. If o does not verify, output L;
otherwise, output ¢’ = o™4~5,

e Verify (Verify): On input a public key pk 4, a message m, and a purported signature
o, output 1 if e(gy, 0) = e(pk 4, H(m)) and 0 otherwise.

Notice that the re-signature keys for this scheme are the same as those in the BBS scheme:
a ratio of the secret keys. In this scheme, however, the re-signature key cannot be computed
from an original signature and its re-signed value.. Although this scheme is very simple,
proving its security takes some work. We will first prove the following theorem and then
discuss some of the nice properties of this scheme.

Theorem 4.2 (Security of Q). In the random oracle model, any adversary that e-breaks
the bidirectional proxy re-signature scheme y; requesting at most qy direct hash queries, qg
signature queries, and qx public keys can be used to

(s-—l— . —1— (1———1———)> -break
dx 4qu q—qH — (s

the Computational Diffie-Hellman (CDH) assumption in Gy; that is, for random g, € G;
and a,b € ZZ, given (g1, 9%, %), it is hard to compute g3°.

Proof. The correctness of the scheme is easily observable. We show security in two parts.

External Security: For security, we show that any adversary Adv that can break the
security of the above proxy re-signature scheme with non-negligible probability € after making
at most qy direct hash queries, gs Os;gn queries, and requesting qx public keys can be used
to build an adversary Adv' that solves the CDH problem in G, with probability roughly
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e/(qy - qr). On input (g;,g%. ¢°), the CDH adversary Adv’' simulates a proxy re-signature
security game for Adv as follows:

Public keys: As Adv requests the creation of system users, Adv' guesses which one Adv
will attempt a forgery against. Without loss of generality, we denote the target public key
as pk, and set it as pk, = gf, for all other public keys requested set pk;, = gi* for a random
z; € Z4. Let the total number of public keys requested be g.

Oracle Queries: There are three types of queries that Adv' must answer: the hash function
H, the signature oracle Og;gn, and the re-signature oracle Oyesign-

e For each query to H on input m;, check if there is an entry in Ty. If so, output the
corresponding value, otherwise guess if m; is the message m* that Adv will attempt to
use in a forgery. If m; = m*, output g°; otherwise, select a random y; € Z, and output
g¥i. Record the pair (m;, ;) in table Ty for each m; # m*.

e For each query to Oggn on input (g, m;), if j # t, check if there is an entry for m; in
Ty. If so retrieve y; from Ty ; otherwise make a new entry in T}y for (m;, y;) for random
y;. Then, return the signature g¥**’.

If j =t and m; # m*, return the signature (g7)¥%; otherwise, abort.

e For each query to Oyesign On input (i, j,my, o), if Verify(pk;,o,mi) # 1, output L.
Otherwise, output Og;gn(j, mi) (via calling oracle Ogign).

Forgery: At some point Adv must output a purported forgery (j,m, o). If t # j, then
Adv' guessed the wrong target user and must abort. If Verify(pk;,0,m) # 1 or (m, o) is the
result of any Ogign, 01 O,esign query, adversary Adv has failed, so Adv’ also aborts. Otherwise,
Adv' outputs o = H(m*)® = g2? as the proposed CDH solution.

First, we analyze how well Adv’ simulates the world for Adv. The responses from the hash
oracle H are uniformly distributed. The responses of signing oracles Osign and Oresign are
correct, except when Adv’ incorrectly guesses the target user ¢ or the message m* on which
Adv will forge.

The probability that Adv’ will guess the target user correctly is 1/gx. The probability
that Adv' will guess the forged message m* is 1/qy conditioned on the fact that Adv queries
the hash function for m*. The probability that Adv can correctly predict H(m*) without
querving H is 1/(q — qu — gs), which is negligible (g is the order of G;). Recall that since
the scheme is deterministic, it trivially satisfies the property that Adv cannot produce a new
signature on a previously signed message (i.e., Og, will not be forced to abort when the
simulator correctly guesses the target user and message.) Thus, we conclude that if Adv forges
with probability e, then Adv' solves CDH with probability e-(1/qx)-(1—1/(q—qu —qs))/qu-

(Bidirectional) Internal Security: For bidirectional schemes, internal security refers
only to Limited Prozy security: that is. a guarantee that the proxy cannot use its re-signature
keys to sign on behalf of honest users. We now show that a rogue proxy Adv that can forge
with probability &€ can be used to build an adversary Adv’ that solves the CDH problem with

e
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probability roughly €/gy. On input (gi, ¢¢, ¢°), the CDH adversary Adv’ simulates a proxy
re-signature security game for Adv as follows:

Public keys: For each key, choose a random z; € Z,, and set pk; = (g§):.
Oracle Queries: There are three types of queries that Adv’ must answer: the hash function
H, the signature oracle Oy, and the re-signature key generation oracle O,¢ey-

e For each query to H on input m;, check if there is an entry in Ty. If so, output the
corresponding value, otherwise guess if m; is the message m* that Adv will attempt to
use in a forgery. If m; = m*, output g%; otherwise, select a random y; € Z4 and output
g7*. Record the pair (m;,y;) in table Ty for each m; # m*.

e For each query to Osig, on input (j, m;), if m; # m*, return the signature (pk,)¥* where
(my;,y;) € Ty; else, abort. (If m; does not appear in Ty, choose a random y; and enter
the pair into Ty.)

e For each query to Oyerey On input (4,7), if i =t or j = t, abort; else, return rk;_,; =
(zj/z:).

Forgery: At some point Adv must output a purported forgery (7, m, o). If Verify( pkj,0,m)
does not accept or (m, o) is the result of any Osign, Or Oyesign query, adversary Adv has failed,
so Adv' aborts. Otherwise, Adv’ outputs ¢'/% = H(m*)* = ¢¥° as the proposed CDH
solution.

The final analysis is simpler than before. In the case that Adv’ correctly guesses the
target user ¢t and the message to forge m*, Adv’ perfectly simulates the world for Adv. Thus,
CDH is solved with probability - (1 — 1/(q — quw — gs))/qn- a

Discussion of Scheme ;. This scheme is simple and highly efficient. Basing it on the
BLS construction [35, 34], the signature is under 200 bits while only one exponentiation is
needed to sign or resign. This efficiency, combined with its multi-use functionality, makes
it highly attractive for many network authentication applications because it allows for long
signing chains. It is also bidirectional, which means that the re-signing key rk4_.p can be
used to transform Alice’s signatures into Bob’s or vice versa. Bidirectionality is desirable for
some applications, but a potential security risk in others. (The construction of a scheme that
is both multi-use and unidirectional remains an open problem.) Transparency is guaranteed
by the fact that the signature algorithm is deterministic and, since each user just stores one
signing key, the scheme is also key optimal.

Using General Bilinear Maps for ();. In our presentation of 2;;, we assumed a double-
isomorphism bilinear map of the form e : Gy x G; — G, which, based on current knowledge,
would limit us to implementations using supersingular curves. We could allow for more
candidate implementations using ordinary curves and shorter signatures (see Chapter 2) by
assuming a bilinear map of the form e : G; x Gy — G with arbitrary isomorphisms; that
is, we will not use any of the isomorphisms between G; and Gs in our scheme or its proof,
but neither will our scheme or proof break if efficient isomorphisms exist. To use a general
bilinear map, the following must occur:



1. the signatures and the range of hash function H are set in G,

)

the public keys are set in G.

3. the complexity assumption changes from CDH in G; to Co-CDH in (G, G,); that is,
for random g, € Gy, g2 € Gy, and a,b € Z2, given (g1, g¢, g2, g5), it is hard to compute

a-b -
92

4.3.4 Q,,; and QF : Single-Use Unidirectional Schemes

uni®

*

We now present two proxy re-signature schemes, denoted €2,,; and 27, . respectively. These
schemes are unidirectional since the re-signature key rk4_,p can be used to change Alice’s
signatures into Bob’s, but not vice versa. The schemes €2,,; and €27,,; differ in a single feature:
In Qyni, the re-signature key is made public or is easily computable by anyone, while in Q7 .,
this key is secret and stored at the proxy. Applications of unidirectional schemes with both
public and private re-signature keys will be provided in Section 4.4.

Each signer has a strong and weak secret key associated with their single public key.
The intuition behind the unidirectional schemes is to use the re-signature key to transform
Alice’s signatures computed under her strong secret into signatures computed under Bob’s
weak secret. Signatures under any “weak secret” cannot be converted, which makes the
schemes single-use. Notice that we must deal with scenarios where signatures from several
users are converted into signatures from a single user (and vice-versa). This rules out trivial

solutions based on bidirectional schemes with multiple public keys per user.

Q.n; with Public Re-Signature Key

This scheme requires a bilinear map, just as in the previous section. For simplicity, we
will present this scheme for a double isomorphism bilinear map e : G; X G; — Gr (e.g.,
implemented using a supersingular curve) where we treat G; = G, and, as before, (g;) = G;
has prime order q. We can also use a single isomorphism bilinear map, which we will discuss
at the close of this section.

e System Parameter Generation (SysGen): On input the security parameter 1%, run
Bilinear_Setup(1*) — (e, q, g1, 92, G1, G2, Gr) to obtain parameters for the bilinear map.
In addition, let the global parameters params include a hash function H from arbitrary
strings to elements in Z, and a random generator hy € G;. Output params.

o Key Generation (KeyGen): On input the parameters params, select a random a € Z,,

and output the key pair pk = (g7, hi/ *) and sk = a. We think of sk = a as the “strong”
secret, and the value h{ as the “weak” secret.

1/a . .
(Note: a user need only output the second component hl/ of her public key if she
wishes to receive delegations: it does not play a role in signature verification. Also, the
e . . 1/
second component can be verified against the first as e(g%, hy’*) = e(gy, k1), so only

the g{ portion need be certified.)

[y
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¢ Re-Signature Key Generation (ReKey): On input a public key pk, = (g‘f,hi/ Y
and a secret key skg = b, Bob outputs the re-signature key rka_.p = h?/ “ Let rka_p

be public.

e Sign (Sign): On input a secret key sk = a and a message m, select a random k € Z,,
set 1 = h¥, s = a- (H(m||r) + k) (mod g); output the pair o = (r,s). We call a
signature of this form a first-level signature. It should be tagged as such.

Optionally, the signer could choose to output a signature that could not be re-signed,
where the last element of o is set to A% Z™IN+o* instead. We call this a second-level
signature. It should be tagged as such.

e Re-Sign (ReSign): On input a re-signature key rk 4. g, a public key pk 4, a (first-level)
signature o, and a message m, check that Verify(pk 4, m,0) = 1. If 0 = (r, s) does not
verify, output L ; otherwise, set v’ = r and s’ = (rk4_p)*, and output o’ = (r', s’). The
proxy always tags this as a first-level signature.

e Verify (Verify): On input a public key pk = (¢, h}/ %), a message m, and a purported
signature o = (r,s), if o is tagged as a first-level signature, set s’ = h$; otherwise, set
s’ =s. Output 1 if e(gq, ") = e(g},r - h{ﬂm"r)) and 0 otherwise.

Theorem 4.3 (Security of {1,,;). In the random oracle model, any adversary that £-breaks
the unidirectional prozy re-signature scheme $l,,; requesting at most qy hash queries can be

used to )
. 1
(5 _ f_q%i_> _break

the CDH or 2-DL assumptions in G,; the latter being that given (g1, g%, g‘{z), for random
91 € Gy and a € Z,, it is hard to compute a.

Proof. We argue security in two parts. Here, for clarity of exposition, we will use the well-
known result [166] that CDH is equivalent to the Square Diffie-Hellman (sq-DH) problem
in the same group. The sq-DH problem in G; is to compute gfz given (g1, g7) for a random
91 € Gy and = € Z,. Showing that sq-DH implies CDH is trivial. To see the other direction,
suppose you are given CDH input (g1, g%, ¢Y) and an sq-DH solver. Use the sq-DH solver to
compute 4 = ¢2*, B=¢", and C = g%”y)z = " *22¥*’  From these values, it is easy to
compute /C/(A - B) = g;¥ for this group of known prime order.

External Security: In £2,,;, the re-signature keys are public by design. Thus, all users
are considered proxies and there are no “external adversaries” to the system. Therefore, the
external security property holds trivially.

(Unidirectional) Internal Security: For unidirectional schemes, internal security
refers to:

1. Limited Proxy Security: protecting an honest delegator and delegatee from a rogue
Proxy,
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2. Delegatee Security: protecting an honest delegatee against delegators colluding with
the proxy,

3. Delegator Security: offering limited protection to an honest delegator against delegatees
colluding with the proxy.

1. Limited Proxy Security: For security, we show that any proxy Adv that can break this
security guarantee with non-negligible probability £ can be used to build an adversary Adv’
that solves the CDH (equivalently, sq-DH) problem in G; with probability roughly 2.

System Parameters: On a sq-DH challenge (g1, ¢7), the simulator Adv’ outputs the system
parameters as g; and h = gf.

Public keys: As Adv requests the creation of system user i, Adv' chooses a random ¢; € Z,
and outputs pk, = (g=%, gi’*) = (g%, kY@<, The virtual sk; is (z - ¢;). The pair (4, ¢;) is
saved.

Oracle Queries: There are three types of queries that Adv’ must answer: the hash function
H, the signature oracle Og;gp, and the re-signature key generation oracle Oregey-

e For each query to H on input a;, check if there is an entry in Ty. If so, output the
corresponding value, otherwise output a random value y; € Z,. Record the pair (a;, y;)
in table Ty. Let gy be the total number of queries to H.

e For each query to Osign on input (j, m;), concoct the signature using control over the
output of H as follows. Select random values s,y € Z,. Parse user j’s public key as
pk; = (pkf,.l) : pkg-z)). Compute r = (pkg-z))"’ /hY. Check if (m;||r,?) is already in T4, if so
abort; otherwise, output the first-level signature (r, s). Record (m;||r,y) in table T4.

e For each query to Oyerey On input (3, 5), generate the re-signature key rk;_,; by com-
puting (g¥)%/%. (This is equal to A=)/ (@) = pski/sk: )

In the above, AdV' almost perfectly simulates the world for adversary Adv, except for the
possibility of aborting in oracle H. Aborting happens on collisions in H which occur with
probability at most gy /g, where ¢ is the order of G,. Thus a simulation will end with Adv
successfully forging some message with probability € - (1 — g /q).

We will be applying the Reset Lemma due to Bellare and Palacio [19]. The Reset Lemma
applies to any canonical three round proof protocol; that is, any transcript consisting of a
prover’s commitment, a verifier’s challenge, and a prover’s response. Our signature scheme
Quni is the result of applying the Fiat-Shamir heuristic [98] to such a three round protocol.
This lemma upper-bounds the probability that a cheating prover can trick an honest verifier
into accepting.

Lemma 4.4 (Reset Lemma [19]). Let P be a canonical three round proof protocol, P be
the prover with state p, and V be the verifier with state v. Then the probability acc(p,v) that
an honest V accepts after executing protocol P with P is

1
|ChSet|

acc(p,v) < + \/reset(p, v)
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where ChSet is the verifier’s challenge set and reset(p, v) is the probability that for the same
random tape and commitment of the prover, the verifier accepts on two random challenges
from ChSet.

Applying the Reset Lemma where we already argued that acc(p,v) =€ (1 — gu/q) and
|ChSet| = g, we have reset(p,v) = (¢ — (¢ - gu + 1)/¢)*>. Thus, with this probability, Adv
can produce two valid signature transcripts (r, dy, s;) and (r, ds, s9) for user ¢, and where d,
and d, are two different random responses from H on input (m||r) for some m. When this
occurs, Adv can solve sq-DH by computing and outputting:

syt (hmeOTON leldimh)_ sapdegot et
39 h-ci-(datk) 1 1

2. Delegatee Security: Recall that (,,; is a non-interactive scheme, meaning that Bob (the
delegator) can compute a re-signature key rk 4_.p from Alice’s public key. Thus, intuitively
“nothing is learned about Alice’s secrets” from Bob and the proxy both seeing rk4_. 5.

More formally, Adv’ must be able to provide Adv with the secret keys of all delegators
of a target user pk,. Here Adv need only produce a second-level signature to “win” in the
delegatee security game.

System Parameters: On a sq-DH challenge (gi, g¥), the simulator Adv’ outputs the system
parameters as g; and h = (g¥)* for random z € Z,.
Public and Secret Keys: Adv' generates the following keys for Adv.

o For the delegatee, set the public key as pk, = (g7, pi/* = 9%). For all other users, set
as pk; = (g%, h/¥ = gf/ ¥) for a random y; € Z,.

e Output each delegator’s secret key sk; as v;.

Oracle Queries: There are three types of queries that Adv’ must answer: the hash function
H, the signature oracle Os;gn, and the re-signature key oracle Oyepey-

e For each query to H on input z;, check if there is an entry in Ty. If so, output the
corresponding value, otherwise output a random value ¢; € Z,. Record the pair (z;, ¢;)
in table Ty.

e For each query to Oy, on input (j, m;), select random values s, ¢ € Z,. Parse user

j's public key as pk; = (pk;l), pkj(?)). Compute r = (pk§-2))s/hc. Check if (my]lr,?)
is already in Ty, if so abort; otherwise, output the first-level signature (r, s). Record

(my]|r, ¢) in table T.

e For each query to Oyerey 011 input (0,7), compute each re-signature key rko_.; as (hl/ L
All other allowed keys rk;.; (i.e., j # 0) Adv can compute himself given the secret
keys.



Adversary Adv’ simulation of the world for Adv succeeds with the same probability as
before, thus we apply the Reset Lemma [19], and from the two second-level signature tran-
scripts compute h* = gfz. (Note that Adv’ only aborts during Og;gy, in the unlikely event
that a collision occurs; unlike the proof of Theorem 4.2, it does not depend on which message
is being signed. Thus, Adv’' succeeds even when Adv produces a new forgery for a message
Adv' was already asked to sign.)

3. Delegator Security: Adv' must now be able to provide Adv with the secret keys of all
delegatees of a target user pk,. Since Adv must produce a first-level signature to “win” in
the delegator security game, we actually base this property on the 2-DL assumption that
given (g1, 97, gfz), for random g; € G; and z € Z,, it is hard to compute z.

System Parameters: On a 2-DL challenge (g1, ¢3, gfz), the simulator Adv’ outputs the
system parameters as g; and h = (¢g*)* for random z € Z,.
Public and Secret Keys: Adv' generates the following keys for Adv.

e For the delegator, set the public key as pk, = (gf,9%). For all other users, set as
pk; = (g%, h1/% = g7/%) for a random ¢; € Z,.

e Output each delegatee’s secret key sk; as c;.

Oracle Queries: There are three types of queries that Adv' must answer: the hash function
H, the signature oracle Og;gn, and the re-signature key oracle Oy epey-

e For each query to H on input d; (this represents the message concatenated with the
randomness), check if there is an entry in Ty. If so, output the corresponding value,
otherwise output a random value y; € Z,. Record the pair (d;.y;) in table Th.

e For each query to Oygn on input (j,m;), select random values s,y € Z,. Parse user
j's public key as pk; = (pkg-l) pk§2) ). Compute r = (pkgz))s/hy. Check if (myl|r, ?)
is already in Tp, if so abort; otherwise, output the first-level signature (r, s). Record
(my|lr,y) in table Ty.

e For each query to Orekey on input (z,0), compute each re-signature key rk;_o as
(gillfz)z/ci = h¥/¢_ All other keys Tk;_.; the adversary Adv can compute himself given
the secret keys.

The simulation succeeds with the same probability as before, thus we apply the Reset
Lemma [19], and from the two first-level signature transcripts compute sko = .
O

o

wni

with Private Re-Signature Key

In €, re-signature keys are public. However, this does not render the system as vulnerable
as the BBS scheine, since at least the delegatee remains secure. For many of the applications
we will shortly discuss in Section 4.4, our schemes €2; and €2,,,; will be sufficient. However,
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it would also be desirable to have a unidirectional scheme where the proxy key can be kept
private. We briefly propose how one might consider naturally modifying €2,,; into a new
scheme (¥ . to achieve these properties. The setup and global parameters hold from ;.

The following algorithms change:

e Re-Signature Key Generation (ReKey*): The re-signature key is rka_,5 = hll’/ * as
before, plus the proxy stores pky. The proxy keeps rk4_,p private.

e Re-Sign (ReSign*): On input a re-signature key rk4_p, a public key pk,, a (first-
level) signature o, and a message m, check that Verify(pk 4,m,0) = 1. lf 0 = (r, s) does

not verify, output L; otherwise choose a random w € Zg, set 7’ = r, ' = (rka—p)*",

t = (pkg))“’, and generate a signature proof of knowledge u’ of the discrete logarithm
of t’ for base pkg) (i.e., the first part of Bob’s public key) on message (', s',t') using
a new global hash function A : {0,1}* — Zg. (This last step can be efficiently done
using Schnorr’s technique [169].) Output o’ = (v', s, ', ).

e Verify (Verify*): The verifier now checks: (1) the proof v/, and (2) e(g1, ) = e(t',r" -
oM

The scheme (27, . is a natural extension of (2,,; and we conjecture its security is based on
the same assumptions. We leave a formal analysis of it as a subject for future work.

*

Discussion of Schemes (2,,; and 2} .. The only conceptional difference between these
two schemes is that in (,,; the re-signature key is necessarily public (i.e., it is prey to the
Section 4.3.2 attack), while in Q. the proxy can keep the re-signature key private. (The
re-randomization added to ReSign™ thwarts this attack.)

Even though the re-signature key 7k 4 p in (1,,; is public, which allows anyone to trans-
late between signatures, it does not reveal any information about Alice’s (delegatee) signing
keys to anyone (because it was computed by Bob with her public key). This is important
since the delegatee should not be taking on any security risk. Furthermore, no third party
can use this key to sign arbitrary messages for Bob (delegator) — and Alice can only recover
Bob’s weak secret h?. This does not give Alice any new signing capability that she didn’t
have before: Alice could sign on behalf of Bob anyway, either by herself (£2,,;) or jointly with
the proxy (2,;). (We stress that Alice won’t be able to generate Bob’s first-level signatures
in any case.)

Bob does run the risk, however, that Alice may publish A}, allowing anyone to produce
second-level signatures for Bob. Yet, such a risk for the delegator seems inevitable.

Both of these schemes are exclusively for single-use applications (i.e., a signature trans-
lated from Alice to Bob cannot be again translated from Bob to Carol). One such application
is a company mail server turning employee’s signatures into a group signature before public
release. An interesting open problem is designing a scheme that is simultaneously unidirec-
tional and multi-use.

Happily, these schemes are non-interactive since Bob only needs Alice’s public key to
delegate to her (i.e., vk4_p). One potential drawback is that the original and re-signed
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values can be linked; that is, given a first-level signature pair (r, s), the ReSign algorithm
produces a new second-level signature pair (', s") (or (r',s’,t',u’)) with r = r. Nevertheless,
weak transparency is achieved because the delegator can also produce second-level signatures
from first-level ones due to the fact that he knows the re-signature key.

Using General Bilinear Maps for Q,,; and Q.. In our presentations of €2,,; and X ,,
we assumed a double-isomorphism bilinear map of the form e : G, x G; — Gp, which,
based on current knowledge, would limit us to implementations using supersingular curves.
We could allow for more candidate implementations using ordinary curves by assuming a
bilinear map of the form e : G; X Gy — G with arbitrary isomorphisms; that is, we will not
use any of the isomorphisms between G, and G2 in our scheme or its proof, but neither will
our scheme or proof break if efficient isomorphisms exist. To use a general bilinear map, the

following must occur:

1. the global parameter g; and the certified part (first half) of the public key g} are set
in Gq,

2. the global parameter hq, the second half of the public key h%/ “, and both halves (r, s)
of second-level signatures are set in Go (for first-level signatures, s is in Z,),

3. the complexity assumption changes from CDH and 2-DL in G; to Co-CDH and 2-DL
in (G1, Gy); where Co-CDH is equivalent to: for random g; € G4, g2 € G2, and a € Z,,
given (g1, 9% go, ¢2), it is hard to compute g2’

Temporary Delegations (and Revocations) for Q,,; and Q

uni*

What if Bob only wishes to allow Alice’s signatures to be turned into his, via giving rk4_.p
to the proxy, for the span of one week? If the proxy is honest, Bob may simply issue it these
instructions. However, if Bob does not fully trust the proxy, is his only option to change
his public key? Fortunately, the answer is no. We can modify the scheme as follows. At
each time period i, a trusted party broadcasts a new global parameter hy; € G, which
replaces h, (;_1y in the signing, verification, and re-signature key generation algorithms. This
links each signature of the form (h%;,a - (H(m||lr + k))) and each re-encryption key of the

form h’[/," with a time period 7. This method effectively revokes all re-signature keys at each
new time period, but takes only a single broadcast value and leaves all certified public keys
of the form g¢¢ valid. (One would, of course, have to update the second portion to accept
delegations with each new time period.) This simple revocation technique was first proposed
in the setting of proxy re-encryption [8] and we will discuss it in more detail in Chapter 5.

4.4 Applications

Blaze, Blewmer, and Strauss [21] suggested scveral interesting applications of proxy re-
signatures relating to key management. We begin by taking a closer look at how proxy
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re-signatures can help relieve some of the common key management headaches. Next, we
explore a broader set of applications and show that proxy re-signatures can be used to form
weak (but easy to manage) group signatures, a space-efficient proof that a certain path was
taken in a graph (e.g., a packet followed a prescribed path through the network), and more.

4.4.1 Exploring BBS Key Management

BBS [21] pointed out that proxy re-signatures can be used to change or add new public key
pairs to a system without obtaining new certificates, notably simplifying key management.
Let us explore this idea in more detail.

Certifying Keys is Expensive, Can We Share? Since certification of new public keys
is a procedure that can be expensive and time consuming, using proxy re-signatures is a way
to share existing certificates. Signatures under new keys can be transformed into ones that
can be verified with public keys that are already certified. Consider also that distribution
of certificates may be difficult or impossible in certain environments. Proxy re-signatures
could be used to mitigate (at least temporarily) this issue by transforming signatures into
ones that can be verified with public keys already trusted by the verifier. We now present
an example of certificate sharing,.

*

A Time to Share (using (,,; or €, ;). Consider the case where a set of public keys
is embedded into a software product or a limited-storage device, such as a smartcard. In
many cases, it would be convenient if operating systems came installed with the certified
public keys of major companies. The drawback, however, is that it might then be difficult or
cumbersome for a company to change or add new keys. For example, a large company may
want to begin signing documents at a department, rather than a company-wide, level even
though software has been shipped with only one company-wide verification key. To solve
this dilemma, the company could set up a proxy which could translate between old and new
keys or from a large set of keys to a smaller one, etc.

To see this, suppose that software was shipped with a single company verification key
pk 4. The company could still create new verification keys for each department pk g, pke, pkp
and include these certified keys in the next software release. However, to temporarily remain
backwards compatible with the old software, the company could also publish (or setup a
semi-trusted proxy) with the re-signature keys rkz_ 4, kc—a, Tkp_ a; thus the proxy could
change any signature generated by departments B, C, or D (which the old software would
not recognize) and turn it into a company-wide signature under A (which the old software
will recognize).

Where Previous Schemes Fail in These Applications. Although (some form of) the
applications presented above were proposed for the BBS proxy re-signature scheme [21], that
scheme is bidirectional (among its other limitations). A unidirectional scheme, such as (yp;
or €2 .. is much better suited to sharing certificates. For example, one might allow new

certificates to be converted into old ones for backwards compatibility, but not old ones into
new!



Figure 4-2: Unidirectional chains with multi-use proxy re-signature. Each node (e.g., C)
holds only a proxy re-signature key (e.g., rkc—p) and not a signing key (e.g., skc). Thus, an
adversary cannot inject a signed message into the chain by corrupting intermediate nodes.

4.4.2 New Applications

Armed with our new proxy re-signature schemes, we now show that they can be used as a
space-efficient “proof” that a path was taken in a graph and as an easy-to-manage group
signature scheme.

Space-Efficient Proof that a Path was Taken (using ;). Proxy re-signatures are
particularly useful when deployed with their multi-use capability, such as €2;. In particular,
signatures can be converted in series as shown in Figure 4-2. Here. the signer A generates
the first signature on the message m, o4(m), and the intermediate proxies convert it into
the final signature og(m) through a series of transformations repeated in sequence. Such a
structure can be used to prove that a certain item followed a specific path without taking
any shortcuts. Indeed, we predict that this application will be the most general and useful
application of proxy re-signatures.

The United States is currently in the process of adopting E-passports [128] - traditional
passport documents capable of storing a limited number of digital signatures. Suppose Eve
arrives in New York from her home country of Eden and shows US border patrol a signature
ga(m) from Eden that she is a citizen in good standing. The border patrol officer checks
this signature and translates it into og(m), stating that Eve has passed the border patrol
check. Eve next takes her passport to the customs officer. The customs officer need only
verify Eve’s passport against one public key — that of border patrol — and if it checks out
and she passes customs, he can translate the signature into oc(m), ete.

This system has many benefits. First, keeping only one signature around at a time reduces
the space requirements on the limited memory passport — and also reduces the number of
verification keys that checkpoints down the chain must store. Second, by only giving each
checkpoint a re-signature key (e.g., giving customs rkp_c instead of skc), corrupting a
customs officer only allows Eve to skip the customs check - but she must still have gone
through the initial checks by Eden and border patrol. Thus, Eve can -- at best  skip one
stop for each checkpoint officer that she compromises, and only for a message that Eden
already authenticated.
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Notice that although we use our bidirectional scheme (because it is “multi-use”), the
chain in Figure 4-2 is actually unidirectional as long as the secret skg corresponding to the
last public key is kept secret. Thus, we can design only one way for Eve to get through the
airport checks. Obviously, a scheme that is both multi-use and unidirectional would be ideal
for this application, but no such scheme currently exists.

