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Introduction

This thesis is concerned with the study of one-variable fragments of first-order logics,
in particular, Łukasiewicz, Abelian, and intermediate logics, and their connection to
many-valued modal logics. In this introduction, we discuss our motivations for studying
these fragments and give an overview of the chapters to come.

Propositional Many-Valued Logics

Classical logic is concerned with reasoning about statements that are either true or false.
It deals with propositions such as “5 is a prime number” or “I am 28 years old”. It is
natural to wonder why we would not consider more than these two traditional truth
values 0 (falsity) and 1 (truth). Indeed, there exist plenty of examples in natural language
of propositions that are not necessarily true or false: saying that “Olfe is tall” might
be ‘more true’ than “Féluna is tall”, but there might be someone even taller. And what
does ‘more true’ mean in this case? Such examples, and many others like them, motivate
extending the scope of classical logic by considering a set of truth values that is larger
than the usual {0, 1}. This new set can be finite or infinite and, in most cases, will bear
some order structure, making it a poset, a lattice, or a chain. These logics are commonly
collected together under the umbrella term many-valued logics.

A formal mathematical study of such logics originates with the work of Łukasiewicz
and Post in the 1920s [97, 129]. The former introduced a logic, denoted by Ł3, that
has three truth values: “false”, “true”, and an additional value “undetermined”. He
proposed this third value to deal with future contingents like “It will rain tomorrow”.
Such an approach to future contingents is generally considered to be unsuccessful,1
but Łukasiewicz’s ideas provided a basis for the mathematical study of many-valued
logics. Further examples of finite-valued logics may be found in the works of Post [129],
Bochvar [30], Kleene [90,91], Belnap [18], and Dunn [64].

Of the interesting infinite-valued logics, we would like to point out three in particular
that have a prominent place in this thesis. Firstly, Łukasiewicz himself generalized his
three-valued logic Ł3 to first an n-valued logic Łn for any n ≥ 2, and then to a logic
Ł with truth values in the real unit interval [0, 1] [98]. We refer to Ł as Łukasiewicz
logic. Secondly, in [74] Gödel defined implicitly a family of n-valued logics, usually
denoted by Gn (n ≥ 2), which was extended to an infinite-valued logic, denoted by G, by
Dummett [63]. We refer to G as Gödel–Dummett logic, or simply Gödel logic. Although
Dummett defined G with truth values in ω+, it can also be viewed as a logic with truth

1Nowadays, such future contingents are dealt with, for example, using temporal logic, see, e.g., [121]
for details.
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values in [0, 1]; in fact, we could take any infinite closed subset of [0, 1] that contains
both 0 and 1 as the set of truth values.2 This idea of using the real unit interval as a
set of truth values has since been extended and extensively studied by Hájek. With his
work on Basic logic BL as the logic of continuous t-norms and their residuals, he was
one of the main initiators of and contributors to the field of mathematical fuzzy logic,
that studies truth-functional logics with truth values in [0, 1] [76].3 His work has lead to
numerous generalizations, such as the study of logics of left-continuous t-norms [68,88]
and of left-continuous uninorms [104].

A third many-valued logic with an infinite set of truth values that we consider in this
thesis is Abelian logic, denoted by A. It was introduced independently by Meyer and
Slaney as a relevance logic [109] and by Casari as a comparative logic [43]. For Meyer
and Slaney, it had the set of the integers Z as truth values, whereas Casari considered
it the logic of lattice-ordered abelian groups, that is, abelian groups with an underlying
lattice structure, where the group addition distributes over the lattice operations. Since
the ordered additive groups of the integers and that of the real numbers both generate
the variety of lattice-ordered abelian groups, we can consider Abelian logic A to be the
logic of the reals. There exists a deep connection between Abelian and Łukasiewicz logic,
already mentioned by Meyer and Slaney, and explored further in, e.g., [107].

First-Order Many-Valued Logics

Let us now consider first-order extensions of many-valued logics. In first-order classical
logic, the quantifiers (∀x) and (∃x) are interpreted as “for all” and “there exists”,
respectively. To generalize this to a many-valued setting, we adopt the Mostowski–
Rasiowa–Hájek tradition (see [55, 76, 118,135]). That is, if the set of truth values admits
a lattice structure, we assign as a truth value to formulas (∀x)α(x) and (∃x)α(x) the
infimum and supremum, respectively, of all relevant truth values of α(x). Let us consider
three first-order many-valued logics that will run like a thread through this thesis.

First-Order Łukasiewicz Logic The first-order extension of Łukasiewicz logic has
been extensively studied. Unfortunately, the set of its valid formulas turned out to be not
recursively enumerable [139]; in fact, its validity problem is Π2-complete [134]. It is this
validity of logics that is of primary interest to us; if we speak of the complexity of a logic,
we mean the complexity of its validity problem. Despite its undecidability, various proof
systems for first-order Łukasiewicz logic have been provided [9, 16,17,76,82], all of which
include some rule with infinitely many premisses. Skolemization and an (approximate)
Herbrand theorem have been proved [9], and various better-behaved fragments have
been studied. For instance, of its monadic fragment, where only unary predicates are
considered, satisfiability is known to be Π1-complete [134], and validity was shown to
be undecidable by Bou in unpublished work. The complexity of the latter problem
still remains open. Hájek investigated a decidable fragment corresponding to a fuzzy
description logic in [77]. The one-variable fragment, consisting of formulas containing
only a single variable, was extensively studied by Rutledge in his PhD thesis, who gave

2This is true if one considers only the valid formulas of (propositional) G, as we do here. If one
considers consequences, or first-order extensions, the situation is more complex, as we will see.

3Note that we consider here the so-called “narrow” view on fuzzy logic. The broader sense would
include fuzzy set theory, which is outside the scope of this thesis.
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an axiomatization, proved completeness, and showed decidability of both its validity and
satisfiability problem [138]. We return to such fragments shortly.

First-Order Abelian Logic A first-order extension of Abelian logic has (as far as we
know) not been considered yet in the literature. We argue however that it is interesting
for a variety of reasons: its semantics is based on structures studied in both algebra
and computer science, that is, lattice-ordered abelian groups; there exists a natural
separation between the group and lattice fragments of the logic; and its language is rich
enough to interpret other logics. In particular, we can interpret first-order Łukasiewicz
logic in first-order Abelian logic. In [107], Metcalfe et al. give an intuitive interpretation
of propositional Łukasiewicz logic into propositional Abelian logic. We extend this
interpretation to their first-order counterparts in Section 1.2. As first-order Łukasiewicz
logic is not recursively enumerable, it immediately follows that first-order Abelian logic
is not recursively enumerable either. Chapter 4 of this thesis is a first investigation into
first-order Abelian logic, and some fragments in particular.

First-Order Gödel Logic Unlike first-order Łukasiewicz and Abelian logic, first-order
Gödel logic defined over [0, 1] is recursively enumerable. Indeed, Horn provided a recursive
axiomatization in [86]. As we noted for propositional Gödel logic, we can consider any
closed subset A of [0, 1] that contains 0 and 1 as the set of truth values; such a set A is
called a Gödel set. However, as opposed to propositional Gödel logic, the first-order Gödel
logics of two different infinite Gödel sets do not necessarily coincide. A full classification
of all such first-order Gödel logics, in terms of recursive enumerability, is given by Baaz
et al. in [11], where they provide axiomatizations for those first-order Gödel logics that
are recursively enumerable. An important factor here is that (first-order) Gödel logic
is “order-based”, that is, only the order type of the set of truth values matters and not
the individual distance between any two values. In that sense, Gödel logic differs from
Łukasiewicz and Abelian logic.

Gödel logic moreover contrasts with Łukasiewicz and Abelian logic in another sig-
nificant way: it is an intermediate (or super-intuitionistic) logic, that is, it lies between
intuitionistic logic and classical logic. Such intermediate logics, both propositional and
first-order, form an extensive area of study, see, for instance, [46] for an introduction.
They are primarily studied semantically, usually either via an algebraic semantics or
via intuitionistic Kripke models.4 The latter were introduced by Kripke in [94] and
consist of a set of worlds equipped with a binary relation, in this case a partial order.
Intuitively, formulas are then interpreted locally (at a particular world) as in classical
logic, whereas the interpretation of the implication and possible quantifiers depends on
all worlds accessible according to the relation. As is to be expected, the situation for
first-order intermediate logics is much more intricate than that of their propositional
counterparts. Nevertheless, a plethora of completeness, non-completeness and other
results have been obtained in the first-order case, see, e.g., [14, 50,110,122,126,143]. In
particular, it follows from completeness results by Minari [110], Takano [144], and Horn
that first-order Gödel logic is the logic determined by all linearly ordered intuitionistic
Kripke frames with so-called constant domains. This connection between first-order

4See [25] for an extensive survey on the different types of semantics for propositional intermediate
logics.
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Gödel logic and first-order intuitionistic logic is generalized further by Beckmann and
Preining in [13], where they match each first-order Gödel logic with truth values in
a Gödel set A to a first-order intermediate logic defined over a particular (countable)
linearly ordered intuitionistic Kripke frame with constant domains, and vice versa.

One-Variable Fragments

Although the leap to the first-order setting greatly increases expressivity, it comes with
a number of disadvantages, one of which is lack of decidability. The validity problem
of first-order classical logic is undecidable by the famous result of Church [49]. That is,
no effective algorithm can decide whether a formula is valid in first-order classical logic.
Similarly, first-order Łukasiewicz, Gödel and Abelian logic are all undecidable. This is in
contrast with their propositional counterparts, whose validity problems are decidable.

One way to overcome this lack of decidability while preserving some of the expressive
power of first-order logic is to consider only fragments of the first-order logic, that is,
consider only formulas that are of a particular form. We have already seen some examples
related to first-order Łukasiewicz logic. For instance, recall that the monadic fragment
concerns those formulas that contain only unary predicates. Other examples include
prenex fragments, consisting of formulas of the form (Qx1) . . . (Qxn)α, where α does
not contain any quantifiers and (Qx1) . . . (Qxn) is some fixed sequence of quantifiers,
or guarded fragments, where the type of quantification is restricted. In this thesis, we
focus our attention on the fragments where the number of variables that occur in a
formula is restricted. To obtain a decidable fragment, the maximum number of variables
to consider is rather small: the two-variable fragment of first-order classical logic is
decidable [114], but its three-variable fragment is not [142]. For first-order intuitionistic
logic, the two-variable fragment is already undecidable [93], whereas its one-variable
fragment is decidable [36]. For first-order Łukasiewicz and Gödel logic, the one-variable
fragments were proved to be decidable in [138] and [38], respectively; for the two-variable
fragments of either logic, decidability remains an interesting open problem. A decidable
fragment of first-order Łukasiewicz logic corresponding to a fuzzy description logic was
studied in [77].

For a one-variable fragment, it suffices to consider only unary predicates, and they can
hence be viewed as particular monadic fragments. We can therefore study one-variable
fragments under a different guise: unary predicates P (x) can be viewed as propositional
variables p, and quantifiers (∀x) and (∃x) can be replaced with unary operators � and ♦,
respectively. This allows for a study of the one-variable fragment as a particular modal
logic. For example, the one-variable fragment of first-order classical logic corresponds
to the well-known modal logic S5, as first axiomatized by Wajsberg in [152], and the
one-variable fragment of first-order intuitionistic logic corresponds to the modal logic
MIPC, as shown by Bull [36]. A great advantage of this notational switch is that we can
apply the well-developed theory of modal logic. This extensive area of research, instigated
by Lewis in [96], studies modalities, that is, operators that express, e.g., obligation, belief,
or knowledge (for an introduction to modal logic, see, e.g., [27]). It became particularly
popular with the introduction of modal Kripke semantics in the late 1950s and early
1960s. As with intuitionistic Kripke semantics, modal Kripke semantics is concerned
with a set of possible worlds and a binary relation, but this binary relation need not
be a partial order. Moreover, only the interpretation of the modalities depends on the
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accessible worlds; any other connectives are interpreted locally.
Many-valued generalizations of this modal Kripke semantics have also been considered.

Rather than locally interpreting formulas using classical logic, we can equip each world
with a many-valued interpretation, and even generalize the binary relation to be many-
valued. Such many-valued Kripke semantics have been used to study, e.g., modal
extensions of Łukasiewicz logic [34,76,80,100], Abelian logic [61], and Gödel logic [38,41,
42,106]. When studying some one-variable fragment in its modal guise, the modalities will
satisfy certain (translations of) quantifier laws. In such cases, the accessibility relation of
the associated modal Kripke semantics is always a (possibly many-valued) equivalence
relation. Indeed, the modal variants S5(Ł)C and S5(G)C of the one-variable fragments
of first-order Łukasiewicz logic and of first-order Gödel logic, respectively, have such a
many-valued Kripke semantics; in fact, in both these cases the accessibility relation is
crisp, that is, two-valued.

This interplay between one-variable fragments and many-valued modal logics raises a
number of interesting questions. One could ask, given the one-variable fragment of some
first-order logic, to which modal logic it corresponds, and possibly which (many-valued)
Kripke semantics this modal logic has. Conversely, one could consider a many-valued
modal logic defined by some many-valued Kripke semantics with a (possibly many-valued)
equivalence relation, and ask to which one-variable fragment it corresponds. We try to
answer some of these questions in this thesis, while simultaneously answering questions
about completeness, decidability, and complexity for such one-variable fragments and
many-valued modal logics.

We focus on three classes of first-order logics in particular. In Chapter 3, we consider
particular first-order intermediate logics, and their connection to modal Gödel logics.
In Chapter 4, we consider first-order Abelian logic and its one-variable fragment. In
Chapter 2, we take a much more general perspective and launch an investigation into
algebraic semantics of one-variable fragments. Let us now provide some more detail for
each of these chapters.

First-Order Intermediate Logics We study first-order intermediate logics defined
over particular classes of intuitionistic Kripke frames. Recall that the first-order interme-
diate logic defined over all linearly ordered intuitionistic Kripke frames with constant
domains coincides with first-order Gödel logic. In particular, their respective one-variable
fragments coincide. The modal Gödel logic S5(G)C that corresponds to these one-variable
fragments was axiomatized and studied in [42,78].

The first-order intermediate logic defined over all linearly ordered intuitionistic Kripke
frames (without assuming constant domains) was axiomatized by Corsi in [56]. A first
axiomatization of its one-variable fragment is provided in this thesis. To do so, we match
this fragment to the modal Gödel logic S5(G) defined over a class of many-valued Kripke
frames based on the standard Gödel logic over [0, 1], as considered in [42]. We then
extend Beckmann and Preining’s result from [13] by matching each one-variable fragment
of the first-order intermediate logic defined over a particular (countable) linearly ordered
intuitionistic Kripke frame to a modal Gödel logic S5(A) with truth values in some Gödel
set A. These modal Gödel logics, as opposed to S5(G)C, have a non-crisp accessibility
relation. However, we prove that for any Gödel set A, we can interpret S5(A) in the
corresponding modal logic defined by modal Kripke frames with a crisp accessibility
relation. For these modal Gödel logics, we are able to prove a finite model property
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with respect to an alternative “relativized” semantics. This leads to decidability and
complexity results for a large class of these modal Gödel logics and, consequently, for a
large class of one-variable fragments of first-order intermediate logics.

First-Order Abelian Logic In Chapter 4, we launch an investigation into first-order
Abelian logic and its one-variable fragment. This one-variable fragment is matched to a
modal Abelian logic S5(R)C. We then make use of the natural separation between the
lattice and group fragments of Abelian logic and study the group fragment of the modal
logic S5(R)C. Using a partial Herbrand theorem for the first-order Abelian logic and a
linear programming argument, we prove completeness for this group fragment. In fact, this
partial Herbrand theorem can also be used to establish decidability of S5(R)C, and hence
of the one-variable fragment of first-order Abelian logic. We then prove completeness
for the full logic S5(R)C, via algebraic means. Recall that the one-variable fragment of
first-order Łukasiewicz logic was axiomatized by Rutledge in [138]. His methods were
also algebraic in nature, defining a variety of so-called monadic MV-algebras (monadic
Chang algebras in Rutledge’s terminology) as the algebraic semantics for the one-variable
fragment. We define a variety of monadic abelian `-groups, and show that they form
the algebraic semantics for the one-variable fragment of first-order Abelian logic. Our
methods here are based on an alternative to Rutledge’s completeness proof from [45].

