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Abstract. We study n× n random symmetric matrices whose entries above
the diagonal are iid random variables each of which takes 1 with probability
p and 0 with probability 1 − p, for a given density parameter p = α/n for
sufficiently large α. For a given such matrix A, we consider a matrix A′ that
is obtained by removing some rows and corresponding columns with too many
value 1 entries. Then for this A′, we show that the largest eigenvalue is asymp-
totically close to α + 1 and its eigenvector is almost parallel to all one vector
(1, . . . , 1).

1. Introduction

We study the largest eigenvalues and their eigenvectors of random symmetric
and sparse 0, 1-matrices. Spectral analysis (of matrices) is in general to ana-
lyze eigenvalues and eigenvectors (of given matrices). Random matrices and
their spectral analysis play key roles in many problems in information sciences.
In particular, analyzing random symmetric 0, 1-matrices has been shown quite
important for the design and analysis of combinatorial algorithms such as graphs,
etc; see, for example, a survey [1] of Alon for relation to graph algorithms, and a
paper [3] for relation to SAT algorithms. Because of its importance, several de-
tail spectral investigations have been made for random symmetric 0, 1-matrices.
Yet our understanding is still limited; many important questions have been left
open, and there seem to exist some interesting but unknown spectral properties.
In fact, using powerful approximation methods developed in statistical physics,
many interesting and useful spectral properties have been shown approximately
under certain heuristic assumptions. We have been trying to give rigorous justi-
fications to such approximate analysis, and this paper reports one set of results
on the largest eigenvalue and its eigenvector of a random symmetric and sparse
0, 1-matrix.

For explaining previous related work, we first introduce some notions and nota-
tions for discussing the results precisely. Let N denote the set of positive integers.
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Throughout this paper, we will use n ∈ N as a size parameter, a parameter de-
termining the size of matrices and vectors. Let [n] denote the set {1, ..., n}. Our
analysis is stated asymptotically; that is, we consider the situation where n is
sufficiently large. In particular, by “w.h.p.” we mean that a given event holds
with probability approaching to 1 when n→∞.

Our target object is an n × n random symmetric matrix A = (aij) whose
diagonal entries are zeros and whose entries above the diagonal are iid random
variables, each taking value 1 with probability p and value 0 with probability
1 − p. A parameter p is called a density parameter. In this paper, we consider
“sparse” matrices, where p is small and A has on average not so many entries with
value 1. Precisely, we consider the case where the density parameter is defined
by p = α/n for some sufficiently large α > 0.

The largest eigenvalue and its eigenvector are the most important subjects of
the spectral analysis. In this paper, we use λ1 and χ1 to denote the largest eigen-
value of A and the normalized eigenvector of this eigenvalue. Roughly speaking,
we may expect that λ1 is close to pn and that χ1 is almost parallel to vector
1 = (1, ..., 1)/

√
n, or more quantitatively |〈χ1,1〉| is close to 1. (Throughout this

paper, we will use a to denote the quantity |〈χ1,1〉|.) To see these fundamental

spectral properties, let us consider a matrix Â whose each entry takes the expec-

tation of the corresponding entry of A; that is, Â’s each diagonal entry is 0, and

its each nondiagonal entry is p. For this Â, it is easy to see that Â1 = p(n− 1)1.

That is, p(n−1) ≈ pn is one of the eigenvalues of Â and its eigenvector is parallel
to 1; furthermore, it is not so hard to show that p(n−1) is the largest eigenvalue.
Thus, it seems that λ1 ≈ pn and a ≈ 1 on average. In fact, results supporting
this intuition have been shown in the literature, and they have been used as key
facts for the spectral analysis of algorithms. The detail analysis, however, has not
been done completely, in particular for the sparse case that we will study in this
paper. Note that these properties may not hold in the sparse case. One reason
is, as pointed out in the literature (e.g., [2]), the fact that the possibility to have
some rows (and columns by symmetry) with unusually many value 1 entries is
not so small; such rows and columns cause certain irregularity, which affects λ1

and χ1. But even in this case, we can still expect similar properties if we remove
such rows and columns.

Recently, by using powerful approximation methods developed in statistical
physics, various spectral properties of random sparse matrices have been demon-
strated [7]. Although their analysis uses certain approximations and heuristic
hypotheses, the results that match very well to computer experiments seem quite
informative and useful. For the above explained fundamental properties, they
showed that if α > 1, then we have

λ1 ≈ α + 1, and a ≈
√

1− 1

α



SPECTRAL ANALYSIS OF RANDOM SPARSE MATRICES 3

for random symmetric 0, 1-matrices created with density parameter p = α/n (and
then modified by removing rows and columns with too many 1 entries). In this
paper, we prove that these relations asymptotically hold w.h.p. for sufficiently
large α.