With a proper release of keys, proxy re-signatures can be used to non-repudiably prove
that a message has traversed a graph via a legitimate path. Of course, one could employ
multi-signatures [144] or aggregate signatures [31] to get a proof that certain nodes were
visited, but both of these solutions require the verifier to have the verification keys of all of
these nodes. Using proxy re-signatures, each node (including the final one) need only store
and trust a single public key (the public key of the node proceeding it in the chain) — and
yet each node has some real confidence that it is validating the entire path. Thus, we see
another savings in key management.

Additionally in some cases, users may want the privacy that proxy re-signatures provide;
that is, these signatures could simultaneously authenticate and yet hide the path traversed
by the message in the network. This is not the case for multi or aggregate signatures.

Easy to Manage Group Signatures (using Q7 .). Proxy re-signatures can also be used
to conceal identities or details of the structure of an organization. For instance, a corporate
proxy sitting on a company’s outgoing mail server could translate the individual signatures
of its employees, which are perfectly valid signatures inside the organization, into signatures
that can be verified with a single corporate public key. The proxy could (optionally) log
which employee signed the message for internal auditing, but choose to keep that information
company confidential. The interesting feature here is that even if the proxy is compromised
from the outside, no signing keys are ever revealed which makes the proxy a less appealing
target. The actual corporate secret key could be kept securely in a lock-box, and then the
proxy, with only re-signing information, could sit out on the mail server. For accountability
purposes, it is also advisable to employ unidirectional schemes (with private re-signature key)
so that the proxy will not be able to generate members’ signatures from existing corporate
signatures.

4.5 Contributions

In this chapter, we formalized the proxy re-signature primitive of Blaze, Bleumer, and
Strauss [21]. We pointed out several limitations of the BBS scheme and we provided new
improved constructions. One of our schemes (£2,,,;) allows the proxy to translate from Alice
to Bob, but not vice versa. This is the only known construction to have this property since
BBS proposed the concept in 1998 [21]. Our schemes are efficient and based on standard
assumptions in the random oracle model, although they offer slightly different properties.
Finally, we presented exciting applications of proxy re-signatures, including key manage-
nent. (weak) group signatures, and short proofs that a valid path was taken in a graph.
We are confident that proxy re-signatures have many additional applications beyond those
mentioned here.
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4.6 Open Problems

The holy grail for proxy re-signature schemes— a unidirectional and multi-use scheme -is
not yet realized. Moreover, all schemes presented in this chapter require the random oracle
model in their proof of security. Finding schemes of similar efficiency in the plain model is
also an open problem.

The only proxy re-signatures that we are aware of are based on bilinear groups. (Some
unpublished follow-up results to the work in this chapter is known to us, but those construc-
tions are also bilinear-based, and less efficient.) It would be very interesting to know if this
functionality can be efficiently realized without using bilinear maps.

There are also many additional variants of proxy re-signatures to consider. In Sec-
tion 4.3.1, we proposed the idea of fail-stop re-signatures, where a signer could distinguish
(and prove) signatures she created from those created for her by the proxy. Let us now
consider two other variants.

One open question is whether or not proxy re-signature schemes can be built that trans-
late from one type of signature scheme to another. For example, a scheme that translates
Alice’s Schnorr signatures into Bob’s RSA-based ones. Kissner and Molnar [134] recently
provided applications of such schemes, if indeed they exist.

A second variant would be to create conjunctive re-signature schemes where Alice can
create a proxy key that allows the proxy, when given both a signature from Bob on a message
m and a signature from Carol on m, to output a signature from Alice on m.

Finally, on a more theoretical note, the relationship between proxy re-signatures and
program obfuscation should be explored. Can re-signatures (and its variations) be formalized
and realized as obfuscated programs?
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Chapter 5

Proxy Re-Encryption

This chapter is an extended and modified version of the joint work with Giuseppe Ate-
niese (Johns Hopkins University), Kevin Fu (University of Massachusetts at Amherst), and
Matthew Green (Johns Hopkins University) [8, 9]. In particular, the proxy encryption scheme
Yo in Section 5.3.2 is due to Giuseppe Ateniese and the implementation and performance
evaluation in Section 5.4 were conducted by Kevin Fu and Matthew Green.

5.1 Introduction

In a prozy re-encryption scheme, a semi-trusted proxy is given some information which allows
it to transform a ciphertext encrypted under Alice’s public key into one that can be decrypted
by Bob’s secret key on the same message, but the proxy cannot decrypt ciphertexts for either
Alice or Bob. That is, the proxy never sees the underlying plaintext.

There are many important applications of this primitive. In practice, it frequently hap-
pens that data encrypted under one key needs to be encrypted under a different key. Without
care, the security of the system can be compromised during this transfer. For example, in
March 2005, Apple’s iTunes DRM (Digital Rights Management) was cracked by program-
mers who managed to steal the plaintext (song) made available during a translation from a
ciphertext encrypted under a global key into a ciphertext encrypted under a key unique to
each iPod [174]. If Apple had used the proxy re-encryption scheme described in this section,
then the plaintext of the song would not have been available to steal. (Apple iTunes DRM
used symmetric encryption, whereas we will be presenting an asymmetric scheme. Although,
some hybrid combination would be feasible.)

Another real-life application is as simple as Alice wanting to forward her encrypted email
to Bob while she is on vacation without revealing her secret key to either Bob or her mail
server (acting as a proxy).

The first step in designing re-encryption schemes was taken by Mambo and Okamoto
in 1997 [141]. however their scheme was purely an efficiency improvement over traditional
decrypt-and-then-encrypt approaches. No security was offered; that is, the proxy learned
both the plaintext and Alice’s secret key.
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In 1998, Blaze, Bleumer, and Strauss [21] proposed the first proxy re-encryption scheme,
where the plaintext and secret keys were kept hidden from the proxy. Let us briefly cover
their El Gamal-based scheme. Suppose g generates a group of prime order ¢q. Let Alice
own the public-secret key pair (g%, a) and Bob own the key pair (g% b). An encryption of a
message m under Alice’s public key has the form (m - g¥, g**) for random k € Z,. Then,
the proxy is entrusted with the re-encryption key (b/a mod q) for the purpose of diverting
ciphertexts from Alice to Bob via computing (m - g, (g%%)%%) = (m - ¢¥, g**). This scheme
is efficient and, on its own, the proxy does not learn message m, or secret keys a or b.

The authors noted, however, that this scheme contains an inherent restriction: it is
bidirectional; that is, the value b/a can be used to divert ciphertexts from Alice to Bob and
vice versa. Thus, this scheme is only useful when the trust relationship between Alice and
Bob is mutual. This problem can be solved, in theory, by generating an additional, otherwise
unused, key pair for the delegatee, but this introduces a suffocating amount of overhead for
our practical applications in Section 5.4.

Indeed, BBS proposed finding a unidirectional proxy re-encryption as an open problem
in their 1998. In this chapter, we present the first (and only known) unidirectional scheme.

The BBS scheme leaves open several other issues as well. Delegation in the BBS scheme
is transitive, which means that the proxy alone can create delegation rights between two
entities that have never agreed on this. For example, from the values a/b and b/c, the proxy
can re-encrypt messages from Alice to Carol. Another drawback to this scheme is that if the
proxy and Bob collude, they can recover her secret key as (a/b) - b = a!

In our scheme, delegation is non-transitive. Furthermore, the delegatee’s secret key
remains private even if the proxy and the delegator collude. We re-open the discussion of
proxy re-encryption by providing three separate results:

1. We provide formal definitions and a security model that takes into account possible
collusions overlooked by previous definitions.

2. We present the first unidirectional proxy re-encryption scheme.

3. We present a new application of proxy re-encryption to secure distributed storage
including a brief discussion of an experimental implementation.

Incidentally, we also introduce a new cryptosystem based on bilinear maps where two de-
cryption secrets are associated to a single public key. (We will use this cryptosystem again
in Chapter 6.)

Let now us describe the main results of this chapter in more detail. These are very similar
to the results we presented in Chapter 4 for re-signatures. Recall our summary of both of
these suites of results in Chapter 1, Table 1.1.

1. Formal Definitions and Security Model. There is no formal definition of proxy
re-encryption in the BBS paper [21]. In this chapter, we formalize the notion of a proxy re-
encryption and provide a security model that captures the unidirectionality of the scheme.
This definition also incorporates the lesson learned in Chapter 4 of having the re-encryption
key safely stored at the proxy. We require only chosen-plaintext (CPA) security in our
definitions, although they can be extended to chosen-ciphertext (CCA2) security. Obviously,
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a CCA2-secure scheme would be very interesting, but we do not know of any scheme that
meets such a definition.

In the CPA context, however, we are able to make some strong security guarantees. In
particular, suppose Alice delegates to Bob, via a proxy, the ability to decrypt her ciphertexts.
Even when the proxy and Alice collude, they cannot recover any information about Bob
except his public key. More surprisingly, we show that even when the proxy and Bob collude,
they can only recover a weak version of Alice’s secret key — that only gives them the power
to compute what Alice had already delegated to them. Secondly, our formal notion allows
us to view the primitive abstractly, for easier reasoning about its applications in Section 5.4.

2. Proxy Re-Encryption Constructions. We present several efficient proxy re-encryption
schemes, based on different complexity assumptions, that offer security improvements over
earlier approaches. The primary advantage of our schemes is that they are unidirectional
(solving the open problem of BBS from 1998) and do not require delegators to reveal all of
their secret key to anyone — or even interact with the delegatee — in order to allow a proxy
to re-encrypt their ciphertexts. In our schemes, only a limited amount of trust is placed in
the proxy. The proxy is not able to decrypt the ciphertexts it re-encrypts, and we prove our
schemes secure even when the proxy publishes all the re-encryption information it knows.
This enables a number of applications that would not be practical if the proxy needed to be
fully trusted.

Our El Gamal-based schemes require standard assumptions in bilinear groups (see Chap-
ter 3). Unlike our re-signature constructions, here we will not require random oracles in our
proofs of security.

3. Applications. Proxy re-encryption has many exciting applications in addition to the
previous proposals [21, 92, 123, 183] for email forwarding, law enforcement, and performing
cryptographic operations on storage-limited devices. In particular, proxy cryptography has
natural applications to secure network file storage.

We provide the first empirical performance measurements of applications using proxy
re-encryption. To demonstrate the practical utility of our proxy re-encryption schemes, we
measure an implementation of proxy re-encryption used in a secure file system. Our system
uses a centralized access control server to manage access to encrypted content stored on
distributed, untrusted replicas. We use proxy re-encryption to allow for centrally-managed
access control without granting full decryption rights to the access control server.

A secure file system is a natural application of proxy re-encryption because the system
often assumes a model of untrusted storage.

A number of file systems build confidential storage out of untrusted components by
using cryptographic storage [2, 20, 111, 131]. Confidentiality is obtained by encrypting the
contents of stored files. These encrypted files can then be stored on untrusted file servers.
The server operators can distribute encrypted files without having access to the plaintext
files themselves.

In a single-user cryptographic file system, access control is straightforward. The user
creates and remembers all the keys protecting content. Thus, there is no key distribution
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problem. With group sharing in cryptographic storage, group members must rendezvous
with content owners to obtain decryption keys for accessing files.

Systems supporting cryptographic storage such as the SWALLOW object store [164] or
CNFS [121] assume an out-of-band mechanism for distributing keys for access control. Other
systems such as Cepheus [102] use a trusted access control server to distribute keys.

The access control server model requires a great deal of trust in the server operator.
Should the operator prove unworthy of this trust, he or she could abuse the server’s key
material to decrypt any data stored on the system. Furthermore, even if the access control
server operator is trustworthy, placing so much critical key data in a single location makes
for an inviting target.

In contrast, our system makes use of a semi-trusted access control server. We propose a
significant security improvement to the access control in cryptographic storage, using proxy
cryptography to reduce the amount of trust in the access control server. In our approach,
keys protecting files, called “data keys”, are stored encrypted under a master public key,
using one of the schemes in Section 5.3. When a user requests a data key, the access control
server uses proxy cryptography to directly re-encrypt the appropriate data key to the user
without learning the data key in the process. Because the access control server does not
itself possess the master secret, it cannot decrypt the data keys it stores. The master secret
key can be stored offline, by a content owner who uses it only to generate the re-encryption
keys used by the access control server. In Section 5.4, we describe our implementation and
provide a performance evaluation of our constructions.

5.1.1 Related Work

This work should not be confused with universal re-encryption [119], often used in voting
mix-nets, which re-randomizes ciphertexts instead of changing the public key under which
they are encrypted. Proxy re-encryption [21] should also not be confused with the similar
sounding prozy encryption [141, 92], where a proxy can change ciphertexts for Alice into
ciphertexts that Bob can decrypt, but allows Alice to provide Bob with a new secret key
instead of just translating to encryptions under his public key. As was the case for signatures
in Chapter 4, proxy re-encryption forms a strict subset of proxy encryption schemes.
Recently, Dodis and Ivan [92] realized unidirectional prozy encryption for El Gamal, RSA,
and an IBE scheme by sharing the user’s secret key between two parties. They also solved
the problem of the proxy alone assigning new delegation rights. In their unidirectional El
Gamal scheme, Alice’s secret key s is divided into two shares s; and sy, where s = s; + 9,
and distributed to the proxy and Bob. On receiving ciphertexts of the form (m - g**, g*),
the proxy first computes (m - g**/(g*)*!). which Bob can decrypt as (m - ¢°2%/(g*)*?) = m.
Although this scheme offers some advantages over the BBS approach, it introduces new
drawbacks as well. These “secret-sharing” schemes do not change ciphertexts for Alice into
ciphertexts for Bob in the purest sense (i.e., so that Bob can decrypt themn with his own
secret key), they delegate decrvption by requiring Bob to store additional secrets that may
in practice be difficult for him to manage. For example, in our file system in Section 5.4,
the number of secrets a user must manage should remain constant regardless of the number
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J | Encg(m)

Enca(m) Proxy

TkA—»B = ReKey(SkA ) pkB)

Figure 5-1: A high-level view of (unidirectional) proxy re-encryption. Here Alice is the
delegator and Bob is the delegatee. The proxy obtains a re-encryption key rk4_.p from

Alice, and can then translate ciphertexts for Alice, denoted Enc4(m), into ciphertexts for
Bob, denoted Encg(m).

of files it accesses. Using either the BBS or our proxy re-encryption scheme, the number
of secrets is one; while using the Dodis-Ivan approach the secrets grows linearly with the
number of files accessed. One exception is the Dodis-Ivan IBE scheme [92] where the global
secret that decrypts all ciphertexts is shared between the proxy and the delegatee. Thus, the
delegatee need only store a single secret, but an obvious security problem is that when the
proxy and any delegatee in the system collude, they can decrypt everyone else’s messages.

The proxy encryption security model of Dodis and Ivan [92], however, can be applied to
our algorithm with some modifications which we will discuss in Section 5.2.

Jakobsson [123] developed a quorum-based protocol where the proxy is divided into sub-
components, each controlling a share of the re-encryption key; here, the keys of the delegator
are safe so long as some of the proxies are honest. A similar approach was considered by
Zhou, Mars, Schneider and Redz [183].

Our results can be viewed as contributing both to the set of key-insulated [90, 91, 93] and
signeryption [3, 11, 182] schemes, where Alice may expose her secret key without needing to
change her public key and/or use the same public key for encryption and signing purposes.

5.2 Definitions

Now, we define what a unidirectional proxy re-encryption scheme is, as partially illustrated
in Figure 5-1, and what minimum security properties it should have. We compare our
definition to a similar definition due to Dodis and Ivan [92], although their definition is
for proxy encryption (not re-encryption). Following our definition, we discuss some of the
short-comings and benefits of our definition in a series of remarks.

Definition 5.1 (Unidirectional Proxy Re-encryption). A unidirectional proxy re-
encryption scheme is a tuple of (possibly probabilistic) polynomial time algorithms (SysGen,
KeyGen, ReKey, {Enc}. ReEnc, {Dec}), where the components are defined as follows:

— The SysGen(1*) algorithm takes as input the security parameter 1' and returns the global
system parameters params.
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— The KeyGen(params) algorithm outputs a user keypair (pk, sk). Let pk and sk contain the
system parameters params so that we do not have to explicitly give them out again.

— The ReKey(skL, pkg) algorithm outputs a key rks_.p for the proxy. The second input
marked with a '}’ may in some cases be replaced by the tuple (rk4_.c, sk¢); see Re-
mark 5.2 for more.

— For all Enc; € {Enc}, which is possibly a singleton set, the Enc;(pk, m) algorithm ouputs
a ciphertext C.

— The ReEnc(rk 4—5,C4) algorithm outputs a ciphertext Cpg.

— There exists a Dec; € {Dec} such that when C is a valid encryption on m € M under the
public key corresponding to sk, then the Dec;(sk, C) algorithm outputs a message m.

Correctness. Informally, a party holding a secret key sk 4 should always be able to decrypt
ciphertexts encrypted under pk ,; while a party holding a secret key skp should be able to
decrypt ReEnc(rk a5, C4a). {Enc} may contain multiple encryption algorithms; for example,
having first-level encryptions that cannot be re-encrypted by the proxy; while second-level
encryptions can be re-encrypted by the proxy and then decrypted by delegatees. This pro-
vides the sender with a choice given the same public key whether to encrypt a message only to
Alice or to Alice and, say, her secretary. Whenever a re-encryption does take place, however,
we require that the underlying plaintext remain consistent — i.e., Bob should get exactly
what Alice was supposed to receive.t

More formally, let key pairs (pk 4, ska) and (pkg, skg), generated according to KeyGen,
belong to parties A and B, respectively, and let 7k4_.p be generated according to ReKey.
Then, for all messages m in the message space M, the following equations hold with proba-
bility one:

V Enc; € {Enc}, 3 Dec; € {Dec}, Dec;(ska, Enc;(pk 4, m)) =m,
3 Enc; € {Enc}, 3 Dec; € {Dec}, Dec;(skg, ReEnc(rka—_p, Enci(pk 4, m))) = m.

Security. We provide a security definition similar to that of Dodis and Ivan [92]. Although
the Dodis-Ivan definition is for proxy encryption (not re-encryption) the difference between
these schemes is in the semantics and the number of secret keys per user, not in their security
models.

Although their definition was for CCA2 security, they instead used CPA security for the
El Gamal, RSA, and IBE-based schemes; for simplicity, we focus directly on CPA security.
The first main difference between our definitions is that we consider the security of a user
against a group of colluding parties; for example, the security of a delegator against the
proxy and many delegatees, whereas the Dodis-Ivan definition focused on a single delegatee.
Secondly, we discuss the system’s security for circular delegation where the adversary watches

1Note, this only applics to ciphertexts that were honestly generated by the sender: no guarantee is implied
in the case of malformed ciphertexts.
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Alice and Bob delegate to each other. Finally, we provide a new guarantee for the delegator
~ even if the proxy and all delegatees collude, they can only recover a “weak” version of

his secret key. We discuss some benefits and desirable extensions of this last feature in
Remark 5.3.

Standard Security. The underlying cryptosystem (KeyGen, {Enc}, {Dec}) is semantically-
secure [117] against anyone who has not been delegated the right to decrypt. We use
subscript T to denote the target user. Formally, for any non-zero n € poly(k), for all
PPT algorithms Adv, Enc; € {Enc}, and mg, m; € M?,

Pr[params «— SysGen (1),
(pkr, skr) «— KeyGen(params), {(pk;, ski) + KeyGen(params)}ici1,n,

(m07 ms, Of) A AdVOTekey(*’A)(ka, {(pkw Ski)}ie[l,n])a b ﬁ {01 1}7
b — AdvOrers™) (o, Enc,(pkp, mp)) : b =] < 1/2 4 1/poly(k)

where oracle Oyerey takes as input two distinct indexes 1 < 4,5 < norj =T (but
* # T), and returns the output of ReKey(sk;, pk;).

The above definition captures T’s security, even when the proxy (with knowledge of
all the re-encryption keys) and a group of adversarial users (with knowledge of their
own secret, keys) collude against T — provided that 7" never delegated decryption rights
to any adversarial user. This simultaneously captures the Limited Proxy and Dele-
gatee Security mirrored in Definition 4.1 of re-signatures. We combine them here for
simplicity, because we are only dealing with unidirectional re-encryption schemes.

We now turn our attention to what security can be guaranteed in the case that T does
delegate decryption rights to an adversarial user. Obviously, in this case, the adversary
can simply decrypt and trivially win the game above. However, suppose that there
exist one-way functions f; and f» such that pk = fo(fi(sk)). Then, we define here
(and later prove) that just because T delegates decryption rights to another party does
not mean that 7" necessarily surrenders his entire digital identity sk in the case that
all parties collude against him. Perhaps he gives up fi(sk) instead.

Digital-Identity Security: Suppose there exist one-way functions such that for all key-
pairs generated by KeyGen, we have pk = fo(f1(sk)). We use subscript T to denote
the target user. For any non-zero n € poly(n) and all PPT algorithms Adv,

Pr[params « SysGen(1%),
(pk, skr) « KeyGen(params), {(pk;. ski) < KeyGen(params)}icji ),
Q — Advo’"e"'-"-'("')(ka, {(pk;, ski) biepny) © @ = skr] < 1/poly(k).

Remark 5.2 (Transfer of Delegation Rights). Unfortunately, achieving security based
on the definition of the re-encryption key generation function ReKey as originally stated
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(i.e., without including ) is very difficult to realize. We do not know of any such scheme,
including the prior work of Dodis and Ivan [92], that does not succumb to the follow attack:
transfer of delegation rights, where, on input sk, sk¢ and 7k 4_,¢, one can compute 7k 4_p.
That is, if Alice delegates to Carol, then Carol, Bob and the proxy can collude to delegate to
Bob. Thus, we modify the definition of ReKey to be executed with either the secret key of the
delegator Alice sk or with both a re-encryption key from Alice to Carol 7k 4—.¢c and Carol’s
secret key skc. This implies that Carol is allowed to transfer Alice’s decryption capability.
Arguably, this relaxed definition is not so damaging since Alice is already trusting Carol
enough to delegate decryption rights to her.

Remark 5.3 (On Digital-Identity Security). At first glance, digital-identity security
may seem very weak. All it guarantees is that an adversary cannot output a delegator’s
secret key sk. One might ask why this is useful. One motivation, mentioned above, stems
from the fact that some proxy re-encryption schemes define two or more types of ciphertext,
some of which may only be decrypted using the secret sk (and not f(sk)). A scheme which
provides digital-identity security will protect those ciphertexts even in the event that the
proxy and delegatee collude. A second motivation comes from the fact that most standard
signature schemes, such as El Gamal [97] and Schnorr [169], are actually proofs of knowledge
of a discrete logarithm value, such as sky = a € Z,, turned into a signature using the
Fiat-Shamir heuristic [98]. Intuitively, if an adversary cannot output Alice’s secret key,
then the adversary cannot prove knowledge of it either. Thus, using a proxy re-encryption
scheme that always hides sk means that a user may be able to safely delegate decryption
rights (via releasing fi(a) = ¢7) without delegating signing rights for the same public key
pk = fa(fi(a)) = e(g1, g1)*-

Of course, a stronger definition here might require that even a colluding proxy and
delegatee could not distinguish first-level ciphertexts belonging to the delegator. This is a
promising direction to pursue.

Remark 5.4 (On Adaptive Adversaries and Trusted Parties). Two other limitations
of this definition are: (1) we consider only static adversaries; that is, Adv is not allowed to
adaptively choose which users to corrupt, and (2) we require a trusted key issuing entity;
that is, users receive their keypairs from an authority. We pursue schemes without these
limitations as future work. This first appears to be easy, while the second seems much harder.

5.2.1 Proxy Re-Encryption and Program Obfuscation

At the end of the proxy re-signature definition in Chapter 4.2, we considered a formalization
based on program obfuscation, where a program allowed the proxy to re-sign for users. We
decided. for the case of signatures, that one of our schemes (€,,;) might be considered an
obfuscation because it leaked the proxy key, while the more interesting scheme (£2;;) that
keeps this key private would not. '
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The question for us in this chapter is whether or not re-encryption programs can be
obfuscated? Consider the following circuits that translate Alice’s ciphertext E4(m) into
Bob’s Eg(m). Assume the circuits for the algorithms (Enc, ReEnc, Dec) and the public keys
are known to all.

1. Circuit One: hard-wire Alice’s secret key sk, into the instructions: (1) run Dec(sk 4,
E4(m)) to obtain m, (2) return the output of Enc(pkg, m).

2. Circuit Two: hard-wire the re-encryption key rk 4_.p into a circuit that computes the
algorithm ReEnc(rk 4_.p, E4(m)).

Again, loosely speaking, circuit two is an obfuscation of circuit one, because Alice’s
secret key is already obfuscated in circuit two. However, it does not appear to meet the
Barak et al. [13] definition of obfuscation for the same reasons that re-signature scheme Qy;
did not. Our unidirectional re-encryption schemes (Z1, Xy, Liemp) do not have extractable
re-encryption keys. That is, from seeing an original encryption and a re-encrypted message,
the re-encryption key cannot be recovered. Thus, our unidirectional re-encryption schemes
do not meet the (trivial) notion of obfuscation that our unidirectional re-signature scheme
appears to meet. Moreover, the re-encryption keys are a deterministic function of two parties
keys, and thus knowing a re-encryption key it is likely that the adversary can output some
bit function of this key that the simulator, who doesn’t know the key, cannot. We leave the
resolution of these issues an interesting open research and return to the focus of this thesis.

5.3 Improved Proxy Re-Encryption Schemes

We begin our discussion of proxy re-encryption schemes by covering the properties of these
schemes that are either necessary or simply desirable for practical applications. We then
present two unidirectional proxy re-encryption schemes, denoted ¥; and ¥,. The second
scheme is secure under a standard complexity assumption, whereas the first scheme is slightly
more efficient, but requires a new assumption. We also present a third scheme, ¥cpp, that
allows for temporary delegations (i.e., revocations).

5.3.1 Additional Properties We Need and Want

To talk about “improvements,” we need to get a sense of the benefits and drawbacks of
previous schemes. Here is a list of, in our opinion, the most useful properties of proxy
re-encryption protocols in addition to correctness and security.

1. Unidirectional: Delegation from A — B does not allow re-encryption from B — A.

2. Multi-use: A message can be re-encrypted a polynomial number of times. That is,
ciphertexts generated by either the Enc or ReEnc algorithms can be taken as input to ReEnc.
In contrast, one might imagine weaker. single-use schemes where only ciphertexts generated
by Enc can be inputs to ReEnc. For our applications so far, we found the multi-use property
to be much more important for signatures than for encryption.
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3. Non-interactive: Re-encryption keys can be generated by Alice using Bob’s public key; no
trusted third party or interaction is required. (Such schemes were called passive in BBS [21].)

4. Proxy invisibility: This is an important feature offered by the original BBS scheme. The
proxy in the BBS scheme is transparent in the sense that neither the sender of an encrypted
message nor any of the delegatees have to be aware of the existence of the proxy. That is, a
re-encrypted ciphertext is drawn from the same distribution as original ciphertexts. Clearly,
transparency is very desirable but it is achieved in the BBS scheme at the price of allowing
transitivity of delegations and recovery of the complete secret keys of the participants. Our
bilinear-based schemes, to be described shortly, offer a weaker form of transparency which
we call prozy invisibility. Here, first-level and second-level ciphertexts are distinguishable.
Re-encryptions must be first-level ciphertexts, while original ciphertexts can be either first or
second level. (Recall that first-level ciphertexts cannot be re-encrypted.) Thus, the recipient
is not certain if a re-encryption has occurred or not, so we say that the proxy is invisible.

As another way of saying it, we allow the sender to generate an encryption that can be
opened only by the intended recipient (first-level encryption) or by any of the recipient’s
delegatees as well (second-level encryption). At the same time, we can ensure that any
delegatee will not be able to distinguish a first-level encryption (computed under his public
key) from a re-encryption of a ciphertext intended for another party (we are assuming that
the encrypted message does not reveal information that would help the delegatee to make
this distinction).

5. Unlinkable: In an unlinkable scheme, a re-encryption cannot be linked to the original
ciphertext from which it was generated. This property should hold both for original cipher-
texts generated under two different keys as well as original ciphertexts under the same key
using different randomness.

6. Original-access: Alice can decrypt re-encrypted ciphertexts that were originally sent to
her. In some applications, it may be desirable to maintain access to her re-encrypted cipher-
texts; that is, re-encryption allows both Alice and Bob to decrypt the resulting ciphertext
instead of just Bob. This is an inherent feature of the Dodis-Ivan schemes (since the proxy
key is a share of the original); the BBS scheme and the bilinear schemes presented here can
achieve this feature by adding an additional term to the ciphertext: for example, in BBS
a re-encrypted ciphertext with original access looks like (m - g*, g**, (g®*)¥/%). This may
impact proxy invisibility.

7. Key optimal: The size of Bob’s secret storage is independent of the number of delegations
he accepts. We call this a key optimal scheme. In the previous RSA-based schemes [92],
the storage of both Bob and the proxy grows linearly with the number of delegations Bob
accepts. This is an important consideration, since the safeguarding and management of
secret keys is often a huge obstacle in practice.