An Algebraic Perspective

Rutledge’s completeness proof points out an additional advantage of studying one-variable
fragments: they allow for an algebraic semantics. The algebraic study of one-variable
fragments can be traced back to Halmos, who defined monadic Boolean algebras as the
algebraic semantics for the one-variable fragment of first-order classical logic [79]. Various
generalizations of such algebras have since been considered in the literature, usually
under the name “monadic”. Rutledge’s monadic MV-algebras form such an example,
but other examples include the one-variable fragment of first-order intuitonistic logic,
which was captured algebraically by Monteiro and Varsavsky in the form of monadic
Heyting algebras [113], and monadic Gödel algebras introduced by Hájek to capture the
one-variable fragment of first-order Gödel logic [78] (see also [42]).

All these algebras have more in common than the adjective “monadic”; for example,
their modalities all satisfy common identities that correspond to particular quantifier
laws. Chapter 2 is a first general algebraic investigation into such commonalities. In
order to carry out such an investigation, we work in the rather general framework of
(first-order) substructural logics, in particular those whose Gentzen-style proof system
admit the rule of exchange. This framework allows us to capture various first-order
logics, including first-order classical, intuitionistic, Łukasiewicz, Gödel, and Abelian logic.
For more on substructural logics, we refer to [71]. Propositional substructural logics
that admit exchange have as their algebraic semantics commutative pointed residuated
lattices (or FLe-algebras). We define monadic FLe-algebras to capture the algebraic
semantics for the one-variable fragments of any first-order substructural logic that admits
the rule of exchange. We prove a number of interesting properties: we obtain an
alternative representation in terms of “relatively complete” subalgebras, as well as a
characterization of the congruences. Moreover, although completeness for the whole
variety of these monadic residuated lattices remains an open problem, we obtain some
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Chapter 1

Chapter 2 Chapter 3 §4.1 and §4.2

§4.3

Figure 1: Dependencies between the chapters and sections of this thesis

form of completeness for some particular subvarieties, including the varieties of monadic
abelian `-groups, monadic MV-algebras, and monadic Gödel algebras.

Outline of the Thesis
Let us now give a detailed section-by-section outline of the contents of this thesis. In
Figure 1, we have outlined the dependencies between the different chapters and sections.

Chapter 1 is a preliminary chapter. We define the notions necessary for the reading
of this thesis, while placing them in historical context and recalling the appropriate
literature. In Section 1.1, we define all the relevant propositional logics, i.e., propositional
classical, intuitionistic, Łukasiewicz, Gödel, and Abelian logic. We then capture all these
logics in the framework of substructural logics, using commutative pointed residuated
lattices (or FLe-algebras). In Section 1.2, we define appropriate first-order semantics for
first-order substructural logics, and recall the necessary results on first-order Łukasiewicz,
Abelian, and Gödel logic. We also define intuitionistic Kripke frames to interpret first-
order intermediate logics. Lastly, in Section 1.3, we focus on one-variable fragments, and
their matching modal logics. We define an appropriate many-valued Kripke semantics,
again based on FLe-algebras, and discuss the literature on one-variable fragments of
first-order intermediate, Gödel, Łukasiewicz, and Abelian logic.

In Chapter 2, we give an algebraic account of one-variable fragments. In Section 2.1,
we define monadic FLe-algebras, generalizing the notion of, in particular, monadic Boolean,
Heyting, Gödel, and MV-algebras. We then show how these newly defined monadic
FLe-algebras fit into the existing literature of the aforementioned monadic algebras. We
also prove a soundness result, showing that monadic FLe-algebras are necessary (but
not necessarily sufficient) to algebraically interpret the one-variable fragment of any
first-order substructural logic. In Section 2.2, we give an alternative representation
of any monadic FLe-algebra in terms of a particular “relatively complete” subalgebra.
Section 2.3 is a study of the congruences of monadic FLe-algebras, where we give an
equivalent characterization, and show that they are completely determined by this
relatively complete subalgebra. Finally, in Section 2.4 we put these characterizations to
use and show that varieties of monadic FLe-algebras satisfying certain conditions admit
functional representations. The results of this section will be used in Chapter 4 to obtain
completeness for S5(R)C and hence for the one-variable fragment of first-order Abelian
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logic.
Chapter 3 is dedicated to the study of the one-variable fragments of first-order

intermediate logics defined over linearly ordered intuitionistic Kripke frames, and the
modal Gödel logics S5(A). In Sections 3.1 and 3.2, we extend Beckman and Preining’s
result from [13], matching each such one-variable fragment to a modal Gödel logic S5(A)
defined using the many-valued Kripke semantics from Chapter 1. While doing so, we
solve an open problem by axiomatizing the one-variable fragment of the first-order
intermediate logic defined over all linearly ordered intuitionistic Kripke models. The rest
of the chapter is dedicated to these modal Gödel logics S5(A). In Section 3.3, we give an
interpretation of each S5(A) in the corresponding modal Gödel logic S5(A)C defined over
a crisp many-valued Kripke semantics. Section 3.4 establishes a finite model property for
these crisp logics S5(A)C using an alternative semantics. Finally, in Section 3.5, we put
this finite model property to use and establish decidability and complexity for a large
class of these modal Gödel logics S5(A)C.

In Chapter 4, we study first-order Abelian logic and its one-variable fragment, or
rather its modal equivalent S5(R)C. We first prove a partial Herbrand theorem in
Section 4.1 and use this to prove decidability of S5(R)C. We also prove a finite model
property. In Section 4.2, the multiplicative fragment of S5(R)C is investigated, that is,
the fragment not containing the lattice connectives. A completeness theorem is proved
using the partial Herbrand theorem, a normal form theorem, and linear programming
methods. In Section 4.3, we give an axiomatization for S5(R)C and show completeness.
This completeness proof is algebraic in nature and makes extensive use of the results on
monadic FLe-algebras obtained in Chapter 2.

Sources for the Thesis
A majority of the results presented in this thesis have been obtained in collaboration
with other researchers:

• Chapter 1 is written for the purpose of this thesis;

• Chapter 2 is independent work that has not appeared in print;

• Chapter 3 is based on the papers [39,40], joint with Xavier Caicedo, George Metcalfe,
and Ricardo Rodríguez;

• Chapter 4 is based on the paper [108], joint with George Metcalfe.

This thesis is not meant to be self-contained. We assume some familiarity with basic
concepts from universal algebra; all the needed standard definitions and results can be
found in, e.g., [19, 37].



CHAPTER 1

The Logics

In this thesis, we consider a plethora of logics, defined over several different languages.
This chapter serves as a preliminary chapter. We introduce all these logics, together with
the definitions and methods used in the following chapters, and recall the necessary results
from the literature. In Section 1.1, we define our notion of a logic and a proof system, and
go on to introduce the logics that are most prominent in this thesis: intuitionistic logic,
Gödel logic, Łukasiewicz logic, and Abelian logic. We moreover introduce the general
framework of substructural logics, defined over FLe-algebras (or commutative pointed
residuated lattices). It is then briefly shown that all mentioned propositional logics can
be interpreted using this framework. In Section 1.2, we define a general semantics for
first-order substructural logics, using FLe-algebras, and recount relevant results from the
literature for first-order Gödel, Łukasiewicz and Abelian logic. We in particular prove that
first-order Łukasiewicz logic can be interpreted in first-order Abelian logic. Additionally,
we define an intuitionistic Kripke semantics to interpret first-order intuitionistic logic
and recall some of the literature on this subject. Finally, in Section 1.3, we introduce
the main topic of this thesis: the interaction between (many-valued) modal logics and
one-variable fragments of first-order logics. Such a one-variable fragment of a first-order
logic, concerned with formulas that contain only a single variable x, can be viewed
as a modal logic if we replace the quantifiers (∀x) and (∃x) with modalities � and ♦,
respectively, and vice versa. To interpret the modal logics, we define many-valued modal
Kripke models with truth values in an arbitrary FLe-algebra and where the accessibility
relation is a many-valued equivalence relation. We recall some of the literature on such
many-valued Kripke semantics and many-valued modal logics, and prove a number of
properties. We conclude the chapter by matching the one-variable fragments of some of
the discussed first-order logics to appropriate (many-valued) modal logics.

1.1 Propositional Logics

A (propositional) language is a set L of function symbols, referred to as (propositional)
connectives, such that to each ? ∈ L a non-negative integer is associated, which we call
the arity of ?. If the arity of an ? ∈ L is n, we say that ? is an n-ary connective. We let
Fm(L) denote the set of propositional formulas ϕ,ψ, . . . built inductively over a countable
set {pi}i∈N of propositional variables using the connectives in L, where each n-ary ? ∈ L
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takes n arguments. The length of a formula ϕ ∈ Fm(L) is the number of connectives
occurring in ϕ that have non-zero arity. An algebra for a language L is a set A together
with functions ?A : An → A for each n-ary ? ∈ L, denoted by A. If the algebra is clear
from the context, we write ? for ?A.

A (logical) matrix for a language L is a pair M = 〈A, D〉 containing an algebra A
of language L and a subset D ⊆ A, called a filter, whose elements are called designated
values. Elements of A will often be referred to as truth values. A logic L is a pair 〈L,K〉
consisting of a language L and a class K of matrices for L. If K contains only a single
matrix M, we write simply 〈L,M〉 for 〈L, {M}〉. Given a logic L = 〈L,K〉, an L-valuation
for some 〈A, D〉 ∈ K is a map V : {pi}i∈N → A that is extended to a map V̄ : Fm(L)→ A
inductively as follows for all n-ary ? ∈ L:

V̄ (pi) = V (pi)
V̄ (?(ϕ1, . . . , ϕn)) = ?A(V̄ (ϕ1), . . . , V̄ (ϕn)).

For Σ ∪ {ϕ} ⊆ Fm(L), we say that ϕ is an L-consequence of Σ, denoted by Σ |=L ϕ, if
for all L-valuations V for matrices 〈A, D〉 ∈ K, whenever V̄ (ψ) ∈ D for all ψ ∈ Σ, then
V̄ (ϕ) ∈ D. If ∅ |=L ϕ, written simply |=L ϕ, we say that ϕ is L-valid. In this thesis,
we are interested in validity of formulas, not in consequences. We will therefore often
identify a logic L with the set of L-valid formulas.

Since some logics might be different simply due to their representation, we also
introduce a notion of equivalence for logics. Consider two logics L1 = 〈Fm(L1),K1〉 and
L2 = 〈Fm(L2),K2〉. A map ρ : Fm(L1)→ Fm(L2) is called grammatical if for each n-ary
connective ? ∈ L1, there exists ϕ?(p1, . . . , pn) ∈ Fm(L2) using propositional variables
among p1, . . . , pn such that for all ϕ1, . . . , ϕn,

ρ(?(ϕ1, . . . , ϕn)) |=L2 ϕ?(ρ(ϕ1), . . . , ρ(ϕn))
ϕ?(ρ(ϕ1), . . . , ρ(ϕn)) |=L2 ρ(?(ϕ1, . . . , ϕn)).

Here, ϕ?(ϕ1, . . . , ϕn) denotes the formula where each propositional variable pi occurring
in ϕ(p1, . . . , pn) is simultaneously replaced by ϕi. Typically, these formulas ϕ? will
be defined inductively. We then say that L1 and L2 are validity-equivalent, denoted by
L1 ∼ L2, if there exist grammatical maps ρ : Fm(L1)→ Fm(L2) and τ : Fm(L2)→ Fm(L1)
such that for all ϕ1 ∈ Fm(L1), ϕ2 ∈ Fm(L2),

|=L1 ϕ1 ⇐⇒ |=L2 ρ(ϕ1) and |=L2 ϕ2 ⇐⇒ |=L2 ρ(τ(ϕ2)).

Such maps ρ and τ will be referred to as translators. Note that it follows from these
two conditions that for all ϕ2 ∈ Fm(L2), |=L2 ϕ2 if and only if |=L1 τ(ϕ2), and for all
ϕ1 ∈ Fm(L1), |=L1 ϕ1 if and only if |=L1 τ(ρ(ϕ1)).1

A different approach to logic and validity comes in the form of proof systems. We
present the definitions as in [103]. Let Σ be some set of structures; in this thesis, such
structures are primarily formulas: propositional formulas, but also modal formulas or
first-order formulas as discussed later in this chapter. They can also be sequents, that
is, ordered pairs consisting of finite multisets of formulas, or even more complicated
structures. A finitary inference, or simply inference, is a pair 〈{σ1, . . . , σn}, σ〉 consisting

1For more on such translations between logics, see, e.g., [67,116]. This notion is also closely related to
that of equivalence of consequence relations from Abstract Algebraic Logic, see, e.g., [72].
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of a finite (possibly empty) set {σ1, . . . , σn} ⊆ Σ of premises and a single conclusion
σ ∈ Σ. We can write such an inference as σ1, . . . , σn/σ or

σ1, . . . , σn
σ

An inference with an empty set of premises is called an axiom, and is usually written
without the premises, that is, σ instead of ∅/σ. A (finitary) inference rule r for Σ (rule
for short) is a set of inferences for Σ, called instances of r. A (finitary) proof system
C is now a pair 〈Σ, R〉 consisting of a set of structures Σ and set of rules R for Σ. For
another set of rules R′ for Σ, we write C +R′ to denote the proof system 〈Σ, R ∪R′〉. If
Σ is a set of formulas, C is called a finitary Hilbert-style system, which will be referred to
simply as a Hilbert-style system. For such a Hilbert-style system, inference rules r are
typically written schematically as a formula schema, that is, a rule containing placeholder
variables to be uniformly replaced by arbitrary members of Σ. If r is an axiom, we speak
of an axiom schema. If Σ consists of sequents, we call C a sequent-style system.

Given a proof system C = 〈Σ, R〉, a proof of some σ ∈ Σ in C is a finite sequence
σ1, . . . , σn of elements of Σ such that σn = σ and each σi is either an axiom of C or
is derived from previous members of the sequence by a rule r ∈ R, that is, σi is the
conclusion of r and all premises of r occur in the sequence prior to σi. If a proof exists
for a σ ∈ S in C, we say that σ is C-derivable and write `C σ.

Establishing a connection between a logic L and some proof system C is an important
problem. A Hilbert-style system C = 〈Fm(L), R〉 is known as an axiomatization for a
logic L = 〈L,M〉 if for all ϕ ∈ Fm(L),

`C ϕ ⇐⇒ |=L ϕ.

The left-to-right direction of this equivalence is often referred to as soundness or correct-
ness, whereas the other direction is called completeness.2

Using the connection between a logic L and its (sound and complete) proof system C,
it is possible to establish results about the logic. For instance, to determine whether a
formula is L-valid, it suffices to establish whether or not some derivation exists in C. In
some cases, it can be decided whether or not a given formula is C-derivable or not. This
establishes the decidability of the validity problem in the corresponding logic, that is, the
problem of determining whether a formula ϕ is L-valid or not. A closer inspection of the
proof system can even lead to bounds on the complexity of this validity problem. For an
introduction to the subject of decidability and complexity, see, e.g., [2]. We will often
speak of the decidability of a logic, by which we mean the decidability of the validity
problem in the logic.

Example 1.1. Let LCL be the language consisting of binary connectives ∧ and ∨, a
unary connective ¬, and constants ⊥ and >. Consider the algebra

2 := 〈{0, 1},∧2,∨2,¬2,⊥2,>2〉,

where ∧2 = min, ∨2 = max, ¬2a = 1 − a, ⊥2 = 0, and >2 = 1. We define classical
(propositional) logic to be CL = 〈LCL, 〈2, {1}〉〉. For more on classical logic, we refer to,
e.g., [59, 66].