Note that α = pn. Thus, λ1 ≈ α + 1 = pn + 1 is different from our intuition
λ1 ≈ pn by +1. One can derive a similar estimate with the +1 term from the
earlier result of [6] for the dense case where p > Ω(1). More recently, Krivelevich
and Sudakov [8] analyzed the largest eigenvalue for the sparse case. While their
result include some other case, the relation that we can show from their result
is λ1 = (1 + o(1))pn, which is still not sharp enough to show this +1 term. Our
result is the first one that gives a sharper estimate deriving the +1 term.

2. Preliminaries and Key Lemma

As mentioned in Introduction, we consider an n×n random symmetric matrix
A whose diagonal entries are zeros and whose entries above the diagonal are
iid random variables, each taking value 1 with probability p and value 0 with
probability 1 − p. We will use symbols ξ, η, ... to denote unit vectors. On the
other hand, for general vectors, e.g., v, by v, we denote a unit vector v/‖v‖ that
is obtained from v by normalization. Let 1 and 1 denote all one vector (1, 1, ..., 1)
and its normalization respectively. For each i, 1 ≤ i ≤ n, let χi denote the iTh
largest eigenvector of A.

We rely on the analysis of random 0, 1-matrices given by Alon and Kahale
[2], which is based on the approach given in [5]. More specifically, we base the
following lemma given by Coja-Oghlan et al. in [3, Lemma 45]. (Below, we use,
e.g., #S to denote the number of elements in the set S.)

Lemma 1. Let A be a random matrix as explained above with density parameter
p = α/n. For some sufficiently large constant d0, if α ≥ d0, then for any constant
c1 > 1, there exists some c2 > 0 such that the following three statements hold
w.h.p. for the random matrix A.

(1) Let V ′′ = {i ∈ {1, ..., n}|
∑n

j=1 aij > c1pn}, and V ′ = {1, ..., n} − V ′′. Let

n′ = #V ′ and A′ = (aij)i,j∈V ′ be the induced n′ × n′ matrix. Then we have
n′ ≥ (1− exp(−pn/c2))n.

(2) For any unit vector ξ such that ξ⊥1, we have ‖A′ξ‖ ≤ c2
√
pn′.

(3) ‖A′1− pn′1‖ ≤ c2
√
pn′.

The lemma states first that the number of rows (resp., columns) with unusually
many 1 entries is not so large w.h.p. (for sufficiently large α). It then states that
after removing such rows and columns the remaining matrix, i.e., the matrix A′

of the lemma, behaves w.h.p. more or less similar to the “average” matrix. This
A′ will be the target of our analysis of this paper. (In the next section, we will
use A to denote this A′.)
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We prepare some more technical lemmas. Here we introduce our order nota-
tions that will be used throughout this paper. For any positive function f(n), we
use O(f(n)) and o(f(n)) to denote some positive functions f1(n) and f2(n) that
are defined in each context to satisfy ∃c1 > 0, ∃n1 ∈ N, ∀n ≥ n1 [ f1(n) ≤ c1f(n) ]
and ∀c > 0, ∃n2 ∈ N, ∀n ≥ n2 [ f2(n) ≤ cf(n) ] respectively. Note that we
consider only positive functions, which is different from the standard order nota-
tions. This is for simplifying expressions and derivations. For example, for our
notations, it does make sense to write expressions such as f(n) < o(1) or use
derivations such as (

√
pn+ o(1))2 < pn+ o(1) (because pn < O(1)).

Our first technical lemma is a main lemma of this paper. This is a stronger
version of the statement (3) of Lemma 1.

Lemma 2. W.h.p. we have

| ‖A1− pn1‖2 − (p− p2)n2 | ≤ pn1.5+δ.

Hence, by choosing δ < 0.5, we immediately have

| ‖A1− pn1‖ − √pn | < o(1).

As shown below, for proving these bounds, we do not need to modify a given
random matrix by removing rows and columns with too many 1’s as explained
above. In other words, the modification was essential for proving (2) of Lemma 1.
On the other hand, our real target matrix is A′ that is obtained by remov-
ing rows of V ′ (and corresponding columns). Then we need bounds similar to
the above for such A′, and for this, the following corollary is given. Below let
1′ = (1, . . . , 1)/

√
n′. (Its proof, which idea is essentially given in [3, Proof of

Lemma 39], is stated in Appendix.)

Corollary 3. W.h.p. we have

| ‖A′1− pn′1′‖ −
√
pn′ | < O((pn′)−2) + o(1).