8. Collusion- “safe”: One drawback of all previous schemes is that by colluding, Bob and the
proxy can recover Alice’s entire secret key: for Dodis-Ivan, s = s| + sy; for BBS, a = (a/b)-b.
We will mitigate this problem - allowing recovery of a “weak” secret key only. In a bilinear
setting, suppose Alice’s public key is e(g1, 91)* and her secret key is a; then we might allow
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Property DI [92] X, (Section 5.3.2) | BBS [21] 3, (Section 5.3.3)
1. Unidirectional Yes Yes No Yes
2. Multi-use No No Yes No
3.  Nou-interactive Yes Yes No Yes
4. Proxy invisible No No Yes Yes
5. Unlinkable No No No No
6.  Original-access Yes Yes Yes! Yes'
7.  Key optimal No Yes Yes Yes
8.  Collusion-“safe” No No No Yes*
9.  Temporary Yest Yest Yes! Yest
10. Non-transitive Yes Yes No Yes
11. Non-transferable No No No No

Table 5.1: We compare known proxy encryption (DI, ¥,) and re-encryption (BBS, 3)
schemes based on the advantages described above. No schemes achieve properties five and
eleven. We refer to the unidirectional schemes of Dodis-Ivan. The symbol * indicates master
secret key only. For {, the property is possible to achieve by doubling the overhead, as in
scheme Xiepmp.

Bob and the proxy to recover the value gf, but not a itself. The property of collusion safety
is extremely useful in our context since we allow the sender to generate first-level encryptions
that cannot be opened with a weak form of the secret key.

Intuitively, collusion safety allows Alice to delegate decryption rights, while keeping sign-
ing rights for the same public key. In practice, a user can always use two public keys for
encryption and signatures, but it is theoretically interesting that she doesn’t need to do so.
Prior work on signcryption explored this area (e.g., [182, 11, 3]). Our scheme could be the
basis for the first sign-re-encryption scheme (although we will not be formally concerning
ourselves with the security of the signatures in this work).

9. Temporary: Dodis and Ivan [92] suggested applying generic key-insulation techniques [93,
90, 91] to their constructions to form schemes where Bob is only able to decrypt messages
intended for Alice that were authored during some specific time period i. Citing space
considerations, they did not present any concrete constructions. In Section 5.3.4, we provide
a bilinear construction designed specifically for this purpose. In our construction, a trusted
server broadcasts a new random number at each time period, which each user can then use to
update their delegated secret keys. This is an improvement over using current key-insulated
schemes where the trusted server needs to individually interact with each user to help them
update their secret keys.

10. Non-transitive: The proxy, alone, cannot re-delegate decryption rights. For example,
from 7k,_, and rk,_.. he cannot produce 7%, ...

11. Non-transferable: The proxy and a set of colluding delegatees cannot re-delegate decryp-
tion rights. For example, from rk,_;, sky, and sk., they cannot produce rk,_... We are not
aware of any scheme that has this property, and it is a very desirable one. For instance, a
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hospital may be held legally responsible for safeguarding the encrypted files of its patients;
thus, if it chooses to delegate decryption capabilities to a local pharmacy, it may need some
guarantee that this information “goes no further.” First, we should ask ourselves: is transfer-
ability really preventable? The pharmacy can always decrypt and forward the plaintext files
to a drug company. However, this approach requires that the pharmacy remain an active,
online participant. What we want to prevent is the pharmacy (plus the proxy) providing the
drug company with a secret value that it can use offline to decrypt the hospital’s ciphertexts.
Again, the pharmacy can trivially send its secret key to the drug company. But in doing so,
it assumes a security risk that is as potentially injurious to itself as the hospital. Achieving
a proxy scheme that is non-transferable, in the sense that the only way for Bob to transfer
offline decryption capabilities to Carol is to expose his own secret key, seems to be one of
the main open problem left for proxy re-encryption.

5.3.2 X;: Paillier-Based Proxy Encryption (Not Re-Encryption)

In the beginning of this chapter and in Table 5.1, we reviewed the BBS proxy re-encryption
scheme as well as Dodis-Ivan proxy encryption scheme. Before presenting our new proxy
re-encryption schemes, we offer a new proxy encryption scheme.

As Dodis and Ivan point out [92], one method for delegating decryption rights is to create
a cryptosystem that has a two-stage decryption procedure with two different secret keys. In
practice, Alice’s secret key s is divided into two shares: s;, given to the proxy, and sq, given
to Bob. A ciphertext intended for Alice can be partially decrypted by the proxy via s;. Bob
can complete the decryption process by using s, and then recover the message. We already
noticed that this “secret sharing” approach does not exactly yield a proxy re-encryption
scheme given that Bob must use secrets other than his own to recover the plaintext (i.e.,
there is no transformation of a ciphertext under Alice’s public key into one under Bob’s).
In particular, previous secret-sharing schemes [92] are not key optimal, proxy invisible, or
collusion- “safe.”

We improve on this proxy encryption body of work by presenting a scheme, denoted %,
that is collusion-“safe”, although not key optimal or proxy invisible. Our design paradigm,
which will be used again shortly, is to start with a cryptosystem with ciphertexts that can be
fully decrypted using either of two distinct keys, often called weak and strong. In particular,
we consider a variant of the Paillier cryptosystem [160] with two trapdoors proposed by
Cramer and Shoup [85]. For simplicity, we will describe a version that is only semantically
secure and we refer to the original work [85] for the full CCA2 secure scheme. This simplified
scheme was described by Bresson, Catalano, and Pointcheval [44] where the authors also show
a variant of the scheme in [85] that works in the cyclic group of quadratic residues modulo
n2.

The public key is (n, g, h = g*) with g of order A\(n) = 2p/q’, the strong secret key is the
factorization of n = pq (where p = 2p’ + 1,9 = 2¢’ + 1 are safe primes), and the weak secret
key is = € [1,n%/2]. (As remarked by Cramer and Shoup [85], such a g can be easily found
by selecting a random a € Z}, and computing g = —a?")) To encrypt a message m € Zy,
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select a random r € [1.n/4] and output the ciphertext (7y,73) as:
Ty=g ,To=h"-(1+m-n) (mod n?).

If z is known, then the message can be recovered as: m = L(T3/T¥ mod n?), where
L(u) = %1 for all u € {u < n? | u =1 mod n}. If (p, q) are known, then m can be recovered
from T, by noticing that T} ™ gM™* (1 + mA(n)n) = (1 + mA(n)n). Thus, given that
ged(A(n),n) = 1, m can be recovered as: m = L(T3™ mod n2)[A(n)]"'mod n.

Part of the cryptosystem above can be seen as a variation of El Gamal when working
modulo a squared composite number. So, similarly to the Dodis-Ivan scheme, we can divide
z into two shares z; and z2, such that x = x; + z2. The share z; is given to the proxy
while z5 is stored by the delegatee. The scheme is collusion-safe since only the weak secret
r is exposed if the delegatee and the proxy collude, but the factors of n, p and ¢, remain
secret. Indeed, one could send only the value T5, rather than the ciphertext pair (T3, 75),
to allow the delegator, and only her, to decrypt the message. (Remember that we are
assuming that ciphertexts are generated correctly.) Although collusion-“safe,” this scheme
is not key optimal or proxy invisible but it remains theoretically interesting because it goes
beyond previous work and is not based on bilinear groups. However, it is not a pure proxy
re-encryption scheme since there is no transformation of ciphertexts computed under the
delegator’s key into ones under the delegatee’s.

Fixing Key Optimality for Proxy Encryption? One way to address this, which also
applies to the Dodis-Ivan schemes, is to let the proxy store the delegatee’s shares encrypted
under his own public key. For instance, in the case where Alice is the delegator, the proxy
could store z; and x4, the latter encrypted under Bob’s public kev. The encrypted share
would then be sent to Bob along with the ciphertext partially decrypted by the proxy.
This solution, however, is not satisfactory for our practical applications. It requires more
bandwidth; it doubles the cost of decrypting; it forces Bob to perform distinct decryption
procedures based on whether he receives ciphertexts intended for him or ciphertexts from
the proxy, and it complicates the revocation of decryption rights.

5.3.3 %; and X3: New Unidirectional Re-Encryption Schemes

We now present the main results of this chapter.

21: A First Attempt at a Unidirectional Scheme

We begin with the ideas from the BBS [21], El Gamal-based [97] scheme. Our scheme requires
a bilinear map, as discussed in Chapter 2. For simplicity, we will present this scheme for a
double isomorphism bilinear map e : G, x G; — Gr (e.g., implemented using a supersingular
curve) where we treat G; = G, and, as before, (g,) = G, has prime order ¢. We can also
use other types of bilinear maps, which we will discuss at the close of this section.

We assume that all ciphertexts are accompanied by a tag that identifies: (1) the relevant
public key and (2) the type of decryption algorithm needed.
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e System Parameter Generation (SysGen): On input the security parameter 1%, run
Bilinear _Setup(1¥) — (e, q. g1, 92, G1, G2, Gr) to obtain parameters for the bilinear map.
Output these as params.

e Key Generation (KeyGen): On input the parameters params, select a random a € Z,,
and output the key pair pk = ¢¢ and sk = a. (Assume params are included too.)

e Re-Encryption Key Generation (ReKey). A user A delegates to B by publishing
the re-encryption key rka—.p = g?/ * € Gy, computed from B’s public key.

e First-Level Encryption (Enc;). To encrypt a message m € Gr under pk , in such a
way that it can only be decrypted by the holder of ska, output cs; = (e(g1,g1)**, m -
e(g1,91)%). Tag ciphertext as a first-level ciphertext for user A.

e Second-Level Encryption (Ency). To encrypt a message m € Gr under pk, in
such a way that it can be decrypted by A and her delegatees, output cqo = (%%, m -
e(g1,91)%). Tag ciphertext as a second-level ciphertext for user A.

e Re-Encryption (ReEnc). Anyone can change a second-level ciphertext for A into

a first-level ciphertext for B with rka_p = ¢”/*. From cao = (¢%*,m - (g1, 01)F),
compute e(g3*,¢'") = e(g1,91)"* and publish cz1 = (e(g1, g1)**,m - e(g1, 91)¥). Tag

ciphertext as a first-level ciphertext for user B.

e Decryption (Decy, Decy). To decrypt a first-level ciphertext c4 1 = (o, 3) with secret
key sk4 = a, run Dec; to compute 3/a® = m. To decrypt a second-level ciphertext
caz = (a, B) with secret key sk = a, run Decy to compute (3/e(c, g;)¥/? = m.

Discussion of Scheme ;. This scheme is very attractive; it is unidirectional, non-
interactive, proxy invisible, collusion-safe, key optimal, and non-transitive. In particular,
notice that first-level encryptions intended for the delegator are safe even if the delegatee
and the proxy collude. Indeed, the weak secret gi/ * cannot be used to decrypt first-level
encryptions (but only second-level ones, which Bob and the proxy can open anyway).

The scheme is also very efficient since both encryption and decryption operations are
similar to those of plain El Gamal while the bilinear map computation is only performed by
the proxy.

The standard security of this scheme depends upon the Decisional Bilinear Diffie-Hellman
Inversion (DBDHI) assumption that the following problem is hard in (Gq, Gr):

Given (g1. g% ¢%, Q). for g1 & Gy, a,b & 7
and Q € Gy, decide if Q = e(g1, g1)*°.

To see where the above assumption comes into play, think of g¢ as g4* for some k € Z,.
Now, consider the second-level ciphertext ¢y = (g%, m - Q) encrypted for public key ¢° for
message m. If Q = e(g1.91)"" = e(g1.91)"*/* = e(g1. g1)*, then ca 9 is a proper encryption of
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m; otherwise, it is an encryption of some other message m’ # m. Thus, an adversary which
breaks the above decisional assumption can easily be made into an adversary which breaks
the semantic security of this scheme.

Recently, Dodis and Yampolskiy [95] used a stronger version of DBDHI called y-Decisional
Bilinear Diffie-Hellman Inversion (¢-DBDHI) where for a random g, € G,, z € Z,;, and
Q € Gr, given (gl,gf,gf2, ., 9%, @), it is hard to decide if Q = e(g1, g1)/* or not. They
gave evidence for the hardness of this assumption by showing that it holds in the generic
group model.

The digital-identity security of the above scheme relies on the 2-DL assumption; that
is, given (g1, g7, g-‘fz), compute a. This appears necessary to generate the appropriate re-
encryption keys. However, 2-DL is implied by 2-DBDHI.

Although the y-DBDHI assumption seems plausible, by making a few alterations to this
core idea we are able to provide a solution under what appears to be even milder assumptions.

Using General Bilinear Maps for ¥J;. In our presentation of ¥;, we assumed a double-
isomorphism bilinear map of the form e : G; x G; — Gr, which, based on current knowledge,
would limit us to implementations using supersingular curves. We could allow for more
candidate implementations using ordinary curves by assuming a bilinear map of the form e :
Gy X Gy — G with arbitrary isomorphisms; that is, we will not use any of the isomorphisms
between G; and G, in our scheme or its proof, but neither will our scheme or proof break if
efficient isomorphisms exist. To use a general bilinear map, the following must occur:

1. the public keys and first half of second-level ciphertexts are set in Gy,
2. the re-encryption keys set in Gy,

3. the complexity assumption changes to (at least) a version of 2-DBDHI, for groups where
isomorphisms may not exist and thus the input is explicitly provided in both groups:
for random g1 € Gy, g2 € Gg, a € Zg, and Q € Gy, given (gl,g‘{,g‘fz,gg,gg,ggz), it
is hard to decide if Q = e(g;, g2)"/®. Note that this assumption is no stronger than
regular 2-DBDHI set in groups with isomorphisms.

Yo: a Secure Unidirectional Scheme

We now present our main scheme. The global system parameters params remain unchanged.
We assume that all ciphertexts are accompanied by a tag that identifies: (1) the relevant
public key and (2) the type of decryption algorithm needed.

e Key Generation (KeyGen). A user A’s key pair is of the form pk , = (e(q1, g1)*, 97?)
and sky = (aj.a»). (A user can encrypt and delegate decryption rights all under
e(gy, 1) if the value ¢7? is present, it signifies that the user is willing to accept
delegations.)

e Re-Encryption Key Generation (ReKey). A user A delegates to B publishing the

‘ . b R . .
re-encryption key vk 4 = g7'" € Gy, computed from B’s public information.
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e First-Level Encryption (Ency, Enc;). To encrypt a message m € Gr under pk4 in
such a way that it can only be decrypted by the holder of sk 4, run Enc; to output c4; =
(e(g1, 91)*, m - e(g1,91)%). To achieve proxy invisibility, but necessarily involve the
second portion of the recipient’s public key, run Ency to output c40 = (e(g1, g1)%2*, m -

e(gl,gl)k)-

e Second-Level Encryption (Ency). To encrypt a message m € Gr under pk, in
such a way that it can be decrypted by A and her delegatees, output c4o = (g, m -

e(g1, g1)™F).

e Re-Encryption (ReEnc). Anyone can change a second-level ciphertext for A into
a first-level ciphertext for B with rka_,p = ¢, From cao = (¢%,m - (g1, 1)),
compute e(g¥, gi**?) = e(g1, Ql)bzla,l ¥ and publish cp.0 = (e(g1,91)"> %, m-e(g1, 91)*)
which is equivalent to (e(g1,91)%2* ,m-e(g1,91)*) for some k' € Z,. Update ciphertext

tag appropriately.

e Decryption (Decg, Decy, Decy). To decrypt a first-level ciphertext cao = (o, 8) with
secret key ap € sk4, run Decy to compute 3/al/%? = m. To decrypt a first-level
ciphertext cs, = (o, B) with secret key a; € sk, run Dec; to compute 3/a/4 = m.
To decrypt a second-level ciphertext ca2 = (o, 3) with secret key a; € sk, run Decy
to compute §/e(a, g1)** = m.

Theorem 5.5 (Security of ¥5). Any adversary that (1/2+¢)-breaks the standard security of
the proxy re-encryption scheme g can be used to (1/2 + €/2)-break the extended Decisional
Bilinear Diffie-Hellman (eDBDH) assumption in (Gy,Gr); that is, for random g, € Gy,
random a,b,c € Z3, and Q € Gr, given (91, 9%, g°, ¢, e(g1, 91)0, Q), it is hard to decide if
Q = e(g1,91)%%°. Moreover, any adversary that e-breaks the digital-identity security of o
can be used to e-break the discrete logarithm assumption in G.

Proof. Our security definition quantifies over all encryption algorithms Enc; € {Enc}; in this
case, we have three algorithms Encg, Enc;, and Encs.

First, let’s consider an Ency ciphertext of the form (e(g1,91)%*, m - e(g1, g1)*), where
g7? is part of the public key. Observe that the re-encryption keys of the form gll’l'“2 re-
veal no additional information about a;. The security of this cryptosystem follows from
the DBDH assumption. Since this is a simple case, let us sketch the solution. On DBDH
input (g1, 9%, 9%, 95, @), treat a as ay and (b c) as k. (All other secret keys may be se-
lected at random.) On the challenge ciphertext, encrypt m as (Q,m - e(g%,g5%)). If the
adversary correctly distinguishes the ciphertext, then output “Q = e(g;, 9:)*%”; other-
wise output “Q # e(g1,91)*%¢” Now, if Q@ = e(q,§1)*"¢, then the challenge ciphertext
is well-formed, and DBDH is broken with probability 1/2 + &; otherwise, the message is
information-theoretically hidden from the adversary, and thus our DBDH response is cor-
rect with probability exactly 1/2. That covers standard security. It is also easy to see that
digital-identity security follows; if the adversary outputs sk4 = (a;.a2), then we recover
as = a to break the DL assumption in G;.
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Next, let’s consider the more complicated cases. Take Enc, ciphertext of the form
(e(g1.91)**, m-e(g1, 1)*). This construction is equivalent to that of the form (e(gy, g1)*,m -
e(g1.91)""*) [97). Now, it is clear if the Ency ciphertext of the form (g*,m - e(g1,91)**) is
secure, then so are the Enc; versions, since Ency ciphertexts reveal strictly more information
(i.e., g¥ € G;). Thus, it suffices to argue the security of the Enc, ciphertexts only.

Standard Security. Suppose A distinguishes encryptions of Ency with probability ¢,
we simulate an adversary S that decides eDBDH as follows:

1. On eDBDH input (y,y%, 3% % e(y,4)*<, e(y,y)?), the simulator sets up a proxy re-

encryption world for the adversary Adv with the goal of using Adv to decide if d = a-b-c
or not. (Note, we slightly change our notation the eDBDH for clarity in this proof;
here Q — e(y, )"
To begin, the simulator outputs the global parameters for the system (g,e(g,g)).
Here, for reasons we will later see, the simulator sets g = 3¢ and e(g, g) = e(y,y)° .
Next, the simulator sends to adversary Adv the target public key pk, = (e(y,y)" =
e(9,9)% (¥°)' = g*), where t is randomly selected from Z, by the simulator. Thus, we
can think of (b,t) as the secret key of the target user.

2. Next, for i = 1 up to poly(k), Adv can request via oracle Oregey:

(a) Tkagvi—T, a delegation to T from a party corrupted by Adv. Adv can generate
these delegations for as many corrupted users as it likes internally by running
(Pkagyir Skaavi) < KeyGen(1*) and then running ReKey(skaav,i, pky) to obtain
Thagvior = (g")Ftavin | where skadv; = (Sk(adv.i1)s SK(Advi2))-

(b) Tkr—p;, a delegation from T to an honest party. The simulator randomly se-
lects two values 7(ni1y, T(hi2) € Z2, sets rhp_pi = (y°) 2 = g" i)/} and
pky; = (e(g, g) in, y i) = g"win/¢) and sends (pkn i, Thr—ns) to Adv. The
corresponding secret key is skni = (T(n.i1), (T(hi,2)/C))-

(¢) rkpi.T, a delegation to T from an honest party. The simulator uses either the
recorded value 7(, ;1) from the previous step if the honest party already exists, or
generates fresh random values for a new party, and computes 7k, ;.7 = (g*)" i),

3. Eventually, Adv must output a challenge (mg, m;,7), where mg # m; € M and 7 is
its internal state information. The simulator randomly selects s € {0,1}, computes
the ciphertext c, = (y%, m, - e(y, y)) = (¢%/°, m, - e(g, 9)¥<*), sends (c,, 7) to Adv, and
waits for Adv to output &' € {0,1}.

4. If s = ¢, then S guesses “d =a-b-¢"; otherwise S guesses “d # a-b-c".

First, we observe that if d = a - b- ¢, then the simulation is perfect; that is, the ciphertext
output is of the proper form (g%, my - e(g, 9)(@* /< = my - e(g, g)**/9) for the user with
skeray = b. However, if d # a - b- ¢, then m, is information-theoretically hidden from Adv,
since d was chosen independently of a, b, c. Thus, if Adv succeeds with probability 1/2 + ¢,
then S succeeds with probability (1/2 4 €) (when d = a - b - ¢) and probability exactly 1/2
(when d # a - b ¢), for an overall success probability of (1/2 + ¢/2).

Digital-Identity Security. Suppose an adversary Adv can recover the secret key of
a targeted user T (Le., sk = (Sk(ra). sk(r2))) with probability e by interacting with T'
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according to Definition 5.1, then we can build an adversary S that takes discrete logarithms
in G; with probability €. Let us focus our attention on recovering only the value skr,))
(which is arguably the most valuable of the two). Our simulator S works as follows:

1. On input (g1,¢%) in G;, output the global parameters (gi,e(g1,91)) and the target

1 k
pubhc key ka = (e(gl,g‘f), gf (T.z))

can think of sk(7,) = a.
2. Next, for ¢ = 1 up to poly(k), Adv can request via oracle Oyepey:

, where sk(r g is chosen at random from Z,. We

a) rkr_;, a delegation from T to a party corrupted by Adv. S randomly selects
& aT(io T(i.2
T(,1),T(,2) € ZZ, sets rkr_; — g, 7, pk; = (e(g1, 1), ¢,%?), and sk; =
(ri1),T(i,2)), and sends (pk;, ski, rkr_;) to Adv.
(b) rki—T, a delegation to T from a party corrupted by Adv. Adv can generate

these delegations internally by running (pk,, sk;) < KeyGen(1¥) and then run-
ning ReKey(ski, pky) to compute rk;_p = (g )%k,

3. Eventually, Adv must output a purported secret key for 7" of the form («, ). The
simulator returns the value .

The simulation is perfect; thus Adv must not be able to recover the full secret key of
T, despite accepting and providing numerous delegations to T', because otherwise, S can
efficiently solve the discrete logarithm problem in G;. O

Discussion of Scheme X,. This scheme is similar to the previous one, except to accept
delegations, a user must store one additional secret key. That is, by storing one additional
key, Bob can accept delegations from a polynomial number of friends. If the delegatee and
the proxy collude, they will not recover the delegator’s strong secret key. Indeed, they can
recover only the weak secret gi* that can only be used to decrypt second-level encryptions
(which the delegatee and the proxy can already open anyway).

As in our previous scheme, both encryption and decryption operations are similar to those
of plain El Gamal, thus very efficient, while the bilinear map computation is performed only
by the proxy. We will provide benchmarks of ¥5’s performance in Section 5.4.

Its security relies on an extension of the Decisional Bilinear Diffie-Hellman (DBDH)
assumption [29, 81]. The proof of Boneh and Franklin [29] that the DBDH problem is hard
in generic groups, in the sense of Shoup [173], can be easily extended to this problem, when
one recalls that the additional parameter e(g;,¢,)"< is represented as a random string in
the range of the mapping. When no delegations are made, original first-level ciphertexts of
the form (e(gy, g1)®*, m - e(g1,g1)") are exactly like El Gamal [97] and thus their external
security only depends on DDH in Gy.

Using General Bilinear Maps for ¥,. In our presentation of s, we assumed a double-
isomorphism bilinear map of the form e : Gy x G; — G, which, based on current knowledge,
would limit us to implementations using supersingular curves. Indeed, our implementation
in Section 5.4 uses supersingular curves from the MIRACL library. We could allow for
more candidate implementations using ordinary curves by assuming a bilinear map of the

84



form e : Gy x Gy — Gy with arbitrary isomorphisms; that is, we will not use any of the
isomorphisms between G; and G, in our scheme or its proof, but neither will our scheme
or proof break if efficient isomorphisms exist. To use a general bilinear map, the following
must occur:

1. the first part of the second-level ciphertexts are set in Gy,
2. the (second part of the) public keys and the re-encryption keys are set in G,

3. the complexity assumption changes a form of eDBDH where the input is explicitly
provided in both (G;,G3), and DL is for G,, instead of assuming that the eDBDH
input is provided in G; with an isomorphism from G; to Gas.

5.3.4 Xiemp: Temporary Unidirectional Proxy Re-Encryption

In this section, we present our temporary unidirectional proxy re-encryption scheme as it
appeared in the journal version of this work [9], which improves the conference version [8] by
a slight alteration in the first-level encryption which allows us to prove the scheme’s security
under DBDH instead of the assumption that, for random g, € Gy, random a,b,c € Z3, and
Q € Gr, given (g1, 6%, 6%, g5, @), it is hard to decide if Q = e(g1, 91)* /<.

In addition to the global parameters params used in the previous schemes, suppose there
is a trusted server that broadcasts a random value h; € G; for each time period ¢« > 1 to
all users. The server can publish all h; values at once as soon as the system parameters are
selected. (Recall that our security proofs hold only for the case where users do not pick their
own keys.) We enable Alice to delegate to Bob only for time period 4, say, while she is on
vacation, as follows.

We assume that all ciphertexts are accompanied by a tag that identifies: (1) the relevant
public key and (2) the type of decryption algorithm needed.

ao

e Key Generation (KeyGen). A user A’s key pair is of the form pk 4, = (g}°, 9,7), ska =
(a0, ap), (plus a temporary secret a; for time period ¢ which will be generated in ReKey).

e Re-Encryption Key Generation (ReKey). A user A publicly delegates to B during

time period ¢ as follows: (1) B chooses and stores a random value b; € Z,, and publishes
‘}p'bi/ ao

h%; then, (2) A computes and publishes 7k 5 = h

e First-Level Encryption (Ency). To encrypt m € Gr under pk 4 during time period
¢ in such a way that it can only be decrypted by A, compute e(g;, h;)*™* = e(gy7, h;)¥
and output ca,, = (e(gy, b))%, m - e(gy, hy)F).

e Second-Level Encryption (Ency). To encrypt m € Gr under pk, during time
period 7 in such a way that it can be decrypted by A and her delegatees. compute

a, ag-k

e(gr, b)) = e(g7". h;)¥, and output c4; = (¢{°", m - e(g1, hi)*).
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¢ Re-Encryption (ReEnc). Anyone can change a second-level ciphertext for A into a

first-level ciphertext for B with rk A_,Bz = h?" b2 prom ciphertext ca; = (g7% m
e(gy, hy)® ") Lompute e(gr, hy)brk = e(gio* TkA_,B) and publish the ciphertext cp; =
(elgn. b ) mee(gy, b)) = (e(gr, he)* m-e(gn, hi)¥) where K = (a,K). Update

(:1phertext tag appropriately.

e Decryption (Dec;, Decy). To decrypt a first-level ciphertext ca; = (o, §) with secret
key a; € {ap, a1, a2,...} (corresponding to a re-encryption from the jth time period or
a first-level original ciphertext with permanent key a,), run Dec; to compute 3/ alle =
m. To decrypt a second-level ciphertext c4 ; = (a, #) with secret key (ag, ap), run Dec,
to compute 3% /e(a, h;)% =m.

Theorem 5.6 (Security of Yiemp). Any adversary that (1/2 + €)-breaks the standard secu-
rity of the proxy re-encryption scheme Ziemp can be used to (1/2+ €/2)-break the Decisional
Bilinear Diffie-Hellman (DBDH) assumption in (G, Gr); that is, for random g; € Gy, ran-
doma,b,c € Zg, and Q € Gr, given (g1, 9%, g%, ¢, Q), it is hard to decide if Q = e(g1, 91)*"°.
Moreover, any adversary that e-breaks the digital-identity security of ¥4 can be used to e-break
the discrete logarithm assumption in G;.

Proof. Our security definition quantifies over all encryption algorithms Enc; € {Enc}; in this
case, we have two algorithms Ency, Ency which produce two different types of ciphertexts.
Our security proof will address both styles of ciphertexts.

Standard Security. Let Z be the maximum number of time periods. Suppose Adv
distinguishes Enc; ciphertexts with probability € (we will address Enc, shortly), we simulate
an adversary S that decides DBDH as follows:

1. On input (g1, g%, g%, 9%, (g1, 91)%), the simulator sends Adv the global parameters (gi,
e(g1,91)) and the target public key pkr = (gt, g¢), where ¢ is randomly selected from
Z4, and the corresponding secret key is skr = (f,a). The simulator also honestly
generates the public keys of all other parties.

2. For j = 1 up to Z time periods, the simulator selects the public delegation parameter
for that time period h; = g}’, where z; is randomly selected from Z,. The simulator
also generates the delegatmn acceptance value D5y = h; “U9 for all users U, including
T, where 2z is randomly selected from Z,.

(a) Next, for i =1 up to poly(k), Adv can request via oracle Oyekey:

i. 7kadvi_T, a delegation to T from a party corrupted by Adv. Adv can generate
these delegations internally by running (pkag, ;, skadv.i) < KeyGen(1¥), where

skadv.i = (5k(Adv.i.0)> SK(Adv,ip)), and running ReKey(skagvi, pk7) to compute
. sk(adv.i.p)/ Sk (Adv,i.0)
rkagvi—r = Dy .

ii. rk7_n.i, a delegation from 7 to an honest party with delegation acceptance
value Dy, ;5 for time period 7. S computes and sends rkp_,; < (g‘l'f)-’f’j'Z(h,z',j)/ t
= D), to Adv.