2In some literature, this is what is referred to as weak soundness and completeness, and the terms
of soundness and completeness (also called strong soundness and completeness) are reserved for the
equivalence of consequences. Since our interest lies with validity, our terminology suffices.
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(1) ϕ→ (ψ → ϕ)
(2) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))
(3) (ϕ→ χ)→ ((ψ → χ)→ ((ϕ ∨ ψ)→ χ))
(4) ϕ→ (ψ → (ϕ ∧ ψ))
(5) ⊥ → ϕ
(6) (ϕ ∧ ψ)→ ϕ
(7) (ϕ ∧ ψ)→ ψ
(8) ϕ→ (ϕ ∨ ψ)
(9) ψ → (ϕ ∨ ψ)

ϕ ϕ→ ψ

ψ
(mp)

Figure 1.1: Proof system IPC

On the syntactic side, proof systems for classical logic have been widely studied. Many
(equivalent) systems have been given, an overview of which can be found in [59]. We pick
any Hilbert-style system axiomatizing CL and denote it by CPC. Although the decidability
of classical logic can be investigated using a proof system, it is easily established using
truth tables, and shown to be co-NP-complete via the famous Cook-Levin Theorem (see,
e.g., [2, Theorem 2.10]).

Algebraically, 2 generates the variety of Boolean algebras. A Boolean algebra is an
algebra B = 〈B,∧,∨,¬,⊥,>〉 such that 〈B,∧,∨,⊥,>〉 is a bounded distributive lattice
and B satisfies

x ∨ ¬x ≈ > and x ∧ ¬x ≈ ⊥.

Using the identity maps as translators, it follows that

CL ∼ 〈LCL, {〈B, {>B}〉 | B a Boolean algebra}〉.

Example 1.2. Let LIL be the language containing binary connectives ∧, ∨, and →,
and constants ⊥ and >. A Heyting algebra is then an algebra H = 〈H,∧,∨,→,⊥,>〉
such that 〈H,∧,∨,⊥,>〉 is a bounded lattice with bottom and top elements ⊥ and >,
respectively, and for all a, b, c ∈ H,

a ∧ b ≤ c ⇐⇒ a ≤ b→ c,

where the lattice order is defined as a ≤ b :⇔ a ∧ b = a for a, b ∈ H. We define
intuitionistic (propositional) logic IL to be 〈LIL, {〈H, {>H}〉 | H a Heyting algebra}〉.
For background on intuitionistic logic, see, e.g., [112,150].

An axiomatization of intuitionistic logic was first provided by Heyting in [83]. Since
then, many different equivalent axiomatizations have been given, see for example [20, 73].
We consider the Hilbert-style axiomatization as given in Figure 1.1, denoted by IPC.
Although IL is, like CL, decidable, it has higher complexity. Indeed, it was shown by
Statman in [141] that IL is PSPACE-complete.

Let us now focus our attention on a class of logics more traditionally associated with
the term many-valued logics: the logics associated with continuous t-norms. For an
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extensive survey of such logics, we refer to [76]. A triangular norm (t-norm for short) is a
binary operation ∗ : [0, 1]2 → [0, 1] that is commutative and associative, satisfies 1 ∗x = x
for all x ∈ [0, 1], and is non-decreasing in both arguments, i.e., for all x, y, z ∈ [0, 1],

x ≤ y =⇒ x ∗ z ≤ y ∗ z and z ∗ x ≤ z ∗ y.

We say that ∗ is a continuous t-norm if ∗ is a t-norm that is a continuous function, in the
usual sense. It is easy to see that any continuous t-norm ∗ is residuated, that is, there
exists a binary operation → : [0, 1]2 → [0, 1], called the residual of ∗, such that for all
x, y, z ∈ [0, 1],

x ∗ y ≤ z ⇐⇒ x ≤ y → z.

Let Lct denote the language containing binary connectives ∧, ∨, ∗, →, and constants ⊥
and >. For each continuous t-norm ∗, we can define an algebra of the language Lct as

[0,1]∗ := 〈[0, 1],∧[0,1]∗ ,∨[0,1]∗ , ∗,→,⊥[0,1]∗ ,>[0,1]∗〉,

where ∧[0,1]∗ = min, ∨[0,1]∗ = max, ⊥[0,1]∗ = 0, and >[0,1]∗ = 1. We let BL denote the
logic of all continuous t-norms, that is,

BL = 〈Lct, {〈[0,1]∗, {>
[0,1]∗}〉 | ∗ a continuous t-norm}〉.

We consider three pivotal examples of continuous t-norms:

(1) The Łukasiewicz t-norm ∗Ł where x ∗Ł y = max{0, x + y − 1} and x →Ł y =
min{1, 1− x+ y};

(2) The Gödel t-norm ∗G where x ∗G y = min{x, y} and

x→G y =
{

1 x ≤ y
y x > y;

(3) The product t-norm ∗P where x ∗P y = x · y (the usual product in the reals) and

x→P y =
{

1 x ≤ y
y
x x > y.

These three examples are in some sense exhaustive; indeed, any continuous t-norm can
be constructed using just these three t-norms, as shown by Mostert and Shields in [117].
More formally, for any indexed set {∗i}i∈I of continuous t-norms with ∗i ∈ {∗Ł, ∗P} for
all i ∈ I and family {(ai, bi)}i∈I of pairwise disjoint open intervals (ai, bi) ⊆ [0, 1], the
following function ∗ : [0, 1]2 → [0, 1] is a continuous t-norm:

x ∗ y :=
{
ci + (di − ci)( a−ci

di−ci
∗i b−ci

d−ci
) if a, b ∈ [ci, di]

a ∗G b otherwise.

Conversely, any continuous t-norm can be constructed in such a way.
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Gödel Logic(s)

In 1932, Gödel introduced a family of finite-valued logics to prove that intuitionistic
logic cannot be given by a finite logical matrix [74]. Dummett extended on his ideas and
presented the infinite-valued version in [63], which is now referred to as Gödel-Dummett
logic, or simply Gödel logic.

Gödel logic is usually introduced over the language LIL. We define the standard Gödel
algebra over LIL as

G = 〈[0, 1],∧G,∨G,→G,⊥G,>G〉,
where ∧G = min, ∨G = max, ⊥G = 0, and >G = 1. Note that G is simply [0,1]∗G

without ∗G in the signature. In fact, G and [0,1]∗G are term-equivalent, since ∗G = min
and can hence be recovered. We define Gödel logic G to be 〈LIL, 〈G, {1}〉〉.

Aside from the standard Gödel algebra, there is a large family of interesting subalgebras
of G that can be considered. We call a subset A ⊆ [0, 1] a Gödel set if it is closed in the
usual topology and contains 0 and 1. We can then consider the corresponding subalgebra
of G

A = 〈A,min,max,→G, 0, 1〉.
Note that since A is closed, A is necessarily complete, that is, for all X ⊆ A the infimum∧
X and supremum ∨

X of X exist in A. In fact, this gives an equivalent definition
of a Gödel set: a subset {0, 1} ⊆ A ⊆ [0, 1] is a Gödel set if and only if A is complete.
Beside the standard Gödel set G := [0, 1], notable Gödel sets include the finite Gödel
sets Gn := {0, 1

n , . . . ,
n−1
n , 1} (for n ∈ N+), as well as G↓ := { 1

n | n ∈ N+} ∪ {0} and
G↑ := {n−1

n | n ∈ N+} ∪ {1}.
To each Gödel set A we can associate a logic G(A) := 〈LIL, 〈A, {1}〉〉. In his work

from 1959, Dummett showed that G(G↓) can be axiomatized by extending IPC with the
prelinearity axiom schema (pre) (ϕ→ ψ) ∨ (ψ → ϕ). That is, for any ϕ ∈ Fm(LIL),

|=G(G↓) ϕ ⇐⇒ `IPC+(pre) ϕ.

It is not hard to verify that the same holds for any infinite Gödel set A, including the
standard Gödel set, giving an axiomatization of G. This is in contrast with the first-order
Gödel logics defined over these Gödel sets or even the one-variable fragments of such
logics: there are infinitely many of them, as we shall see in Section 1.2. As for the finite
Gödel sets, for each n ∈ N+ the logic G(Gn) can be axiomatized, as shown in [147], by
extending IPC with the prelinearity axiom schema and the axiom schema

(finn) (> → ϕ1) ∨ (ϕ1 → ϕ2) ∨ · · · ∨ (ϕn−1 → ϕn) ∨ (ϕn → ⊥).

In fact, it is this chain of logics that Gödel proved in [74] to exist between IL and CL.
The intersection of this family is again the standard Gödel logic G, that is,

|=G ϕ ⇐⇒ |=G(Gn) ϕ for all n ∈ N+.

It can be regarded a folklore result that G-validity is decidable. A proof showing that its
complexity is co-NP-complete can be found in [8].

Following Dummett’s axiomatization, we obtain directly an equivalent algebraic
formulation of G. We say that a Heyting algebra H is a Gödel algebra if it satisfies
(x→ y) ∨ (y → x) ≈ >. It then follows directly from Dummett’s completeness result for
G and Heyting’s axiomatization of IL that G is validity-equivalent to 〈LIL, {〈H, {>H}〉 |
H a Gödel algebra}〉.
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Łukasiewicz Logic

Łukasiewicz was the first to consider a proper many-valued logic. In the 1920s, he
proposed a three-valued logic, where an additional truth value could be interpreted as
“undetermined”, next to the two traditional truth values being interpreted as “true” and
“false” [97]. Later in the decade, this idea was expanded to n-valued logics for finite
numbers n ≥ 2, and then to the infinite-valued version in [98]. This infinite-valued logic
is what nowadays is called Łukasiewicz logic.

Łukasiewicz logic is traditionally defined over the language LŁ with a binary connective
⊃ and a unary connective ∼. Additionally, the following connectives are defined:

1̄ := ϕ ⊃ ϕ 0̄ := ∼ 1̄
ϕ⊗ ψ := ∼(ϕ ⊃ ∼ψ) ϕ⊕ ψ := ∼ϕ ⊃ ψ
ϕ ∧ ψ := ϕ⊗ (ϕ ⊃ ψ) ϕ ∨ ψ := (ϕ ⊃ ψ) ⊃ ψ.

We then consider the standard Łukasiewicz algebra

Ł := 〈[0, 1],⊃Ł,∼Ł〉

where a ⊃Ł b = a→Ł b = min{1, 1−a+b} and ∼Ł a = 1−a. For the defined connectives,
we obtain

1̄Ł = 1 0̄Ł = 0
a⊗Ł b = max{0, a+ b− 1} a⊕Ł b = min{1, a+ b}
a ∧Ł b = min{a, b} a ∨Ł b = max{a, b}.

With the defined connectives, it is clear how to recover the algebra [0,1]∗Ł over Lct if
we define a→ b := a ⊃ b. Conversely, we can define ∼ a := a→ ⊥ and a ⊃ b := a→ b,
establishing the term-equivalence between Ł and [0,1]∗Ł . We define Łukasiewicz logic Ł
as the pair 〈LŁ, 〈Ł, {1}〉〉.

Łukasiewicz proposed an axiomatization in [98], denoted here by HŁ, which can be
found in Figure 1.2.3 This axiomatization was proved to be complete in the 1930s by
Wajsberg, but his proof was not published. The first published proof is by Rose and
Rosser in [137]. It was shown by Mundici in [120] that Ł-validity is co-NP-complete.

Algebraically, Łukasiewicz logic is studied using the class of MV-algebras, historically
named for “many-valued” algebras, introduced by Chang in [47]. Let LMV denote the
language containing a binary connective ⊕, a unary connective ∼, and a constant 0. An
MV-algebra is an algebra 〈A,⊕,∼, 0〉 over the language LMV satisfying

(MV1) x⊕ (y ⊕ z) ≈ (x⊕ y)⊕ z (MV4) x⊕ y ≈ y ⊕ x
(MV2) x⊕ 0 ≈ x (MV5) ∼∼x ≈ x
(MV3) x⊕∼ 0 = ∼ 0 (MV6) ∼(∼x⊕ y)⊕ y ≈ ∼(∼ y ⊕ x)⊕ x

The variety of MV-algebras can be generated by the algebra 〈[0, 1],⊕,∼, 0〉, where
a⊕ b = min{a+ b, 1} and ∼ a = 1− a, i.e., the algebra that, using the translations given
in this section, is term-equivalent to [0,1]∗Ł and Ł. Defining the corresponding translators,
it follows that Ł is validity-equivalent to 〈LŁ, {〈A, {∼ 0}〉 | A a MV-algebra}〉.

3Łukasiewicz’s axiomatization included an additional axiom ((ϕ ⊃ ψ) ⊃ (ψ ⊃ ϕ)) ⊃ (ψ ⊃ ϕ), which
was proved to be redundant by Meredith [102] and Chang [48] independently.
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(1) ϕ ⊃ (ψ ⊃ ϕ)
(2) (ϕ ⊃ ψ) ⊃ ((ψ ⊃ χ) ⊃ (ϕ ⊃ χ)
(3) ((ϕ ⊃ ψ) ⊃ ψ) ⊃ ((ψ ⊃ ϕ) ⊃ ϕ)
(4) (∼ϕ ⊃ ∼ψ) ⊃ (ψ ⊃ ϕ)

ϕ ϕ ⊃ ψ
ψ

(mp)

Figure 1.2: Proof system HŁ

Abelian Logic

A third many-valued logic that plays a central role in this thesis is Abelian logic. It does
not fit the framework of the continuous t-norm logics, since it is defined over all real
numbers and not just the interval [0, 1]. We let LA denote the language containing binary
connectives ∧, ∨, and +, a unary connective −, and a constant 0̄. For ϕ,ψ ∈ Fm(LA),
we define 0ϕ := 0̄ and (n+ 1)ϕ := nϕ+ ϕ for any n ∈ N. Moreover, we write ψ − ϕ or
ϕ→ ψ for ψ + (−ϕ). We define the algebra

R = 〈R,∧R,∨R,+,−, 0〉

with ∧R = min and ∨R = max and 〈R,+,−, 0〉 the usual additive group of the reals.
We then define Abelian logic A as 〈LA, 〈R,R≥0〉〉, where R≥0 := {r ∈ R | r ≥ 0}.

Abelian logic was introduced independently by Meyer and Slaney in [109] as a
relevance logic and by Casari in [43] as a comparative logic, introduced syntactically in
both cases. Meyer and Slaney showed that their axiomatization was sound and complete
with respect to the ordered group of the integers Z := 〈Z,min,max,+,−, 0〉. Casari
showed completeness with respect to the variety of lattice-ordered abelian groups. A
lattice-ordered abelian group (abelian `-group for short) is an algebra 〈A,∧,∨,+,−, 0〉
such that 〈A,+,−, 0〉 is an abelian group, 〈A,∧,∨〉 is a lattice, and + is compatible with
the lattice order, that is, for all a, b, c ∈ A,

a ≤ b =⇒ a+ c ≤ b+ c.

For a survey on abelian `-groups, we refer to, e.g., [1]. Both R and Z generate the variety
of lattice-ordered abelian groups. Hence, we obtain validity-equivalent logics

A ∼ 〈LA, {〈A, {a ∈ G | 0A ≤ a}〉 | A an abelian `-group}〉
∼ 〈LA, 〈Z,N〉〉.

A Hilbert-style proof system for A, denoted by HA, is given in Figure 1.3. By Meyer
and Slaney’s completeness result,4 we have for all ϕ ∈ Fm(LA),

`HA ϕ ⇐⇒ |=A ϕ.