Now consider the proof of Lemma 2. Analysis of this type becomes much easier
if we may assume that a given matrix is “completely random”, i.e., all nondiagonal
entries are iid random variables. On the other hand, our target random matrix
A is symmetric, and there are correlations between aij and aji for all pairs of
i and j, 1 ≤ i < j ≤ n. In fact, in the previous work [3, 4] some interesting
techniques have been introduced to avoid such correlations. Here we take more
direct approach and prove the lemma by considering these correlations. But in
order to show the outline, we prove the lemma here ignoring the correlations; a
tedious but rather straightforward argument for taking care the correlations is
stated in Appendix.

Proof of Lemma 2 (Outline). For each i ∈ [n], let Xi =
∑

j aij. Note
that these are not iid random variables. But let us assume here that they were
independent. (There is only one point in the whole proof where this independence
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is used, which will be reminded explicitly below.) Next we let Yi = (Xi − µ)2,
where µ = E[Xi] = p(n− 1), and let Y =

∑
i Yi. Then we have

E[Yi] = E[X2
i ]− µ2

= p(n− 1) + p2(n− 1)(n− 2)− p2(n− 1)2

= p(n− 1)− p2(n− 1) = (p− p2)(n− 1).

Hence, we have E[Y ] = (p− p2)n(n− 1).
On the other hand, following the argument of [3, Proof of Lemma 39], we have

V[Yi] ≤ E[Y 2
i ] < O((pn)2), which is bounded by O(1) because pn is a constant

for our choice of p. Now if all Y1, ..., Yn were independent, then we would have

(1) V[Y ] =
∑
i

V[Yi] ≤ nE[Y 2
i ] < O(n).

Then by using Chebyshev bound, we can show that Y is close to E[Y ]. More
precisely, we have

Pr[ |Y − E[Y ]| > pn1.5+δ ] <
V[Y ]

(pn1.5+δ)2

<
O(n)

(Ω(1)n0.5+δ)2
< o(1).

Note, on the other hand, that what we want to estimate is
∑

i(Xi − pn)2 =∑
i(Xi − µ− p)2. Let Y ′i = (Xi − µ− p)2. Then noting

Y ′i = (Xi − µ− p)2 = (Xi − µ)2 − 2p(Xi − µ) + p2

= Yi − 2p(Xi − µ) + p2,

we have
E[Y ′i ] = E[Yi] + p2 = (p− p2)n+ (2p2 − p).

Also we have

V[Y ′i ] = E
[
(Y ′i − E[Y ′i ])

2
]

= E
[

( (Yi − 2p(Xi − µ) + p2)− (E[Yi] + p2) )2
]

= E
[

( (Yi − E[Yi])− 2p(Xi − µ) )2
]

= V[Yi] + 4p2V[Xi]

< O(1) +O(p2) < O(1).

Hence, for Y ′ =
∑

i Y
′
i , we can again show that Y ′ is close to E[Y ′] w.h.p., and

from this we have

o(1) > Pr
[
|Y ′ − E(Y ′)| > 2pn1.5+δ

]
= Pr

[
|Y ′ − ((p− p2)n2 + (2p2 − p)n)| > 2pn1.5+δ

]
≥ Pr

[
|Y ′ − (p− p2)n2| > pn1.5+δ

]
,

where the last bound holds for any sufficiently large n.
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Finally consider the real situation where Y1, ..., Yn are not independent. Even
in this case, as shown in Appendix, we still have V[Y ] < O(n) and similarly
V[Y ′] < O(n). Therefore, essentially the same analysis as above is sufficient for
the lemma. �

Let us state some more small technical lemmas. In the following, let A′ and
n′ be the random matrix and its size given in Lemma 1, and let 1′ denote the
vector (1, . . . , 1) with n′ components. We assume that the part (1) of Lemma 1
holds.

Lemma 4. For any unit vector ξ that is perpendicular to 1′, and for any unit
vector η, w.h.p. we have

|〈A′ξ,η〉| ≤ c2
√
pn′.

Proof. Let A′ξ =
∑

i aiχ
′
i, by using eigenvectors χ′

1,χ
′
2, ...,χ

′
n′ of A′, Then

from Lemma 1 (2), w.h.p. we have∑
i

a2
i = ‖A′ξ‖2 ≤ c2pn

′.

On the other hand, letting η =
∑

i biχ
′
i, we have

∑
i b

2
i = 1. Then the lemma

is shown by

〈A′ξ,η〉2 =

〈∑
i

aiχ
′
i,
∑
j

bjχ
′
j

〉2

=

(∑
i

aibi

)2

≤

(∑
i

a2
i

)(∑
j

b2j

)
≤ (c2)

2pn′. �

By using this lemma, we can bound eigenvalues as follows.

