18 research outputs found

    Embedding nearly-spanning bounded degree trees

    Full text link
    We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of maximum degree at most d on (1-\epsilon)n vertices, in terms of the expansion properties of G. As a result we show that for fixed d\geq 2 and 0<\epsilon<1, there exists a constant c=c(d,\epsilon) such that a random graph G(n,c/n) contains almost surely a copy of every tree T on (1-\epsilon)n vertices with maximum degree at most d. We also prove that if an (n,D,\lambda)-graph G (i.e., a D-regular graph on n vertices all of whose eigenvalues, except the first one, are at most \lambda in their absolute values) has large enough spectral gap D/\lambda as a function of d and \epsilon, then G has a copy of every tree T as above

    The isoperimetric constant of the random graph process

    Full text link
    The isoperimetric constant of a graph GG on nn vertices, i(G)i(G), is the minimum of SS\frac{|\partial S|}{|S|}, taken over all nonempty subsets SV(G)S\subset V(G) of size at most n/2n/2, where S\partial S denotes the set of edges with precisely one end in SS. A random graph process on nn vertices, G~(t)\widetilde{G}(t), is a sequence of (n2)\binom{n}{2} graphs, where G~(0)\widetilde{G}(0) is the edgeless graph on nn vertices, and G~(t)\widetilde{G}(t) is the result of adding an edge to G~(t1)\widetilde{G}(t-1), uniformly distributed over all the missing edges. We show that in almost every graph process i(G~(t))i(\widetilde{G}(t)) equals the minimal degree of G~(t)\widetilde{G}(t) as long as the minimal degree is o(logn)o(\log n). Furthermore, we show that this result is essentially best possible, by demonstrating that along the period in which the minimum degree is typically Θ(logn)\Theta(\log n), the ratio between the isoperimetric constant and the minimum degree falls from 1 to 1/2, its final value

    The Lovasz number of random graphs

    Full text link
    We study the Lovasz number theta along with two further SDP relaxations theta1, theta1/2 of the independence number and the corresponding relaxations of the chromatic number on random graphs G(n,p). We prove that these relaxations are concentrated about their means Moreover, extending a result of Juhasz, we compute the asymptotic value of the relaxations for essentially the entire range of edge probabilities p. As an application, we give an improved algorithm for approximating the independence number in polynomial expected time, thereby extending a result of Krivelevich and Vu. We also improve on the analysis of an algorithm of Krivelevich for deciding whether G(n,p) is k-colorable

    Spectra of lifted Ramanujan graphs

    Get PDF
    A random nn-lift of a base graph GG is its cover graph HH on the vertices [n]×V(G)[n]\times V(G), where for each edge uvu v in GG there is an independent uniform bijection π\pi, and HH has all edges of the form (i,u),(π(i),v)(i,u),(\pi(i),v). A main motivation for studying lifts is understanding Ramanujan graphs, and namely whether typical covers of such a graph are also Ramanujan. Let GG be a graph with largest eigenvalue λ1\lambda_1 and let ρ\rho be the spectral radius of its universal cover. Friedman (2003) proved that every "new" eigenvalue of a random lift of GG is O(ρ1/2λ11/2)O(\rho^{1/2}\lambda_1^{1/2}) with high probability, and conjectured a bound of ρ+o(1)\rho+o(1), which would be tight by results of Lubotzky and Greenberg (1995). Linial and Puder (2008) improved Friedman's bound to O(ρ2/3λ11/3)O(\rho^{2/3}\lambda_1^{1/3}). For dd-regular graphs, where λ1=d\lambda_1=d and ρ=2d1\rho=2\sqrt{d-1}, this translates to a bound of O(d2/3)O(d^{2/3}), compared to the conjectured 2d12\sqrt{d-1}. Here we analyze the spectrum of a random nn-lift of a dd-regular graph whose nontrivial eigenvalues are all at most λ\lambda in absolute value. We show that with high probability the absolute value of every nontrivial eigenvalue of the lift is O((λρ)logρ)O((\lambda \vee \rho) \log \rho). This result is tight up to a logarithmic factor, and for λd2/3ϵ\lambda \leq d^{2/3-\epsilon} it substantially improves the above upper bounds of Friedman and of Linial and Puder. In particular, it implies that a typical nn-lift of a Ramanujan graph is nearly Ramanujan.Comment: 34 pages, 4 figure

    Concentration of random graphs and application to community detection

    Full text link
    Random matrix theory has played an important role in recent work on statistical network analysis. In this paper, we review recent results on regimes of concentration of random graphs around their expectation, showing that dense graphs concentrate and sparse graphs concentrate after regularization. We also review relevant network models that may be of interest to probabilists considering directions for new random matrix theory developments, and random matrix theory tools that may be of interest to statisticians looking to prove properties of network algorithms. Applications of concentration results to the problem of community detection in networks are discussed in detail.Comment: Submission for International Congress of Mathematicians, Rio de Janeiro, Brazil 201
    corecore