(h.ai).j
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iii. rkp -7, a delegation to T from an honest party with key skp; = (skm,i0),

sk(n.i.py/ sk i.0)
D (. s R
(T.5) ’

3. Eventually, during the last time period, Adv must output a challenge (mg, m,7), where
mp # my € M and 7 is its internal state information. The simulator randomly selects
s € {0,1}, computes the ciphertext ¢, = (e(g1, 91)%, (g8, g§) - M), sends (cs, 7) to Adv,
and waits for Adv to output s’ € {0,1}.

4. Iif s = &, then S guesses “d =a-b-¢”; otherwise S guesses “d #a-b-c".

sknip))- S trivially computes 7kp ;7 =

First, we observe that if d = a - b- ¢, then the simulation is perfect; that is, the ciphertext
output is of the proper form (e(gi, g1)%%¢, e(g1,91)%¢ - m;) for the user with skirp = a.
However, if d # a - b - ¢, then m; is information-theoretically hidden from Adv. Thus, if Adv
succeeds with probability 1/2 + ¢ at distinguishing Enc; ciphertexts, then S succeeds with
probability (1/2 + ¢) (when d = a - b- ¢) and probability exactly 1/2 (when d # a-b-¢),
for an overall probability of (1/2 + 2/¢). This contradicts the DBDH assumption when ¢ is
non-negligible.

Now, suppose that Adv distinguishes Ency ciphertexts with £ probability, we simulate a
different adversary S that decides DBDH as follows:

1. On input (g1, 6%, 6%, g%, e(g1, 1)?), the simulator sends Adv the global parameters (y =
¢, e(y,y) = e(g,9)°) and the target public key pkr = (y/° = g1,y%¢ = ¢%) and the
corresponding secret key is skr = (1/c,a/c). The simulator also honestly generates
the public keys of all other parties.

2. For 7 =1 up to Z time periods, the simulator selects the public delegation parameter
for that time period h; = y® = (g¢§)*, where z; is randomly selected from Z,. The

: : —_ pEUde _ FiEUg)
simulator also generates the delegation acceptance value Dy ;) = h; = g,
for all users U, including T', where 2(y;) is randomly selected from Z,. The temporary
secret for each honest party is logically set to (zy;)/c) by the simulator. These ac-
ceptance values are generated by the simulator without the 1/c term for all corrupted
users.

(a) Next, for i =1 up to poly(k), Adv can request via oracle Oy ekey:

i. 7kagvi—T, @ delegation to T from a party corrupted by Adv. Adv can gen-
erate these delegations internally by running (pkag, ;- Skaav.i) < KeyGen(1*),
where skagv,i = (Sk(Adv,i,0)5 Sk (Adv,i,p)), and then running ReKey(skagvi, pk7) to

sk i )/ Sk i
compute rkAdv,i——»T =D T(?dv.t,p)/ (Adv,z,o)_

il. rkr_p4, a delegation from T to an honest party with delegation acceptance

sk(r,p)/sk(T,0)

value Dy, ; for time period j. S computes and sends rkp_p; = D(h_i)‘j

= ’y'nj"Z(h-i~.i)'(a/c)/(1/c) = (q?)l'j'z(h.i.j).
. 7kp,; 7. a delegation to T from an honest party. S computes and sends

sk o /Sk RN
Thp iy = D(TE;)' PR th Adv.

3. Eventually. during the last time period, Adv must output a challenge (my. m,, 7), where
mo # my € M and 7 is its internal state information. The sinmlator randomly selects
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s € {0, 1}, computes the ciphertext c, = (g%, m,-(e(g1, 91)9)*) = (¥*/¢, ms-e(y, h; DY),
sends (cs, 7) to Adv, and waits for Adv to output s’ € {0,1}.
4. If s =5, then S guesses “d =a-b-c"; otherwise S guesses “d #a-b-c”.

Now, we observe that if d = a - b- ¢, then the simulation is perfect; that is, the challenge
ciphertext is of the proper form (y*@o® m, - e(y, h;)*T»?®). However, if d # a- b c, then
ms is information-theoretically hidden from Adv. Thus, if Adv succeeds with probability
1/2 + ¢ at distinguishing Enc, ciphertexts, then S succeeds with probability (1/2+¢) (when
d = a-b-c) and probability exactly 1/2 (when d # a - b - ¢), for an overall probability of
(1/2+2/¢).

Digital-Identity Security. Let Z be the maximum number of time periods. Suppose
an adversary Adv can recover the secret key of a targeted user T (i.e., skr = (sk(r,0), Sk(z,p)))
with probability € by interacting with T" according to Definition 5.1, then we can build an
adversary S that takes discrete logarithms in G;. Let us focus our attention on recovering
only the value sk(7py. Our simulator S works as follows:

1. On input (g1, 9%) in Gl, output the global parameters (g1,e(g1,91)) and the target
public key pk, = (g, ko)
of sk(rp) = a.

2. For j = 1 upto Z time periods the simulator publishes the public delegation parameter
for that time period h; = = g}’, where z; is randomly selected from Z,;. The simulator
also publishes the delegatlon acceptance value h; “U9) for all users U, 1nclud1ng T, where
2,5 is randomly selected from Z,.

3. Next, for i = 1 up to poly(k), Adv can request via oracle Ojpey:

,9%), where skt is chosen randomly from Z,. We can think

(a) rkr_y, a delegation from T to any party. Let j be the current time period. S
sets thy_yi = (g2)%#wa/*@0 = hj 2w,5)/ k(z,0) hS’C(T »2(U.4)/ K (T.0)

(b) rkagv,i—T, & delegation to T from a corrupt party. Adv can generate these delega-
tions internally using the public information of T

4. Eventually, Adv must output a purported secret key for 7' of the form (a, 3). The
simulator returns the value (.

The simulation is perfect; thus Adv must not be able to recover the full secret key of
T, despite accepting and providing numerous delegations to 7', because otherwise, S can
efficiently solve the discrete logarithm problem in G;. O

Discussion of Scheme X.,,. A single global change can invalidate all previous delegations
without any user needing to change their public key. The drawback of this scheme when
compared to 2s is that delegatees must store one additional secret for each time period that
they accept a delegation. However, somewhat surprisingly, the security of X, rests only
on the very standard DBDH and DL assumptions.

Using General Bilinear Maps for Y;.,,. In our presentation of Xy, we assumed a
double-isomorphism bilinear map of the form e : G; x G, — G, which, based on current
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knowledge, would limit us to implementations using supersingular curves. We could allow
for more candidate implementations using ordinary curves by assuming a bilinear map of
the form e : G; x Gy — G7 with arbitrary isomorphisms; that is, we will not use any of the
isomorphisms between G; and G, in our scheme or its proof, but neither will our scheme
or proof break if efficient isomorphisms exist. To use a general bilinear map, the following
must occur:

1. both parts of the public key and the first part of second-level ciphertexts are set in G,
2. the re-encryption keys and public time period broadcasts h; are set in G,

3. the complexity assumption changes from DBDH to Co-DBDH, where the input is
provided in both (G, G,), and DL is for G;.

5.4 Applications

In the beginning of this chapter, we discussed some possible applications of proxy re-
encryption, such as forwarding encrypted email and DRM for Apple’s iTunes. Previous
works (21, 92, 123, 183] have also suggested email forwarding, law enforcement filtering, and
performing cryptographic operations on storage-limited devices as some potential applica-
tions.

In this section, we explore the benefits that proxy re-encryption can bring to the actively
researched, and yet unsolved, area of secure distributed storage. To our knowledge, our
implementation represents the first experimental evaluation of a system using proxy re-
encryption. Since the focus of this thesis is on the algorithms, this section will only overview
of our implementation results. The full system details can be found in the journal version of
the work described in this chapter [9].

5.4.1 Secure Distributed Storage

Overview. In Figure 5-2, we illustrate our file system which uses an untrusted access
control server to manage access to encrypted files stored on distributed, untrusted devices,
called block stores. End users on client machines wish to obtain access to integrity-protected,
confidential content, such as a DVD. A content owner publishes encrypted content in the
form of a many-reader, single-writer file system. The owner encrypts the content (e.g., the
DVD) with a unique, symmetric content key. This content key is then encrypted with an
asymmetric master key to form a lockbor. The lockbox resides with the encrypted content
it protects.

Untrusted block stores make the encrypted content available to everyone. Users download
the encrypted content from a block store, then communicate with an access control server to
decrvpt the lockboxes protecting the content. The coutent owner selects which users should
have access to the content and gives the appropriate delegation rights to the access control
Server.
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1. File request 3. Encrypted lockbox

2. Encrypted file < 4. Re-encrypted lockbox

Block Store Access Control
Server

Figure 5-2: Operation of the proxy re-encryption file system. The user’s client machine
fetches encrypted files from the block store. Each encrypted file has two components: (1)
the file content encrypted under a symmetric key, and (2) the symmetric key encrypted
under a master public key, called the lockboz. The client then transmits the lockbox to
the access control server for re-encryption under the user’s public key. If the access control
server possesses the necessary re-encryption key, it re-encrypts the lockbox and returns the
new ciphertext. The client can decrypt the lockbox using the user’s secret key, recover the
symmetric key, and then decrypt the file content.

Access Control Using Proxy Re-Encryption. We propose an improvement on the
access control server model that reduces the server’s trust requirements by using proxy re-
cryptography. In our approach, the content keys used to encrypt files are themselves securely
encrypted under a master public key, using a unidirectional proxy re-encryption scheme of
the form described in this work. Because the access control server does not possess the
corresponding secret key, it cannot be corrupted so as to gain access to the content keys
necessary to access encrypted files. The master secret key remains offline, in the care of a
content owner who uses it only to generate the re-encryption keys used by the access control
server. When an authorized user requests access to a file, the access control server uses proxy
re-encryption to directly re-encrypt the appropriate content key(s) from the master public
key to the user’s public key. (Interestingly, the mis-management of this transfer step caused
the security problem [174] in Apple’s iTunes DRM mentioned earlier.)

This architecture has significant advantages over systems with trusted access control
servers. The key material stored on the access control server cannot be used to access stored
files, which reduces the need to absolutely trust the server operator, and diminishes the
server’s value to attackers. The master secret key itself is only required by a content owner
when new users are added to the system, and can therefore be stored safely offline where it
is less vulnerable to compromise. Finally, the schemes in Section 5.3.3 are unidirectional and
non-interactive, meaning that users do not need to communicate or reveal their secret keys
in order to join the system. This allows content owners to add users to the system without
interaction, simply by obtaining their public key. Because this system works with users’
long-term keys (rather than generating epliemeral keys for the user), there is an additional
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incentive for users not to reveal their secret keys.

The proposed design fundamentally changes the security of an access control server stor-
age system. In this new model, much of the security relies on the strength of a provably-secure
cryptosystem, rather than on the trust of a server operator for mediating access control. Be-
cause the access control server cannot successfully re-encrypt a file key to a user without
possessing a valid re-encryption key, the access control server cannot be made to divulge file
keys to a user who has not been specifically authorized by the content owner, unless this
attacker has previously stolen a legitimate user’s secret key.

Chefs. Our file system was implemented on top of Chefs [103], a single-writer, many-
reader file system designed by Kevin Fu, and itself built on top of the SFS read-only file
system [104]. Chefs tags each encrypted file with a lockbox. In the original Chefs design, the
lockbox contains a 128-bit AES key, itself encrypted with a shared group AES key. Chefs
assumes an out-of-band mechanism for content owners to distribute group keys to users; this
step we now solve with proxy re-encryption.

Experimental Setup. In implementing a proxy re-encryption file system, we had two
goals in mind. First, we wished to show that proxy re-encryption could be successfully
incorporated into a basic cryptographic file system. Second, we sought to prove that the
additional security semantics provided by a proxy re-encrypting access control server came
at an acceptable cost to end-to-end performance.

For the purposes of our testing, we used two machines to benchmark the proxy-enabled
Chefs file system. The client machine consisted of an AMD Athlon 2100+ 1.8 GHz with
1 Gbyte RAM and an IBM 7200 RPM, 40 Gbyte, Ultra ATA/100 hard drive. The server
machine was an Intel Pentium 4 2.8 GHz with 1 Gbyte RAM and a Seagate Barracuda
7200 RPM, 160 Gbyte, Ultra ATA/100 hard drive. Both systems were running Debian
testing/unstable with the Linux 2.6.8 kernel. The client and the server were situated in
different cities, representing a distributed file system scenario. We measured the round-trip
latency between the two machines at 13 msec, and the maximum sustained throughput of
the network link at 7 Mbit/sec. We implemented the cryptographic primitives for scheme
¥y (Section 5.3.3) using version 4.83 of the MIRACL cryptographic library [170], which
contains efficient implementations of the Tate pairing over supersingular curves as well as
fast modular exponentiation and point multiplication on elliptic curves.

Cryptographic Benchmark. Table 5.2 presents average times over 100 runs of the cryp-
tographic operations in the bilinear proxy re-encryption scheme 3, (from Section 5.3.3). Our
key sizes of 256 and 512 bits, according to the NIST estimates in Chapter 2 (see Table 2.1),
offer the equivalent of 3072 and 15360-bit RSA security. Since this level of security is not
likely to be necessary until at least 2030, our timing measurements can be considered as very
conservative.

These measurements provide a basis for understanding the impact of proxy re-encryption
on overall file system performance. These results indicate that re-encryption is the one of
the most time consuming operations in our file system, although its overhead is manageable.

We were surprised that our 1.8 GHz AMD Athlon 2100 performed better than our 2.8 GHz
Intel Pentium 4 server in the microbenchmarks. We attribute this advantage to modular
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Parameter | Machine || Encryption | Decryption | Re-encryption | Decryption
size (by original (by
recipient) delegatee)
956-bit. client 3.1 msec 8.7 msec 8.6 msec 1.5 msec
server 3.3 msec 8.8 msec 8.7 msec 1.5 msec
512bit client 7.8 msec 22.5 msec 22.0 msec 3.4 msec
server 9.3 msec 26.5 msec 26.7 msec 4.1 msec

Table 5.2: Average operation times for 100 runs of the ¥5 proxy re-encryption scheme
on our client and server. All operations refer to re-encryptable second-level (Ency)
ciphertexts.

arithmetic routines in MIRACL that perform faster on the Athlon. The MIRACL library
provides many hints for selecting assembly code optimizations. Because other benchmarks
such as the OpenSSL RSA “speed” test run faster on our server, we suspect that the Intel
server would perform better with proper selection of optimizations in MIRACL.

Discussion. We believe that our experimental results demonstrate the practicality of proxy
re-encryption in protecting stored content. Though proxy re-encryption adds a level of
overhead to file system, this overhead is not extreme, and can be worth the additional
security that comes from using a centralized, semi-trusted access control server.

5.5 Contributions

In this chapter, we explored proxy re-encryption from both a theoretical and practical per-
spective. We formalized the proxy re-encryption primitive of Blaze, Bleumer, and Strauss [21].
We outlined the characteristics and security guarantees of previously known schemes, and
compared them to a suite of improved re-encryption schemes we present over bilinear maps.
These bilinear-based schemes realize important new features, such as safeguarding the digital
identity of the delegator from a colluding proxy and delegatee. Indeed, the realization of
unidirectional scheme > answers the open problem proposed by BBS in 1998.

One of the most promising applications for proxy re-encryption is giving proxy capabilities
to the key server of a confidential distributed file system; this way the key server need not
be fully trusted with all the keys of the system and the secret storage for each user can also
be reduced. We implemented this idea in the context of the Chefs file system, and showed
experimentally that the additional security benefits of proxy re-encryption can be purchased
for a manageable amount of run-time overhead.

5.6 Open Problems

There are many open problems in this area. The holy grail for proxy re-encryption schemes-
a unidirectional. key optimal. and CCA2 secure scheme —is not yet realized. Another open

92



problem is to find schemes that are simultaneously unidirectional and multi-use. It is also
not known how to prevent the transfer of delegation rights, as discussed in Remark 5.2.

The only unidirectional and key optimal solutions known are those presented in this
chapter based on bilinear groups. It would be very interesting to know if this functionality
can be efficiently realized without using bilinear maps.

It would also be very interesting if re-encryption schemes existed where the proxy could
only translate encryptions of certain messages or encryption containing certain public tags.
One promising direction is to extend the temporary scheme ¥;ep, in Section 5.3.4.

We also just brushed the surface of the interesting relationship between proxy re-encryption
and program obfuscation. It would be interesting to know if proxy re-encryption could be
properly formalized and realized as an obfuscated program.

Finally, we are confident that proxy re-encryption has many important applications be-
yond secure distributed storage, and we look forward to seeing additional schemes realized
under other complexity assumptions and other deployments of the primitive.
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Chapter 6

Compact E-Cash

This chapter is an extended version of joint work with Jan Camenisch (IBM Zurich Research)
and Anna Lysyanskaya (Brown University) [49]. In particular, we acknowledge Anna Lysyan-
skaya for the formal definitions in Section 6.2.1 (we slightly alter exculpability from {49]) and
Jan Camenisch for the optimized protocols in Appendix A.

6.1 Introduction

In this chapter and the next one, we turn our attention to electronic cash systems. This is a
distinct concept from the Re-Signature (Chapter 4) and Re-Encryption (Chapter 5) schemes
discussed earlier. However, we will again use the unique properties of bilinear groups in some
parts of our constructions.

Electronic cash was invented by Chaum [73, 74], and has been extensively studied [77,
100, 79, 40, 57, 41, 175, 99, 178, 19]. The main idea is that, even though the same party
(a bank B) is responsible for giving out electronic coins, and for later accepting them for
deposit, the withdrawal and the spending protocols are designed in such a way that it is
impossible for the bank to identify when a particular coin was spent. Le., the withdrawal
protocol does not reveal any information to the bank that would later enable it to trace how
a withdrawn coin was spent.

As a coin is represented by data, and it is easy to duplicate data, an electronic cash
scheme requires a mechanism that prevents a user from spending the same coin twice (double-
spending). There are two scenarios. In the on-line scenario [74, 75, 76], the bank is on-line
in each transaction to ensure that no coin is spent twice, and each merchant must consult
the bank before accepting a payment. In the off-line [77] scenario, the merchant accepts
a payment autonomously, and later submits the payment to the bank; the merchant is
guaranteed that such a payment will be either honored by the bank, or will lead to the
identification (and therefore punishment) of the double-spender.

In this chapter, we give an off-line 2¢-spendable unlinkable electronic cash scheme. Namely.
our scheme allows a user to withdraw a wallet with 2¢ coins, such that the space required
to store these coins, and the complexity of the withdrawal protocol, are proportional to ¢.
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rather than to 2¢. We achieve this without compromising the anonymity and unlinkability
properties usually required of electronic cash schemes. There is a large body of work on
divisible or amortized e-cash [159. 156, 136, 137], where each division of a particular coin
(e.g., each penny in a dollar) can be linked to the other parts of the same particular coin, but
these pieces cannot be linked to the identity of the spender. In this chapter, we obtain full
anonymity and unlinkability, while efficiently withdrawing and storing many coins at once.

This problem is well-motivated: (1) communication with the bank is a bottleneck in
most electronic cash schemes and needs to be minimized; (2) it is desirable to store many
electronic coins compactly, as one can imagine that they may be stored on a dedicated device
such as a smartcard that cannot store too much data. This problem has also proved quite
elusive: no one has offered a compact e-cash solution (even for a weaker security model)
since the introduction of electronic cash in the 1980s.

In addition, a good e-cash scheme should allow one to expose double-spenders to outside
third parties in an undeniable fashion. L.e., assuming a PKI, if a user Y with public key pk;,
spent a coin more times than he is allowed (in our case, spent 2¢ + 1 coins from a wallet
containing 2¢ coins), then this fact can be proven to anyone in a sound fashion. This property
of an e-cash scheme is satisfied by numerous schemes in the literature [7]. Our solution has
this property as well.

Finally, it may often be desirable that an e-cash scheme should allow one to trace all coins
of a cheating user. It was known that this property can be implemented using a trusted third
party (T'TP) [175, 46], by requiring that: (1) in each withdrawal protocol a user gives to the
bank an encryption under the TTP’s public key of a serial number S which will be revealed
during the spending protocol; and (2) in each spending protocol, the user submits to the
merchant an encryption of the user’s public key under the TTP’s public key. Then, should
a coin with serial number S ever be double-spent, the TTP can get involved and decrypt
the serial number of all of this user’s coins. But the existence of such a TTP contradicts
the very definition of electronic cash: to the TTP, the user is not anonymous! Therefore,
another desirable and elusive property of an electronic cash scheme was traceability without
a TTP. Our scheme achieves this property as well.

Recently, Jarecki and Shmatikov [124] also made a step in this direction. Although
their work is not explicitly about electronic cash, it can be thought of in this way. In their
scheme, coins are anonymous, but linkable (linkability is actually a feature for them). Their
scheme allows to withdraw and linkably but anonymously spend a coin K times; but should
a user wish to spend the coin K + 1 times, his identity gets revealed. As far as electronic
cash is concerned, our solution is better for two reasons: (1) their scheme does not achieve
unlinkability; and (2) in their protocol, each time a user spends a coin he has to run a protocol
whose communication complexity is proportional to K, rather than log K, as we achieve. In
1989, Okamoto and Ohta [158] proposed an e-cash scheme with similar functionality, without
achieving unlinkability or compact wallets.

Our work can also be viewed as improving on the recent traceable group signatures by
Kiayias, Tsiounis, and Yung [133]. In their scheme, once a special piece of tracing information
is released, it is possible to trace all group signatures issued by a particular group member:
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otherwise this member’s signatures are guaranteed to remain anonymous. Normally, in a
group signature setting, this piece of information must be released by a TTP, as there is
no equivalent of a double-spender whose misbehavior may automatically lead to the release
of the tracing information; however, if a limit is placed on how many signatures a group
member may issue, then our e-cash scheme can be viewed as a bounded group signature
scheme, where a group member can sign a message by incorporating it into the signature
proof of a coin’s validity. A group manager may allocate signing rights by acting as a bank
allocating coins; and if any member exceeds their allocation, the special tracing information
is revealed automatically, and all signatures produced by that group member may be traced.
Our tracing algorithm is more efficient than that of Kiayias et al. [133]; in our scheme,
signatures can be tracked by a serial number (that appears to be random until the user
double-spends), while in theirs, all existing signatures must be tested, one-by-one, using the
special tracing information provided by the T'TP, to determine if a certain signer created it
or not.

Our Results. Let us summarize our results. We give a compact e-cash scheme with all the
features described above in the random-oracle model, under the Strong RSA and Decisional
Diffie-Hellman Inversion (y-DDHI) [25, 95] assumptions in combination with either the Ex-
ternal Diffie-Hellman (XDH) [107, 171, 143, 27, 12] or the Sum-Free DDH [89] assumption
for groups with bilinear maps. The trade-off between these latter two assumptions is that
we achieve a more efficient construction using the XDH assumption, but the Sum-Free DDH
assumption is conjectured to hold in a wider class of bilinear groups. (Recall from Chapter 2
that the XDH assumption is known to be false for supersingular curves, however it is believed
to hold for ordinary curves. The Sum-Free DDH assumption is believed to hold for either
supersingular or ordinary curves.)

Using the Sum-Free DDH assumption, the communication complexity of the spending
and of the withdrawal protocol is O(£- k) and O(£ - k + k?) bits, respectively; it takes O(£- k)
bits to store all the coins. Alternatively, using the XDH assumption, we give a scheme where
the withdrawal and the spending protocols have complexity O(¢ + k), and it takes O(Z + k)
bits to store all the coins. These schemes are presented in Section 6.5.

We also give a scheme where the withdrawal and the spending protocols have complexity
only O(¢ + k), and it also takes only O(¢ + k) bits to store all the coins, based on only the
Strong RSA [105, 14] and the y-DDHI [95] assumptions in the random-oracle model. That
is, we will not require bilinear groups for this scheme, and the cost is that it will not support
traceability. If a user over-spends his wallet, only his public key is recovered. This scheme
is presented in Section 6.4.

Furthermore, in the model where the bank completely trusts the merchant (this applies
to, for example, a subscription service where the entity creating and verifying the coins is one
and the same), we have solutions based on the same set of assumptions but in the standard
model. e.g.. no randont oracles. In Section 6.6, we discuss the random oracle model in more
detail and explain options for removing random oracles from our constructions.

Using E-Cash as Anonymous Credentials. Although the results of this chapter, and
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Chapter 7, are presented and discussed in terms of electronic cash, they actually apply to
the more general notion of anonymous credentials [75, 52, 139, 54]. For example, our e-cash
system could be applied directly to implement a system where a user could purchase the
ability to later anonymously and unlinkably login to a website at most N times.

Overview of Our Construction. Our schemes are based on the signature schemes with
protocols due to Camenisch and Lysyanskaya [53, 54], which we will call “CL signatures.”
These schemes allow a user to efficiently obtain a signature on committed messages from the
signer. They further allow the user to convince a verifier that she possesses a signature by the
signer on a committed message. Both of these protocols rely on the Pedersen commitment
scheme.

To explain our result, let us describe how single-use electronic cash can be obtained with
CL signatures, drawing on a variety of previously known techniques [43, 53).

Let G = (g) be a group of prime order ¢ where the discrete logarithm problem is hard.
Suppose that a user U has a secret key sky € Z, and a public key pk;, = g**“. An electronic
coin is a signature under the bank B’s public key pkg on the set of values (sky, s,t), where
s,t € Z, are random values. The value s is the serial number of the coin, while ¢ is the
value blinding of this coin. A protocol whereby a user obtains such a signature is called the
withdrawal protocol.

In the spending protocol, the user sends the merchant a Pedersen commitment C' to the
values (sky,s,t), and computes a non-interactive proof m; that they have been signed by
the bank. The merchant verifies 7; and then picks a random value R € Z,. Finally, the
user reveals the serial number s, and the value T' = skyy + R -t mod q. Let us refer to T'
as a double-spending equation for the coin. The user must also compute a proof 7y that the
values s and T correspond to commitment C. Finally, the merchant submits (s, R, T, 1, 73)
for payment.

Note that one double-spending equation reveals nothing about sky; because t is random,
but using two double-spending equations, we can solve for sk;;. So if the same serial number
s is submitted for payment twice, the secret key sk;; and therefore the identity of the double-
spender pk,, = g® can be discovered.

Now, our goal is to adapt single-use electronic cash schemes so that a coin can be used at
most 2¢ times. The trivial solution would be to obtain 2¢ coins. For our purposes, however,
it is unacceptable, as 2¢ may be quite large (e.g., 1000) and we want each protocol to be
efficient.

The idea underlying our system is that the values s and ¢ implicitly define several (pseu-
dorandom) serial numbers S; and blinding values B;, respectively. In other words, we need
a pseudorandom function Fi.y such that we can set S; = Fy(i), and B; = F(i), 0 < i < 2f,
Then the user gets 2 pseudorandom serial numbers with the corresponding double-spending
equations defined by (s,t). Here, the double-spending equation for coin i is T; = g™u(B;),
where R is chosen by the merchant. This leaves us with a very specific technical problem.
The challenge is to find a pseudorandom function such that, given (1) a commitment to
(sky,s,t); (2) a commitment to 4; and (3) the values S; and Tj, the user can efficiently
prove that she derived the values S; and T; correctly from sky, s, and t, i.e., S; = Fy(¢) and
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T, = g**u - (Fy(i))™ for some 0 < i < 2¢ and public value R; provided by the merchant.

Recently, Dodis and Yampolskiy [95] proposed the following discrete-logarithm-based
pseudorandom function (PRF): Fy(z) = g"/(****1) where s,z € Z,, and g is a generator of
a group G of order ¢ in which the decisional Diffie-Hellman inversion problem is hard. (In
the sequel, we denote this PRF as F(P)Y( -).) Using standard methods for proving statements
about discrete-logarithm representations, we obtain a zero-knowledge argument system for
showing that a pair of values (.S;, T;) is of the form S; = FPY (i) and T; = g**« - (FPY (i))F
corresponding to the seeds s and ¢ signed by bank B and to some index i € [0,2¢ — 1].

Note that if S; and T; are computed this way, then they are elements of G rather than
of Z,. So this leaves us with the following protocol: to withdraw a coin, a user obtains a
signature on (sky, s,t). During the spending protocol, the user reveals S; and the double-
spending equation T; = g™ . (B;)®, where sky is the user’s secret key and pk, = g™
the corresponding public key. Now, the bank may quickly detect double-spending whenever
two coins are deposited with the same serial number, and using the two corresponding
double-spending equatlons T, = g*u . BR1 and Ty = g% . BR"’ we can infer the value
(TIRZ/TRl)(RQ —Ry)~? = (p k.Rz BRIRZ/( le BRle)) Rz —Ry)"Y ( RRZ Rl) Ry—R1)™' _ = pky.
This is sufficient to detect and identify double spenders. We describe this construction in
more depth in Section 6.4.

However, the above scheme does not allow the bank to identify the other spendings of
the coin, i.e., to generate all the serial numbers that the user can derive from s. This feature,
called tracing, is motivated by Jarecki and Shmatikov [124] to balance the rational need of
law enforcement to observe the transactions of double-spenders, while maintaining complete
privacy for honest users. Let us now describe how we achieve this. For the moment, let us
assume that the technique described above allows us to infer sk rather than pk,,. If this
were the case, we could require that the user, as part of the withdrawal protocol, should
verifiably encrypt [5, 47, 58] the value s under her own pky, to form a ciphertext c¢. The
record (pky, c) is stored by the bank. Now, suppose that at a future point, the user spends
too many coins and thus her sky is discovered. From this, her pk;,, can be inferred and
the record (pky, c) can be located. Now that sk, is known, ¢ can be decrypted, the seed s
discovered, the values S; computed for all 0 < 7 < 2¢, and hence the database of transactions
can be searched for records with these serial numbers.