Corollary 5. For some constant c3 (e.g., letting c3 = 3), w.h.p. we have

|λ′i| ≤ c3c2
√
pn′

for any i, 2 ≤ i ≤ n′.
Remark. The coefficient c3 = 3 is a bit loose. In fact, we have |λ′i| ≤ c2

√
pn′

for all i, 2 ≤ i ≤ n′ − 1.

Proof. We make use of the following Courant-Fischer characterization (recall
that ξ denote a unit vector):

λ′i = max
S:dim(S)=i

min
ξ∈S
〈A′ξ, ξ〉 = min

S:dim(S)=n′−i+1
max
ξ∈S
〈A′ξ, ξ〉.

First for bounding λ′2 and λ′n−1, we use S0 = {v|v⊥1′}. Then w.h.p. we have

λ′2 ≤ max
ξ∈S0

〈Aξ, ξ〉 ≤ c2
√
pn′, and

λ′n′−1 ≥ min
ξ∈S0

〈Aξ, ξ〉 ≥ −c2
√
pn′.
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Finally for bounding λ′n′ , we let ξ∗ to denote the one that defines λ′n =

〈Aξ∗, ξ∗〉. Let ξ∗ = a1′ + bη, where a = 〈ξ∗,1′〉 (and thus |a|, |b| ≤ 1 and η⊥1′).

Then by using (i) 〈A′1′,1′〉 ≥ 1, (ii) the symmetry of A′, and (iii) Lemma 4, we
have

λ′n′ = 〈A′ξ∗, ξ∗〉 = 〈A′(a1′ + bη), a1′ + bη〉
= a2〈A′1′,1′〉+ ab(〈A′η,1′〉+ 〈A′1′,η〉) + b2〈A′η,η〉
= a2〈A′1′,1′〉+ 2ab(〈A′η,1′〉+ b2〈A′η,η〉
≥ −(2ab+ b2)

√
pn′,

which is our desired bound. �
On the other hand, since 〈A′1′,1′〉 is

∑
ij aij, we have the following from the

Chernoff bound. This shows that λ′1 > pn′ − o(1).

Lemma 6. For any δ, 0 < δ ≤ 1/2, w.h.p. we have

pn′ − pn′1−δ ≤ 〈A′1′,1′〉 ≤ pn′ + pn′1−δ.

3. Main Analysis

As explained above, we will analyze matrix A′ that is defined in Lemma 1 by
removing rows of V ′′ (and the corresponding columns) from matrix A generated
randomly with the density parameter p. We may assume that Lemma 1 (1) holds.
For simplifying our notation, throughout this section we will use A and n (instead
of A′ and n′) to denote a random matrix of this type and its size respectively.
Also throughout this section, we assume that α is sufficiently large, or, more
specifically, α > (c2)

2, where c2 is the constant of Lemma 1.
For stating our result succinctly we introduce some more order notations. By

oα(1) and oα+(1) we denote some positive functions ε1(α) and ε2(α) that are
defined in each context to satisfy ε1(α) ≤ d1/α

b1 and ε2(α) ≤ d2/α
1.5 respectively

with some constants b1, d1, d2 > 0 independent from n and α. That is, while oα(1)
goes to 0 when α goes ∞, oα+(1) is a function that goes to 0 faster than 1/α.
For any positive function f(α), if it satisfies that ∃c > 0, α0 > 0, ∀α > α0, then
we have

1

f(α)− oα(1)
≤ 1

f(α)
+ oα(1), and

1

f(α) + oα(1)
≥ 1

f(α)
− oα(1).

These derivations are useful in the following analysis. With this notation, the
bound of Corollary 3 can be restated as

(2) | ‖A1− pn1‖ − √pn | < oα+(1) + o(1).
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What is essential for our analysis is the relation between χ1 and 1. In the
following we fix a1, ..., an, b, and χ to those satisfying

1 = a1χ1 + · · ·+ anχn = a1χ1 + bχ.

Here recall that the overlap a is defined by a = 〈χ1,1〉. Hence, we have a1 = a
and

χ1 = a1 + bη

for some η such that η⊥1. Note that a2 + b2 = 1 and b2 =
∑

i≥2 a
2
i . Thus,

for bounding a (which is one of our goals), we will estimate
∑

i≥2 a
2
i (= b2) and√

1− b2 (= a).
Here the key tool is the bound (2) applied to the following relation:

‖A1− pn1‖2 =

∥∥∥∥∥A
(∑

i

aiχi

)
− pn

(∑
i

aiχi

)∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

(aiλi − ai · pn)χi

∥∥∥∥∥
2

=
∑
i

a2
i (λi − pn)2.(3)

Theorem 1. W.h.p. we have

(4) a ≥
√

1− 1

α
− oα+(1)− o(1).