Validity in Abelian logic is co-NP-complete [153].
4The proof system HA is not the same as the one given by Meyer and Slaney. In fact, here we give

a single-constant version of multiplicative additive intuitionistic linear logic extended with the axiom
schema (A), but it is not hard to show that this system is equivalent to that of Meyer and Slaney.
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(B) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(C) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
( I ) ϕ→ ϕ
(A) ((ϕ→ ψ)→ ψ)→ ϕ

(+1) ϕ→ (ψ → (ϕ+ ψ))
(+2) (ϕ→ (ψ → χ))→ ((ϕ+ ψ)→ χ)
(0̄ 1) 0̄
(0̄ 2) ϕ→ (0̄→ ϕ)
(∧1) (ϕ ∧ ψ)→ ϕ
(∧2) (ϕ ∧ ψ)→ ψ
(∧3) ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ))
(∨1) ϕ→ (ϕ ∨ ψ)
(∨2) ψ → (ϕ ∨ ψ)
(∨3) ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)

ϕ ϕ→ ψ

ψ
(mp) ϕ ψ

ϕ ∧ ψ (adj)

Figure 1.3: Proof system HA

There exists a deep connection between Łukasiewicz logic Ł and Abelian logic A.
On the algebraic side, we have a categorical correspondence between MV-algebras and
abelian `-groups A with a strong unit, that is, an element u ∈ A such that 0A ≤ u and for
all a ∈ A, there exists n ∈ N such that a ≤ nu [119]. For a more detailed exposition, we
refer to [52]. A syntactic connection was studied already by Meyer and Slaney, relating a
fragment of A to a fragment of Ł, which was generalized in [107] to show that the whole
Ł corresponds to a fragment of A. In [107] also a more intuitive translation is given,
which we will return to in the next section.

FLe-Algebras

As noted, both Gödel and Łukasiewicz fit into the setting of continuous t-norms and the
logic BL, but Abelian logic does not. To capture all three logics in a common framework,
we need to generalize the setting of continuous t-norms. One such generalization considers
left-continuous t-norms, that is, t-norms that are left-continuous, giving rise to the logic
MTL [68]. A further generalization is considered by Metcalfe and Montagna in [104] in
the form of left-continuous uninorms, giving rise to the logic UL. A uninorm, originally
introduced in [154], is a function ∗ : [0, 1]2 → [0, 1] that is commutative, associative,
order-preserving in both arguments and such that for some e∗ ∈ [0, 1], e∗ ∗ x = x for all
x ∈ [0, 1].5 To incorporate Abelian logic, we generalize the underlying real unit interval
[0, 1] to an arbitrary lattice. This lands us in the realm of substructural logics. This class
of logics, whose name was coined by Došen and Schroeder-Heister in 1990, contains logics
whose proof systems generally lack some “structural” rule. Examples include relevance
logic [65], linear logic [149], and (as we will see) many-valued logics. Through the work
of Ono, Tsinakis and others, substructural logics now have a solid algebraic basis using

5Note that if e∗ = 1, ∗ is a t-norm.
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(pointed) residuated lattices, also called FL-algebras. An extensive survey can be found
in [71]. We define the subclass of FL-algebras relevant to us, over the language LFLe

containing binary connectives ∧, ∨, ·, and → and constants f and e. We define an
additional binary connective ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ).

Definition 1.3. An FLe-algebra (or commutative pointed residuated lattice) is an algebra
A = 〈A,∧,∨, ·,→, f, e〉 over LFLe such that

(i) 〈A, ·, e〉 is a commutative monoid;

(ii) 〈A,∧,∨〉 is a lattice;

(iii) · is residuated with residual →, that is, for all a, b, c ∈ A,

a · b ≤ c ⇐⇒ a ≤ b→ c.

We call A integral if the lattice 〈A,∧,∨〉 has e as the top element, linear (or an FLe-
chain) if it is a chain, and an FLeo-algebra if it has f as the bottom element. For two
FLe-algebras A, B, a map h : A → B is called an FLe-homomorphism (or simply a
homomorphism) if it preserves all the operations of A. That is, for ∗ ∈ {∧,∨, ·,→} and
a, b ∈ A, h(a ∗A b) = h(a) ∗B h(b), h(eA) = eB, and h(fA) = fB. We sometimes write
h : A→ B to stress that it is a homomorphism.

For modal purposes later, we are particularly interested in complete FLe-algebras.
An FLe-algebra A is called complete if for all X ⊆ A, the infimum ∧

X and supremum∨
X of X exist in A. In particular, every complete FLe-algebra A has a bottom and top

element. Note that these top and bottom elements do not have to coincide with e or f .
We let FLe denote the (substructural) logic

〈LFLe , {〈A, {a ∈ A | eA ≤ a}〉 | A is an FLe-algebra}〉.

A Hilbert-style proof system for FLe, denoted by HFLe, can be found in [71, 2.5.1].
Under appropriate translations, all the algebras discussed thus far are term-equivalent

to some FLe-algebra. Phrased differently, all the logics discussed so far are substructural
logics. We recount the particular term-equivalences here.

Example 1.4. Boolean algebras, as defined in Example 1.1, are term-equivalent to
FLeo-algebras satisfying x · y ≈ x ∧ y and (x → y) → y ≈ x ∨ y. Indeed, given such
an FLe-algebra B, defining ¬a := a → f , ⊥ := f , and > := e gives a Boolean algebra
〈B,∧,∨,¬,⊥,>〉. Conversely, for a Boolean algebra B over LCL, we define a · b := a ∧ b,
a → b := ¬a ∨ b, e := >, and f := ⊥ to obtain an FLeo-algebra 〈B,∧,∨, ·,→, f, e〉
satisfying the mentioned identities.

Example 1.5. Heyting algebras, as defined in Example 1.2, are term-equivalent to
integral FLeo-algebras satisfying x · y ≈ x∧ y. Removing · from the signature and defining
⊥ := f and > := e transforms such an FLe-algebra into a Heyting algebra. For the
converse direction, it suffices to define a · b := a ∧ b, e := >, and f := ⊥.

Example 1.6. For any continuous t-norm ∗, the algebra [0,1]∗ is an FLe-algebra, and
vice versa, if we identify constants f and e in LFLe with the constants ⊥ and > in Lct,
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respectively. In light of what was discussed previously, this also establishes the term-
equivalence for both Gödel and MV-algebras. Indeed, Gödel algebras are term-equivalent
to integral FLeo-algebras satisfying x · y ≈ x ∧ y and (x → y) ∨ (y → x) ≈ e, whereas
MV-algebras are term-equivalent to FLeo-algebras satisfying x ∨ y ≈ (x→ y)→ y.

Example 1.7. Abelian `-groups are term-equivalent to FLe-algebras satisfying e ≈ f
and x · (x→ e) ≈ e. For such an FLe-algebra, we define a+ b := a · b, −a := a→ f , and
0 := e giving an abelian `-group 〈A,∧,∨,+,−, 0〉. Conversely, given an abelian `-group
A, we define a · b := a+ b, a→ b := b− a, and e = f := 0. Then 〈A,∧,∨, ·,→, e, f〉 is an
FLe-algebra satisfying the aforementioned identities.

As proved in [28], the class of FLe-algebras forms a variety. Indeed, their defining
identities consist of the defining identities for lattices and commutative monoids, together
with the identities

x · (y ∨ z) ≈ (x · y) ∨ (x · z)
x→ y ≤ x→ (y ∨ z)
x · (x→ y) ≤ y ≤ x→ (x · y).

It follows immediately that all classes of FLe-algebras as defined in Examples 1.4-1.7
above are also varieties.

1.2 First-Order Logics
In this section, we focus on first-order extensions of the discussed propositional logics.
We present a rather general semantics for first-order many-valued logics, inspired by the
algebraic treatment of first-order substructural logics by, e.g., Ono [125], and Hájek’s
presentation in his book [76]. We then give a survey of some known results from the
literature on first-order intuitionistic, Gödel, Łukasiewicz and Abelian logics.

Let L be a propositional language. A term t will generally be a variable x from a
countably infinite set of variables whose elements are denoted x, y, z, . . . . We will not
consider arbitrary function symbols in this thesis. In Chapter 4 however, we do need
to consider 0-ary function symbols c, called object constants, from a countably infinite
set whose elements are denoted c, d, . . . . Unless stated otherwise, the set of terms Term
consists only of all variables x, y, z, . . . . We fix a countably infinite set of predicates
P,Q, . . . of each finite arity. The set Fm∀∃(L) of first-order formulas α, β, . . . is then
defined inductively as follows, with P an n-ary predicate, ? ∈ L an m-ary propositional
connective, t1, . . . , tn ∈ Term, and x a variable,

α ::= P (t1, . . . , tn) | ?(α, . . . , α) | (∀x)α | (∃x)α.

The occurrence of a variable x in a formula α ∈ Fm∀∃(L) is called bound if it is under
the scope of (∀x) or (∃x), and free otherwise. A term t is free for a variable x in α if x
does not occur free in α within the scope of (∀y) where y is any variable occurring in t.
If the free variables of a formula α ∈ Fm∀∃(L) are among x1, . . . , xn, we sometimes write
α(x1, . . . , xn) for α. For terms t1, . . . , tn that are free for x1, . . . , xn, respectively, we write
α(t1, . . . , tn) to denote the formula where for each i = 1, . . . , n, every free occurrence of
xi is simultaneously replaced by ti. The length of a formula α ∈ Fm∀∃(L) is again defined
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inductively as the number of n + 1-ary connectives occurring in α, where we consider
(∀x) and (∃x) to be unary connectives.

Definition 1.8. Let A = 〈A,∧,∨, ·,→, f, e〉 be an FLe-algebra. An A-structure is a
pair M = 〈D, I〉 consisting of a non-empty set D, called the domain, and for each n-ary
predicate P , an n-ary A-valued relation I(P ) : Dn → A. An M-evaluation is a map
v : Term→ D.6 For M-evaluation v, variable x and a ∈ D, we write v(x = a) to denote
the M-evaluation v′ such that v′(x) = a and v′(t) = v(t) for all terms t 6= x. Then M
and v define a value ‖α‖AM,v for each α ∈ Fm∀∃(LFLe) inductively, with ? ∈ {∧,∨, ·,→},
t1, . . . , tn ∈ Term,

‖P (t1, . . . , tn)‖AM,v = I(P )(v(t1), . . . , v(tn))
‖f‖AM,v = f

‖e‖AM,v = e

‖α ? β‖AM,v = ‖α‖AM,v ? ‖β‖AM,v

‖(∀x)α‖AM,v =
∧
{‖α‖AM,v(x=a) | a ∈ D}

‖(∃x)α‖AM,v =
∨
{‖α‖AM,v(x=a) | a ∈ D}.

If the supremum or infimum does not exist, we take the value of the quantified formula
in question and all formulas in which it occurs as a subformula to be undefined. An A-
structure M is called safe if ‖α‖AM,v is defined for all α ∈ Fm∀∃(LFLe) and M-evaluations
v. A formula α ∈ Fm∀∃(LFLe) is then called A-valid, denoted by |=∀∃A α, if ‖α‖AM,v ≥ e
for each safe A-structure M and M-evaluation v.

We say that α ∈ Fm∀∃(LFLe) is QFLe-valid, denoted by |=QFLe α, if α is A-valid for all
FLe-algebras A. This notion of QFLe-validity has been studied extensively in the context
of first-order substructural logics. A (non-Hilbert-style) proof system for it can be found
in, e.g., [15]. A Hilbert-style system HQFLe can be found in [62].7 A Henkin-style proof
shows that for all α ∈ Fm∀∃(LFLe),

`HQFLe α ⇐⇒ |=QFLe α.

Ono improves on this result in [125] by showing that for all α ∈ Fm∀∃(LFLe),

`HQFLe α ⇐⇒ α is A-valid for all complete FLe-algebras A.

In Examples 1.4–1.7, we discussed term-equivalences for a number of classes of FLe-
algebras. We use these term-equivalences to somewhat abuse the notation introduced
above. That is, if an algebra A over L is term-equivalent to some FLe-algebra A′, we say
that α ∈ Fm∀∃(L) is A-valid if the corresponding formula in Fm∀∃(LFLe) is A′-valid.

Example 1.9. Recall the algebra 2 from Example 1.1. It is not hard to see that any
formula α ∈ Fm∀∃(LCL) is 2-valid if and only if it is valid in classical first-order logic. In
fact, any 2-structure is exactly a first-order structure as classically defined. Famously,
Church showed in [49] that first-order classical logic is undecidable. For more on first-order
classical logic, see, e.g., [66].

6Although this is not the standard way of defining variable assignments for first-order structures, it
suffices for our purposes. Indeed, we never consider n+ 1-ary function symbols for any n ∈ N.

7Došen introduces his Hilbert-style proof system over the language LFLe , extended with a unary
negation ¬. This connective can be recovered in LFLe however, by defining ¬α := α→ f .
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(∀x)α(x)→ α(t) (term t is free for x in α)
α(t)→ (∃x)α(x) (term t is free for x in α)
(∀x)(β → α)→ (β → (∀x)α) (x is not free in β)
(∀x)(α→ β)→ ((∃x)α→ β) (x is not free in β)

α
(∀x)α (gen)

Figure 1.4: Additional axiom and rule schemas for the proof system IQC

It is worth noting that for any α ∈ Fm∀∃(LFLe) and FLe-algebra A, α is A-valid if
and only if (∀x1) . . . (∀xn)α is A-valid, where x1, . . . , xn are all the free variables that
occur in α. Since we are primarily interested in validity, this means we can often restrict
ourselves to sentences, that is, formulas α ∈ Fm∀∃(L) that contain no free variables.

First-Order Intuitionistic Logic

First formulated by Heyting in [83], first-order intuitionistic logic was introduced as the
intuitionistic version of first-order classical logic. A Hilbert-style axiomatization was
given by, e.g., Kleene in [91]. This axiomatization, denoted by IQC, consists of the axiom
schemata from IPC extended with the axiom and rule schemas from Figure 1.4. It was
shown by Rasiowa and Sikorski that a formula α ∈ Fm∀∃(LIL) is IQC-derivable if and
only if α is H-valid for all complete Heyting algebras H [136].

Rather than via an algebraic semantics, first-order intuitionistic logic is nowadays
mostly presented via Kripke semantics, introduced by Kripke in his pioneering work [94].
A similar equivalent semantics was introduced by Beth in [21]. We present Kripke’s
semantics here.

Definition 1.10. A frame is a non-empty poset K = 〈K,�〉 and is said to be linear if
� is a linear order. An intuitionistic Kripke model (or IK-model for short) based on K is
a 4-tuple

M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉,

such that for all k ∈ K, each Dk is a non-empty set (called the domain of k), and each
Ik is a function mapping each n-ary predicate P to Ik(P ) ⊆ Dn

k , satisfying

k � l =⇒ Dk ⊆ Dl and Ik(P ) ⊆ Il(P ).

For k ∈ K, an M-evaluation for k is a map ν assigning to each variable x an element
d ∈ Dk. For a ∈ Dk and variable x, we write ν(x = a) to denote the M-evaluation ν ′
for k such that ν ′(x) = a and ν ′(y) = ν(y) for all variables y 6= x. For any k ∈ K and
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M-evaluation ν for k, satisfaction in M is defined inductively as follows:

M, k |=ν ⊥ ⇐⇒ never
M, k |=ν > ⇐⇒ always
M, k |=ν P (x1, . . . , xn) ⇐⇒ 〈ν(x1), . . . , ν(xn)〉 ∈ Ik(P )
M, k |=ν α ∧ β ⇐⇒ M, k |=ν α and M, k |=ν β

M, k |=ν α ∨ β ⇐⇒ M, k |=ν α or M, k |=ν β

M, k |=ν α→ β ⇐⇒ for all l � k, M, l |=ν α implies M, l |=ν β

M, k |=ν (∀x)α ⇐⇒ for all l � k and b ∈ Dl, M, l |=ν(x=b) α

M, k |=ν (∃x)α ⇐⇒ for some b ∈ Dk, M, k |=ν(x=b) α.

A formula α ∈ Fm∀∃(LIL) is said to be valid in M if M, k |=ν α for all k ∈ K and
M-evaluations ν for k. We say that α ∈ Fm∀∃(LIL) is IK-valid, denoted by |=IK α, if it is
valid in all IK-models.

Due to their connection with first-order Gödel logic, we are particularly interested in
IK-models satisfying a couple of conditions. Firstly, we are interested in those IK-models
M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉 such that K = 〈K,�〉 is linear. In that case, we call
M an IKL-model. Secondly, we are interested in those IK-models M that have constant
domains, that is, Dk = Dl for all k, l ∈ K. If that is the case, we call M an CDIK-model. If
both conditions are satisfied, we call M an CDIKL-model. Given L ∈ {IKL,CDIK,CDIKL},
we say that α ∈ Fm∀∃(LIL) is L-valid, denoted by |=L α, if it is valid in all L-models.