Let us now redefine the way a user’s keys are picked such that we can recover sky
rather than pk,. Suppose that the group previously referred to as G is replaced by Gy,
where we have a bilinear map e : G; X G2 — Gp. Let sky be an element of Z,. Let
rky =e(91. 95 “) € Gr. Using ideas from Chapter 5, we know how to realize a cryptosystem
that uses pky, as a public key, such that in order to decrvpt it is sufficient to know the value
glk“ € G,. So, in our scheme, the user U would encrypt s under pk,, using the cryptosystem
3y from Chapter 5 From the double-spending equations, the same way as before, the bank
infers the value (11 . This value now allows the bank to decrypt s.

This is almost the solution, except for the following subtlety: if G; has a bilinear map,
then the decisional Diffie-Hellman problem may be easy, and so the Dodis-Yampolskiy con-
struction is not a PRF in this setting! We have two solutions for this problem.
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First, we can hope that there are bilinear maps where DDH remains hard in G; (when
there is not an efficiently-computable isomorphism from G, to G;), apply one of these bilinear
groups, and keep using the Dodis-Yampolskiy PRF'. In fact, this idea is already formalized as
the External Diffie-Hellman (XDH) [107, 171, 143, 27, 12] assumption, and there is growing
evidence that it may hold for bilinear groups instantiated with ordinary curves [147, 12][27,
Sec. 8.1], even though this is known to be false for supersingular curves [110].

As a second solution, we can instead assume Sum-Free Decisional Diffie-Hellman [89],
which is conjectured to hold for all bilinear groups, and slightly change the construction.
This is why this variant of our scheme is a factor of £ more expensive than the others, where
wallets contain 2¢ coins. The details of this construction are given in Section 6.5.

In Section 6.8, we discuss some of the big open problems for electronic cash which this
chapter does not address, such as efficiently allowing for multiple denominations in a non-
trivial way; i.e., without executing the spending protocol a number of times. One of these
open problems, supporting bounded-anonymity with a trusted party, is solved in Chapter 7.

6.2 Definition of Security

Notation: if P is a protocol between A and B, then P(A(z), B(y)) denotes that A’s input
is x and B’s is y.

Our electronic cash scenario consists of the three usual players: the user, the bank, and
the merchant; together with the algorithms: BKeygen, UKeygen, Withdraw, Spend, Deposit,
DetectViolation, IdentifyViolator, VerifyViolation, Trace, VerifyOwnership. Let us give some
input-output specifications for these protocols, as well as some intuition for what they do.

— The BKeygen(1¥, params) algorithm is a key generation algorithm run by the bank B. It
takes as input the security parameter 1* and, if the scheme is in the common parameters
model, it also takes as input these parameters params. This algorithm outputs the key
pair (pkg, skg). (Assume that pkg and skp contain the params, so we do not have to
give params explicitly to the bank or parties interacting with the bank again.)

— Similarly, UKeygen(1*, params) is a key generation algorithm run by the user U, which
outputs (pky, sky). Since merchants are a subset of users, they may use this algorithm
to obtain keys as well. (Assume that pk,, and sky contain the params, so we do not
have to give params explicitly to the user or parties interacting with the user again.)

— In the Withdraw(U(pkg, sku, n), B(pky, sks,n)) protocol, the user U withdraws a wallet
W of n coins from the bank B. The user’s output is the wallet W, or an error message.
B’s output is some information Ty which will allow the bank to trace the user should
this user double-spend some coin, or an error message. The bank maintains a database
D for this trace information, to which it enters the record (pk, Tw)-

— In a Spend(U(W, pk rs), M(skm, pkg,n)) protocol, a user U gives one of the coins from his
wallet W to the merchant M. Here, the merchant obtaing a serial number S of the
coin, and a proof 7 of validity of the coin. The user’s output is an updated wallet W’.
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— In a Deposit(M sk, S.m, pkg), B(pk g, skB)) protocol, a merchant M deposits a coin
(S, 7) into its account held by the bank B. Whenever an honest M obtained (S, 7) by
running the Spend protocol with any (honest or otherwise) user, there is a guarantee
that this coin will be accepted by the bank. B adds (S, 7) to to its list L of spent coins.
The merchant’s output is nothing or an error message.

— The DetectViolation(params, L) algorithm detects double-spending in the list L of spent
coins whenever two coins have the same serial number.

— The IdentifyViolator(params, S, 7, m3) algorithm allows to identify double-spenders using a
serial number S and two proofs of validity of this coin, 7 and 7y, possibly submitted by
malicious merchants, i.e., merchants that deviate from the protocols. This algorithm
outputs a public key pk;, and a proof II. If the merchants who had submitted 7; and
7o are not malicious, then II is evidence that pk;, is the registered public key of a user
that double-spent coin S.

— The VerifyViolation(params, S, pk,,, II) algorithm allows anyone to verify proof II that the
user with public key pk;, is guilty of double-spending coin S.

— The Trace(params, S, pky, I, D, n) algorithm, given a public key pk;, of a double-spender,
a proof II of his guilt in double-spending coin S, the database D, and a wallet size
n, computes the serial numbers Si,...,S,, of all of the coins issued to U along with
proofs I'y,..., Iy, of pk,’s ownership. If VerifyViolation(params, S, pk,, II) does not
accept (i.e., pky is honest), this algorithm does nothing,.

— The VerifyOwnership(params, S, T, pk,, n) algorithm allows anyone to verify the proof I'
that a coin with serial number S belongs to a double-spender with public key pky,.

We will now informally define the security properties for the casual reader. The more

interested reader will want to skip to the more elaborate formal definitions given in Sec-
tion 6.2.1.

Correctness. If an honest user runs Withdraw with an honest bank, then neither will output
an error message; if an honest user runs Spend with an honest merchant, then the merchant
accepts the coin.

Balance. From the bank’s point of view, what matters is that no collection of users and mer-
chants can ever spend more coins than they withdrew. We require that there is a knowledge
extractor £ that executes u Withdraw protocols with all adversarial users and extracts (u-n)

serial numbers Sy, . .., S,.,. We require that for every adversary, the probability that an hon-
est bank will accept (S, 7) as the result of the Deposit protocol, where S # S; V1 < i < u-n,
is negligible. If S;,....S, is a set of serial numbers output by £ when running Withdraw

with public key pk,,, we say that coins Sy, ..., S, belong to the user U with pk,,.

Identification of double-spenders. Suppose B is honest. Suppose M; and M, are honest
merchants who ran the Spend protocol with the adversary, such that M;’s output is (S.7)
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and My’s output is (S, my). This property guarantees that ldentifyViolator(params, S, my, m2)
outputs a key pk;, and proof II such that VerifyViolation(params, S, pky.II) accepts with
high probability.

Tracing of double-spenders. Given that a user U is shown guilty of double-spending coin S by
a proof I1 such that VerifyViolation accepts, this property guarantees that Trace(params, S, pky,
I1, D, n) will output the serial numbers Si, ..., Sy, of all coins that belong to U along with
proofs of ownership Iy, ..., [, such that for all i, VerifyOwnership(params, S;, I';, pky,, n) also
accepts with high probability.

Anonymity of users. From the privacy point of view, what matters to users is that the bank,
even when cooperating with any collection of malicious users and merchants, cannot learn
anything about a user’s spendings other than what is available from side information from
the environment. In order to capture this property more formally, we introduce a simulator
S. & has some side information not normally available to players. E.g., if in the common
parameters model, S generated these parameters; in the random-oracle model, § is in control
of the random oracle; in the public-key registration model & may hold additional information
about the bank’s keys, etc. We require that S can create simulated coins without access to
any wallets, such that a simulated coin is indistinguishable from a valid one. More precisely,
S executes the user’s side of the Spend protocol without access to the user’s secret or public
key, or his wallet W.

Ezculpability. Suppose that we have an adversary that participates any number of times
in the Withdraw protocol with the honest user with public key pk;,, and subsequently to
that, in any number of legal Spend protocols with the same user. lLe., if the user withdrew
u wallets of n coins each, then this user can participate in at most u - n Spend proto-
cols. The adversary then outputs a coin serial number S and a purported proof II that
either the user with public key pk,, double-spent coin S or the same user simply owns
coin S. The weak exculpability property postulates that, for all adversaries, the probability
VerifyViolation(params, S, pk,,, 11, n) or VerifyOwnership(params, S, I, pk,,, n) accepts is neg-
ligible.

Furthermore, the adversary may continue to engage the user U in Spend protocols even
if it means U must double-spend some coins of her choosing. If forced to double spend, the
user resets the state of her wallet to the state it was in immediately after the wallet was
withdrawn. This keeps the method by which a user is forced to double spend well defined.
The adversary then outputs (S, II). The strong exculpability property postulates that, for
all adversaries, when S is a coin serial number not belonging to U, the weak exculpability
property holds, and when S is a coin serial number not double-spent by user U with public
key pky,, the probability that VerifyViolation(params, S, II, pk;,, n) accepts is negligible.

This ends the informal description of our security definition. This informal description
should be sufficient for a general understanding of our security guarantees. We now provide
more precise definitions.



6.2.1 Formal Definitions

Owr goal is to give a formal definition for electronic cash. We want to obtain a definition
that would make sense independently of whether a given scheme is realized in the plain
model, common random string model, common parameters model, random-oracle model, or
any other variety of a model. Let us say a few words on these models.

The standard method [112, 114, 113] for proving that a protocol is zero-knowledge with
respect to a value w is to describe a simulator S that, without knowing w, cannot be
distinguished from a party with knowledge of w. Likewise, the method for proving that a
party A “knows” a value w is to describe an extractor £ that, by interacting with A according
to some set rules, can extract the value w. Of course, for these protocols to be non-trivial,
S and & require some additional power that is not available to parties in the real world.
(We will be more exact about this momentarily.) For example, simulators and extractors are
(usually) allowed to interact with a party A, reset party A to its state before this interaction,
and then interact with party A again. The various models, many of which emerged before
they were named, are an attempt to describe the additional power S and £ must be given.
In general, the less power given, the better — because it may make the protocol difficult (or
impossible!) to implement in the real world.

We briefly describe a few of the most commonly used models. In the common random
string model, all parties are given access to a public random string; in the proof of security,
this string may be chosen by S and £. In the common parameters model, all parties are
given access to some public parameters (which may not be random); in the proof of security,
these parameters may be chosen by & and £. In the random oracle model, all parties are
given access to an oracle that acts as a hash function; in the proof of security, this oracle is
controlled by § and £. In the plain model, all parties start the protocol without any common
information or access to an oracle.

From the informal definitions, the reader may recall that our definition of e-cash relies
on the existence of a knowledge extractor £ that extracts the serial number of all the coins
that an adversarial user withdraws in a given Withdraw transaction; and the existence of the
simulator S which simulates the malicious merchant’s view of the Spend protocol without
access to any users’ keys or wallets.

Usually, the way that knowledge extractors and zero-knowledge simulators are defined
depends on the model in which security is proven, which may vary from construction to
construction.

In order to obtain a definition that works equally well in any model, we require that a
particular protocol is a proof of knowledge or a zero-knowledge proof in the model in which
security of the construction is proven. For example, we require that part of the Withdraw
protocol is a proof of knowledge of the serial numbers of the coins withdrawn by the user,
or part of the Spend protocol is a zero-knowledge proof.

In whatever model we are working, however, we will need concurrently composable proofs
of knowledge and concurrently composable zero-knowledge proofs [63. 64, 65].

Let us explain how to specify a knowledge extractor Ep,or; for a proof of knowledge
protocol Prot for language /. (resp., zero-knowledge simulator Sp,; for protocol Prot for
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proving membership in language [) in a (relatively) model-independent fashion. First, as
we mentioned above in some models, such as a common parameters model, an extractor or
simulator is allowed access to some auxiliary information not provided to a participant in
the protocol. We denote denote these by aurert and auzsim, respectively.

Another resource that a knowledge extractor or zero-knowledge simulator must receive
is access to the adversary. This includes many possibilities; here are a few examples:

e (IO) Input-output interaction with the adversary. This is typical in the UC-framework
(63, 64].

e (BB) Black-box interaction with the adversary. This means that the adversary can be
reset to a previous state.

e (NBB) Non-black-box access. This means that we are given the description of the
adversary.

Each of these access models can be further augmented with the random-oracle model.
For example, the IO-RO model includes input-output access to the adversary’s hash function
module.

Let X-Y(Adv) be our access model to the adversary Adv, where, for example, X €
{IO, BB, NBB}, and Y € {¢, RO}. By AlgXY(Ad) e denote that the algorithm Alg has
this type of access to the adversary Adv.

So, for example, if Alg is an algorithm interacting with adversary Adv in the X-Y model,
running on input z, then we denote it by Alg*™Y A (z).

In the sequel, by “proof protocol,” we mean a protocol between a prover and a verifier.

Thus, a knowledge extractor for proof protocol Prot for language [ in the X-Y model

would be denoted as Sp Adv)(pamms auzext,z). By definition of what it means to be

a knowledge extractor, for properly formed (params, auzext), 8;(,;: l(AdV)(pamms, auzext, x)

will, with high probability, in expected polynomial time, output a w such that (z,w) € I
whenever the probability that the verifier accepts x when interacting with Adv in the X-Y
model, is non-negligible.

Similarly, a zero-knowledge simulator for proof protocol Prot for language ! in the X-Y

model would be denoted as S;{ro:,l (Adv) (params, auzsim,z). By definition of what it means

X-Y(Ad , . . : .
to be a zero-knowledge simulator, Sp, ., ,( V) (params, auzsim, x) will, when interacting with

Adv in the X-Y model, produce a view that is indistinguishable from the view Adv obtains
when interacting with the prover.

rot,l

Balance. Let a Withdraw protocol be given. Recall that the bank’s input to this protocol
includes the user’s public key pk;,. Let us break up the Withdraw protocol into three
parts: Withdraw,, Withdraw,,, and Withdraw, (“b,” “m,” and “e” stand for “beginning,”

“middle,” and “end,” respectively). Withdraw, is thc part of the protocol that ends
with the first message from the user to the bank. Withdraw, part of the protocol is the
last message from the bank to the user.
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The middle of the protocol is denoted Withdraw,,. Let us think of Withdraw, as a proof
protocol, where the user is the Prover, and the bank is the Verifier. The Verifier’s
output of Withdraw,, can be thought of as the bank’s decision for whether or not to
proceed to Withdraw, and send the last message from the bank to the user.

Let m; denote the first message that the user sends to the bank in the Withdraw
protocol. Let b; denote the state information of the bank at the moment that m; was
received.

The balance property requires that:

1. In whatever model the scheme is §iven, there exists an efficiently decidable lan-
: X-Y (Adv)

guage ls and an extractor EWithdran,ls(pamms, auzext, pky, b1, my) such that for

all by computed by the bank, and for all m,, it extracts w = (Sy,..., Sy, auz)

such that (b, m;,w) € ls whenever the probability that the bank accepts in

the Withdraw,, part of the protocol is non-negligible. We say that the extractor

outputs (b, my, w) € lg in that case.

2. (If we are in the public parameters model, assume that the values params and
auzext are fixed. Assume that pkyz was generated appropriately.)

On input (params, pkg), the adversary Adv plays the following game: Adv executes
the Withdraw and Deposit protocols with the bank as many time as it wishes. (It
can simulate running the Spend protocol with itself.) Let (b ;, m1;, w;) € ls be the

output of 5va;c:d(2€v\2,,l <(params, auzext, pk;, by ;, my ;) if the ith withdrawal protocol
was successful. Recall that w; = (S;1,..., Sia, auz) is a list of n serial numbers;

we say that these belong to pk;. Let Ay = {S;; |1 <i<{4,0<j<n—1}be
the list of serial numbers after ¢ executions of the Withdraw protocol. Adv wins
the game if for some ¢, in some Deposit protocol, the honest bank accepts a coin
with serial number S ¢ A,. We require that no probabilistic polynomial-time
adversary succeeds in this game with non-negligible probability.

Identification of double-spenders. This property guarantees that no probabilistic poly-
nomial time (PPT) adversary has a non-negligible probability of winning the following
game:

(If we are in the public parameters model, assume that the values params and auzext
are fixed; assume that pkp was generated appropriately.)

On input (params, pkj), the adversary Adv plays the following game: Adv executes the
Withdraw protocol and Spend protocol with the bank as many time as it wishes. Let

(b1, 14, w;) € lg be the output of Sv)si;z}gfvviils(pamms, auzext. pk;, by ;, my ;) if the ith
withdrawal protocol was successful. Recall that w; = (Si1,..., Sin, auz) is a list of n

serial numbers: recall that we say that these belong to pk;. Let A; be the list of serial
numbers that belong to public key pk;. Adv wins the game if for some ¢, in some Spend
protocol, the bank, simulating an honest merchant, accepts a coin with serial number
S € Ay twice, 1.e. outputs (5. 1) and (S.m) triggering DetectViolation to accept. and
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yet IdentifyViolator(params, S, my, m3) output a public key pk and a proof II such that
VerifyViolation(params, S, pk, I1) does not accept.

Tracing of double-spenders. Here, we play the same sort of game with the adversary
as above, but we are more generous as to what constitutes the adversary’s success.
Suppose that for some ¢, in some Spend protocol, the honest merchant accepts a
coin with serial number S twice, i.e. outputs (S,7;) and (S,7;), and computes
IdentifyViolator(params, S, my, m3) — (pky,II). Let {S;} be the set of serial numbers
and {I';} be the set of ownership proofs output by Trace(params, S, pky, I, D, n). Adv
wins if (1) there exists some serial number S’ € A, such that S’ & {S;}, or (2) there
exists a serial number S; € {S;} such that VerifyOwnership(params, S;, I';, pk;,, n) does
not accept.

Anonymity of users. (If we are in the public parameters model, assume that the values
params and auxsim are fixed; auzsim is a value available to a simulator but not available
to regular participants in this system.)

Here, let us consider an adversary Adv that forms the bank’s public key pkz and then
issues the following queries, as many as it wants, in any order:

PK of i In this query, Adv may request and receive the public key pk, of user i,
generated honestly as (pk;, sk;) «— UKeygen(1%, params).

Withdraw with ¢ In this query, Adv executes the Withdraw protocol with user i:
Withdraw(U (pkg, ski, n), Adv(state, n))

where state is Adv’s state; let us denote the user’s output after the j'th Withdraw
query by W;; note that W; may be an error message, in that case we say that W;
is an invalid wallet.

Spend from wallet j In this query, if wallet W; is defined, Adv executes the Spend
protocol from this wallet: Spend(U(W;), Adv(state)), where state is the adver-
sary’s state.

We say that Adv is legal if it only spends from valid wallets, and never asks to spend
more than n coins from the same wallet W.

We require the existence of a simulator SX™Y)(params, auzsim, -) such that for all pky,
no legal adversary Adv can distinguish whether he is playing Game R(eal) or Game
I(deal) below with non-negligible advantage:

Game R The queries Adv issues are answered as described above.

Game I The PK and Withdraw queries Adv issues are answered as described above,
but in the Spend query, instead of interacting with U (W;), Adv interacts with the
simulator SXY AN (params, auzsim, pky).
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(The reason this captures anonymity is that the simulator does not know on behalf of
which honest user he is spending the coin.)

Exculpability. Recall that the exculpability property guarantees that only users who really
are guilty of double-spending a coin can ever get convicted of being a double-spender.
Exculpability comes in two flavors: weak exculpability means that only users who
double-spent some coin can be convicted; while strong exculpability means that even a
guilty user who double-spent some coins cannot be convicted of double-spending other
coins, i.e., his guilt can be quantified and he can be punished according to guilt.

To define weak exculpability, we have the adversary Adv launch the following attack
against a user U (assume n is fixed):

Setup The system parameters params are generated and the user’s keys (pky, sky)
are chosen. The adversary chooses the bank’s public key pkg in an adversarial
fashion.

Queries The adversary Adv issues queries to interact with the user U, as follows:

Withdraw wallet j The adversary plays the bank’s side of the Withdraw pro-
tocol with the user U. The user outputs the wallet .

Spend from wallet j; The adversary plays the merchant’s side of the Spend pro-
tocol where U’s input is wallet W;. For each wallet, the adversary is allowed
to execute this query up to n times.

Success criterion In the end, the adversary Adv outputs the values (S,I',II) and
wins the game if VerifyViolation(params, S, I1, pk,,, n) or VerifyOwnership(params,
S, T, pky,n) accepts.

We say that an electronic cash scheme guarantees weak exculpability if the probability
that the adversary wins this game is negligible.

To define strong exculpability, we first insist that corresponding to any wallet W ob-
tained by an honest user even from an adversarial bank, there exist at most n valid
serial numbers. Denote the set of serial numbers corresponding to W by Ay .

The strong exculpability game is somewhat similar to the weak exculpability game:
the setup and the withdraw query are the same. The only things that are different are
as follows:

Queries The adversary issues queries to interact with the user ¥/, in addition to With-
draw above, as follows:

Spend from wallet j The adversary plays the merchant’s side of the Spend pro-
tocol where U’s input is wallet W;. For each wallet, the adversary is allowed
to execute this query as many times as he wishes. Recall that the wallet
keeps state information about how many coins have already been spent, and
a wallet where n coins have been spent is not well-defined. To make this
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query well-defined in that case, let us say that once n coins are spent from
a wallet W, the state information is reset such that it is the same as it was
before any coins were spent.

As a result of this query, the user may produce a serial number that she
had already produced before. Let A; be the set of all serial numbers that
the user has produced in a Spend protocol for wallet j so far. If for any
7, |A;] > n, then the adversary is given the sets of serial numbers AW],, for
all wallets Wy . (This is what the adversary is entitled to because of the
traceability requirement.) Let A} be the set of serial numbers for wallet W
that are known to the adversary. Thus A; = A; if no double-spending has
ever occurred, and A; = Aw, otherwise.

Let Ags be the set of serial numbers that the user has produced more than
once (i.e., double-spent) so far.

Success criterion In the end, the adversary outputs the values (S,II,T") and wins
the game if one of the following conditions is satisfied:

1. The adversary made up a bogus serial number and managed to pin it on the
user; i.e., for all j, S ¢ A} and yet (a) VerifyOwnership(params, S, T, pky, n)
or (b) VerifyViolation(params, S, 11, pk,,, n) accepts.

2. The user has spent fewer than n coins from all of his wallets, and yet the ad-
versary managed to produce proof that the user owns or double-spent some
coin in wallet j; i.e., |Ay| < n for all j, S € A; for some j, and yet (a)
VerifyOwnership(params, S, T, pky,, n) or (b) VerifyViolation(params, S, I1, pky;, n)
accepts.

3. The adversary successfully accuses the user of double-spending a coin which
was not in fact double-spent: S ¢ A4 and VerifyViolation(params, S, I1, pky,, n)
accepts.

In our model, a person s their secret key sky, so any coins obtained by a party in
possession of sky; belong to pky, and any coins double-spent with knowledge of sk
were double-spent by pk;,. For our particular construction in Section 6.5 (System
Two), where one part of sky is revealed after double-spending, we define party U as
those persons in possession of both parts of sky.

Strengthening the definition: the UC framework. Even though our definition of
security is not in the UC framework, note that our definition would imply UC-security [61,
63, 64] whenever the extractor £ and simulator S are constructed appropriately. In a nutshell,
an ideal electronic cash functionality would allow an honest user to withdraw and spend n
coins. In this case, if the merchant and bank are controlled by the malicious environment,
the simulator S defined above creates the merchant’s and bank’s view of the Spend protocol.
At the same time, the balance property guarantees that the bank gets the same protection
in the real world as it does in the ideal world, and the exculpability property ensures that
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an honest user cannot get framed in the real world, just as he cannot get framed in the ideal
world.

One promising approach to realizing an ideal functionality for electronic cash is to take
a modular approach to its definition. That is, to analyze our scheme (or another one) in a
hybrid setting where all parties are given access to ideal functionalities for zero-knowledge
and signatures of knowledge [72]. (For more on where signatures of knowledge come into
play, see Section 6.6.) This way whenever a UC-secure implementation of these ZK-related
components is employed the entire cash system will be UC-secure as well.

6.3 Preliminaries

Our e-cash systems use a variety of known protocols as building blocks, which we now briefly
review. Many of these protocols can be shown secure under several different complexity
assumptions, a flexibility that will extend to our e-cash systems.

6.3.1 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for proving state-
ments about discrete logarithms, such as (1) proof of knowledge of a discrete logarithm
modulo a prime [169] or a composite [105, 86], (2) proof of knowledge of equality of repre-
sentation modulo two (possibly different) prime [78] or composite [56] moduli, (3) proof that
a commitment opens to the product of two other committed values [55, 60, 42], (4) proof
that a committed value lies in a given integer interval [70, 55, 55, 37], and also (5) proof
of the disjunction or conjunction of any two of the previous [84]. These protocols modulo
a composite are secure under the strong RSA assumption and modulo a prime under the
discrete logarithm assumption.

When referring to the proofs above, we will follow the notation introduced by Camenisch
and Stadler [59] for various proofs of knowledge of discrete logarithms and proofs of the
validity of statements about discrete logarithms. For instance,

PK{(a,,6) :y=g°RP Nj = §*h° A (u < a <w)}

denotes a “zero-knowledge Proof of Knowledge of integers o, 3, and § such that y = g*hP
ond § = G*h® holds, where u < a < v,” where G = (g) = (h) and G = (§) = (h). The

convention is that Greek letters denote quantities of which knowledge is being proven, while
all other values are known to the verifier.

We apply the Fiat-Shamir heuristic [98] to efficiently turn such proofs of knowledge into
signatures on some message m; denoted as, e.g.. SPK{(«) : y = g®}(m). Alternatively, it
is possible to avoid the Fiat-Shamir heuristic using inefficient generic tools for robust zero
knowledge. as we will discuss in more detail in the next section.
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6.3.2 Pseudorandom Functions

A useful building block of our e-cash systems is the pseudorandom functions recently pro-
posed by Dodis and Yampolskiy [95], which they expand to verifiable random functions using
bilinear groups. Their construction is:

For every n, a function f € F, is defined by the tuple (G,q, g, s), where G is
group of order g, ¢ is an n-bit prime, g is a generator of G, and s is a seed
in Z,. For any input x € Z, (except for £ = —s — 1 mod g), the function
f6,0.9,s(+), which we simply denote as f2) () for fixed values of (G, g, g), is defined
as g?sy(x) — gl/(s—f—w—H)'

Dodis and Yampolskiy [95] showed that the above construction is a pseudorandom func-
tion, under the y-DDHI assumption, when either: (1) the inputs are drawn from the restricted
domain {0, 1}°(°€*) only, or (2) the adversary specifies a polynomial-sized set of inputs from
Zy before a function is selected from the PRF family (i.e., before the value s is selected).

This is not a problem for our e-cash system, because the DY PRF is evaluated only
on the integers one to the wallet size 2°; thus, since wallets contain at most a polynomial
number of coins in the security parameter, these values can always be submitted in advance
of selecting the DY PRF from its function family. In the event that one wanted to use
our e-cash system as an anonymous credential, and therefore might want to have wallets
containing an exponential number of coins, that is also not a problem due to a recent result
of Camenisch et al. [51], which proves that the DY construction is secure for inputs drawn
arbitrarily and adaptively from Z, under an assumption related to y-DDHI.

As mentioned in the introduction, we could instead substitute in the Naor-Reingold
PRF [149], and replace the y-DDHI assumption with the more standard DDH assumption,
at the cost of enlarging our wallets from O(¢ + k) bits to O(£ - k) bits.

6.3.3 Pedersen Commitments

Pedersen proposed a perfectly-hiding, computationally-binding commitment scheme [161]
based on the discrete logarithm assumption, in which the public parameters are a group G
of prime order ¢, and generators (go, - . . , gm)- In order to commit to the values (v, ..., v,) €
Zy™, pick a random r € Z; and set C' = PedCom(vy, ..., vm;7) = g§ [1e; 95"

Fujisaki and Okamoto [105] showed how to expand this scheme to composite order groups.

6.3.4 CL Signatures

Camenisch and Lysyanskaya [53] came up with a secure signature scheme with two protocols:
(1) An efficient protocol between a user and a signer with keys (pkg, sks). The common input
consists of pk¢ and C, a Pedersen commitment. The user’s secret input is the set of values
(v1,...,v¢,7) such that C = PedCom(vy,...,vs;7). As a result of the protocol, the user

obtains a signature op;(vy,...,ve) on his committed values, while the signer does not learn
anything about them. The signature has size O(£-logq). (2) An efficient proof of knowledge

110



of a signature protocol between a user and a verifier. The common inputs are pkg and a
commitment C. The user’s private inputs are the values (v1,...,v,7), and Tpk S(zrl, ceyUg)
such that C' = PedCom(vy,...,v,;7). These signatures are secure under the strong RSA
assumption. For the purposes of this exposition, it does not matter how CL signatures
actually work, all that matters are the facts stated above.

Our subsequent e-cash systems will require the strong RSA assumption independently of
the CL signatures. By making additional assumptions based on bilinear groups, we can use
alternative schemes by Camenisch and Lysyanskaya [54] and Boneh, Boyen and Shacham [27],
yielding shorter signatures in practice.

6.3.5 Verifiable Encryption

In Section 6.5, we apply a technique by Camenisch and Damgard [47] for turning any
semantically-secure encryption scheme into a verifiable encryption scheme. A verifiable en-
cryption scheme is a two-party protocol between a prover/encryptor P and a verifier /receiver
V. Their common inputs are a public encryption key pk and a commitment A. As a result
of the protocol, V either rejects or obtains an encryption of the value committed to in A
under public key pk. The protocol ensures that V accepts an incorrect encryption only with
negligible probability and that V learns nothing meaningful about the value committed to
in A. Together with the corresponding secret key sk, transcript of this protocol contains
enough information to recover the value committed to in A efficiently. We hide some details
here and refer to Camenisch and Damgérd [47] for the full discussion.

