169 research outputs found

    intuitR: A Theorem Prover for Intuitionistic Propositional Logic

    Get PDF
    A constructive proof proves the existence of a mathematical object by giving the steps necessary to construct said object. Proofs of this type can be interpreted as an algorithm for creating such an object. Intuitionistic Propositional Logic (IPL) is a propositional logic system wherein all valid proofs are constructive. intuitR is a theorem prover for IPL, that is, it determines whether a given formula is valid in IPL or not. In this paper, we describe how intuitR determines the validity of a formula and review its performance. When compared on a benchmark set of problems, intuitR was determined to solve more problems and to be of comparable speed or better than other IPL-provers

    Gödel Description Logics

    Get PDF
    In the last few years there has been a large effort for analysing the computational properties of reasoning in fuzzy Description Logics. This has led to a number of papers studying the complexity of these logics, depending on their chosen semantics. Surprisingly, despite being arguably the simplest form of fuzzy semantics, not much is known about the complexity of reasoning in fuzzy DLs w.r.t. witnessed models over the Gödel t-norm. We show that in the logic G-IALC, reasoning cannot be restricted to finitely valued models in general. Despite this negative result, we also show that all the standard reasoning problems can be solved in this logic in exponential time, matching the complexity of reasoning in classical ALC

    Unknowable Truths: The Incompleteness Theorems and the Rise of Modernism

    Get PDF
    This thesis evaluates the function of the current history of mathematics methodologies and explores ways in which historiographical methodologies could be successfully implemented in the field. Traditional approaches to the history of mathematics often lack either an accurate portrayal of the social and cultural influences of the time, or they lack an effective usage of mathematics discussed. This paper applies a holistic methodology in a case study of Kurt Gödel’s influential work in logic during the Interwar period and the parallel rise of intellectual modernism. In doing so, the proofs for Gödel’s Completeness and Incompleteness theorems will be discussed as well as Gödel’s philosophical interests and influences of the time. To explore the intersection of these worlds, practices are borrowed from the fields of intellectual history and history of science and technology to analyze better the effects of society and culture on the mind of mathematicians like Gödel and their work

    One-variable fragments of intermediate logics over linear frames

    Get PDF
    A correspondence is established between one-variable fragments of (first-order) intermediate logics defined over a fixed countable linear frame and Gödel modal logics defined over many-valued equivalence relations with values in a closed subset of the real unit interval. It is also shown that each of these logics can be interpreted in the one-variable fragment of the corresponding constant domain intermediate logic, which is equivalent to a Gödel modal logic defined over (crisp) equivalence relations. Although the latter modal logics in general lack the finite model property with respect to their frame semantics, an alternative semantics is defined that has this property and used to establish co-NP-completeness results for the one-variable fragments of the corresponding intermediate logics both with and without constant domains

    One-Variable Fragments of First-Order Many-Valued Logics

    Get PDF
    In this thesis we study one-variable fragments of first-order logics. Such a one-variable fragment consists of those first-order formulas that contain only unary predicates and a single variable. These fragments can be viewed from a modal perspective by replacing the universal and existential quantifier with a box and diamond modality, respectively, and the unary predicates with corresponding propositional variables. Under this correspondence, the one-variable fragment of first-order classical logic famously corresponds to the modal logic S5. This thesis explores some such correspondences between first-order and modal logics. Firstly, we study first-order intuitionistic logics based on linear intuitionistic Kripke frames. We show that their one-variable fragments correspond to particular modal Gödel logics, defined over many-valued S5-Kripke frames. For a large class of these logics, we prove the validity problem to be decidable, even co-NP-complete. Secondly, we investigate the one-variable fragment of first-order Abelian logic, i.e., the first-order logic based on the ordered additive group of the reals. We provide two completeness results with respect to Hilbert-style axiomatizations: one for the one-variable fragment, and one for the one-variable fragment that does not contain any lattice connectives. Both these fragments are proved to be decidable. Finally, we launch a much broader algebraic investigation into one-variable fragments. We turn to the setting of first-order substructural logics (with the rule of exchange). Inspired by work on, among others, monadic Boolean algebras and monadic Heyting algebras, we define monadic commutative pointed residuated lattices as a first (algebraic) investigation into one-variable fragments of this large class of first-order logics. We prove a number of properties for these newly defined algebras, including a characterization in terms of relatively complete subalgebras as well as a characterization of their congruences
    • …
    corecore