First-order intuitionistic logics defined over some class of intuitionistic Kripke models
fall under the umbrella term of (first-order) intermediate logics, a class of (first-order)
logics whose set of valid formulas lies between the sets of intuitionistically valid formulas
and classically valid formulas.8 Let us recall some well-known completeness results.
Firstly, Kripke showed completeness of IK-validity with respect to IQC in [94]. An
axiomatization for CDIK-validity was found independently by three different authors,
namely by Görnemann in [75], by Klemke in [92], and by Gabbay in [70]. IKL-validity
was axiomatized by Corsi in [56], and CDIKL-validity by Minari [110]. To formulate these
completeness results, we define the following prelinearity (pre) and constant domain (cd)
axiom schemas

(pre) (α→ β) ∨ (β → α)
(cd) (∀x)(α ∨ (∀x)β)→ ((∀x)α ∨ (∀x)β).

The mentioned completeness results can now be summarized as follows, for α ∈ Fm∀∃(LIL),

|=IK α ⇐⇒ `IQC α
|=IKL α ⇐⇒ `IQC+(pre) α
|=CDIK α ⇐⇒ `IQC+(cd) α
|=CDIKL α ⇐⇒ `IQC+(pre)+(cd) α.

Other notable work on first-order intermediate logics includes, e.g., [111,122,151].
We are also interested in first-order intuitionistic logics based on a single frame. For

a frame K = 〈K,�〉, we say that an IK-model (CDIK-model) 〈K,�, {Dk}k∈K , {Ik}k∈K〉
8Note that there are intermediate logics that cannot be characterized by a particular class of intuition-

istic Kripke models, as shown by Ono in [123].
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is an IK(K)-model (CDIK(K)-model). If K is linear, we call it an IKL-model (CDIKL(K)-
model). For any L ∈ {IK, IKL,CDIK,CDIKL}, we say that α ∈ Fm∀∃(LIL) is L(K)-valid if
α is M-valid for every L(K)-model M.
Example 1.11. Consider the trivial frame K = 〈{∗},=〉. It is then clear that for a
formula α ∈ Fm∀∃(LIL), α is IKL(K)-valid if and only if α is CDIKL(K)-valid if and only
if α is valid in first-order classical logic.
Example 1.12. Consider the linear frame Q := 〈Q,≤〉. Takano showed completeness of
IQC + (pre) + (cd) with respect to CDIKL(Q)-models in [145]. Combined with Minari’s
completeness result from [110], it follows that for all α ∈ Fm∀∃(LIL),

|=CDIKL α ⇐⇒ |=CDIKL(Q) α ⇐⇒ `IQC+(pre)+(cd) α.

Moreover, Corsi showed in [56] that IKL-validity coincides with IKL(Q)-validity. Hence,
for all α ∈ Fm∀∃(LIL),

|=IKL α ⇐⇒ |=IKL(Q) α ⇐⇒ `IQC+(pre) α.

Let us finally note that first-order classical logic can be interpreted in first-order
intuitionistic logic via Gödel’s double negation translation (see, e.g., [148]). That is, for
any α ∈ Fm∀∃(LIL),

|=IK ¬¬α ⇐⇒ α is valid in first-order classical logic,

where ¬α := α → ⊥. From Church’s undecidability result it follows that first-order
intuitionistic logic is also undecidable.

First-Order Gödel Logics

Standard first-order Gödel logic, here to be understood as the set of formulas in Fm∀∃(LIL)
that are G-valid, was first properly investigated by Horn in 1969. He provided a
completeness proof for this logic in [86], showing that for all α ∈ Fm∀∃(LIL),

|=∀∃G α ⇐⇒ `IQC+(pre)+(cd) α.

In fact, he also shows that G-validity coincides with being H-valid for each linearly ordered
Heyting algebra H or, equivalently, being A-valid for each Gödel set A. A different
axiomatization was given by Takeuti and Titani in [146]. Their system incorporated a
density rule, expressing that the truth value set is dense, which was later proven to be
redundant by Takano in [144].

Using Horn’s completeness result and the completeness result for CDIKL-models, we
obtain a relation between first-order Gödel logic and intuitionistic Kripke models. To be
precise, we obtain that for all α ∈ Fm∀∃(LIL),

|=∀∃G α ⇐⇒ |=CDIKL α.

Note that it follows that first-order Gödel logic is in fact an intermediate logic.
Similarly to our account of propositional Gödel logics, we can investigate first-order

Gödel logics for different Gödel sets, that is, A-validity for Gödel sets A. However,
whereas in the propositional case the logics G(A) all coincide for any infinite Gödel set
A, there are infinitely many different first-order Gödel logics, considered as sets of valid
formulas. In fact, there are exactly countably infinitely many, as shown in [12]. We state
this result for future reference.
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Theorem 1.13 (cf. [12]). The set of first-order Gödel logics (viewed as sets of A-valid
formulas, where A ranges over all Gödel sets) is countably infinite.

The connection with first-order intuitionistic logic is extended further and charac-
terized by Beckmann and Preining in [13]. They show a one-to-one correspondence
between the class of sets of A-valid formulas for Gödel sets A and the class of sets
of CDIKL(K)-valid formulas for countable frames K. To be more precise, they show
that for every Gödel set A, there exists a countable linear frame KA such that for all
α ∈ Fm∀∃(LIL),

|=∀∃A α ⇐⇒ |=CDIKL(KA) α,

and, conversely, for every countable linear frame K, there exists a Gödel set AK such
that for all α ∈ Fm∀∃(LIL),

|=∀∃AK
α ⇐⇒ |=CDIKL(K) α.

A full characterization in terms of recursive enumerability for this class is given by
Baaz, Preining, and Zach in [11]; that is, they characterize exactly for which Gödel sets
A, A-validity is recursively enumerable, and provide axiomatizations for those that are.
To state this characterization, we recall some topological terminology. For further details
see, e.g., [115]. A point x ∈ R is called a limit point if every open neighbourhood of x
contains a point y 6= x, and isolated if it is not a limit point. A subset X ⊆ R is called
perfect if it is closed and all points in X are limit points in its relative topology. By a
result of Cantor, every non-empty perfect set is necessarily uncountable. A proof of the
following classical theorem can be found in [115].

Theorem 1.14 (Cantor-Bendixson). If A is a closed subset of R, then it can be (uniquely)
written as A = X ∪ C for some perfect set X and countable set C such that X ∩ C = ∅.
The set X is called the perfect kernel of A and the set C is called the scattered part of A.

In [11], it was shown that for a Gödel set A, A-validity is recursively axiomatizable if
and only if one of the following cases hold

(a) A is finite;

(b) A is uncountable and 0 is contained in the perfect kernel of A;

(c) A is uncountable and 0 is isolated.

To be more precise, if A = Gn for some n ∈ N+, then Gn-validity is axiomatized using
the first-order version of the axiom schema (finn), i.e., for all α ∈ Fm∀∃(LIL),

|=∀∃Gn
α ⇐⇒ `IQC+(pre)+(cd)+(finn) α.

If A is uncountable and 0 is contained in the perfect kernel of A, then A-validity
coincides with G-validity. Lastly, if A is uncountable and 0 is isolated, then A-validity is
axiomatized using the axiom schema (iso0)

(iso0) (∀x)¬¬α→ ¬¬(∀x)α,

expressing exactly that 0 is isolated in A. That is, for all α ∈ Fm∀∃(LIL),

|=∀∃A α ⇐⇒ `IQC+(pre)+(cd)+(iso0) α.
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In all other cases, the set of A-valid formulas is not recursively enumerable. Via Gödel’s
double negation translation, it follows from Church’s undecidability result that also
first-order Gödel logic is undecidable. The proof methods employed in [13], [11], and [12]
will be used in Chapter 3, when considering fragments of first-order Gödel logics.

First-Order Łukasiewicz and Abelian Logic

As opposed to first-order Gödel logic, first-order Łukasiewicz logic was shown to not be
recursively enumerable by Scarpellini in [139]. Here, we consider first-order Łukasiewicz
logic to be the set of formulas α ∈ Fm∀∃(LIL) that are Ł-valid. Proof systems for it
have nevertheless been provided by a number of authors, e.g., Hay [82], Belluce and
Chang [16,17], Hájek [76], and Baaz and Metcalfe [9]. All their proof systems contain
some infinitary rule, that is, a rule with infinitely many premises.9

As mentioned before, a deep connection exists between Łukasiewicz and Abelian
logic. This connection extends to the first-order versions of both logics. Let us hence
consider first-order Abelian logic, that is, the set of formulas from Fm∀∃(LA) that
are R-valid. Note that R is not complete: the real numbers are unbounded and
so ∨R and ∧

R do not exist. It is here that we really need to work with safe R-
structures. Note that for a safe R-structure M = 〈D, I〉, the map from D to R defined by
d 7→ I(P )(d1, . . . , di−1, d, di+1, . . . , dn) is bounded for each n-ary predicate P , 1 ≤ i ≤ n,
and d1, . . . , di−1, di+1, . . . , dn ∈ D. Here, a function f : X → R is called bounded if there
exists r ∈ R such that |f(x)| ≤ r for all x ∈ X. In fact, this is an equivalent definition
of safe R-structures. Indeed, consider any R-structure M = 〈D, I〉 such that all maps
d 7→ I(P )(d1, . . . , di−1, d, di+1, . . . , dn) are bounded. We can then show by induction on
formula length that for any formula α(x) with (possibly free) variable x and M-evaluation
v, ‖α(x)‖RM,v exists and the map a 7→ ‖α(x)‖RM,v(x=a) from D to R is bounded. We will
often implicitly assume that an R-structure is safe.

We can now formulate an interpretation of first-order Łukasiewicz logic into first-order
Abelian logic, making the connection between Łukasiewicz and Abelian logic concrete.
The interpretation given here is an extension of the intuitive interpretation given in [107].
Let us fix a unary predicate P0 and define ⊥ := (∀x)P0(x) ∧ ¬(∀x)P0(x) in Fm∀∃(LA),
a constant that will be interpreted as the same non-positive real number under all
M-evaluations v for an R-structure M. We let Fm0

∀∃(LŁ) denote the set of formulas from
Fm∀∃(LŁ) that do not contain P0. We define the following map from the set Fm0

∀∃(LŁ)
to Fm∀∃(LA):

P (t1, . . . , tn)• = (P (t1, . . . , tn) ∧ 0̄) ∨ ⊥ ((∀x)α)• = (∀x)α•

(α ⊃ β)• = (α• → β•) ∧ 0̄ ((∃x)α)• = (∃x)α•.
(∼α)• = α• → ⊥

We show that (−)• preserves validity between first-order Łukasiewicz logic and first-
order Abelian logic by identifying the value of α ∈ Fm0

∀∃(LŁ) in [0, 1] with the value of
α• ∈ Fm∀∃(LA) in [⊥, 0].

9With the current definition of a (finitary) proof system, a rule with infinitely many premises is not
permitted. To adapt it, one needs to for example define a proof to be a (possibly infinite) tree. Since we
will not use infinitary rules in this thesis, we assume the reader can extrapolate what is meant here.



26 1. The Logics

Theorem 1.15. For all α ∈ Fm0
∀∃(LŁ),

|=∀∃Ł α ⇐⇒ |=∀∃R α•.

Proof. Suppose first that α is not valid in some Ł-structure M = 〈D, I〉 with M-
evaluation v, i.e., ‖α‖ŁM,v < 1. We consider the R-structure M′ = 〈D, I ′〉 where
I ′(P0)(d) = −1 for all d ∈ D, and I ′(P )(d1, . . . , dn) = I(P )(d1, . . . , dn) − 1 for each
n-ary predicate P and d1, . . . , dn ∈ D. It easily follows that |I ′(P )(d1, . . . , dn)| ≤ 1 for
all n-ary predicates P and d1, . . . , dn ∈ D, and hence M′ is a safe R-structure. Moreover,
any M-evaluation is an M′-evaluation and vice versa, and ‖⊥‖RM′,v = −1. It suffices to
prove that ‖β•‖RM′,v′ = ‖β‖ŁM,v′ − 1 for any β ∈ Fm0

∀∃(LŁ) and M-evaluation v′, since
then ‖α•‖RM′,v = ‖α‖ŁM,v − 1 < 0 and so α• is not R-valid. We proceed by induction on
the length of β. The base case follows by definition. For the inductive step we obtain, we
first consider the case when β is β1 ⊃ β2. Then, using the induction hypothesis,

‖(β1 ⊃ β2)•‖RM′,v1 = ‖(β•1 → β•2) ∧ 0̄‖RM′,v1

= min{‖β•2‖RM′,v1 − ‖β
•
1‖RM′,v1 , 0}

= min{‖β•2‖ŁM,v1 − 1− (‖β•1‖ŁM,v1 − 1), 0}
= min{‖β•2‖ŁM,v1 − ‖β

•
1‖ŁM,v1 , 0}

= min{1− ‖β•1‖ŁM,v1 − ‖β
•
2‖ŁM,v1 , 1} − 1

= ‖α ⊃ β‖ŁM,v1 − 1.

The case where β is ∼β1 is very similar. Now consider the case where β is (∀x)β1. Then

‖(∀x)β1)•‖RM′,v1 = ‖(∀x)β•1‖RM′,v1

=
∧
{‖β•1‖RM′,v1(x=a) | a ∈ D}

=
∧
{‖β1‖ŁM,v1(x=a) − 1 | a ∈ D}

=
∧
{‖β1‖ŁM,v1(x=a) | a ∈ D} − 1

= ‖(∀x)β1‖ŁM,v1 − 1.

The case where β is (∃x)β1 is analogous.
Suppose now conversely that α• is not valid in an R-structure M = 〈D, I〉 with

M-evaluation v, that is, ‖α•‖RM,v < 0. Observe first that if ‖(∀x)P0(x)‖RM,v = 0, then
‖⊥‖RM,v′ = 0 for allM-evaluations v′. With a simple induction on the size of β ∈ Fm0

∀∃(LŁ)
we obtain ‖β•‖RM,v′ = 0 for all M-evaluations v′, a contradiction with ‖α•‖RM,v < 0. Hence
‖(∀x)P0(x)‖RM,v 6= 0. Moreover, by scaling (that is, dividing each I(P )(d1, . . . , dn) by
‖(∀x)P0(x)‖RM,v for each n-ary predicate P and d1, . . . , dn ∈ D), we may assume that
‖⊥‖RM,v′ = −1 for all M-evaluations v′. We now consider the Ł-structure M′ = 〈D, I ′〉
where

I ′(P )(d1, . . . , dn) = max{0,min{I(P )(d1, . . . , dn) + 1, 1}}

for each n-ary predicate P and d1, . . . , dn ∈ D. Note that since any Ł-structure is safe,
so is M′. It now suffices to show that ‖β‖ŁM′,v′ = ‖β•‖RM,v′ + 1 for all β ∈ Fm0

∀∃(LŁ) and
M-evaluations v′ by an easy induction on the length of β.
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This interpretation allows for the study of first-order Łukasiewicz logic inside first-
order Abelian logic. The advantages of studying first-order Abelian logic include a
semantics based on structures that has been studied intensively, and a natural separation
between the multiplicative (group) fragment and the additive (lattice) fragment of this
logic. Such a separation is exploited in [61], where related modal Abelian logics are
studied. A fragment of first-order Abelian logic is the main topic of Chapter 4.

1.3 One-Variable Fragments
In this section, we can finally introduce the main topic of this thesis: one-variable
fragments. As should be clear from the previous section, first-order logics are, in general,
computationally complicated. Most well-studied first-order logics are undecidable, or
even not recursively enumerable. For this reason, fragments of first-order logics have
been studied that are computationally easier and still have a high expressive power.
Examples include prenex fragments, where only formulas of the form (Qx1) . . . (Qxn)α
are considered with α a formula not containing quantifiers and (Qx1) . . . (Qxn) some
fixed sequence of quantifiers; guarded fragments, where the type of quantification is
restricted; and the monadic fragment, where only formulas containing unary predicates
are considered. Another approach is to limit the number of variables that are allowed to
occur in a formula. The maximum number of variables to consider for a computationally
desirable fragment is rather small: the two-variable fragment of first-order classical logic
is decidable [114], but its three-variable fragment is undecidable [142]. When considering
first-order intuitionistic logic, already the two-variable fragment is undecidable [93].