6.3.6 Bilinear El Gamal Encryption

We apply the verifiable encryption techniques above to the basic cryptosystem ¥, from
Chapter 5. Let us review the pieces we will use. Let Bilinear_Setup on 1* output v =
(¢,91,h1,G1, g2, hoy, Gy, Gr,e), where we have bilinear map e : G; x Gy — Gr. Let
(G, E, D) denote the standard key generation, encryption, and decryption algorithms of ¥5.
On input (1%, ), the key generation algorithm G outputs a key pair (pk, sk) = (e(g1, g2)*, g%)
for a random u € Z,. The main idea is that the value g} is enough to decrypt.

To encrypt a message m € Gy under pk, select a random k € Z, and output the
ciphertext ¢ = (g&, pk* - m) = (g%, e(g1, g2)** - m). Then, to decrypt ¢ = (c1,cp) with the
value g, simply compute cp/e(g¥, ¢;). This encryption scheme is semantically-secure under
the Decisional Bilinear Diffie-Hellinan (DBDH) assumption [30], i.e., given (gs, 9%, g5, g5, X)
for random a, b, ¢ € Z, and X € G. it is hard to decide if X = e(g;, g2)**°. (The extended
DBDH assumption is only needed for the re-encryption functionality.) In Appendix A of the
full version of their paper, Boneh. Goh, and Boyen [26] show that DBDH (and its extended
version) are implied by the y-DDHI assumption.

Finally, it is worth mentioning that the only property we require here is that the decryp-
tion key be of the form g¢. Boneh and Franklin presented the first such cryptosystem [30].
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6.4 System One: Compact E-Cash

System One supports the basic algorithms (BKeygen, UKeygen, Withdraw, Spend, Deposit,
DetectViolation, IdentifyViolator, VerifyViolation). In this scheme, a wallet of size O(£ + k) is
sufficient to hold 2¢ coins. Double-spending allows the bank to reveal the public key of the
user, but not to trace her past transactions.

Global parameters for System One. Let 1* be the security parameter and let 2¢ be the
public wallet size. This scheme works most efficiently by having two different groups:

e G = (g), where n is a special RSA modulus of 2k bits, g is a quadratic residue modulo
n, and h € G.

e G = (g), where g is an element of prime order ¢ = ©(2%), h is an element in G, and we
will assume that DDH is hard in G. (This group does not need to be a bilinear group.)

We define PedCom(z1, . .., zn;7) = A"-IIL, ¢*. Sometimes for simplicity we do not explicitly
include the randomness r in the input to the commitment. Elements h, {g;} are assumed
to be publicly known elements of the appropriate group. We also recall that the Dodis-
Yampolskiy PRF, from Section 6.3.2, is defined as f2) (z) = g*/(ste+D).

Let the global parameters above be denoted (.

We now describe the protocols.

Bank Key Generation: BKeygen(1*,(): The bank B generates a CL signature key pair
(pkg, sks) for message space M such that Z, x Z, x Z, C M.

User Key Generation: UKeygen(1¥,(): Each user U generates a unique key pair (pk,,, ski)
= (g, u) for a random u € Z,. Recall that merchants are a subset of users.

Withdrawal Protocol: Withdraw(U(pky, sky, 2%), B(pky, sks,2¢)): A user U interacts
with the bank B as follows:

1. U identifies himself to the bank B by proving knowledge of sky.

2. In this step, the user and bank contribute randomness to the wallet secret s;
the user also selects a wallet secret t. This is done as follows: U selects random
values §',t € Z, and sends a commitment A’ = PedCom(sky,s',t;7) to B. B
sends a random 7' € Z,. Then U sets s = s' + 1. U and B locally compute
A =g" - A’ = PedCom(sky, s + 7', t;7) = PedCom(sky, s, t; 7).

3. U and B run the CL protocol for obtaining B’s signature on committed values
contained in commitment A. As a result, U obtains og(sky, s,t).

4. U saves the wallet W = (sky, s,t, 0p(sky, s,t), J), where s, t are the wallet secrets,
op(sky, s,t) is the bank’s signature, and J is an ¢-bit coin counter initialized to
ZEro.

5. B records a debit of 2¢ coins for account pk,,.
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Outline of Spend Protocol:

At the end of a successful Withdraw protocol, the user obtains a wallet of 2¢ coins
as (sky, s.t,0..J), where o is the bank’s signature on (sky, s,t) and J is an ¢-bit counter.

1. User computes R = H(pk \(||info), where info € {0,1}* is provided by the merchant.

2. User sends a coin serial number and double-spending equation:
S=FPY(J) , T=pky F) ()"

3. User sends a ZKPOK @ of (J, sky, s,t,0) proving that:

e 0< J<2f (standard techniques [70, 55, 55, 37])

e S=FPY(J) (see this chapter)

o T =pky - FY ()R (see this chapter)

o VerifySig(pkyg, (sku, s,t),0) =true (CL signatures [53, 54])

4. If ® verifies, M accepts the coin (S, (R, T, ®)) and later gives it to the bank during
Deposit.

5. U updates his counter J = J + 1. When J > 2¢ — 1, the wallet is empty.

Figure 6-1: A summary of the System One Spend protocol.

Spend Protocol: Spend(U(W, pk ), M(skm, pkg,2°)): Let H : {0,1}* — Z: be a
collision-resistant hash function. We highlight the key components of this protocol
in Figure 6-1. In detail, a user U/ anonymously transfers a coin to merchant M as
follows. (An optimized version appears in Appendix A.)

The protocol follows the outline in Figure 6-1 exactly. The ZKPOK in step 3 can be
done as follows:

1. Let A = PedCom(J); prove that A is a commitment to an integer in the range
[0,2¢ —1].

2. Let B = PedCom(u), C = PedCom(s), D = PedCom(¢); prove knowledge of a
CL signature from B on the openings of B, C and D in that order,

3. Prove S = FquY(J) - gl/(J+s+1) and T = pku ) Fgl,)tY(J)R — gu+R/(.}+l+1)‘
More formally, this proof is the following proof of knowledge:

P}({((M* //37 55 71:727’73) g = (A - C)a - h’)’l A S = ga/\
g=(A-DY-h” A B=g’-h® A T =g (g%}

Use the Fiat-Shamir heuristic to turn all the proofs above into one signature of knowl-
edge. denoted ®. on the values (S,T,A,B,C,D,g.h,n.g, pk.,. R. info).
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Deposit Protocol: Deposit(M(skn, S, 7, pkg), B(pk s, skp)): A merchant M sends to
bank B a coin (S,7 = (R, T, ®)). If ® verifies and R is fresh (i.e., the pair (S, R) is not
already in the list L of spent coins), then B accepts the coin for deposit, adds (S, 7)
to the list L of spent coins, and credits pk ,’s account; otherwise, B sends M an error
message.

Note that in this deposit protocol, M must convince B that it behaved honestly in
accepting some coin (S, 7). As a result, our construction requires the Fiat-Shamir
heuristic for turning a proof of knowledge into a signature. If M and B were the same
entity, and the Withdraw and Spend protocols were interactive, then the bank B would
not need to verify the validity of the coin that the merchant wishes to deposit, and
as a result, we could dispense with the Fiat-Shamir heuristic and thus achieve balance
and anonymity in the plain model (i.e., not just in the random oracle model).

We note that if B was satisfied with detecting/identifying double-spenders, without
worrying about proving anything to a third party, it need only store (S, R,T) in L for
each coin at a considerable storage savings.

Detection of Double-Spending: DetectViolation((, L): If two deposited coins in database
L have the same serial number S; = S, then double-spending is detected.

Identification of a Double-Spender: |dentifyViolator((, S, 71, m2): Suppose (R, T1) € m
and (R, Ty) € m, are two entries in the bank’s database L of spent coins for the same
serial number S. Then output the proof of guilt IT = (7, m2) and the identity of the

—_R)-1
user pk‘ - (Tle/Tle)(Rl R2) .

Let us explain why this produces the public key pk;, of the double-spender. Suppose
coin S belonged to some user with pk,, = g*, then each T is of the form g*+#“ for
the same values u and a. (Either this is true or an adversary has been successful in
forging a coin, which we subsequently show happens with only negligible probability.)
As the bank only accepts coins with fresh values of R (i.e., Ry # Ry), it allows the
bank to compute:

R
(T2 1)(R1_R2)—1 guR1+R1R2a (R1—R2)~! u(R] - Ro)

—(Z _ — U
T, *e - guR2+R1R2a) =g = g" = pky.

Verify Guilt of Double-Spending: VerifyViolation(params, S, pky, II) : Parse IT as (1, 72)
and each 7; as (R;, T;, ®;). Run IdentifyViolator(params, S, m,m2) and compare the
first part of its output to the public key pk;, given as input. Check that the values
match. Next, verify each ®; with respect to (S, R;,T;). If all checks pass, accept;
otherwise, reject.

Efficiency Discussion of System One. The dominant computational cost in these pro-
tocols are the single and multi-base exponentiations. In a good implementation, a multi-base
exponentiation is essentially as fast as an ordinary exponentiation. While we do not provide
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the full details of the Withdraw protocol, it can easily be derived from the known protocols
to obtain a CL signature on a committed signature [53, 48]. Depending on how the proof of
knowledge protocol is implemented, Withdraw requires only three moves of communication.

The details of (an optimized version of) the Spend protocol are given in Appendix A.
One can verify that a user must compute seven multi-base exponentiations to build the
commitments and eleven more for the proof. The merchant and bank need to do eleven
multi-base exponentiations to check that the coin is valid. The protocols require two rounds
of communication between the user and the merchant and one round between the bank and
the merchant.

Theorem 6.1 (Security of System One). System One guarantees balance, identification
of double-spenders, anonymity of users, and strong exculpability under the Strong RSA and
y-DDHI assumptions in the random oracle model.

Proof. Balance. Recall that the Withdraw and Spend protocols are executed sequentially,
or with some bounded amount of concurrency that allows for rewinding.

Part 1. Let Adv be an adversary who executes £ Withdraw protocols with an extractor
£= Eﬁfgjr(x':{lq acting as the bank (with knowledge of skg). £ behaves exactly as an honest
bank would in all but step 3 of Withdraw. In this step, £ must run its share of the CL
protocol for obtaining a signature on the values in commitment A = gf - gfk“ g5 gt =
PedCom(sky, s,t;7). As part of this protocol, Adv is required to prove knowledge of the
values (sky,s,t,7) in the standard way (see Section 6.3.1). Here, & will either rewind Adv
(interactive proof) or use its control over the random oracle (non-interactive proof using
Fiat-Shamir heuristic) to extract the values (sky, s, t, ).

From the value s, £ can compute w = (S,..., Sy, sky, s, t,7) such that S; = Fgl?sy(i),
for i = 0 to n — 1. At the end of each Withdraw execution, £ outputs (stateg, A, w) € Ig,
where the language [g is the set of triples (-, A, w), where the first element may be anything,
but the second two must conform to the specification for w immediately above. Let A, =
{S;;11 <i<£,0<j<n—1} be the list of serial numbers after £ executions of the Withdraw
protocol.

Part 2. Due to the soundness of the underlying proof of knowledge protocols, we know
that A, contains all valid serial numbers that Adv can produce, except with negligible proba-
bility. Thus, if Adv is to succeed at its game, it must convince an honest B to accept a serial
number for which it cannot generate an honest proof of validity with some non-negligible
probability.

Now suppose Adv convinces an honest B to accept the invalid coin (S, 7) during Deposit,
where S ¢ A, and 7 = (R,T,®). Then Adv must have concocted a false proof as part
of the signature proof ® that: (1) A opens to an integer in [1,...,2¢] or (2) Adv knows
a signature from B on the opening of B, C,D or (3) that S (and T) are well formed as
in . Case (1) happens with negligible probability (k) under the Strong RSA assump-
tion [70. 55, 55, 37]. Case (2) happens with negligible probability v5(k) under the Strong
RSA assumption [53]. Case (3) happens with negligible probability 13(k) under the discrete
logarithm assumption [169]. Thus, the Adv succecds in this case with negligible probability
vy (k) +wa(k)+v3(k). Thereby, Adv’s total success probability in both parts is also negligible.
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Identification of double-spenders: Let us first point out a case in which this property
does not apply. Observe that whenever the bank issues a CL signature on wallet secrets s, s’
such that |s — s| < 2¢, the recipients of these signatures can both generate valid spending
proofs for some coin § = f2Y(1) = fE¥ (s — &' + 1) = g"/*1). Thus, there will be two valid
entries in the bank’s database as (S,7;) and (S, 7). This may look suspicious, but since
double-spending has not occurred, this property does not apply. That said, we point out
that the domain from which s is sampled is large enough that this is not a problem. During
step 2 of the Withdraw protocol, both the bank and user contribute to the randomness used
to select s € Z,. Thus, so long as one of them is honest, s will be 2¢far from any other s’
with probability 2¢71/q.

We now return to our main proof. As defined in balance, let £ = 8\,’3{3,;5,‘:;;),1 . be the
extractor that interacts with the adversary Adv during the Spend protocols to extract a set
of valid serial numbers A, = {Sz-7j|1 <1< /4,0 <j<n-1}. Now, suppose the honest
merchant M (simulated by the bank) accepts two coins (S, m;) and (S, 72) for some S € A,.
(We already saw in balance that the adversary cannot get an honest merchant to accept
S ¢ A, with non-negligible probability.)

Parse each 7; as (R;, T;, ®;). Since an honest M chooses a fresh value info, where R =
H (id p|info), during each new Spend protocol, we know that R; # Ry with high probability.
We also know, due to soundness of ZK proof of validity, that each T; = pky, - FY (J + 1) for
the same values of pk,,, J and t. Thus, the success of IdentifyViolator(¢, S, m, 72) in recovering
pk,; = g* follows directly from the correctness of the algorithm.

Anonymity of users: We capture anonymity by describing the simulator S for our con-
struction. Let the adversary Adv, representing a colluding bank and merchant(s), create and
publish a public key pkz. Next, Adv may request the public key pk; of any user i. The
adversary can engage in the Withdraw protocol with any user i as many times as he likes.
Finally, Adv will be asked to engage in a legal number of Spend protocols with some real user
4 (with a real wallet W;) or a simulator S (without W; or even knowledge of j).

The simulator S = STO-ROAN)(params, auzsim, n) is given as input the global parameters
params, some additional information auzsim possibly required by other simulators called as
subroutines, and the total number of coins in a valid wallet n. This simulator S is given
control of the random oracle as well as input-output access to the adversary Adv.

Our simulator S executes each new Spend request by Adv as follows:

1. S receives an optional transaction string info € {0,1}*.
2. S gathers the appropriate transaction information, such as info, pkg, current time,
etc., and computes R = H(id p]|info).
3. Next S chooses random values u,s,t € Z, and a random J € [0,...,n — 1], and
computes S = f2F(J +1) and T = g*- F)Y (J + 1)
. S sends Adv the coin (S, 7), where 7 = (R, T, ®), and ¢ is the following simulated
signature proof ®:

W

(a) A = PedCom(J + 1) and a (real) proof that A is a commitment to an integer in
the range [1,....n],
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(b) B = PedCom(u), C = PedCom(s), D = PedCom(t) and a simulated proof of
knowledge of a CL signature from B on the openings of B, C and D in that order.
(S invokes the appropriate CL simulator [53, 54] for this step, which requires

control of the random oracle.)
(c) and a (real) proof I' that S = g¥/(/*s+1) and T = gutB/(/+t+1),

Observe above that all the difficulty of S’s job is handled by the simulator for a proof of
knowledge of a CL signature, which uses standard techniques.

We now explain why the output of S is computationally indistinguishable from the output
of a real user. First, during the Withdraw protocol, Adv does not learn anything about the set
of secrets (v, &', t') that it signs due to the security of the CL signatures. In fact, these values
can be information-theoretically hidden from Adv by requesting a signature on (v, ', ¢, 7”)
for a random 7’ that is otherwise discarded [53, 54].

Thus, the values s and t chosen by S are indistinguishable from those chosen by real
users. Recall that a coin consists of the tuple (S, (R, T, ®)), where R is (indirectly) chosen
by Adv. Due to the security of the DY PRF [95], the coin parts S = FY(J + 1) and
T = g*- FPY(J + 1)® are computationally indistinguishable from random elements in Go,
and therefore, equally likely to have been generated by any user with pk;, = g% and with
any coin counter value J € [0,...,n — 1]. Observe that T looks random due to the fact that
Fg?tY(J +1) is computed in a cyclic group of prime order, and is thus a random generator in
G raised to an arbitrary, non-zero power. Finally, recall that our simulated ® consisted of a
group of (perfectly hiding) Pedersen commitments, two true proofs, and one simulated proof.
The simulated proof is the only difference between S’s ® and that of a real user. However,
we ran the CL signature proof simulator to generate the simulated proof, and thus, by the
security of the protocols associated with CL signatures, Adv distinguishes between Game R
(with a real user) and Game I (with S) with only negligible probability based on Strong
RSA [53].

Strong Exculpability: In our construction, it is easy to see that corresponding to a wallet
W, even one obtained as a result of interacting with a malicious bank B, there are exactly
n serial numbers that an honest user & can produce. Each serial number is a deterministic
function FD Y)(J ) of the seed s and the counter J € [0,n — 1]. Since a user must provide
a ZK proof of validity for each coin, to spend n + 1 or more times from the same wallet
requires that two coins have the same serial number by the pigeonhole principle.

In our construction, we did not define a VerifyOwnership algorithm, because it is an
algorithm associated with tracing coins and System One does not support tracing. Let us
now define it as the algorithm that rejects on all inputs. Thus, all parts of the exculpability
definition relating to VerifyOwnership are trivially satisfied.

It remains to argue that Adv cannot, after playing the strong exculpability game, output
values (S, IT) such that VerifyViolation(params, S, I1, pky,, n) accepts and yet this user did not
double-spend this particular coin S. This is also fairly trivial. Recall that in System One
the proof of guilt is II = (7, 72) such that the coins (S, ;) and (5, 7;) were accepted by
honest merchants. Part of the proof of validity = involves proving knowledge of the user’s
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secret key sk, (see step 3(c) of Spend). Recall that even by double-spending, a user’s public
key is the only information leaked. Due to the soundness of our ZK proofs, it must have
been the user, with knowledge of sky, that spent coin S twice. O

6.4.1 System Zero: A Simpler E-Cash System

Let us step back for a moment. Not all e-cash applications require that double-spenders
be identified. For example, when the bank and the merchant are the same entity (e.g., an
online service), it might be enough to detect and block double-spending.

Consider the following reduced system: a wallet simply consist of a PRF seed s, the
bank’s signature on s, and a counter J: (s, 05(s), J). To spend a coin, the user produces the
serial number fPY (J) along with a proof of its validity.

The benefit for removing the identification requirement is two-fold: our protocols become
more efficient (roughly 25% computation savings) and users are not required to generate and
register a public key. The compactness of this new wallet remains superior to all existing

online e-cash systems, e.g., [74, 75, 76].

6.5 System Two: Compact E-Cash with Tracing

We now extend System One to allow coin tracing. Let us begin by sketching how this can
be accomplished. Suppose for the moment that the IdentifyViolator algorithm recovered sk,
rather than pk; for a double-spender. We change the withdrawal protocol so that the user
U must also provide the bank B with a verifiable encryption of her wallet secret s (used
to generate the coin serial numbers) under her own public key pky. This way, if U double-
spends, B can recover sk, decrypt to obtain her secret s, and compute the serial numbers
S; = fPY (i), for i = 0 to 2° — 1, of all coins belonging to U.

(Notice that recovering sky; would actually allow the bank to decrypt all ciphertexts
corresponding to different wallets for user U, and thus, trace all coins withdrawn from
account pk,,. We will return to this point later.)

Now that we understand the high-level construction, we will go into more details as
to how we realize it, because some technical issues arise. Recall that a user’s keys in the
previous system were of the form pk,, = ¢* and sky = u, and that the IdentifyViolator
algorithm recovered g* when a user double-spent. Suppose there was a semantically-secure
cryptosystem where the value g* was sufficient to decrypt and the new public key was a
one-way function of g*. Given such a cryptosystem, we can use the verifiable encryption
techniques of Camenisch and Damgard, as described in Section 6.3.5, which can be applied
to any semantically-secure encryption scheme. This will allow user U to leave a verifiable
encryption of her wallet secret s under her own pk;, with the bank B during the withdrawal
protocol. No one but U knows the corresponding sky. However, by using the same coin
structure as System One, double-spending allows B to recover the value g*. Thus, B can
decrypt the ciphertexts and trace the cheating user’s coins. All we need is a cryptosystem
with keypairs of this new forni.
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Luckily, the bilinear El Gamal scheme (see Section 6.3.6) does exactly this. It supports
public keys of the form pk;, = e(g1,92)", for u € Z,, where knowing g} is sufficient for
decryption. This would be the entire solution, except one technical difficulty arises.

The Problem with Plugging in a Bilinear Group. The Dodis-Yampolskiy PRF [95],
used in the double-spending equation, is only known to be a PRF in groups where DDH is
hard. However, to recover the decryption key g} for the bilinear El Gamal cryptosystem,
we need to set the double-spending equation in the group G;, where there exists a mapping
e : G; x Gy — Gy, and thus DDH may be easy. Obviously, this is a problem, because the
anonymity of the coins relies on the pseudorandomness of the PRF.

We propose two different solutions under two different assumptions to overcome this
technical hurdle. Let us now describe these two solutions, and then provide a detailed
construction using the second one.

6.5.1 Solution #1: Use DY PRF, make XDH Assumption.

As described in Chapters 2 and 3, the XDH Assumption posits that DDH is hard in G,
given the existence of e : G; X Gy — Gr. If XDH holds, then our construction above just
works. We may continue to use the DY PRF [95] to create our coins, as we did in System
One. Where we used G, a generic group of prime order where DDH was hard, in System
One, we can now replace it with Gr, the range of the bilinear mapping, for all items ezcept
the double-spending equation T; = g} - f2 (¢) which is now set in G;. The user’s key pairs
are now of the form pk;,, = e(g1, g2)" and sky = u for the bilinear El Gamal cryptosystem
(Chapter 5), where g} is sufficient for decryption.

Due to the obvious similarities with System One, the above coinments are sufficient to
describe the entire system.

6.5.2 A New PRF for DDH-Easy Groups

Suppose that DDH is not hard in G;. Is there another PRF that we can employ instead? We
are aware of only one candidate PRF for a DDH-easy group due to Dodis [89]. Unfortunately,
we could not adapt his construction for use in System Two without performing expensive
proofs of knowledge. For efficiency reasons, we instead propose a new PRF construction [49]
specifically to solve our problem. In Section 6.5.3, we give a second solution using our PRF.
Let us begin by recalling the definition of a sum-free encoding as given by Dodis [89).

Definition 6.2 (Sum-Free). We say that an encoding V : {0,1}" — {0,1}™ is sum-
frec if for all distinct elements a,b,c,d in the set of encodings {V(s)}sefoayn, 1t holds that
a+b#c+d, where a,b.c,d are viewed as m-bit 0/1-vectors and + is bitwise addition over
the integers.

Recall that bitwise addition and subtraction does not allow for carry bits; e.g., the bitwise
addition of binary strings 011 and 001 over the integers is 012.

Dodis [89] proved that if V' is any sum-free encoding, and (g) is a group of order g, then
j';_v(_). defined as follows. is a PRF: the seed for this PRF consists of values t; € Z,, for

119



0 < i< 30 let t = (to,...,ts); the function f;’{ is defined as

f;/f(:c) = gloTlvin=1ts,

Dodis’ proof holds under the Sum-Free DDH assumption (also introduced by Dodis [89]). As
he observes, it seems reasonable to make such an assumption even of groups where DDH is
easy, because the sum-free property precludes trivial use of the bilinear map to solve DDH.

For our purposes, we need the encoding V' to have nice algebraic properties. We define
an encoding V' : {0,1}* — {0,1}* as V(x) = x o 2%, where o denotes concatenation, and
multiplication is over the integers.

Lemma 6.3. The encoding V(z) = x o z? described above is sum-free.

Proof. Observe that V : {0,1}* — {0,1}%. Suppose that A, B,C,D are elements of
{V(s)}sefo,1)¢- We can parse each element as A = a 0 a?, B = bo b?, etc.

We show that if A+ B = C+ D, then without loss of generality a = ¢ and b = d, implying
that A, B,C, D are not distinct. If A+ B = C + D, it follows that

a+b = c+d (6.1)
A+ = A+ d (6.2)

For the moment, let + and — be addition and subtraction, respectively, over the integers.
We can rearrange equation 6.2 as a? — d? = ¢® — b?. By factoring this new equation, we have
(a +d)(a —d) = (c+ b)(c —b). We can rearrange equation 6.1 as a —d = ¢ — b. We can
then substitute this into the previous equation to obtain (a +d)(a — d) = (¢+b)(a — d). By
canceling (a — d) from both sides, we arrive at a +d = ¢+ b. Subtracting equation 6.1, we
have d — b = b — d, which implies 2d = 2b, and d = b directly follows. The same logic shows
that ¢ = a.

Lastly, it suffices to observe that this analysis is the same when + and — are bitwise
addition and subtraction, respectively. O

6.5.3 Solution #2: Use CHL PRF, make Sum-Free DDH Assump-
tion.

Solution #1 has the benefit of being very simple and efficient, however, it cannot be im-
plemented using supersingular curves. Using the PRF just presented, however, we devise a
second solution that is conjectured to work in either ordinary or supersingular curves. Instead
of using the DY PRF everywhere, we instead use the new PRF in only the double-spending
equation T'.

We now present the details of System Two implemented according to this strategy.
Global parameters for System Two. Let 1* be the security parameter and let 2¢ be the
public wallet size. This scheme works most efficiently by having four different groups:

e G = (g). where n is a special RSA modulus of 2k bits, g is a quadratic residue modulo
n. and h € G.
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e G, = (g1) = (h1). G2 = (g2) = (h2), and Gr of prime order ¢ such that exists a bilinear
mapping e : G; x Gs — Gr.

Let the global parameters above be denoted (.

Our second system supports all algorithms mentioned in Section 6.2, specifically includ-
ing the tracing algorithms: (BKeygen, UKeygen, Withdraw, Spend, Deposit, DetectViolation,
IdentifyViolator, VerifyViolation, Trace, VerifyOwnership). We assume a standard signature
scheme (SKeygen, Sign, SVerify).

Bank Key Generation: BKeygen(1*,(): The bank B generates a CL signature keypair
(pkg, skg), as before, in the group G with composite modulus n, although they could
moved to the bilinear groups [54].

User Key Generation: UKeygen(1¥,(): Each user U runs the signature key generation
algorithm SKeygen(1*,() — (svky, ssky) and the bilinear El Gamal key generation
algorithm to obtain (eky, dky) = (e(g¥, g2), 9}), and outputs pk, = (eky, svky) and
sky = (dky, ssky).

Withdrawal Protocol: Withdraw(U(pky, sky, 2°), B(pky, sks,2¢)): A user U interacts
with the bank B as follows:

1. U identifies himself to the bank B by proving knowledge of sky = (dky, ssku).

2. As in System One, in this step, I and B contribute randomness to the wallet
secret s, and the user selects wallet secrets ¢ = (to, ..., tae), where t; € Z, for all
i. As before, this is done as follows: U chooses random values s’ and £, and sends
the commitment A’ = PedCom(u, s', 1) to B, obtains a random 7/, sets s = s’ + 77,
and then both & and B locally set A = g™ - A’ = PedCom(u, s, £).

3. U forms a verifiable encryption @ of the value s under his own key eky = e(g¥, g2).
(This encryption can be proved correct relative to commitment A.) @ is signed
by U. B verifies the correctness of () and the signature ¢ on Q). U obtains a CL
signature from B on the values committed in A via the protocol for getting a
signature on a set of committed values.

4. B debits 2¢ from account pk,,, records the entry (pky, @, o) in his database D,

and issues U a CL signature on Y.

U saves the wallet W = (sky, s,t, 0p(u, s,1), J), where J is an £-bit counter set

to zero.

_C,Yl

Spend Protocol: Spend(U(W, pk ), M(sk, pkg,2%)): The only change from System
One is in the calculation of the security tag T and the subsequent proof ®. Assume
info € {0,1}* and R € Z are obtained as before.

Recall the details of the serial number of the coin § = f2¥,(J) = gD the security

1+ Rt NG —1y i . . .y
tag T = dky - fg‘f AN = 9 oMeven=n® -y signature proof ® of their validity
consists of:
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Outline of Spend Protocol:

At the end of a successful Withdraw protocol, the user obtains a wallet of 2¢ coins
as (sky, s, to, - - -, t3¢,0,J), where o is the bank’s signature on (sky, s, %o, ...,t3) and J is
an f-bit counter.

1.
2.

. If ® verifies, M accepts the coin (S, (R, T, ®)) and later gives it to the bank during

User computes R = H(pk »,||info), where info € {0,1}* is provided by the merchant.

User sends a coin serial number and double-spending equation:

S=F(J) , T =pky-F ()"

ar,s

User sends a ZKPOK @ of (J, sky, s, to, . . ., t3g, o) proving that:

e 0<J< 2t (standard techniques {70, 55, 55, 37])
e S=FPY(J) (see this chapter)
o T =pk, - Fg‘;t-(J B (see this chapter)
o VerifySig(pkg, (sku, s, to, - - - , tar), o) =true (CL signatures [53, 54])

Deposit.
U updates his counter J = J + 1. When J > 2° — 1, the wallet is empty.