Proof. By using (2) and (3), we have

pn+ oα+(1) + o(1)

>
∑
i

a2
i (λi − pn)2 ≥

∑
i≥2

a2
i (λi − pn)2

≥
∑
i≥2

a2
i (c2
√
pn− pn)2 =

∑
i≥2

a2
i (
√
pn− c2)2pn.

Hence,

(5) b2 =
∑
i≥2

a2
i <

1 + oα+(1) + o(1)

(
√
pn− c2)2

<
1

(
√
α− c2)2

+ oα+(1) + o(1),

and then our desired bound (4) follows. �
Next we give the following upper bound for λ1.

Theorem 2. W.h.p. we have

(6) λ1 < α + 1 + oα(1) + o(1).
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Proof. We first show that

(7) λ1 < α +

√
α

a(
√
α− c2)

+ oα+(1) + o(1)

holds w.h.p. Let w = A1−pn1. We estimate 〈A1,χ1〉 in the following two ways:

〈A1,χ1〉 = 〈A(aχ1 + bχ),χ1〉
= 〈aλ1χ1 + bAχ,χ1〉 = aλ1, and

〈A1,χ1〉 = 〈A1, a1 + bη〉
= a〈A1,1〉+ b〈pn1 +w,η〉
= a〈A1,1〉+ b〈w,η〉 ≤ a〈A1,1〉+ b‖w‖
< a〈A1,1〉+ b

√
pn+ oα+(1) + o(1) (by (2) and |b| ≤ 1)

< a〈A1,1〉+

√
pn

√
pn− c2

+ oα+(1) + o(1). (by (5))

The bound (7) follows from these two bounds.
Next we derive (6). First note that from (4) we have

1

a2
<

(
1 +

1

α
+ oα+(1) + o(1)

)2

.

Using this bound, the desired bound is shown by

λ1 < α +
1

a
·
√
α√

α− c2
+ oα+(1) + o(1)

< α +
1

a
(1 + oα(1)) + oα+(1) + o(1)

< α +

(
1 +

1

α
+ oα+(1) + o(1)

)
(1 + oα(1))

< α + 1 + oα(1) + o(1). �

Theorem 3. W.h.p. we have

(8) a <

√
1− 1

α
+ oα+(1) + o(1).

Thus, within our approximation, this upper bound matches to the lower bound
(4).
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Proof. Here again using (2) and (3), we have

pn− oα+(1)− o(1) <
∑
i

a2
i (λi − pn)2

= a2(λ1 − pn)2 +
∑
i≥2

a2
i (λi − pn)2

<
pn

(
√
pn− c2)2

+ oα+(1) + o(1) +
∑
i≥2

a2
i (pn+ c3c2

√
pn)2.

Here for deriving the last inequality, we used bounds for λ1: a lower bound
pn− o(1) is from Lemma 6, and an upper bound is (7).

Hence we have

b2 =
∑
i≥2

a2
i >

1− (
√
pn− c2)−2

(c2c3 +
√
pn)2

− oα+(1)− o(1)

=
1− (

√
α− c2)−2

(c2c3 +
√
α)2

− oα+(1)− o(1).

Hence,

a <

√
1− 1− (

√
α− c2)−2

(c2c3 +
√
α)2

+ oα+(1) + o(1).

Then the bound (8) of the lemma follows. �
Finally we show the following lower bound for λ1.

Theorem 4. W.h.p. we have

(9) λ1 > α + 1− oα(1)− o(1).

Proof. We start by estimating ‖A1‖2. Let w′ = A1 − 〈A1,1〉1. Then since
w′⊥1, we have

‖A1‖2 = 〈A1,1〉2 + ‖w′‖2 ≥ (pn− pn1−δ)2 + ‖w′‖2

> (pn)2 + ‖w′‖2 − o(1).(10)

On the other hand, we let w = A1− pn1, and then we have

w′ +
(
〈A1,1〉 − pn

)
1 = w.

Hence, by the triangular inequality, we have

‖w′‖ ≥ ‖w‖ −
∥∥∥(〈A1,1〉1− pn

)
1
∥∥∥

= ‖A1− pn1‖ −
∥∥∥(〈A1,1〉1− pn

)
1
∥∥∥

> (
√
pn− oα+(1)− o(1))− ‖(pn1−δ)1‖,
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where (2) and Lemma 6 are used to get this bound for some δ > 0. Thus, we
have

‖w′‖ >
√
pn− oα+(1)− o(1).