In this thesis, we are particularly interested in first-order formulas containing a single
variable. Note that if α contains only a single variable x, and Fm∀∃(L) is defined without
function symbols, it suffices to consider only unary predicates.10 For this reason, we
define the set Fm1(L) of first-order formulas α, β, . . . built from a countably infinite set
of unary predicates {Pi}i∈N, propositional connectives ? ∈ L, a single variable x, and
quantifiers ∀, ∃.
Remark 1.16. Note that there is a difference between the one-variable fragment of
a first-order logic and the monadic fragment. The latter concerns a restriction of the
first-order language to only unary predicate letters, but no restriction on the number of
variables. For first-order classical logic, these two fragments coincide up to equivalence
of formulas. Note that the one-variable fragment is obviously included in the monadic
fragment. Conversely, for first-order classical logic each sentence in the monadic fragment
is equivalent to a formula in the one-variable fragment. For details, see, e.g., [84]. In
general, they do not coincide. For example, the validity problem of the monadic fragment
of first-order Gödel logic is undecidable [5], whereas it is co-NP-complete for the one-
variable fragment, as proved in [38]. Despite the difference between the one-variable and
monadic fragment, the literature is not always precise about the distinction. We shall
be as precise as possible. In fact, all fragments studied in this thesis are one-variable
fragments, even though they might be referred to as monadic in some of the literature.

For a one-variable first-order formula, a quantifier (∀x) or (∃x) can be viewed as a
modality, that is, an operator that expresses statements like “it is necessary that”, or “it

10Indeed, any occurrence of an n-ary predicate P (x, . . . , x) for n ≥ 2 in a formula can be replaced with
P ′(x) for a unary predicate P ′.
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is possible that”. Logics containing such modalities, usually referred to as modal logics,
have been studied in much more generality. For more on modal logics, see, e.g., [27,46].

Given a propositional language L, we let Fm�♦(L) denote the set of modal formulas
ϕ,ψ, . . . built inductively over the set of propositional variables {pi}i∈N, propositional
connectives in L, and unary modal connectives �,♦. The length of a formula ϕ ∈ Fm�♦(L)
is again defined inductively as the number of n+ 1-ary connectives occurring in ϕ. There
exists a natural correspondence between the sets Fm�♦(L) and Fm1(L). We define
standard translation functions (−)∗ and (−)◦ as follows for n-ary ? ∈ L and i ∈ N

(Pi(x))∗ = pi p◦i = Pi(x)
?(α1, . . . , αn)∗ = ?(α∗1, . . . , α∗n) ?(ϕ1, ..., ϕn)◦ = ?(ϕ◦1, ..., ϕ◦)

((∀x)α)∗ = �α∗ (�ϕ)◦ = (∀x)ϕ◦

((∃x)α)∗ = ♦α∗ (♦ϕ)◦ = (∃x)ϕ◦.

Clearly (α∗)◦ = α for any α ∈ Fm1(L) and (ϕ◦)∗ = ϕ for any ϕ ∈ Fm�♦(L), so we may
alternate between the first-order and modal notations as convenient.

Correspondences between one-variable fragments of first-order logics and modal logics
form the main focus of this thesis. Here the line between one-variable and monadic
fragments seems to blur in the literature. Modal logics that correspond to the one-variable
fragment of a first-order logic are often referred to as monadic, despite the fact that they
do not correspond to the monadic fragment. Of course, any one-variable fragment is
included in the monadic fragment, so it is harmless speak about a monadic modal logic.
We shall be precise in the naming of the first-order fragments. As first examples, we
consider the one-variable fragments of first-order classical and intuitionistic logic.

Example 1.17. The one-variable fragment of first-order classical logic was first ax-
iomatized by Wajsberg in [152]. This fragment has since been extensively studied; in
particular as the modal logic of Kripke models based on an equivalence relation, denoted
by S5. An axiomatization of S5 can be obtained by adding to CPC the axiom schemas
and rules from Figure 1.5. We call the resulting proof system S5. Axioms (4) and (B)
could be replaced by a single axiom schema ♦ϕ → �♦ϕ. It then follows that for any
α ∈ Fm1(LCL),

α is valid in first-order classical logic ⇐⇒ `S5 α
∗.

Note that this completeness result is really an improvement on the completeness result
with respect to CQC. Indeed, a proof of a formula α ∈ Fm∀∃(LCL) in CQC can possibly
use multiple variables, something that is not possible in S5. The validity problem for S5
is, similarly to CL, co-NP-complete [95].

Example 1.18. The one-variable fragment of first-order intuitionistic logic was axioma-
tized by Prior and Bull. Prior gave an axiomatization in the modal language, extending
the intuitionistic calculus IPC by a number of rules [132]. Here we give an equivalent
proof system called MIPC, as taken from [26], defined to consist of all intuitionistic
axiom schema from IPC extended with the axiom and rule schemas from Figure 1.6. In
the presence of the other axioms, (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) is equivalent to the famous
Kripke axiom schema (K) from S5. Bull then subsequently showed in [36] that this is
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(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)
(Dual) (♦ϕ→ ¬�¬ϕ) ∧ (¬�¬ϕ→ ♦ϕ)

(T) �ϕ→ ϕ
(4) �ϕ→ ��ϕ
(B) ϕ→ �♦ϕ

ϕ

�ϕ
(nec)

Figure 1.5: Additional axiom and rule schemas for proof system S5

(1) �ϕ→ ϕ
(2) ♦ϕ→ �♦ϕ
(3) (�ϕ ∧�ψ)→ �(ϕ ∧ ψ)
(4) �(ϕ→ ψ)→ (♦ϕ→ ♦ψ)
(5) ϕ→ ♦ϕ
(6) ♦�ϕ→ �ϕ
(7) ♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ)

ϕ

�ϕ
(nec)

Figure 1.6: Additional axiom and rule schemas for proof systemMIPC

indeed an axiomatization of the one-variable fragment of first-order intuitionistic logic,
by proving that for every α ∈ Fm1(LIL),

|=IK α ⇐⇒ `MIPC α∗.

Although MIPC-derivability is decidable, there is a significant jump in complexity
compared to propositional IL-validity: it is co-NEXPTIME-complete [101].

If we are only interested in formulas containing a single variable, we can simplify
the notation for intuitionistic Kripke models. Indeed, for L ∈ {IK, IKL,CDIK,CDIKL},
an L-model M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉 is called an L1-model if it is restricted to
one-variable formulas. In particular, any Ik is restricted to unary predicates and any
M-evaluation for k ∈ K is a map ν : {x} → Dk. We then write M, k �a α for M, k �ν α
if νk(x) = a. With this notation, we can leave out ν when considering satisfaction in M.
We say that α ∈ Fm1(LIL) is L1-valid, written |=L1 α, if it is valid in all L1-models. Note
that it is immediate that

|=L α ⇐⇒ |=L1 α.

Despite the equivalence, we will often speak of L1-validity to stress that we are considering
the one-variable fragment.

We now introduce a Kripke semantics to interpret the monadic many-valued logics
studied in this thesis, inspired by approaches taken in [33,34,41,69,76].

Definition 1.19. Let A = 〈A,∧,∨, ·,→, f, e〉 be an FLe-algebra. An S5(A)-frame is an
A-valued equivalence relation: a pair 〈W,R〉 consisting of a non-empty set W and a map
R : W ×W → A satisfying for all u, v, w ∈W ,
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(i) Rww = e (reflexivity);
(ii) Rwv = Rvw (symmetry);
(iii) Rwv ·Rvu ≤ Rwu (transitivity).

It is called crisp if Rwv ∈ {f, e} for all w, v ∈ W . If Rwv = e for all w, v ∈ W , we call
〈W,R〉 universal.

Definition 1.20. Let A = 〈A,∧,∨, ·,→, f, e〉 be an FLe-algebra. An S5(A)-model is a
tripleM = 〈W,R, V 〉 consisting of an S5(A)-frame 〈W,R〉 and a map V : {pi}i∈N×W →
A. The map V is extended inductively to V̄ : Fm�♦(LFLe)×W → A as follows, where
? ∈ {∧,∨, ·,→}:

V̄ (⊥, w) = f

V̄ (>, w) = e

V̄ (ϕ ? ψ,w) = V̄ (ϕ,w) ? V̄ (ψ,w)
V̄ (�ϕ,w) =

∧
{Rwv → V̄ (ϕ, v) | v ∈W}

V̄ (♦ϕ,w) =
∨
{Rwv · V̄ (ϕ, v) | v ∈W}.

If the supremum or infimum does not exist at a world, we take the value of the modal
formula and all those formulas containing it at that world to be undefined. We callM safe
if V̄ (ϕ,w) exists for all w ∈W and ϕ ∈ Fm�♦(LFLe). We say thatM is an S5(A)C-model
if 〈W,R〉 is crisp, and universal if 〈W,R〉 is universal. A formula ϕ ∈ Fm�♦(LFLe) is said
to be valid in M if V̄ (ϕ,w) ≥ e for all w ∈ W , and S5(A)-valid, written |=S5(A) ϕ, if
it is valid in all safe S5(A)-models. We also say that ϕ ∈ Fm�♦(LFLe) is S5(A)C-valid,
written |=S5(A)C ϕ, if it is valid in all safe S5(A)C-models.

Note that if A is a complete FLe-algebra, then any S5(A)-model is safe. Moreover, if
A is an FLeo-algebra or fA = eA, the inductive definitions for the modal formulas in a
safe S5(A)C-model simplify to

V̄ (�ϕ,w) =
∧
{V (ϕ, v) | Rwv}

V̄ (♦ϕ,w) =
∨
{V (ϕ, v) | Rwv},

since for all a ∈ A, e → a = a and, if A is an FLeo-algebra, f · a = f holds, and
f → a = f → f is the top element of A. It then follows that a formula ϕ ∈ Fm�♦(LFLe) is
S5(A)C-valid if and only if ϕ is valid in all safe universal S5(A)C-models. For a universal
S5(A)C-model, we usually drop R from the signature.

Similarly to our approach to many-valued first-order logics, we can use the term-
equivalences from Examples 1.4–1.7 to abuse notation. If some algebra A over language L
is term-equivalent to some FLe-algebra A′, we say that a ϕ ∈ Fm�♦(L) is S5(A)-valid if
its equivalent formula in Fm�♦(LFLe) is S5(A′)-valid. Moreover, we abuse our definition
of a logic by sometimes speaking of the logic S5(A) (S5(A)C), by which we mean the set
of S5(A)-valid (S5(A)C-valid) formulas.

The naming of the defined models is derived from their connection to the modal logic
S5. Indeed, S5(2)-models and, equivalently, S5(2)C-models are exactly Kripke models
based on equivalence relations as considered in classical modal logic, see, e.g., [27]. That is,
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ϕ ∈ Fm�♦(LCL) is S5(2)C-valid if and only if ϕ is derivable in S5. In fact, S5(A)-models
in general satisfy many of the axioms classically associated with modal logic S5. Note
that, unlike in S5, � and ♦ are not interdefinable in S5(A)-models in general.

Lemma 1.21. Let A be an FLe-algebra. Then the following formulas are S5(A)-valid
for any ϕ,ψ ∈ Fm�♦(LFLe):

(i) �ϕ→ ϕ (vi) ♦�ϕ→ ϕ
(ii) ϕ→ ♦ϕ (vii) ♦ϕ→ �♦ϕ
(iii) �ϕ→ ��ϕ (viii) ♦�ϕ→ �ϕ
(iv) ♦♦ϕ→ ♦ϕ (ix) (�ϕ ∧�ψ)→ �(ϕ ∧ ψ)
(v) ϕ→ �♦ϕ (x) ♦(ϕ ∨ ψ)→ (♦ϕ ∨ ♦ψ).

Proof. Consider any safe S5(A)-model 〈W,R, V 〉 and w ∈W . Note that e ≤ V̄ (ϕ→ ψ,w)
is equivalent to V̄ (ϕ,w) ≤ V̄ (ψ,w).

(i) Since Rww = e,

V̄ (�ϕ,w) =
∧
{Rwv → V̄ (ϕ, v) | v ∈W}

≤ Rww → V̄ (ϕ,w)
= e→ V̄ (ϕ,w)
= V̄ (ϕ,w).

(ii) This follows similarly to (i).
(iii) Note that for all u, v ∈W , by the transitivity of R,

Rwv ·Rvu · V̄ (�ϕ,w) ≤ Rwu · V̄ (�ϕ,w)
≤ Rwu · (Rwu→ V̄ (ϕ, u))
≤ V̄ (ϕ, u).

It follows that Rwv · V̄ (�ϕ,w) ≤ V̄ (�ϕ, v) for all v ∈W , and so V̄ (�ϕ,w) ≤ V̄ (��ϕ,w)
as required.

(iv) This follows similarly to (iii).
(v) Note that for all v ∈ W , Rwv · V̄ (ϕ,w) = Rvw · V̄ (ϕ,w) ≤ V̄ (♦ϕ, v). By

residuation, we obtain V̄ (ϕ,w) ≤ V̄ (�♦ϕ,w).
(vi) The proof is analogous to the proof of (v).
(vii) By the symmetry and transitivity of R, we have Rwu · Rwv ≤ Rvu for all

v, u ∈W . Hence for all v ∈W ,

V̄ (♦ϕ,w) ·Rwv =
∨
{Rwu · V̄ (ϕ, u) | u ∈W} ·Rwv

=
∨
{Rwu ·Rwv · V̄ (ϕ, u) | u ∈W}

≤
∨
{Rvu · V̄ (ϕ, u) | u ∈W}

= V̄ (♦ϕ, v).

Residuation then implies V̄ (♦ϕ,w) ≤ Rwv → V̄ (♦ϕ, v) for all v ∈W and so V̄ (♦ϕ,w) ≤
V̄ (�♦ϕ,w).
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(viii) Consider any u, v ∈W . By symmetry and transitivity of R, we have Rwv·Rwu ≤
Rvu, as well as V̄ (�ϕ, v) ≤ Rvu → V̄ (ϕ, u). It follows that Rvu · V̄ (�ϕ, v) ≤ V̄ (ϕ, u),
and so

Rwv ·Rwu · V̄ (�ϕ, v) ≤ Rvu · V̄ (�ϕ, v) ≤ V̄ (ϕ, u).

This gives Rwv · V̄ (�ϕ, v) ≤ Rwu → V̄ (ϕ, u) for all u, v ∈ W , and so V̄ (♦�ϕ,w) ≤
V̄ (�ϕ,w).

(ix) This follows from the fact that a→ (b ∧ c) = (a→ b) ∧ (a→ c) for all a, b, c ∈ A.
(x) This follows from the fact that a · (b ∨ c) = (a · b) ∨ (a · c) for all a, b, c ∈ A.

Remark 1.22. Something to note is that, although it is S5- andMIPC-derivable, the
Kripke axiom �(ϕ → ψ) → (�ϕ → �ψ) is not S5(A)-valid in general. For example,
consider the three-element Łukasiewicz chain Ł3, and the S5(Ł3)-model 〈W,R, V 〉 where
W = {w, v}, Rww = Rvv = 1, Rwv = Rvw = 1

2 , V (p1, w) = V (p2, w) = 1, V (p1, v) = 1
2 ,

and V (p2, v) = 0. It then follows that V̄ (�(p1 → p2), w) = 1, V̄ (�p1, w) = 1, and
V̄ (�p2, w) = 1

2 , and so

V̄ (�(p1 → p2)→ (�p1 → �p2), w) = 1
2 < 1.

Monadic Gödel Logics

Let us now discuss S5(A)- and S5(A)C-validity when A is the algebra corresponding
to a Gödel set A. If A is the standard Gödel set G, S5(A)- and S5(A)C-validity has
been studied extensively. Caicedo and Rodríguez provided axiomatizations for both
S5(G)- and S5(G)C-validity in [42]. We define the modal versions (pre) and (cd�) of the
prelinearity and the constant domain schema, respectively, by

(pre) (ϕ→ ψ) ∨ (ψ → ϕ) and (cd�) �(ϕ ∨�ψ)→ (�ϕ ∨�ψ).