Figure 6-2: A summary of the System Two (Solution #2) Spend protocol.

(a) Ay = PedCom(J) and a proof that A is a commitment to an integer in the
range [0,2¢ — 1]; a commitment A; = PedCom(J?) and a proof that it is a
commitment to the square of the opening of Ay; and finally, a commitment Ay =
PedCom(V (J)) = PedCom(J o J?) and a proof that it was formed correctly.

(b) B; = PedCom(V(J);) for ¢ = 1 to 3¢ (commitments to the bits of V(J)) and proof
that each B; opens to either 0 or 1; that is, PK{(71,72) : Bi/g = h" VB; = h"?},

(c) proof that A, and {B;} are consistent; PK{(v): Az/(g" Hfil B2 =h},

(d) commitments to U’s secret key u, and wallet secrets s and t: C = PedCom(u),
D = PedCom(s), E; = PedCom(t;) for i = 0 to 3¢, and proof of knowledge of a
CL signature from B on the openings of C, D, and all E;’s in that order,

(e) the following commitments that will help in proving that 7' was formed correctly:
Fo=Eq, F; = PedCom(H{jg:v(.,)jzl} t;) for i =1 to 3¢,

(f) a proof that § = f2¥(J) and T' = gf - (| ;/M—(J))R (We provide more details of
this step in Appendix A.2.) Proving the statement about .S is done as in System
One. Proving the statement about T' can be done as follows: Prove, for every
1 < i < 3¢ that F; was formed correctly, corresponding to the committed value ;
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and the value (bit) contained in the commitment B;. That is to say:

PK{(«,3,6) : F;=PedCom(a) A F;_; =PedCom(3) A
E; = PedCom(§) A ((Bi = PedCom(0) A a=pj) V

(B; = PedCom(1) A a =g 5))}

Note that, if all F;’s are formed correctly, then F'3, is a commitment to the discrete
logarithm of the value fg‘f AJ) which is to-n?il th(J))i . So we can prove the validity
of tag T as follows:

PK{(a,B) : T = g>"P® A C = PedCom(a) A F3, = PedCom(8)}

As in System One, using the Fiat-Shamir heuristic we turn these multiple proofs of
knowledge into one signature, secure in the random-oracle model.

Deposit Protocol: Deposit(M(sk, S, 7, pkg), B(pk o, skp)): Same as System One: M
sends B the coin (S, 7 = (R, T, ®)). During deposit, the bank may store only (S, R, T)
in database L to obtain all desired functionality — except the ability to convince a third
party of anything, such as a double-spender’s identity or which coins belong to him.

Detection of Double-Spending: DetectViolation((, L): Same as System One: if two
deposited coins in database L have the same serial number S; = S, then double-
spending is detected.

Identification of a Double-Spender: IdentifyViolator((, S, m,72): Similar to System

_ -1
One: compute the identity of the user g} = (TQRI /TlRZ)(R1 R2) , then output the
proof of guilt (g}, m,72). Recall that g¥ is secret information about the user with
public key e(g1, g2)*.

Alternatively, II could just be g} since this secret information would not be leaked
unless the user deviated from the described protocols. However, since a user could have
her secret key stolen, for policy reasons we keep the proof of guilt as the transaction
logs in L allowing to compute gf.

Verify Guilt of Double-Spending: VerifyViolation((, S, pk;,, I1): Same as System One:
run the IdentifyViolator algorithm on the two coins contained in II, accept if the output
corresponds to the user with key pk,,.

Trace Transactions: Trace((, S, pky,, IT, D, 2¢): Parse Il as (dk, 71, 7o) and pky, as (eky, svky).
The bank checks that e(dk, go) = eky; if not, it aborts. Otherwise the bank searches
its database D, generated during the withdrawal protocol, for verifiable encryptions
tagged with the public key pk,,. For each matching entry (pky. @, o). B does the follow-
ing: (1) runs the Camenisch-Damgard decryption algorithm on ¢ with dk to recover
the value s: and (2) then for i = 0 to 2° — 1, outputs a serial number S; = fPY (i) and
a proof of ownership I'; = (Q, o, dk, 7).
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Verify Ownership of Coin: VerifyfOwnership((, S, T, pk;,, 2¢): Parse the proof I as (@, o,
dk, i). Check that o is pk,,’s signature on @ and that i is in the range [0, 2* — 1]. Next,
verify that dk is pk,,’s decryption key by checking that e(dk, g») = eky. Finally, run the
verifiable decryption algorithm on @ with dk to recover s’ and verify that S = gl?’;, (7).
If all checks pass, the algorithm accepts, otherwise, it rejects.

Efficiency Discussion of System Two. In Withdraw, the number of communication
rounds does not change from System One, but one of the multi-base exponentiations will
involve 3¢ bases and hence its computation will take longer. Let us discuss the computational
load of the verifiable encryption. For a cheating probability of at most 27%, the user must
additionally compute k exponentiations and 2k encryptions with the bilinear El Gamal
scheme. To verify, the bank also must perform & exponentiations but only k& encryptions.
Upon recovery of the double-spender’s secret key, the bank needs to perform at most k
decryptions and k exponentiations. Furthermore, the bank needs to compute all the 2¢ serial
numbers each of which takes one exponentiation.

Details of the proof in step (f) of the Spend protocol are in Appendix A.2. In Spend,
the user must compute a total of 7+ 9¢ and 17 4+ 214 multi-base exponentiations for the
commitments and the signature proof, respectively. The merchant and the bank also need
to perform 17 + 21¢ multi-base exponentiations. For each of these, there is one multi-base
exponentiation with 3¢ exponents while all the others involve two to four bases.

Theorem 6.4 (Security of System Two). System Two guarantees balance, identification
of double-spenders, tracing of double-spenders, anonymity of users, and weak and strong
ezculpability under the Strong RSA, y-DDHI, and either the XDH (using Solution #1) or
Sum-Free DDH (using Solution #2) assumptions in the random oracle model.

Proof sketch. Balance: Part 1. The extractor £ = Sf,f,:jr(f‘vf:),ls proceeds exactly as in
System One, the only difference being that this time he will Tecover IMore messages, e.g.,

(U, S,t0,- -, th)'

Part 2. As before, we know that Adv cannot produce a truly valid serial number S (i.e.,
one for which it need not fake a proof of validity) which is not in the set Af output by the
extractor except with negligible probability. So it remains to analyze Adv success in faking
proofs of validity for S & A,. The analysis is similar to before, except that the signature
proof 7 = (R, T, ®) is more complicated. If Adv succeeds in convincing B to accept (S, ),
then he must have concocted a false proof as part of ® that: (1) A opens to an integer in
[1,...,2Y or (2) some B; opens to either 0 or 1 or (3) A and {B;} are consistent or (4)
Adv knows a signature from B on the opening of C, D, {E;} or (5) that S (and T') are well
formed as in I'. Case (1) happens with negligible probability (k) under the Strong RSA
assumption (70, 55, 55, 37]. Cases (2), (3), and (5) happen with negligible probability v (k)
under the discrete logarithm assumption [169]. Case (4) happens with negligible probability
vs3(k) under the Strong RSA assumption [53]. Thus, Adv’s total success probability is also
negligible.
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Identification of double-spenders: The identification of double-spenders property of
System Two follows directly from the proof of this property for System One.

Tracing of double-spenders: First, the adversary has only negligible chance of winning
by the existence of a serial number S’ € A, not output by Trace. This is because, in each
Withdraw protocol, the secret s that £ extracts (to generate S; = f2¥. (), for 0 <4 < n, for
Ag) is also verifiably encrypted under the user’s public key eky, = e(g1, g2)* and given to the
bank. Due to the completeness of the bilinear El Gamal scheme (8] and the soundness of
the verifiable encryption protocol of Camenisch and Damgard [47], we know that the bank
can decrypt to obtain s once part of the user’s secret key ¢} is known. For System Two,
it is easy to see that g} can be recovered from double-spent coins given the identification
of double-spenders property above. (Recall that in System Two, one computes the user’s
secret information gf on the way to finding part of the user’s public key eky.) With high
probability, the Trace algorithm will obtain s, for each wallet, and output all serial numbers
in Ag.

Secondly, the adversary has only a negligible chance of winning by the existence of a
serial number S; and corresponding proof I'; output by Trace(params, S, pky, II, D, n) such
that the algorithm VerifyOwnership(params, S;,T';, pk;,,n) does not accept. This is because
verifying the ownership of a coin S; in our construction is tantamount to re-running the
(deterministic) Trace algorithm and checking its output.

Anonymity of users: The proof of anonymity for System Two follows that of System One,
with the three exceptions being that:

1. One must argue that Adv does not learn any information about the users during the
verifiable encryption protocol added to Withdraw that will later help it distinguish.
This follows from the semantic-security of the bilinear El Gamal scheme [8] and the
verifiable encryption technique of Camenisch and Damgéard [47] which rely on the
DBDH (which is later subsumed by the y-DDHI assumption in the theorem statement,
as we discussed in Section 5.3.3) and the Strong RSA assumptions, respectively.

2. The assumption under which we claim that double-spending equation T is indistin-
guishable from a random element in G; due to the pseudorandomness of our new PRF
fi..4() changes from y-DDHI to Sum-Free DDH.

3. And finally, although the simulated signature proof ® is more complicated, it remains
that the only simulated part of ® is performed for S (with 10, random oracle access)
by the CL protocol simulator under the Strong RSA [53].

Strong Exculpability: In this system, the proof of guilt corresponding to VerifyViolation is
identical to System One: two valid coins (S, m;) and (S, ws) such that IdentifyViolator(params,
S, my, Te) outputs gfk“ associated with the user. The only difference here is that gfk“ is part
of the user’s secret information as opposed to being her public key as in System One. Recall
that knowledge of the value sky is required to create a coin proof of validity 7; it is not

sk . .
enough to know ¢™. This comes from step (d) of the Spend protocol. where the user is



required to prove knowledge of the opening of commitment C = PedCom(sk;,) as part of the
CL protocol. Thus, Adv cannot output two such proofs for coin S unless he asks the user to
make them.

Unlike System One, this system has a non-trivial VerifyOwnership algorithm defined.
First, we claim that no adversary can produce a serial number S that does not belong to the
set of serial numbers of & known to Adv, and a proof I' such that VerifyOwnership(params,
S, T, pky,, n) accepts with non-negligible probability. Recall that a proof for VerifyOwnership
in System Two consists of (Q, o, dk, ), where Q) is a verifiable encryption of a wallet secret
s, o is the user’s signature on @, dk is the user’s decryption key, and i is an integer in
[0,...,2¢ — 1]. There is only one dk corresponding to eky € pk; (which is easy to test as
e(dk, g2) = eky). Decryption of Q, to say s, given dk is deterministic, as is checking that
S = fOY ,».s(®) for i in the right range. Thus, to forge a proof of ownership against pk
for a serial number S, the adversary needs to produce a seed s and number J such that
S =FZr ys(J+1), and a ciphertext @ that is an encryption of s signed by U’s signing key.
It is easy to see that the ability to do so violates either the security of the signature scheme
used for signing @) (using CL signatures [53] this is under Strong RSA) or the completeness

of the encryption scheme used to generate the ciphertext Q. O

6.6 On Removing Random Oracles

Our proofs of security for both System One and System Two are in the random oracle
model (in addition to the common parameters model). In the random oracle model, when
proving security, control over the output of the hash function is given to the simulator or
extractor. This model is very attractive because it often enables simple, efficient proofs.
Canetti, Goldreich, and Halevi first exposed flaws in this model by presenting a (contrived)
cryptographic protocol that is provably secure in the random oracle model, but for which
there provably does not exist a real hash function that can securely implement it [66].

In our systems, we use random oracles in only one way: the Fiat-Shamir heuristic [98],
which is a method of turning interactive proofs of knowledge into non-interactive ones via
a hash function. Unfortunately, Goldwasser and Kalai [115] demonstrated that this is not
always theoretically sound. There has not, however, been a practical attack on Fiat-Shamir
based protocols, and the results of Goldwasser and Kalai leave open the possibility that some
uses of this heuristic may be sound.

So, why not perform interactive proofs and dispense with these random oracles? We
can, in all protocols except Spend. The reason is that a spent coin consists of (S, R, T, @),
where ® is a non-interactive, publicly-verifiable proof of validity. The user must give this
to the merchant during Spend; then the merchant must be able to pass on this proof to the
bank during Deposit; finally, the bank must have the proof available for VerifyViolation and
VerifyOwnership.

While the Fiat-Shamir heuristic is not the only method for removing interaction from
proofs, it does more. It allows for signatures of knowledge (or signature proofs of knowl-
edge) [59]. where we can think of the witness to the proof as a secret key that can be used
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to sign messages. That is, a verifier can check that someone who knew a witness to a public
statement also certified a given message. We use this property to efficiently bind all pieces of
the coin together and to optionally include additional information specific to a transaction,
such as the merchant’s identity, so that the merchant is the only person who can deposit a
particular spent coin. (And thus a hacker cannot steal and then deposit a merchant’s coins.)

The concept (and name) of a signature of knowledge was first introduced by Camenisch
and Stadler [59] in 1997. Recently, Chase and Lysyanskaya provide a formal treatment
of this primitive [72]. As one of their results, they provide an (inefficient) construction
in the common random string model that assumes a simulation-sound non-interactive zero
knowledge proof system for efficient provers and a special type of encryption scheme, where
the public keys are uniformly distributed bitstrings. Their construction does not require
random oracles. We could use their tool to remove random oracles from our compact e-cash
construction, and our protocols would remain polynomial-time, but the efficiency of our
Spend protocol would become too expensive to be used in practice today.

6.7 Contributions

This chapter presents efficient off-line anonymous e-cash schemes where a user can withdraw
a wallet containing 2¢ coins each of which she can spend unlinkably. Our first result is a
scheme, secure under the strong RSA and the y-DDHI assumptions, where the complexity
of the withdrawal and spend operations is O(£+ k) and the user’s wallet can be stored using
O(£+k) bits, where k is a security parameter. The best previously known schemes require at
least one of these complexities to be O(2¢- k). In fact, compared to previous e-cash schemes,
our whole wallet of 2¢ coins has about the same size as one coin in these schemes. Our
scheme also offers exculpability of users, that is, the bank can prove to third parties that a
user has double-spent. This scheme does not require bilinear groups.

We then extend our scheme to our second result, the first e-cash scheme that provides
traceable coins without a trusted third party. That is, once a user has double spent one
of the 2¢ coins in her wallet, all her spendings of these coins can be traced. We present
two alternate constructions, both requiring bilinear groups. One construction shares the
same complexities with our first result but requires the XDH assumption none to be false
for supersingular curves. The second construction works on more general types of elliptic
curves, but the price for this is that the complexity of the spending and of the withdrawal
protocols becomes O(£ - k) and O(€ - k + k?) bits, respectively, and wallets take O(£ - k) bits
of storage. All our schemes are secure in the random oracle model.

6.8 Open Problems

Although this chapter improves the general efficiency of e-cash, several elusive efficiency im-
provements evaded us. First, we were not able to asymptotically optimize the spending or
depositing multiple coins at once. One approach to this problem is to create coin denomi-

127



nations. While our e-cash system can be replicated to support various denominations, there
remains the difficulty of making change.

At a technical level, it would be interesting to know if a O(¢+k) complexity Spend protocol
is possible without random oracles, when the merchant and the bank are not the same entity.
(Note that generic NIZK tools do not approach this level of efficiency.) Similarly, it remains
open how to efficiency realize tracing without using either a trusted party or bilinear groups.

At a more conceptual level, the anonymity guarantee of our schemes (where no TTP
exists!) may be too permissive for actual deployment. That is, the guaranteed anonymity
of the system may make it ripe for abuses such as tax evasion and money laundering. In
the next Chapter, we directly address this problem. We provide technical solutions that
balance a user’s desire for anonymity with the societal need to prevent monetary frauds: our
solutions will not use a TTP.
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Chapter 7

Compact E-Cash in the
Bounded-Anonymity Model

This chapter is an extended version of joint work with Jan Camenisch (IBM Zurich Research)
and Anna Lysyanskaya (Brown University) [50].

7.1 Introduction

In the previous chapter, we presented an off-line electronic cash system. In such a system,
spending a coin once does not leak any information about a user’s identity. If a user attempts
to spend the same coin twice, however, information is leaked that leads to the identification
of this user. An e-cash scheme with such a mechanism is a good illustration of how one can
balance anonymity with accountability: a user can remain anonymous unless she performs
a forbidden action. The system is designed in a way that detects and allows to punish this
type of anonymity abuse.

In this chapter, we consider what other actions may be forbidden, and how to realize
e-cash schemes that would hold users accountable should they perform such actions. At the
same time, we protect the anonymity of those users who obey the rules.

We introduce the bounded-anonymity business model. In this model, associated with
cach merchant there is a publicly-known limit to the number of e-coins that a user may
anonymously give to this merchant. This limit cannot be exceeded even if the user and
the merchant collude. Should any user attempt to exceed the limit for any merchant, and
should this merchant attempt to submit the resulting e-coins for deposit to the bank, the
user’s identity will be discovered, and further penalties may be imposed.

In the real world, this corresponds to restrictions that governments set on unreported
transactions. For example, in the U.S., banks are required by law to log and report all
transactions over $10,000. These restrictions are set up to ensure proper taxation and to
prevent money laundering and other monetary frauds. Another example application is an
anonymous pass with usage limitations. For example, consider the following amusement
park pass: “This pass is good to enter any Disney park up to four times. with the restriction

129



that the Magic Kingdom can be entered at most twice.” Until now, it was not known how
to realize such passes anonymously.

Interestingly, in the real world it is impossible to set such restrictions on cash transactions.
A merchant may be required by law to report that he received a lot of money in cash, but
he may choose not to obey the law! In contrast, we show that with e-cash, it is possible
to enforce the bounded-anonymity business model. The cost for achieving this is roughly
double the cost of achieving regular anonymous e-cash.

There have been several previous attempts to solve this problem, but until now it re-
mained an elusive open problem in electronic cash, as well as one of the arguments why
the financial community resisted any serious deployment of e-cash, due to money laundering
regulations.

Some of the past efforts suggested using a trusted third party to mitigate this prob-
lem [175, 46, 133, 125]. This TTP could trace transactions to particular users. The TTP
approach is undesirable. First of all, the whole idea of electronic cash is to ensure that no
one can trace e-cash transactions. Secondly, in these past solutions, the only way that a
TTP can discover money laundering or other violations of the bounded-anonymity model is
by tracing each transaction, which is very expensive. In a variant that reduces the trust as-
sumption about the TTP, Kiigler and Vogt [132] propose an e-cash scheme where the bank
has the ability to trace coins by specially marking them during the withdrawal protocol.
This tracing is auditable, i.e., a user can later find out whether or not his coins were traced
(this involves an additional trusted judge). Still, this system does not allow one to discover
money laundering, unless it involves the marked coins, and the user must still trust the judge
and bank for her anonymity. Another variant [158, 124] deters money laundering by offering
users only a limited form of anonymity. Users’ coins are anonymous, but linkable, i.e., coins
from the same user can be identified as such. Here it is easy to detect if a user exceeds the
spending limit with some merchant. However, this weak form of anonymity is not suitable
for all applications, and goes against the principle of e-cash.

Another set of papers [176, 153] addressed a related problem of allowing a user to show
a credential anonymously and unlinkably to any given verifier up to k times. They give a
nice solution, but it is not clear how it can be applied to off-line electronic cash as opposed
to on-line anonymous authentication. Ie., showing an anonymous credential in their scheme
more than %k times allows a verifier to link the (k + 1)-st show to a previous transaction,
but does not lead to the identification of the misbehaving user. In contrast, in our scheme,
any such violation leads to identification of the user even if the verifier (merchant) colludes
with the user, and optionally to trace all the user’s past transactions. Recently, Teranishi
and Sako [177] provided a solution in the on-line setting that allows authorities to identify
a cheater, however, their solution is exponentially less efficient than ours.

Finally, Sander and Ta-Shma [168] propose to limit money laundering by dividing time
into short time periods and issuing at most k coins to a user per time period (a user can
deposit his unspent coins back into his account). This way, a user cannot spend more than
k coins in a single transactions because he has at most A coins at any given time.
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Outline of this Chapter. We present the first e-cash scheme in the bounded-anonymity
business model. A user may withdraw, and anonymously and unlinkably spend an unlim-
ited number of coins, so long as she does not: (1) double-spend a coin, or (2) exceed the
spending limit for any merchant. Different merchants may have different spending limits,
but a merchant’s limit applies uniformly to all of its customers. As we will see, this limit
does not need to be known (or even fixed) at the time that the user withdraws coins from
the bank, but the limit will need to be known at the time that the user spends a coin with
the merchant and also when the bank later accepts a spent coin for deposit.

Our scheme allows to efficiently detect either of two system violations. We also show
how to augment it so as to allow to reveal the identity of the misbehaving user. Finally,
in addition to discovering the identity of a misbehaving user, one is also able to trace all
of the user’s previous e-coins. Simultaneously achieving all functionality described above
will require bilinear groups, while achieving bounded-anonymity without tracing is possible
using other algebraic groups.

Our construction takes as a starting point the e-cash system of Camenisch, Hohenberger,
and Lysyanskaya (CHL) [49], as covered in Chapter 6, which is the most efficient known. The
cost of our resulting withdrawal and spend protocols is roughly double that of the previous
chapter. The size of the coin storage remains the same, but we also require the user to store
a counter for each merchant with whom the user does business, which appears to be optimal.
Thus we maintain our previous asymptotic complexity: 2¢ coins can be stored in O(¢ + k)
bits and the complexity of the withdrawal and spend protocols is O(£ + k), where k is the
security parameter.

7.2 Definition of Security

We now generalize the definition of CHL [49], as in Section 6.2, to handle violations beyond
double-spending. Our off-line e-cash scenario consists of the three usual players: the user, the
bank, and the merchant; together with the algorithms BKeygen, UKeygen, Withdraw, Spend,
Deposit, {DetectVioIation(i), IdentifyViolator®, Verinyiolation(i)}, Trace, and VerifyOwnership.
Informally, BKeygen and UKeygen are the key generation algorithms for the bank and the
user, respectively. A user interacts with the bank during Withdraw to obtain a wallet of 2¢
coins; the bank stores optional tracing information in database D. In Spend, a user spends
one coin from his wallet with a merchant; as a result the merchant obtains the serial number
S of the coin, the merchant record locator V' of the coin, and a proof of validity 7. Recall that
our basic e-cash scheme in Chapter 6, the serial number was used to detect double-spending.
Similarly, the merchant record locator will be used to detect exceeding the spending limit
tfor a merchant.

In Deposit, whenever an honest merchant accepts a coin C = (S, V, w) from a user, there
is a guarantee that the bank will accept this coin for deposit. The bank stores C' = (S.V, 7)
in database L. At this point, however, the bank needs to determine if C violates any of the
system conditions.

For each violation #, we define a tuple of algorithms {DetectViolation(i), IdentifyViolator,
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VerifyViolation'?}. Here, we have two violations.

e Violation 1: Double-spending. In DetectViolation™ , the bank tests if two coins, C; =
(51, V1, m) and Cy = (Ss, Vo, m2), in L have the same serial number Sy = Sz. If so, the
bank runs the ldentifyViolator™™ algorithm on (C, C2) and obtains the public key pk of
the violator and a proof of guilt II. Anyone can run VerifyViolation”) on (pk, S1, V1, 1I)
to be convinced that the user with public key pk double-spent the coin with serial
number 5;.

e Violation 2: Money-laundering. In DetectViolation®, the bank tests if two coins, C; =
(S1, Vi, m) and Cy = (Ss, V2, ), in L have the same merchant record locator V; = Vs.
If so, the bank runs the IdentifyViolator® algorithm on (C4, Cs) and obtains the public
key pk of the violator and a proof of guilt II. Anyone can run VerifyViolation® on
(pk, S1, Vi, 1I) to be convinced that the user with public key pk exceeded the bounded-
anonymity business limit by spending the coin with merchant record locator V;.

Optionally, after any violation, the bank may also run the Trace algorithm on a valid
proof of guilt IT to obtain a list of all serial numbers S; ever spent by the cheating user,
with public key pk, along with a proof of ownership I". Anyone can run VerifyOwnership on
(pk, S;,T) to be convinced that the user with public key pk was the owner of the coin with
serial number S;.

Security. We generalize the security definition of CHL for e-cash [49], as covered in
Section 6.2. The formalizations of correctness, balance, and anonymity of users remain
unchanged. Roughly, balance guarantees that an honest bank will never have to accept for
deposit more coins than users withdrew, while anonymity of users assures users that they
remain completely anonymous unless they violate one of the known system conditions. We
now informally describe three additional properties. These properties are generalizations of
CHL’s identification and tracing of double-spenders, and their exculpability, to apply to any
specified violation, in particular those above. Let params be the global parameters, including
the number of coins per wallet, 2¢, and a (possibly unique) spending limit for each merchant.
(Recall that each merchant may have a different spending limit, but that a merchant’s limit
will apply uniformly for all of its customers.)

Identification of violators. Suppose coins C; = (S1, V1, m) and Cy = (Sa, Va, m2) are the
output of an honest merchant (or possibly merchants) running two Spend protocols with the
adversary or they are two coins that an honest bank accepted for deposit. This property
guarantees that, with high probability, if, for some 7, the algorithm DetectViolation® (params,
C1, Cs) accepts, then IdentifyViolator®™ (params, Cy, C;) outputs a key pk and a proof II such
that Verinyiolation(i)(pa'r*(z,ms, pk. Sy, Vi, I) accepts.

Tracing of violators. Suppose VerifyViolation® (params, pk, S, V, II) accepts for some vi-
olation i derived from coins C;,Cy. This property guarantees that, with high probabil-
ity, Trace(params, pk.C\. Cy.11, D) outputs the serial numbers S,..., Sy, of all coins be-
longing to the user of pk along with proofs of ownership I'y,..., I, such that for all j,
VerifyOwnership(params. pk. S;,T';) accepts.
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Ezculpability. Suppose an adversary participates any number of times in the Withdraw
protocol with an honest user with key pk, and subsequently to that, in any number of
non-violation Spend protocols with the same user. The adversary then outputs an integer
i, a coin serial number S, and a purported proof I' that the user with key pk committed
violation ¢ and owns coin S. The weak exculpability property states that, for all adversaries,
the probability that VerifyOwnership(params, pk, S,T") accepts is negligible.

Furthermore, the adversary may continue to engage the user in Spend protocols, forcing
her to violate the system conditions. The adversary then outputs (¢, S, V,II). The strong
exculpability property states that, for all adversaries: (1) when S is a coin serial number
not belonging to the user of pk, weak exculpability holds, and (2) when the user of pk did
not commit violation i, the probability that VerifyViolation® (params, pk, S, V,II) accepts is
negligible.

As mentioned in Chapter 6.2, a worthwhile project is to write and realize an ideal func-
tionality for electronic cash in the UC framework. We mention that the notion of multiple
violations introduced in this chapter, in particular the notion of bounded anonymity, could
be analyzed using a hybrid approach as before, where access is given to ideal functionalities
for zero-knowledge and signatures of knowledge.

7.3 Compact E-Cash in the Bounded-Anonymity Model

7.3.1 Roadmap to Understanding the Construction

As in the CHL compact e-cash scheme, a user withdraws a wallet of 2¢ coins from the bank
and spends them one by one. Also, as in the CHL scheme, we use a pseudorandom function
Fy(-) whose range is some group G of large prime order gq.

At a high level, a user forms a wallet of 2 coins by picking five values, (z, s, t,v,w) from
an appropriate domain to be explained later, and running an appropriate secure protocol
with the Bank to obtain the Bank’s signature o on these values.

Suppose that the user wants to spend coin number 7 by buying goods from merchant
M. Suppose that only up to K transactions with this merchant may be anonymous. Let’s
say that this is the user’s j-th transaction with M, j < K. Associated with the i-th coin
in the wallet is its serial number S = Fy(i). Associated with the j-th transaction with the
merchant A is the merchant’s record locator V = F,(M, 7).

The first idea is that in the Spend protocol, the user should give to the merchant the
values (S, V), together with a (non-interactive zero-knowledge) proof that these values are
computed as a function of (s, 4. v, M, j), where 0 < i < 2, 0 < j < K, and (s,v) correspond
to a wallet signed by the Bank. Note that S and V are pseudorandom, and therefore
computationally leak no information: and the proof leaks no information because it is zero-
knowledge.

Suppose that a user spends more than 2¢ coins. Then he must have used some serial
number more than once. since there are only 2¢ possible values S of the form F (1) where
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0 <i < 2% (This is the CHL observation.) Similarly, suppose that a user made more than
K transactions with M. Then he must have used some merchant record locator more than
once, since for a fixed M, there are only K different values V = F,(M,5), 0 < j < K.
Therefore it is easy to see that double-spending and violations of the bounded-anonymity
business model can be detected.

Now we need to explain how to make sure that using any S or V' more than once leads
to identification. Remember that besides s and v, the wallet also contains z, ¢ and w. The
value z € Z, is such that g” is a value that can be publicly linked to the user’s identity.
(Here g is a generator of the group G.) For example, for some computable function f,
f(g®) can be the user’s public key. Suppose that as part of the transaction the merchant
contributes a random value R # 0, and the user reveals T = g¢° - F;(i)f and W = ¢* -
F,(M, )B, together with a proof that T' and W are computed appropriately as a function
of (R, z,t,i,w, M, j) corresponding to the very same wallet and the same 7 and j. Again, T
and W are pseudorandom and therefore do not leak any information.