Then by (10), we have

(11) ‖A1‖2 > (pn)2 + pn− oα+(1)− o(1).

On the other hand, we have

‖A1‖2 = a2λ2
1 +

∑
i≥2

a2
iλ

2
i ≤ a2λ2

1 + b2(c3c2)
2pn.

Hence, by using (11), we have

λ2
1 >

1

a2
· (pn)2 + pn− b2(c3c2)2pn− oα+(1)− o(1)

=
α2

a2
+ α− b2(c3c2)2α− oα+(1)− o(1).

Now we analyze below the first and the third terms of this bound. For the
third term, by using the upper bound (5), we can show some constant d1 > 0
exists such that

b2(c3c2)
2α >

(
1

α
+ oα+(1) + o(1)

)
(c2c2)

2α

> d1 + oα(1) + o(1)

holds. On the other hand, by using (8), we have some d2 with which the first
term is bounded by

α2

a2
≥ 1

1− 1/α + oα+(1) + o(1)
· α2

=

(
1 +

1− α · oα+(1)

α− 1 + α · oα+(1)

)
· α2

≥ α2 +
α2 − α3 · oα+(1)

α + α · oα+(1)

> α2 + α

(
1

1 + oα+(1)

)
− d2α

−0.5.

From these bounds, for any ε > 0, we have

λ2
1 ≥ α2 + 2α

(
1− ε

1 + oα+(1)

)
+

(
1− ε

1 + oα+(1)

)2

+
2αε

1 + oα+(1)
−
(

1− ε
1 + oα+(1)

)2

− d1 − d2α
−0.5 − oα+(1)− o(1),

where the sum of the last six terms is positive by taking ε = d3α
−1.5+oα+(1)+o(1)

for some sufficiently large constant d3 > 0.
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Therefore, with this d3, we have

λ1 > α +

(
1− d3α

−1.5 − oα+(1)− o(1)

1 + oα+(1)

)
> α + 1− oα+(1)− o(1). �
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Appendix

A. Analysis of V[Y ]. Here we give a detail analysis of V[Y ] that is omitted in
the proof of Lemma 2. We use the same notations, but let us recall important
ones.

Xi =
∑
j

aij, µ = E[Xi] = p(n− 1) < O(1),

Yi = (Xi − µ)2, and Y =
∑
i

Yi.

For simplifying our notation, we introduce here the following notations:

EX2 = E[X2
1 ] = p(n− 1) + p2(n− 1)(n− 2),(12)

EY1 = E[Y1] = E[(X1 − µ)2] = EX2 − µ2, and

EY2 = E[Y 2
1 ] < O((pn)2) < O(1).

By symmetry we have EX2 = E[X2
i ], EY1 = E[Yi], and EY2 = E[Y 2

i ] for all i ∈ [n].
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Our goal is to estimate V[Y ]. Let ν = E[Y ]; note that ν = nEY1. First by
definition we have

V[Y ] = E[(Y − ν)2] = E[Y 2 − 2Y ν + ν2]

= E

(∑
i

Yi

)2
− 2E[Y ]ν + ν2 = E

(∑
i

Yi

)2
− ν2

= E

[∑
i

Y 2
i

]
+ E

[∑
i 6=i′

Yi · Yi′
]
− ν2

= nEY2 + n(n− 1)E[Y1 · Y2]− n2(EY1)
2

≤ nEY2 + n2
(
E[Y1 · Y2]− (EY1)

2
)
,(13)

where by symmetry the choice of Y1 and Y2 is not essential.
If we could assume that Y1 and Y2 are independent, then we would have

(13) = nEY2 + n2
(
E[Y1] · E[Y2]− (EY1)

2
)

= nEY2

Thus, for our estimation, we consider the difference between E[Y1 ·Y2] and (EY1)
2.

Again by definition, we have

E[Y1 · Y2]

= E
[
(X1 − µ)2(X2 − µ)2

]
= E

[
(X2

1 − 2µX1 + µ2)(X2
2 − 2µX2 + µ2)

]
= E

[
X2

1X
2
2 − 2µX2

1X2 + µ2X2
1

−2µX1X
2
2 + 4µ2X1X2 − 2µ3X1 + µ2X2

2 − 2µ3X2 + µ4
]

= E[X2
1X

2
2 ]− 4µE[X2

1X2] + 4µ2E[X1X2] + 2µ2EX2 − 4µ4 + µ4.(14)

We estimate expectations E[X2
1X

2
2 ], E[X2

1X1], and E[X1X2].
First consider E[X1X2]. Since X1 =

∑
j a1j and X2 =

∑
j a2j, the correlation

between X1 and X2 is caused only by a12 = a21; all the other variables are
independent of each other. In the following, let us use the following notations:

Sa1 =
∑
j 6=2

a1j, and Sa2 =
∑
j 6=1

a2j.