The results by Caicedo and Rodríguez can then be written as: for every ϕ ∈ Fm�♦(LIL),

|=S5(G) ϕ ⇐⇒ `MIPC+(pre) ϕ

|=S5(G)C ϕ ⇐⇒ `MIPC+(pre)+(cd�) ϕ.

In [38], it was shown that S5(G)C-validity is co-NP-complete. Moreover, S5(G)C cor-
responds to the one-variable fragment of first-order Gödel logic: G-structures M with
an M-evaluation restricted to one-variable formulas correspond exactly to the S5(G)C-
models. Combining this fact with the axiomatization for CDIKL-validity by Minari and
Takano discussed earlier, we obtain that for all α ∈ Fm1(LIL),

|=CDIKL1 α ⇐⇒ `MIPC+(pre)+(cd�) α
∗.

Building on Bull’s completeness proof for MIPC, Ono showed in [124] that for all
α ∈ Fm∀∃(LIL),

|=CDIK1 α ⇐⇒ `MIPC+(cd�) α
∗.

In Chapter 3, we solve an open problem by showing that for each α ∈ Fm∀∃(LIL),

|=IKL1 α ⇐⇒ `MIPC+(pre) α
∗.
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We also further investigate S5(A)- and S5(A)C-validity for Gödel sets A, connecting them
to IKL1(K)- and CDIKL1(K)-validity for linear frames K, similarly to the correspondences
obtained by Beckmann and Preining in [13] for the full first-order Gödel logics. We
additionally establish decidability and complexity results for a large class of them.

Recall that there are exactly countably infinitely many first-order Gödel logics
(Theorem 1.13). Since for each Gödel set A, S5(A)C corresponds to the one-variable
fragment of the first-order Gödel logic based on A, this implies that there are at most
countably infinitely many different logics S5(A)C. We show that there are at least
infinitely many different logics S5(A)C and S5(A), giving the precise number of logics
S5(A)C and paving the way to obtain a similar result for the logics S5(A) in Chapter 3.

Let us say that an element a of a Gödel set A is a right accumulation point of A if
a < 1 and for all b ∈ A such that a < b, there exists c ∈ A such that a < c < b. Left
accumulation points of A are defined analogously. Let R(A) and L(A) denote the sets of
right and left accumulation points of A, respectively. We use the following formula to
detect right accumulation points of A:

χ(pi) := �((pi → �pi)→ �pi)→ �pi.

Lemma 1.23. Let A be any Gödel set and let 〈W,R, V 〉 be an S5(A)-model with w ∈W .
If V̄ (χ(pi), w) < 1, then V̄ (�pi, w) is a right accumulation point of A.

Proof. Suppose that V̄ (χ(pi), w) < 1. To prove that V̄ (�pi, w) is a right accumulation
point of A, it suffices to show that V̄ (�pi, w) < Rwv → V (pi, v) for all v ∈ W . For a
contradiction, suppose that there exists v ∈W such that V̄ (�pi, w) = Rwv → V (pi, v).
From V̄ (�pi, w) = V̄ (χ(pi), w) < 1 it follows that V̄ (�pi, w) = V (pi, v) < Rwv. By the
symmetry and transitivity of R, we have Rwv ∧Rvu = Rwv ∧Rwu for all u ∈W , so

Rwv → V̄ (�pi, v)
= Rwv →

∧
{Rvu→ V (pi, u) | u ∈W}

= Rwv →
∧
{(Rwv ∧Rvu)→ V (pi, u) | u ∈W}

= Rwv →
∧
{(Rwv ∧Rwu)→ V (pi, u) | u ∈W}

= Rwv →
∧
{Rwu→ V (pi, u) | u ∈W}

= Rwv → V̄ (�pi, w).

This yields 1 > V̄ (�pi, w) = Rwv → V̄ (�pi, w) = Rwv → V̄ (�pi, v) and hence
V̄ (�pi, v) = V̄ (�pi, w) = V (pi, v) < Rwv. Now note that from V̄ (χ(pi), w) < 1, we
obtain V̄ (�((pi → �pi) → �pi, w) > V (�pi, w) and so V̄ (�pi, w) < Rwu → V̄ ((pi →
�pi)→ �pi, u) for all u ∈W . We obtain a contradiction

V̄ (�pi, w) < Rwv → V̄ ((pi → �pi)→ �pi, v)
= Rwv → V̄ (�pi, v)
= V̄ (�pi, v)
= V̄ (�pi, w).

Proposition 1.24. The sets of logics S5(A) and S5(A)C (considered as sets of valid
formulas), where A ranges over infinite Gödel sets, are both infinite.



34 1. The Logics

Proof. It suffices to show that infinitely many of the logics S5(A)C can be distinguished
by formulas. For each n ∈ N+, let

χn :=
n∨
j=1

χ(pj) ∨
n−1∨
i=1

(�pi+1 → �pi).

We prove first that |=S5(A)C χn implies |R(A)| < n. Suppose that A has n distinct
right accumulation points a1 < · · · < an. Then for each j ∈ {1, . . . , n}, there exists
a strictly descending sequence (cjn)n∈N ⊆ (aj , 1] ∩ A converging to aj . We define an
S5(A)C-modelM = 〈N, V 〉 with V (pj ,m) = cjm for all m ∈ N and j ∈ {1, . . . , n}. Then
V̄ (�pj ,m) = aj < cjm = V (pj ,m) for all j ∈ {1, . . . , n} and m ∈ N, which implies
V̄ (χ(pj), 0) = aj for all j ∈ {1, . . . , n}. Moreover, V̄ (�pi+1 → �pi, 0) = V̄ (�pi, 0) = ai
for all i ∈ {1, . . . , n− 1}. Hence V̄ (χn, 0) = an < 1 and 6|=S5(A)C χn.

Next, we prove that |R(A)| < n implies |=S5(A) χn. Suppose that V̄ (χn, w) < 1 for
some S5(A)-model 〈W,R, V 〉 and w ∈W . It follows that V̄ (�p1, w) < · · · < V̄ (�pn, w)
and V̄ (χ(pj), w) < 1 for all j ∈ {1, . . . , n}. By Lemma 1.23, each of the V̄ (�pj , w) is a
right accumulation point of A and so |R(A)| ≥ n.

Since also |=S5(A) χn implies |=S5(A)C χn, we have that |=S5(A)C χn if and only if
|=S5(A) χn if and only if |R(A)| < n. Hence the sets of logics S5(A) and S5(A)C, where
A ranges over infinite Gödel sets, are both infinite.

Similarly, we can detect left accumulation points. For each n ∈ N+, let

θn :=
n∨
i=1

(♦(♦pi → pi)) ∨
n−1∨
i=1

(♦pi+1 → ♦pi).

It can then be verified that for any Gödel set A and n ∈ N+,

|=S5(A)C θn ⇐⇒ |=S5(A) θn ⇐⇒ |L(A) \ {1}| < n.

Since there are at most countably infinitely many first-order Gödel logics, it follows from
previous results that there are exactly countably infinitely many logics S5(A)C. An upper
bound on the number of logics S5(A) will be obtained in Section 3.3.

Monadic Łukasiewicz and Abelian Logic

Recall that it was shown by Scarpellini in [139] that first-order Łukasiewicz logic is not
recursively axiomatizable. However, its one-variable fragment can be axiomatized, as
was done by Rutledge in his PhD thesis [138]. He provides an algebraic semantics of
Ł-validity in the form of monadic MV-algebras, or monadic Chang algebras in Rutledge’s
terminology, from which a Hilbert-style axiomatization can be extracted. We define one
such axiomatization, denotedMHŁ, as HŁ extended with the axiom and rule schemas
from Figure 1.7. As universal S5(Ł)C-models correspond exactly to Ł-structures M with
an M-evaluation, it follows immediately that for ϕ ∈ Fm�♦(LŁ),

|=S5(Ł)C ϕ ⇐⇒ `MHŁ ϕ.

This fragment was shown to be decidable already by Rutledge in [138].
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(1) ϕ→ ♦ϕ
(2) (♦ϕ ∨ ♦ψ)→ ♦(ϕ ∨ ψ)
(3) ♦�ϕ)→ �ϕ
(4) ♦(♦ϕ⊕ ♦ψ)→ (♦ϕ⊕ ♦ψ)
(5) (♦ϕ⊗ ♦ϕ)→ ♦(ϕ⊗ ϕ)
(6) (♦ϕ⊕ ♦ϕ)→ ♦(ϕ⊕ ϕ)

ϕ

�ϕ
(nec)

Figure 1.7: Additional axiom and rule schemas for proof systemMHŁ

The interpretation (−)• from first-order Łukasiewicz logic into first-order Abelian
logic restricts to the one-variable fragments of both logics. To be precise, for each
α ∈ Fm1(LŁ) not containing P0,

|=∀∃Ł α ⇐⇒ |=∀∃R α•.

Now consider any S5(R)C-model M = 〈W,R, V 〉. Using the term-equivalence from
Example 1.7,M is by definition universal, since Rwv = 0 for all w, v ∈W . We can hence
drop R from the signature. It then follows that each (safe) S5(R)C-model corresponds
exactly to a (safe) R-structure M together with an M-evaluation. Therefore, for each
α ∈ Fm1(LA),

|=∀∃R α ⇐⇒ |=S5(R)C α∗.

Combining these two equivalences, we obtain an interpretation of S5(Ł)C into S5(R)C.
Chapter 4 is dedicated to the study of S5(R)C. We provide a proof system for which we
prove completeness with respect to S5(R)C-validity using algebraic means, and prove
completeness of a system for the multiplicative fragment of S5(R)C, that is, the fragment
of S5(R)C not containing ∧ or ∨, via syntactic arguments.

Remark 1.25. We can give a slightly different characterization of a safe S5(R)C-model,
similarly to the alternative characterization of safe R-structures given at the end of
Section 1.2. For a safe S5(R)C-model 〈W,R, V 〉, the map Vi : W → R, w 7→ V (pi, w), is
bounded for each i ∈ N. In fact, each S5(R)C-model 〈W,R, V 〉 for which these Vi are
bounded for each i ∈ N, is safe.





CHAPTER 2

Monadic Algebras

In this chapter we are concerned with algebraic semantics for one-variable fragments of
various first-order substructural logics. Such an algebraic study was initiated by Halmos
for classical logic. In the 1950s, he defined the notion of a monadic Boolean algebra
as the algebraic semantics for the one-variable fragment, or equivalently, the monadic
fragment, of first-order classical logic [79]. Since then, algebraic semantics for one-variable
fragments of other first-order logics have been considered in the literature, usually under
the name “monadic”.1 Indeed, Halmos’ ideas were first extended by Monteiro and
Varsavsky in [113], who defined monadic Heyting algebras as the algebraic semantics
for the one-variable fragment of first-order intuitionistic logic. More generally, algebraic
semantics for one-variable fragments of first-order intermediate logics have been studied
in, e.g., [22, 126]. Rutledge gave an algebraic semantics for the one-variable fragment
of first-order Łukasiewicz logic in [138] by defining monadic MV-algebras (or monadic
Chang algebras in Rutledge’s terminology), and an algebraic semantics for S5(G)C, i.e.,
the one-variable fragment of first-order Gödel logic, was given by Hájek [78] (see also [42]).
The one-variable fragment of a first-order extension of BL was studied algebraically by
Hájek in [78],2 which was more recently revisited in [44,45].

In this chapter, we introduce monadic FLe-algebras as a first step towards a general
approach of axiomatizing one-variable fragments of first-order substructural, and hence
also intermediate, logics. In Section 2.1, we define monadic FLe-algebras as FLe-algebras
with two modalities � and ♦. We prove a number of properties of them and show that this
notion encompasses all the mentioned monadic algebras. We moreover prove a soundness
result: we show that the algebraic semantics of the one-variable fragment of a first-order
substructural logic as defined in Section 1.2 necessarily consists of monadic FLe-algebras.
In Section 2.2, we focus on so-called relatively complete subalgebras of an FLe-algebra, a
notion that was already considered by Halmos for monadic Boolean algebras in [79]. We
show that the image of the modality � for a monadic FLe-algebra forms such a relatively
complete subalgebra and, conversely, that any such a relatively complete subalgebra of an
FLe-algebra determines a monadic FLe-algebra. Section 2.3 investigates the congruences
of monadic FLe-algebras. We give an alternative characterization of the congruences, and

1As noted in Remark 1.16, these algebras are named thus since they generalize the notion of a monadic
Boolean algebra, not because they correspond to the monadic fragment of a first-order logic.

2The completeness proof given in this paper contains an error; for more, see [45].
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use it to show that the congruences are completely determined by the congruences of the
image of �, i.e., of the relatively complete subalgebra. Section 2.4 focuses on varieties
of monadic FLe-algebras that satisfy some particular properties. Examples will include
the varieties of monadic MV-algebras, of crisp monadic Gödel algebras, and of monadic
abelian `-groups. For such varieties, we prove that their members admit some functional
representation.

2.1 Monadic FLe-algebras

Recall the definition of an FLe-algebra from Definition 1.3. We define the monadic
extension of such algebras by adding two unary operators � and ♦ that satisfy certain
properties of the universal and existential quantifier, respectively.

Definition 2.1. A monadic FLe-algebra is an algebra 〈A,∧,∨, ·,→, f, e,�,♦〉 such that
A = 〈A,∧,∨, ·,→, f, e〉 is an FLe-algebra and for all a, b, c ∈ A,

(L1) �a ≤ a (L5) �e = e
(L2) �♦a = ♦a (L6) �(a→ �b) = ♦a→ �b
(L3) �(a ∧ b) = �a ∧�b (L7) �(�a→ b) = �a→ �b.
(L4) �f = f

We often write 〈A;�,♦〉 to denote the monadic FLe-algebra 〈A,∧,∨, ·,→, f, e,�,♦〉
where A = 〈A,∧,∨, ·,→, f, e〉. We refer to A as the FLe-reduct of 〈A;�,♦〉. For
two monadic FLe-algebras 〈A;�,♦〉 and 〈B;�,♦〉, a homomorphism h : A → B will
sometimes be called a modal homomorphism to stress that it preserves � and ♦ and
distinguish it from an FLe-homomorphism.

Recall that the class of FLe-algebras is a variety. It follows from the definition above
that the class of monadic FLe-algebras, denoted MFLe, is also a variety. Let us now
summarize and prove a number of properties of monadic FLe-algebras.

Lemma 2.2. Let 〈A;�,♦〉 be a monadic FLe-algebra. Then for all a, b ∈ A,

(L8) a ≤ ♦a
(L9) if a ≤ b, then �a ≤ �b

(L10) if a ≤ b, then ♦a ≤ ♦b
(L11) �a = ♦�a
(L12) �(♦a→ b) = ♦a→ �b
(L13) �(a→ ♦b) = ♦a→ ♦b
(L14) ��a = �a
(L15) ♦♦a = ♦a

(L16) ♦e = e
(L17) ♦f = f
(L18) ♦(♦a · ♦b) = ♦a · ♦b
(L19) �(�a ·�b) = �a ·�b
(L20) ♦(a · ♦b) = ♦a · ♦b
(L21) �(♦a ∨ ♦b) = ♦a ∨ ♦b
(L22) ♦(a ∨ b) = ♦a ∨ ♦b
(L23) ♦(a→ ♦b) ≤ �a→ ♦b

Proof. (L8) By (L2), ♦a ≤ �♦a and so e ≤ ♦a → �♦a. Therefore by (L1) and (L6),
e ≤ ♦a→ �♦a = �(a→ �♦a) ≤ a→ �♦a = a→ ♦a.

(L9) Suppose a ≤ b. Then a = a ∧ b, hence �a = �(a ∧ b) = �a ∧ �b by (L3).
Therefore, �a ≤ �b.