If a user uses the same serial number S = F(i) twice, and ¢ is appropriately large, then
with high probability in two different transactions she will receive different R’s, call them
R; and Ry, and so will have to respond with T3 = g% - Fy(i)®1, Ty, = ¢° - Fy(i)®2. It is easy
to see that the value ¢g* can then be computed as follows: ¢* = Ty/(Ty/Ty)™/(Fa=B2)  This
was discovered by CHL building on the original ideas of offline e-cash [77].

We show that it is also the case that if the user uses the same merchant’s record locator
number V twice, then ¢g* can be found in exactly the same fashion. Suppose that in the
two transactions the merchant used the same R. In that case, the Bank can simply refuse
to deposit this e-coin (since it is the same merchant, he is responsible for his own lack of
appropriate randomization). So suppose that the merchant used two different R’s, R; and
R,, giving rise to Wi and W,. It is easy to see that g% = W, /(W,/W,)f/(Fa—Fa),

Thus, a double-spending or a violation of the bounded-anonymity model leads to identi-
fication. The only remaining question is how this can be adapted to trace other transactions
of the same user. Note that ¢” is not necessarily a public value, it may also be the case that
only f(g*) is public, while knowledge of ¢g* gives one the ability to decrypt a ciphertext which
was formed by verifiably encrypting s (for example, Boneh and Franklin’s cryptosystem [30]
has the property that ¢g* is sufficient for decryption). When withdrawing a wallet, the user
must give such a ciphertext to the bank. In turn, knowledge of s allows the Bank to discover
serial numbers of all coins from this wallet and see how they were spent.

Finally, note that the values (z,v,w) should be tied to a user’s identity and not to a
particular wallet. This way, even if a user tries to spend too much money with a particular
merchant from different wallets, it will still lead to detection and identification.

7.3.2 Owur Construction

We use the same building blocks as in Chapter 6: the Dodis-Yampolskiy pseudo-random
function (95}, i.e., (1;.)3’)(.1') = ¢!/ttt where ¢ is the generator of a suitable group;
CL-signatures [53] and the related protocols to issue signatures and prove knowledge of
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signatures; and the Bilinear El Gamal cryptosystem {8, 9] (see Chapter 5) used with the
Camenisch-Damgard [47] verifiable encryption techniques.

Global parameters. Let 1* be the security parameter and let 2¢ be the number of coins
per wallet. This scheme work most efficiently by having four different groups:

e G = (g), where n is a special RSA modulus of 2k bits, g is a quadratic residue modulo
n, and h € G.

e G, = (g1) = (h1), Ga = (g2) = (h2), and Gr of prime order ¢ such that exists a bilinear
mapping e : Gy X Gy — Gr.

Furthermore, we have two hash functions Hr : {0,1}* — Gr and H; : {0,1}* — G;. Let
Flgs(z) = @}s”) (z), and when H is a hash function whose range is an appropriate group, let
GH(M,z) = f(%}(' M),s)(x). Let the global parameters above be denoted (.

We now describe the protocols of our system: BKeygen, UKeygen, Withdraw, Spend,
Deposit, {DetectViolation(i), IdentifyViolator® VerinyioIation(i)},—e[m] (where the two viola-
tions are double-spending and exceeding the spending-limit with a merchant), Trace, and
VerifyOwnership.

Bank Key Generation: BKeygen(1*,(): The bank B generates CL signing keys (pkg, sks)
set in group G as before.

User Key Generation: UKeygen(1%,(): Each user generates a key pair of the form
sky = (z,v,w) and pky = (e(g1, h2)*,e(g1, h2)", e(g1, ho)"), where z, v, and w are
chosen randomly from Z,. Each user also generates a signing keypair for any secure
signature scheme. Each merchant also publishes a unique identity string id 4.

Also, the bank and each merchant individually agree on a public upper-bound N, for
the number of coins any single customer can spend with that merchant.

Withdrawal Protocol: Withdraw(U (pkg, sku, 2°), B(pky,, skg,2): A user U withdraws 2¢
coins from the bank B as follows. The user and the bank engage in an interactive
protocol, and if neither report an error, then at the end:

1. U obtains (s, ,0), where s, ¢t are random values in Z,, and o is the bank’s signature
on (sky,s,t), i.e., (z,v,w,s,t).

2. B obtains a verifiable encryption of s under e(g;, h2)*, i.e., the first element from
the user’s public key pk,,, together with the user’s signature on this encryption.
B does not learn anything about sk, s, or t.

Step one can be efficiently realized using the Camenisch-Lysyanskaya signatures and
the related protocols [54]. Step two can be realized by applying the Camenisch-
Damgard [47] verifiable encrvption techniques to the Bilinear El Gamal cryptosys-
tem [8, 9] as described in Chapter 5. All these steps are essentially the same as in the
CHL e-cash scheme, the exception being the secret key signed which now also includes
v and w besides x.



Spend Protocol: Spend(U(wallet, pk v ), M(skq, pkg,2%)): A user U spends one coin
with a merchant M with a spending limit of N, coins as follows. As in CHL, the user
keeps a private counter i from 0 to 2¢ — 1 for the number of coins spent in her wallet.
Additionally, the user now also keeps a counter ju for each merchant M representing
the number of coins she has spent with that merchant.

1. U checks that she is under her spending limit with merchant M; that is, that
jm < Npq. If not, she aborts.

2. M sends fresh values Ry, Ry € Zg to U. M may either keep a counter or se-
lect random values; we just require that M not have used either of these values
previously with any user.

3. U sends M the i-th coin in her wallet on her j,s-th transaction with M. Recall

that sky; = (x,v,w). This coin consists of a serial number S and a wallet check
T, where

S = Fe(guae) (i) = €(g1, ha) /CHD | T = g8(Fg, ()P = g7 HR/ D
and two money laundering check values V and W, where

V = G (id, jaa) = Hr(idp) /@D
W = g7 (Gy (idan, jan)) ™ = g7 Haidpg) /44D

and a zero-knowledge proof of knowledge (ZKPOK) 7 of (4, jum, sky = (z,v,w),
s,t, o) proving that

(a) 0<i<25

(b) 0<jm < N

(€) S = Fe(gi ha))(2), 1€, S = e(gr, h2)1/ (s+i+D);

(@) T =G (Fpg(i)®, L., T = gi+ /454,

(e) V =GHEr(idp,jpm), 1e, V = HT(sz)l/(”“M“'l)

f) W=g%- (GHl(sz,JM))R2 ie., W = g% Hy(idp)F2/(wHim+D) + and

(g) VerifySig(pkg, (sku = (z,v,w), s,t), 0)=true.

The proof m can be made non-interactive using the Fiat-Shamir heuristic [98].

4. If w verifies and the value V; was never seen by M before, then M accepts
and saves the coin (Rj, R, S,T,V,W,m). If the value V; was previously seen
before in a coin (R}, R, S',T",V,W’,n’), then M contacts the bank which runs
Open(W', W, R}, Rs).

Let us define the Open(,-,-,-) algorithm as:

A

Open(A,B.D, D) := Wm )

If M executed the Spend protocols honestly (i.e., chose fresh random values at
the start of each protocol), then with high probability Ry # R5, and we have
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Open(W', W, Ry, Ry) = gi. Thus, the merchant can identify the user by comput-
ing e(g{, ha), which is part of U’s public key. This allows an honest merchant to
protect itself from customers who would try to overspend with it. (If the merchant
is dishonest or lazy, the bank will catch the overspending at deposit time.)

Steps 3(a,c,d) are the same as in the CHL scheme whereas Steps 3(b,e,f) are new;
note, however, that they are rather similar to Steps 3(a,c,d). Finally, Step 3(g) needs
to be adapted properly. Consequently, Steps 3(a) and 3(b) can be done efficiently
using standard techniques 70, 55, 37]. Steps 3(c) to 3(f) can be done efficiently using
techniques of Camenisch, Hohenberger, and Lysyanskaya [49]. Step 3(g) can be done
efficiently using the Camenisch and Lysyanskaya signatures [54].

Deposit Protocol: Deposit(M sk, S, 7, pkg), B(pk oy, sk)): A merchant M deposits a
coin with bank B by submitting the coin (R;, R2, S,T,V,W, 7). The bank checks the
proof 7; it if does not verify, the bank rejects immediately. If there exists a coin in L
with the same values for (R;. S) or the same values for (Ry, V'), then the bank rejects
immediately and punishes the merchant. (This situation won’t occur if the merchant
is honest.) Otherwise, the bank adds the coin to its database L.

Detection of Double-Spending: DetectViolation(l)(C ,L): B checks that the spender of
the coin has not overspent her wallet; that is, the bank searches for two deposited coins
in L with the same serial number S.

Identification of a Double-Spender: IdentifyViolatorY (¢, S, Cy, C3): Suppose that two
coins Cy = (Ry, Ry, S,T,V,W,m) and Cy = (R}, R, S, T",V',W',7') with the same
serial number are found. We know that R; # R}, otherwise B would have re-
fused to accept the coin. Now, the identity of the user is discovered by running
Open(T',T, R\, Ry) = ¢f. B identifies the user as person with public key contain-
ing e(gf, h2). B outputs the proof of guilt II = (g%, C;, Cs).

Detection of Money Laundering: DetectViolation® (¢, L): Second, B checks that the
spender of the coin has not exceeded her spending limit with merchant M. That is,
the bank searches for two coins in database L with the same money-laundering check
value V.

Identification of Money Launderer: IdentifyViolator® (¢, V,C1. Cy) : Suppose that two
coins C1 = (Ry, Ry, S,T,V,W,m) and Co = (R}, R}, S, T',V,W' «') with the same
merchant check value are found. When know that Ry # R), otherwise B would have
refused to accept the coin. Now. the identity of the user is discovered by executing
Open(W',W, Ry, Ry) = gi. B identifies user as person with public key containing
e(gt. he). B outputs the proof of guilt IT = g%, Cy, C,.

Trace Transactions: Trace((,II) : B computes the serial number of all coins owned by
the violator as follows:



1. Parse Il as (g7.C, Cy).

2. B uses g} to decrypt the encryption of s left with the bank during the withdraw
protocol.

3. Next, B uses s to compute the serial numbers S; = Fle(g, ho).s)(J) for each coin
45 =0 to 2¢ — 1 of all coins in the user’s wallet.

4. (In fact, the bank can use gf to decrypt the secret of all the user’s wallets and
trace those transactions in the same way.)

Verifying Violations: For completeness, we point out explicitly how the violation-
related protocols work. Let Cy = (Ry, Ry, S, T,V,W,n) and Cy = (R}, Ry, S", T", V', W', ')
be one existing and one newly deposited coin. Detecting double-spending or money-laundering
involves checking S; = Sy or V; = V4, respectively. The identification algorithm runs Open
on the appropriate inputs, and the resulting proof of guilt is II = (Ci,Cs). Verifying the
violation entails successfully checking the validity of the coins, detecting the claimed viola-
tion, running Open to obtain g¥, and checking its relation to pk. (Recall that knowledge of
z, not just g%, is required to create a valid coin. Thus the leakage of one violation cannot
be used to spend the user’s coins or fake another violation.) The trace algorithm involves
recovering s, from the encryption £ signed by the user during Withdraw, and computing all
serial numbers. The proof of ownership I' = (E, 0, g§), where o is the user’s signature on E.
Verifying ownership for some serial number S involves verifying the signature o, checking
that e(g?, ho) = pk, decrypting E to recover s, computing all serial numbers S;, and testing
if, for any ¢, S = 5;.

Efficiency Discussion. The detailed protocols are rather similar to the detailed ones of
the CHL scheme [49] and require slightly less than double the work for the participants).
As indication of the protocols efficiency let us state some numbers here. For instance, one
can construct Spend such that a user must compute fourteen multi-base exponentiations to
build the commitments and twenty more for the proof. The merchant and bank need to
do twenty multi-base exponentiations to check that the coin is valid. The protocols require
two rounds of communication between the user and the merchant and one round between
the bank and the merchant. If one takes Option (2) above, then it is thirteen multi-base
exponentiations to build the commitments and eighteen more for the proof. Verification by
bank and merchant takes eighteen multi-base exponentiations.

Theorem 7.1 (Security of System). In the bounded-anonymity business model, our
scheme guarantees balance, anonymity of users, identification of violators, tracing of vio-
lators, and strong exculpability under the Strong RSA, y-DDHI, and either the XDH or
Sum-Free DDH assumptions in the random oracle model.

Let us being with some informal intuition for the security of this scheme, followed by an
actual proof sketch. Our contribution is the observation that the core observations of CHL
in Chapter 6 can be extended to prevent violations beyond double-spending, particularly
through careful use of the PRF.
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Balance. For each wallet, s deterministically defines exactly N values that can be valid
serial numbers for coins. To overspend a wallet, a user must either use one serial number
twice, in which case she is identifiable, or she must forge a CL signature or fake a ZK proof.

Anonymity of users. A coin is comprised of four values (S,T,V, W), which are pseu-
dorandom and thus leak no information about the user, together with a (non-interactive,
zero-knowledge) proof of validity, which since it is zero-knowledge also leaks nothing.

The only abnormality here is that, when computing V' and W, the base used for the PRF
is the hash of the merchant’s identity (as opposed to the fixed bases used to compute S and
T). Treating hash H as a random oracle, we see that given G (id »4, j), the output of GH (-, -)
on any other input, in particular G¥(id',, ) for idp # id'y,, is indistinguishable from
random. Specifically, if an adversary given G,/ (idu,5) = fBia, 00 (7)) = H(idam)Y (v+i+1)
can distinguish H(id’y)}/**+/*1) from random for some random, fixed H(id,) and H(id'y,),
then it is solving DDH.

Fxculpability. First, a user cannot be proven guilty of a violation if he follows all the
protocols honestly, because the proof of guilt includes the user’s secret value g7. This value
is not leaked when the user follows the protocols. Second, even a cheating user cannot be
proven guilty of a crime he didn’t commit— e.g., double-spending one coin does not enable a
false proof of money-laundering twenty coins —because: (1) guilt is publicly verifiable from
the coins themselves, and (2) knowledge of x is required to create coins. The value g7, which
is leaked by a violation, is not enough to spend a coin from that user’s wallet.

This ends our intuition on the proof, now let us provide additional details.

Proof sketch. We sketch the proof based on the definition outlined in Section 7.2.

Balance: Let Adv be an adversary who executes n Withdraw protocols with an extractor
& acting as the bank. During each Withdraw, £ acts exactly as an honest bank would, except
that when Adv gives a proof of knowledge of (z, s, t,v, w), £ extracts these values. To extract
using the CL techniques requires rewinding, thus, Withdraw should be executed sequentially,
or alternatively, only a bounded number of concurrent executions should be allowed. From s,
& can compute, with high probability, all legal serial numbers that Adv can compute for that
wallet. Let L denote the set of all serial numbers from all wallets. Now suppose that Adv
can cause an honest bank to accept a coin with serial number S ¢ L. Then it follows that
Adv must have concocted a false proof of validity, which happens with negligible probability
under the Strong RSA and discrete logarithm assumptions.

Anonymity of users: Recall that the Chapter 6 definition of anonymity requires a simu-
lator S that can successfully execute the user’s side of the Spend protocol without access to
a user’s wallet, secret key, or even the user’s public key. Suppose S wishes to spend a coin
with merchant M, where the wallet size is N and M’s anonymous-spending limit is M. S
chiooses random values (z, s,t,v,w) and any 0 < i < 2¢ and 0 < ju < M. Next, S creates
the coin serial number S = Fig(y, hy),5)(¢), merchant record locator V' = GH7 (id p, jrq), and
check values T' = g} - Fig, »(0)® and W = ¢f - GH1 (4dpm, )™ ezactly as an honest user
would. Because these values are pseudorandon, they are indistinguishable from a real coin.
S can honestly prove that (S, T,V, W) are well-formed and that i, j, are in the appropriate
ranges. The ouly part of the proof that S must fake is that S has a signature from the bank
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on (z.s,t,v,w). Here, S invokes the appropriate CL simulator for this step, which requires
control of the random oracle for the Fiat-Shamir heuristic. This also requires that Spend be
executed with bounded concurrency.

Identification of violators: As described in balance, an extractor £ executes multiple
Spend protocols with an adversary Adv, with high probability, extracting (z, s, t,v,w). For
each wallet, £ can compute all valid coin serial numbers S; = Fyg, 1,),5)(3) for 0 < i < 2!
and all valid merchant record locators V; = GHT(idp, juq) for 0 < ja < M and some
merchant M. Now suppose that Adv can cause an honest bank to accept two coins C; =
(81, T1, Vi, W1, 1, Ry, R}) and Cy = (Ss, Tp, Vo, Wa, 12, Re, RY), with the same serial number
Sy = Sy or two coins with the same merchant record locator V; = V,. For these collisions
to happen, the coins must come from the same wallet (z,s,t, v, w), with either the same
i or the same (idap,Jm), and be well formed. (Otherwise, the user must have faked the
proof of validity.) With high probability then, either ¢g¢ = T}/(T}/Tp)/(Fa=F2) or g% =
Wi/ (W, /Wa) B/ (Bi=R2) wwhich reveals the user’s identity.

The proof of guilt II for violation 7 = 1 (double-spending) contains valid coins (Cj, Cs).
Anyone may check that S; = Sy, g¥ = T} /(T1/T)®/(F1=F2) and g% corresponds to pk (e.g.,
f(gF) = pk). Likewise, the proof of guilt for violation i = 2 (exceeding the anonymous-
business bound with a particular merchant) is valid coins (Cy, Cy) such that Vi = Vs, ¢¥ =
Wi/ (W1 /W,) B/ (Bi=F2) and ¢? corresponds to pk.

One technicality is what happens if two wallet seeds s, s’ are such that |s — s'| < 2%
thus these wallets overlap in at least one serial number. If the same serial number is spent
from both wallets, the bank will flag them as being double-spent, and yet the identification
algorithm will not work, because no double-spending has actually occurred. Since this could
be confusing for the bank, we avoid this problem, as we did in Chapter 6, by having the bank
contribute randomness to the choice of s for each wallet. When s, s’ are drawn at random
from Z,, the chance that they overlap is 2¢+1/q. '

Tracing of violators: Recall that during Withdraw, each user is required to give the bank
a verifiable encryption E of her wallet secret s such that her own key g7 suffices to decrypt.
The user is also required to sign this encryption. By the identification of violators property,
we know that a system violation allows the bank to recover g with high probability. By
the integrity of the verifiable encryption, each wallet belonging to the cheating user can be
opened, with high probability, using g7 to recover the wallet seed s and compute all serial
numbers S; = Fe(g, hp),5)(2) for 0 < i < 2%

The proof of ownership I' for some coin with serial number S is comprised of the encryp-
tion E, the decryption key g7, and the signature on E. A verifier should first check that gf
corresponds to pk, and that the signature on E is valid. He may then decrypt E to recover
s, compute all serial numbers S; = Fle(g, 10).5)(¢) for 0 <@ < 2¢, and test that, for some i,
S - S,'.

Strong exculpability: Strong exculpability has two parts. First, that no adversary interact-
ing with an honest user can produce values (4, S, V, II) such that Verinyiolation(i) (params, S,V
IT) accepts, unless the user with pk is guilty of violation ¢. Recall that the proof II is com-
prised of two valid coins (C, Cs) such that they reveal ¢gf. Since gj is secret information, its
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release signals that the user must have committed some violation. The reason the user must
be at fault for the specific violation at hand (and not some previous one) is that knowledge
of = (not simply ¢7) is required to create valid coins.

The second part is that no adversary, even after forcing a user to violate a system con-
dition, can produce (7, S,T") such that VerifyOwnership(params, pk, S, ") unless the coin with
serial number S actually belongs to the user with pk. Recall that the proof I' is comprised of
a verifiable encryption E, the user’s signature o, and a decryption key g§. The soundness of
the verifiable encryption and the signature scheme (for example, CL signatures [53]) is based
on Strong RSA and the discrete logarithm assumption. Thus, with high probability, using
g7 to decrypt E reveals some plaintext s that in turn allows to compute all serial numbers
belonging to that user. O

7.4 Scaling Back the Punishment for System Violators

In oral presentations of our previous results, some audience members felt that tracing all
previous (and future) transactions of a user who might have accidentally violated one of the
system conditions is too harsh. To make the punishment for system violators more lenient
or simply to make the system more efficient, two other options are available:

Option (1): violation is detected and user’s identity is revealed. This system operates as
the above except that during the Withdraw protocol the user does not give the bank verifiable
encryptions of her wallet secret s. Then later during the Deposit protocol, the bank may
still detect the violation and identify the user, but will not be able to compute the serial
numbers of other transactions involving this user.

Option (2): violation is detected. This system operates as the Option (1) system, except
that during the Spend protocol, the user does not provide the merchant with the money-
laundering check value Y;. Then later during the Deposit protocol, the bank may still detect
the violation, but will not be able to identify the user.

7.5 On Removing Random Oracles

Our discussion from Section 6.6 on removing random oracles differs slightly for this system.
In addition to Fiat-Shamir, our proof of security also relies on modeling the output of the
hash functions Hy and H; used in Spend as random. Here, it is not necessary that a
simulator or extractor have control over the outputs of these functions; rather we require
that the discrete logarithm relationships between the outputs are unknown.

7.6 Contributions

In an electronic cash (e-cash) system, a user can withdraw coins from the bank, and then
spend each coin anonymously and unlinkably. For some applications. it is desirable to set a
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limit on the dollar amounts of anouymous transactions. For example, governments require
that large transactions be reported for tax purposes. In this chapter, we present the first
e-cash system that makes this possible without a trusted party. In our system, a user’s
anonymity is guaranteed so long as she does not: (1) double-spend a coin, or (2) exceed
the publicly-known spending limit with any merchant. The spending limit may vary with
the merchant, but a merchant’s limit applies to all of its customers uniformly. Violation of
either condition can be detected, and can (optionally) lead to identification of the user and
discovery of her other activities. While it is possible to balance accountability and privacy
this way using e-cash, this is impossible to do using regular cash.

Our scheme is based on the recent compact e-cash system of Camenisch et al., as described
in Chapter 6. It is secure under the same complexity assumptions in the random-oracle
model. We inherit its efficiency: 2¢ coins can be stored in O(£ + k) bits and the complexity
of the withdrawal and spend protocols is O(£ + k), where k is the security parameter.

7.7 Open Problems

The results of this chapter open the door for the question: what other forbidden actions
should result in a loss of anonymity? The goal would be not to introduce a TTP to achieve
these features, and thus maintain the idea that an honest user’s transactions are unlinkable
and anonymous to everyone, while at the same time some necessary restrictions can be
enforced.

The system in this chapter makes use of random oracles in its proof of security in more
places than the previous chapter. Thus, it would be even more interesting to see if random
oracles could be removed from an efficient scheme with bounded-anonymity.



Appendix A

Full Protocols to Spend Coins

To provide the full protocols to spend a coin, we need to provide some details about the
signature scheme the bank uses.

Let QR, denote the set of quadratic residues modulo n. Let Z, U,V be elements of QR,
that are part of the public key of the bank.

Let ¢,, denote the number of bits of the bank’s RSA modulus n and let £4, e.g., {5 be a
security parameter controlling the statistically zero knowledge property of the proof protocol
as well as the statistically hiding property of the commitment schemes we use.

A signature of the bank on the seed (message) s consists of the values (Q, e, v), where
e € {2% — 2% 2% 4 2%} is a random prime, v € {0,1}**%is a random integer, and Q €
{(U) C QR,, such that the following holds

Z=Q°V'U® (modn) .
We note that the bank does not learn s when issuing this signature. Instead, the bank and
the user run an efficient two-party protocol where the output of the user will be (Q, e, v) [53].

In case the bank signs a block of messages, say (u, s,t), at once, we replace V by public
values (V1, V2, Vg). The signature still consists of values (Q, e, v) such that

Z =Q°V,*Vy°V3'U*  (mod n) .

'To make our proof more efficient by roughly a factor of two, we will change the range of J,
the coin counter. Our goal is to have a range that contains an odd number of elements. This
is not strictly necessary but gives us a more efficient proof when J lies in an odd interval.
Thus, we need that Jy — J; < J < Jy + J; holds for some Jy and J;,. For instance, setting

Jy =271 and Jo = 2¢ we have 271 < J < 3-2¢! and thus can spend 2¢ + 1 coins. Note

that now J can no longer be 0 and a therefore the serial number S can be computed as
S = ‘ 1/(.]+s)'

A.1 System One: Full Protocol

We now describe how the user spends a coin in System One in more detail. Recall that the
user has obtained from the bank a signature (Q, e, v) on the “messages” u, s, and t.
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Let J be the number of the coin. By construction we have Jy — J; < J < Jy + J; and
hence 0 < J2 — (J — Jy)? = J2 — J2 +2JoJ — J? for all J. Thus, to show that a coin number
J lies in the required interval, we only need to show that for J? — (J — Jp)? is a positive
number. Now, due to Lagrange, each positive number can be represented as the sum of four
squares.

We are now ready to describe how a user spends one of her coins. we merged all the
single proofs of ® into one and get some efficiency improvements, e.g., the commitments C
and D are not needed. Also, we choose J differently and thus compute S and T in a slightly
different manner.

—

b

. M (optionally) sends a string info € {0,1}* containing transaction information to U

and/or identifies himself by proving knowledge of sk (We leave this step out.).

. M chooses a random R € Z, such that R # 0 and sends R to U (or it is a result of a

hash function). The only property needed here is that R has not previously been used
by the merchant.
If J > Jy + Ji, the user aborts as she has already sent all coins.

. The user computes the serial number S = ¢//+% and a (now fixed) security tag

T = pku . gR/(J‘H)
The user computes values w;, wa, w3, and wy such that >, w; = JZ — (J — Jo)? (e.g.,
using an algorithm by Rabin and Shallit [163}).

. The user chooses random values 74,75, 71, T2, T3, and 74 where each r €g {0, 1}n+te,

and computes the commitments A = g’h™, B = g*h"® and W; = g¥h" for i =
1,...,4, The user chooses r €r {0,1}**% and computes Q' := QU". Note that
(Q’, e, v+r) is also a valid signature on the message s but that Q and Q' are statistically
independent.

The user computes the following signature proof of knowledge:

U = SPK{(e,B3,7,8,€,p1,--.,p7) :
Z=+Q V#V,yoV3'US A A =+4g"h*A A g=8°5" A
W, = £g“h? A g/t = £(Ag 20 W W2 W3 W, “h* A
B=gth* A 1=B°B(1/g)*h" A g% =TT (g%)* A
= {07 1}em+eg+eﬂ+2 A (E _ 226) c {07 l}e;+ez+en+1}
(Z,V1,V2,V3, U g hn g ST A B W;, Wz, W3, Wy, info)

This is simply an optimized version of our previous proof of knowledge in Chapter 6.4.
The first line of the proof (starting with Z) is to verify the CL signature, the user’s
key, and the coin serial number S. The second line (starting with W;) is to verify that
the coin wallet number is from the appropriate range of size 2¢, i.e., when the jth coin
is being spent from a wallet, j is the coin wallet number. The third line (starting with
B is to verify the double-spending equation 7. The fourth line (starting with o) is
to verify the parameters are in the appropriate ranges. The final line (starting with
(Z...) contains the “message” being signed by this signature proof of knowledge.
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8. If ® verifies, M accepts the coin (R, S, T, ®) and subsequently submits (R, S, T, ®) to
the bank B. If R is not already in L, then B accepts the coin and stores the values
(R.S.T) in a database of spent coins L. If S was already in L, then B initiates the
IdentifyViolator protocol.

9. U updates his counter J = J + 1 as before. When J > 2¢ — 1, the wallet is empty.

We see that, to spend a coin, a user needs to compute 7 multi-base exponentiations
to build the commitments and 11 multi-base exponentiations to carry out the proof. The
merchant and bank need to do 11 multi-base exponentiations to spend a coin.

A.2 System Two: Partial Protocol

The Spend protocol in System Two is more involved than that of System One. From the
description in Chapter 6.5, it may not be clear how to implement step (f) of the Spend
protocol. We now describe how to construct these signature proofs in more detail (although
further optimizations are also possible).

Recall that in step (f) a user & must prove to a merchant M that the serial number S
and the security tag T are valid elements of a coin. In particular, I/ is tasked with showing
that S = f - DY (J) and T = gt (fV {J)) The essence of this proof is to show that S and T
are using the same J value.

More formally, we denote I' = I'o ATy A ... A ['3p as the signature proof of knowledge
where I'g is the following signature proof of knowledge:

Lo = SPK{(a.8,7,01,02,03) : g = (AD)*h® A S = g3 A C = g°h® AFg, = g"h®A
T = g?(gf)'y}(s’ T? A’ {Bi}) C, D7 {Ei}> {Fi}7 g, ha n, g1, 92, 91, pkMa R7 anO)

After this point in the proof we can consider the values (u,s,f,.J) as fixed (although
unknown to M) and value R as public, what remains to be shown is that Fg, = g"h% where
qu P = g and the U knows =, d3. To show this, we successively build up to F3, by showing
that for each intermediate commitment Fj, for ¢ = 1 to 3¢, either: (1) the ith bit of V(J) is
zero and thus F; and F;_; open to the same value, or (2) the ith bit of V(J) is one and thus
F; opens to the opening of F; times ¢; (where ¢; is the corresponding secret in {) The user
already proved that each B; commits to the ith bit of V(J) in steps (1b) and (1c).

Then for i = 1 to 3¢, we have the signature proof of knowledge I';:

[y = SPK{(a:, 3, 05, {7™}) - (Fi =F_ """ AB; = h%‘”) v
. (4) ) () (6)
(Fi = Fia®n” By =gl A By =g )}
(57 T7 A7 {Bi}v Cs D’ {Ei}7 {Fi}* 128 h n.g1. 92, 9r, pk./\/l* R7 'LnfO)
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