Also let a′ denote a12 = a21. Hence, we have X1 = Sa1 + a′ and X2 = Sa2 + a′,
and it holds that

E[X1X2] = E [(Sa1 + a′) (Sa2 + a′)]

= E [Sa1Sa2] + 2E [a′Sa1] + E
[
a′2
]

= (p(n− 2))2 + 2p(p(n− 2)) + p

= p2n(n− 2) + p = µ2 − p2 + p.(15)
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Next consider E[X2
1X2]. Again using our notations, we can evaluate it as

E[X2
1X2] = E

[
X2

1Sa2 + (Sa1 + a′)
2
a′
]

= EX2 · E[Sa2] + E
[
a′(Sa1)

2
]

+ E
[
2a′2Sa1

]
+ E[a′3]

= EX2 · (µ− p) + p
(
p2(n− 2)(n− 3) + 3p(n− 2) + 1

)
Here we compare the last term of (16) and

EX2 = p(n− 1) + p2(n− 1)(n− 2). (by (12))

Then we have

(16) = EX2 · (µ− p) + p
(
EX2 + 2pn+ 1− 2p2(n− 2)− 5p)

)
= EX2 · µ+ 2p2n+ p− 2p3(n− 2)− 5p2.

The last one is E[X2
1X

2
2 ]. This can be stated as

E[X2
1X

2
2 ] = E

[
X2

1 (Sa2 + a′)2
]

= E
[
X2

1

(
(Sa2)

2 + 2a′Sa2 + a′2
)]

= EX2 · E
[
(Sa2)

2
]

+ E
[(

(Sa1)
2 + 2a′Sa1 + a′2

) (
2a′Sa2 + a′2

)]
= EX2 · E

[
(Sa2)

2
]

+E
[
2a′(Sa1)

2Sa2

]
+ E

[
a′2(Sa1)

2
]

+E
[
4a′2(Sa1)(Sa2)

]
+ E

[
2a′3Sa1

]
+E

[
2a′3Sa2

]
+ E[a′4]

= EX2 · E ′X2 + 2pµ′E ′X2 + pE ′X2 + 4pµ′2 + 4pµ′ + p,

where we let E ′X2 and µ′ denote E[(Sa1)
2] (= E[(Sa2)

2]) and E[Sa1] (= E[Sa2])
respectively.

Here note that

EX2 = E[X2
1 ] = E

[
(S2

a1 + 2a′Sa1 + a′2
]

= E ′X2 + 2pµ′ + p.

Hence EX2 · EX2 is expressed as

EX2 · EX2 = EX2 · (E ′X2 + 2pµ′ + p)

= EX2 · E ′X2 + (E ′X2 + 2pµ′ + p) (2pµ′ + p)

= EX2 · E ′X2 + 2pµ′E ′X2 + pE ′X2 + 4p2µ′2 + 2p2µ′ + p2.

Comparing this with (16), we can easily see that

(16) E[X2
1X

2
2 ] = (EX2)

2 + p(4µ′2 + 4µ′ + 1)− p2(4µ′2 + 2µ′ + 1)

Now by (15), (16), and (16), we can restate (14) as

E[Y1 · Y2] (= (14))

≤ (EX2)
2 − 2µ2EX2 + µ4 + p(4µ′2 + 4µ′ + 1) + 4µ(2p3(n− 2) + 5p2) + 4µ2p.
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On the other hand, since we have

(EY1)
2 =

(
EX2 − µ2

)2
= (EX2)

2 − 2µ2EX2 + µ4,

and pn = α < O(1), it holds that

E[Y1 · Y2] < E[Y1] · E[Y2] + p ·O(1),

which implies

(17) V[Y ] < nEY2 + n2p ·O(1) < O(n).

This is our desired bound.

B. A proof of Corollary 3. Recall that A is an n-by-n symmetric matrix while
A′ is n′-by-n′ (and symmetric). Also recall that we use 1 and 1′ to denote all
one vectors with n components and n′ components respectively, and that 1 and
1′ are the corresponding normalized verctors.

We note two facts used here: |
∥∥A1− pn1

∥∥ − √pn| = o(1), and n′ ≥
(1−exp(−pn/c2))n. As a first step to showing Corollary 3, we derive the following
bound: ∣∣∣∥∥∥A′1′ − pn1′

∥∥∥−√pn∣∣∣
≤

∣∣∣∥∥∥A′1′ − pn1′
∥∥∥− ∥∥A1− pn1

∥∥∣∣∣+
∣∣∥∥A1− pn1

∥∥−√pn∣∣
≤

∣∣∣∥∥∥A′1′ − pn1′
∥∥∥− ∥∥A1− pn1

∥∥∣∣∣+ o(1).

For the first term of the last formula above, we invoke a claim from [3], precisely
the formula (28) therein. That is,

∀S ⊂ V : |S| ≤ (pn)−10n

[∑
v∈V

∑
u∈S

avu ≤ (pn)−5n

]
.

Let xv =
∑

u∈V ′ avu and yv =
∑

u∈V ′′ avu. Then,
∑

v∈V ′ yv ≤ (pn)−5n. Thus,

‖A′1′ − pn1′‖2 − ‖A1− pn1‖2 =
∑
v∈V ′

(xv − pn)2 −
∑
v∈V

(xv + yv − pn)2

≤
∑
v∈V ′

(
(xv − pn)2 − (xv + yv − pn)2

)
≤

∑
v∈V ′

2pnyv ≤ 2pn(pn)−5n = 2n(pn)−4.

Thus, noting that A and A′ are n-by-n and n′-by-n′ respectively, we have∥∥∥A′1′ − pn1′
∥∥∥2 n′

n
−
∥∥A1− pn1

∥∥2 ≤ 2(pn)−4.
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This implies

(1− exp(−pn/c2))
∥∥∥A′1′ − pn1′

∥∥∥2

−
∥∥A1− pn1

∥∥2 ≤ 2(pn)−4

⇐⇒
∥∥∥A′1′ − pn1′

∥∥∥2

−
∥∥A1− pn1

∥∥2
/(1− exp(−pn/c2))

≤ 2(pn)−4/(1− exp(−pn/c2))

⇐⇒
∥∥∥A′1′ − pn1′

∥∥∥2

−
∥∥A1− pn1

∥∥2
(1 + 2 exp(−pn/c2))

≤ 2(pn)−4(1 + 2 exp(−pn/c2))

⇐⇒
∥∥∥A′1′ − pn1′

∥∥∥2

−
∥∥A1− pn1

∥∥2

≤ 2(pn)−4(1 + 2 exp(−pn/c2)) + 2 exp(−pn/c2)
∥∥A1− pn1

∥∥2

⇐⇒
∥∥∥A′1′ − pn1′

∥∥∥2

−
∥∥A1− pn1

∥∥2

≤ 2(pn)−4(1 + 2 exp(−pn/c2)) + 2 exp(−pn/c2)(pn+ o(1))

⇐⇒
∥∥∥A′1′ − pn1′

∥∥∥2

−
∥∥A1− pn1

∥∥2 ≤ 3(pn)−4.

Thus,

∣∣∣∥∥∥A′1′ − pn1′
∥∥∥−√pn∣∣∣ ≤ O((pn)−2) + o(1).

Next, using this, we derive

∣∣∣∥∥∥A′1′ − pn′1′
∥∥∥−√pn∣∣∣ =

∣∣∣∥∥∥(A′1′ − pn1′) + (pn1′ − pn′1′)
∥∥∥−√pn∣∣∣

≤
∣∣∣∥∥∥A′1′ − pn1′

∥∥∥−√pn∣∣∣+
∥∥∥pn1′ − pn′1′

∥∥∥
≤ O((pn)−2) + (pn− pn′) + o(1)

= O((pn)−2) + o(1).

Finally, the target bound is derivied by

∣∣∣∥∥∥A′1′ − pn′1′
∥∥∥−√pn′

∣∣∣ ≤ ∣∣∣∥∥∥A′1′ − pn′1′
∥∥∥−√pn∣∣∣+

∣∣∣√pn−√pn′
∣∣∣

≤ O((pn)−2) +
∣∣∣√pn−√pn′

∣∣∣+ o(1)

≤ O((pn)−2) + o(1),
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where the last iequality comes from
√
pn−

√
pn′ ≤ α−2 ⇐⇒

√
α−

√
α(1− exp(−α/c2)) ≤ α−2

⇐⇒ 1− (1− exp(−α/c2))1/2 ≤ α−2−1/2

⇐⇒ 1− α−5/2 ≤ (1− exp(−α/c2))1/2

⇐⇒ (1− α−5/2)2 ≤ 1− exp(−α/c2)
⇐⇒ 1− 2α−5/2 + α−5 ≤ 1− exp(−α/c2)
⇐⇒ exp(−α/c2) ≤ 2α−5/2 − α−5

since we let α = pn.
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