(L10) Suppose that a ≤ b. By (L8), a ≤ b ≤ ♦b and so e ≤ a→ ♦b. Applying (L9)
and using (L5) and (L6) gives e = �e ≤ �(a→ ♦b) = ♦a→ ♦b, so ♦a ≤ ♦b.
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(L11) By (L8), �a ≤ ♦�a. Furthermore, e = �e ≤ �(�a → �a) = ♦�a → �a
by (L5), (L6) and (L9), hence ♦�a ≤ �a.

(L12) By (L2) and (L7), �(♦a→ b) = �(�♦a→ b) = �♦a→ �b = ♦a→ �b.
(L13) By (L2) and (L6), �(a→ ♦b) = �(a→ �♦b) = ♦a→ �♦b = ♦a→ ♦b.
(L14) By (L1), ��a ≤ �a. Moreover, e = �e ≤ �(�a → �a) = �a → ��a

using (L5), (L7), and (L9), hence �a ≤ ��a.
(L15) By (L9), ♦a ≤ ♦♦a. Moreover, e = �e ≤ �(♦a→ ♦a) = ♦♦a→ ♦a using (L5),

(L9), and (L13), and so ♦♦a ≤ ♦a.
(L16) Note that ♦e = ♦�e = �e = e by (L5) and (L11).
(L17) Note that ♦f = ♦�f = �f = f by (L4) and (L11).
(L18) Firstly note that by (L1), �(♦a · ♦b) ≤ ♦a · ♦b. Moreover, residuation yields

e ≤ ♦a→ (♦b→ (♦a · ♦b)). Using (L12) and (L6) then gives

e = ��e ≤ ��(♦a→ (♦b→ (♦a · ♦b)))
= �(♦a→ �(♦b→ (♦a · ♦b)))
= �(♦a→ (♦b→ �(♦a · ♦b)))
= �((♦a · ♦b)→ �(♦a · ♦b))
= ♦(♦a · ♦b)→ �(♦a · ♦b)
≤ ♦(♦a · ♦b)→ (♦a · ♦b).

Additionally, ♦a · ♦b ≤ ♦(♦a · ♦b) by (L8).
(L19) By (L11), (L2), and (L18),

�(�a ·�b) = �(♦�a · ♦�b) = �♦(♦�a · ♦�b)
= ♦(♦�a · ♦�b)
= ♦�a · ♦�b
= �a ·�b.

(L20) Since a ≤ ♦a by (L8), a·♦b ≤ ♦a·♦b. Therefore, ♦(a·♦b) ≤ ♦(♦a·♦b) = ♦a·♦b
by (L10) and (L18). Moreover, since a · ♦b ≤ ♦(a · ♦b) by (L8),

e = �e ≤ �((a · ♦b)→ ♦(a · ♦b))
= �(♦b→ (a→ ♦(a · ♦b)))
= ♦b→ �(a→ ♦(a · ♦b))
= ♦b→ (♦a→ ♦(a · ♦b))
= (♦a · ♦b)→ ♦(a · ♦b)

follows using (L5), (L12), (L13) and so ♦a · ♦b ≤ ♦(a · ♦b).
(L21) By (L1), �(♦a ∨ ♦b) ≤ ♦a ∨ ♦b. Moreover, ♦a ≤ ♦a ∨ ♦b implies ♦a = �♦a ≤

�(♦a ∨ ♦b) by (L9) and (L2). Similarly, ♦b ≤ �(♦a ∨ ♦b) and so ♦a ∨ ♦b ≤ �(♦a ∨ ♦b).
(L22) By (L8), we have a ∨ b ≤ ♦a ∨ ♦b, so ♦(a ∨ b) ≤ ♦(♦a ∨ ♦b). Moreover, since

♦a ∨ ♦b = �(♦a ∨ ♦b) by (L21), ♦(♦a ∨ ♦b) = ♦�(♦a ∨ ♦b) = �(♦a ∨ ♦b) = ♦a ∨ ♦b
by (L11). It follows that ♦(a∨ b) ≤ ♦a∨♦b. For the other direction, note that a ≤ a∨ b
and b ≤ a∨ b and so ♦a ≤ ♦(a∨ b) and ♦b ≤ ♦(a∨ b) by (L10), hence ♦a∨♦b ≤ ♦(a∨ b).
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(L23) Since �a ≤ a, a → ♦b ≤ �a → ♦b. Hence, by (L5), (L9), (L11), (L6), and
(L13),

e = �e ≤ �((a→ ♦b)→ (�a→ ♦b))
= �((a→ ♦b)→ (♦�a→ ♦b))
= �((a→ ♦b)→ �(�a→ ♦b))
= ♦(a→ ♦b)→ �(�a→ ♦b)
= ♦(a→ ♦b)→ (♦�a→ ♦b)
= ♦(a→ ♦b)→ (�a→ ♦b)

and so ♦(a→ ♦b) ≤ �a→ ♦b.

We now consider a number of examples. In particular, we show that most well-known
monadic algebras fit into the framework of monadic FLe-algebras presented here.
Example 2.3. As the algebraic counterpart of the one-variable fragment of first-order
classical logic, Halmos defined the variety of monadic Boolean algebras [79]. A monadic
Boolean algebra is an algebra 〈B,∧,∨,¬,⊥,>,♦〉 such that 〈B,∧,∨,¬,⊥,>〉 is a Boolean
algebra, as defined in Example 1.1, and ♦ is a unary operator satisfying for all a, b ∈ B,

(Q1) ♦⊥ = ⊥
(Q2) a ≤ ♦a
(Q3) ♦(a ∧ ♦b) = ♦a ∧ ♦b.

We define �a := ¬♦¬a for all a ∈ B and letMBA to denote the variety of all monadic
Boolean algebras. Halmos’ completeness result, together with Wajsberg’s axiomatization
from [152], now states that for all ϕ ∈ Fm�♦(LCL),

`S5 ϕ ⇐⇒ ϕ◦ is valid in first-order classical logic
⇐⇒ MBA |= ϕ ≈ >.

It is straightforward to verify that a monadic Boolean algebra is term-equivalent, using
the same term-equivalence as in Example 1.4, to a monadic FLe-algebra 〈B;�,♦〉 where
the FLe-reduct B is term-equivalent to a Boolean algebra. It is worth noting that although
� and ♦ are interdefinable in this case, this is not the case in general.
Example 2.4. Monteiro and Varsavsky introduced monadic Heyting algebras as the
algebraic semantics ofMIPC [113]. A monadic Heyting algebra, as presented in [22], is
an algebra 〈H,∧,∨,→,⊥,>,�,♦〉 (〈H;�,♦〉 for short) such that H = 〈H,∧,∨,→,>,⊥〉
is a Heyting algebra and for all a, b ∈ H,

(H1) �a ≤ a (H5) (�a ∧�b) ≤ �(a ∧ b)
(H2) a ≤ ♦a (H6) ♦(a ∨ b)→ (♦a ∨ ♦b)
(H3) ♦a ≤ �♦a (H7) �(a→ b) ≤ ♦a→ ♦b.
(H4) ♦�a ≤ �a

We letMHA denote the variety of all monadic Heyting algebras. By the completeness
result of Monteiro and Varsavsky, as well as Bull’s completeness result [36], we have for
all ϕ ∈ Fm�♦(LIL),

`MIPC ϕ ⇐⇒ ϕ◦ is valid in first-order intuitionistic logic
⇐⇒ MHA |= ϕ ≈ >.
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One can verify that monadic Heyting algebras are term-equivalent to monadic FLe-
algebras 〈A;�,♦〉 where the FLe-reduct A is (term-equivalent to) a Heyting algebra. A
detailed study of monadic Heyting algebras can be found in [22,23].

Example 2.5. A monadic MV-algebra, as introduced by Rutledge in [138], is an algebra
〈A,⊕,∼, 0,♦〉 such that 〈A,⊕,∼, 0〉 is an MV-algebra satisfying for all a, b ∈ A,

(P1) a ≤ ♦a (P4) ♦(♦a⊕ ♦b) = ♦a⊕ ♦b
(P2) ♦(a ∨ b) = ♦a ∨ ♦b (P5) ♦(a⊕ a) = ♦a⊕ ♦a
(P3) ♦∼♦a = ∼♦a (P6) ♦(a⊗ a) = ♦a⊗ ♦a.

We let �a denote ∼♦∼a for all a ∈ A, and letMMV denote the variety of all monadic
MV-algebras. Rutledge proved that monadic MV-algebras form the algebraic semantics
for the one-variable fragment of first-order Łukasiewicz logic. To be precise, Rutledge
shows that for all ϕ ∈ Fm�♦(LŁ),

`MHŁ ϕ ⇐⇒ ϕ◦ is Ł-valid
⇐⇒ MMV |= ϕ ≈ ∼ 0.

Rutledge’s completeness proof is rather involved. Recently, Castaño et al. in [45] gave a
simpler proof of the slightly different statement that for all ϕ ∈ Fm�♦(LŁ),

`MHŁ ϕ ⇐⇒ ϕ◦ is A-valid for all linearly ordered
MV-algebras A.3

We can verify that a monadic MV-algebra is term-equivalent to a monadic FLe-algebra
〈A;�,♦〉 where A is term-equivalent to an MV-algebra and the identities �(x ∨�y) ≈
�x ∨ �y and ♦(x · x) ≈ ♦x · ♦x are satisfied. As with monadic Boolean algebras, the
modalities � and ♦ are interdefinable. More on monadic MV-algebras can be found
in [53,54,60].

Example 2.6. We say that any monadic Heyting algebra 〈H;�,♦〉 is a monadic Gödel
algebra if H is a Gödel algebra, as defined in Section 1.1. We write MGA for the
variety of monadic Gödel algebras. These algebras are clearly term-equivalent to monadic
FLe-algebras 〈A;�,♦〉 whose FLe-reduct A is term-equivalent to a Gödel algebra. As a
consequence of the completeness results in [42], these form the algebraic semantics for
the logic S5(G). That is, for all ϕ ∈ Fm�♦(LIL),

|=S5(G) ϕ ⇐⇒ MGA |= ϕ ≈ >.

Monadic Gödel algebras appear in [42] under the name reflexive transitive symmetric
bi-modal Gödel algebras. In Chapter 3 we add to this result by showing a connection
with first-order intermediate logics. In particular, we show that for all ϕ ∈ Fm�♦(LIL),

|=S5(G) ϕ ⇐⇒ |=IKL1 ϕ
◦.

3In fact, Castaño et al. prove a more general result. They prove a strong completeness result with
respect to all consequences, not just validities. Their result is hence both weaker and stronger than
Rutledge’s result: it is weaker since they prove completeness with respect to all linearly ordered MV-
algebras rather than the standard Łukasiewicz algebra Ł, and it is stronger since they prove strong
completeness for all consequences.
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Example 2.7. A monadic Gödel algebra is called a crisp monadic Gödel algebra if it
additionally satisfies �(x ∨ �y) ≈ �x ∨ �y. Let cMGA denote the variety of crisp
monadic Gödel algebras. These algebras form the algebraic semantics for the one-variable
fragment of first-order Gödel logic, as a consequence of the completeness result in [78].
Combined with the completeness result from [42], we obtain that for each ϕ ∈ Fm�♦(LIL),

`MIPC+(pre)+(cd�) ϕ ⇐⇒ ϕ◦ is G-valid
⇐⇒ cMGA |= ϕ ≈ >.

Example 2.8. A monadic version of abelian `-groups was introduced by Cimadamore
and Díaz Varela in [53]. The category of such algebras was shown to be categorically
equivalent to that of monadic MV-algebras, and their monadic abelian `-groups therefore
included a strong unit. In this thesis we adopt an alternative definition that does not
include a strong unit: a monadic abelian `-group is an algebra 〈A,+,−, 0,�〉 such that
A = 〈A,+,−, 0〉 is an abelian `-group with defined operator ♦a := −�−a satisfying for
all a, b ∈ A,

(M1) �(a+ b) ≤ �a+ ♦b (M4) �(a ∧ b) = �a ∧�b
(M2) �a ≤ a (M5) �(a ∨�b) = �a ∨�b
(M3) ♦a = �♦a (M6) �(a+ a) = �a+�a.

In Remark 4.15 we show that this definition is in fact equivalent to the definition given
in [53], aside from the absence of a strong unit. Moreover, in Chapter 4 we show that
monadic abelian `-groups as defined here form the algebraic semantics for the one-variable
fragment of first-order Abelian logic. That is, for each ϕ ∈ Fm�♦(LA),

|=S5(R)C ϕ ⇐⇒ ϕ◦ is R-valid
⇐⇒ MA`G |= 0 ≤ ϕ,

whereMA`G denotes the variety of monadic abelian `-groups. It is not hard to check that
monadic abelian `-groups are term-equivalent to monadic FLe-algebras 〈A;�,♦〉 such
that A is term-equivalent to an abelian `-group and the identities �(x ∨�y) ≈ �x ∨�y
and ♦(x · x) ≈ ♦x · ♦x are satisfied.

In the examples above, the identities �(x∨�y) ≈ �x∨�y (the algebraic formulation
of the constant domain axiom (cd�) and ♦(x · x) ≈ ♦x · ♦x play a significant role. It is
therefore useful to see some distinguishing examples.

Example 2.9. Consider the Gödel algebra with defined modalities depicted in Figure 2.1.
It is routine to check that this is a monadic Gödel algebra. However, note that �(b∨�c) =
>, whereas �b∨�c = c. This is hence an example of a monadic FLe-algebra that refutes
�(x ∨�y) ≈ �x ∨�y.

Example 2.10. Consider the three-element Łukasiewicz chain Ł3 (over the language
LFLe) with added modalities depicted in Figure 2.2. It is again routine to check that this
is a monadic FLe-algebra. Note that ♦(1

2 ·
1
2) = ♦0 = 0 and ♦1

2 · ♦
1
2 = 1 · 1 = 1, and so

the given monadic FLe-algebra refutes ♦(x · x) ≈ ♦x · ♦x.
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> > >

Figure 2.1: Monadic residuated lattice 〈H;�,♦〉
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1 � ♦
0 0 0
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2 0 1
1 1 1

Figure 2.2: Monadic residuated lattice 〈Ł3;�,♦〉

We now focus on how monadic FLe-algebras fit within the setting of first-order
many-valued logics as defined in Section 1.2. We first verify the folklore result that the
first-order equivalents of conditions (L1)–(L7) are A-valid for each FLe-algebra A. Recall
that we defined α↔ β = (α→ β) ∧ (β → α) for α, β ∈ Fm∀∃(LFLe).

Proposition 2.11. Let A be an FLe-algebra. Then for α, β ∈ Fm1(LFLe), the following
formulas are A-valid:

(i) (∀x)α→ α

(ii) (∃x)α↔ (∀x)(∃x)α

(iii) (∀x)(α ∧ β)↔ ((∀x)α ∧ (∀x)β)

(iv) f ↔ (∀x)f

(v) e↔ (∀x)e

(vi) ((∃x)α→ (∀x)β)↔ (∀x)(α→ (∀x)β)

(vii) (∀x)((∀x)α→ β)↔ ((∀x)α→ (∀x)β).

Proof. Consider any safe A-structure M = 〈D, I〉 and M-evaluation v. The A-validity
of formulas (i)–(v) is easy to check. We give the proofs for (vi) and (vii).

(vi) The A-validity of ((∃x)α → (∀x)β) → (∀x)(α → (∀x)β) follows from the fact
that for all a, b, c ∈ A, a ≤ b implies b→ c ≤ a→ c. For the converse formula, note that
for all a ∈ D,

‖α‖AM,v(x=a) ·
∧
{‖α‖AM,v(x=b) → ‖(∀x)β‖AM,v(x=b) | b ∈ D}

≤ ‖α‖AM,v(x=a) · (‖α‖AM,v(x=a) → ‖(∀x)β‖AM,v(x=a))
≤ ‖(∀x)β‖AM,v(x=a)

= ‖(∀x)β‖AM,v.
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It follows that

‖(∃x)α‖AM,v ·
∧
{‖α→ (∀x)β‖AM,v(x=a) | a ∈ D} ≤ ‖(∀x)β‖AM,v,

and so by residuation, A-validity of (∀x)(α→ (∀x)β)→ ((∃x)α→ (∀x)β) follows.
(vii) The A-validity of (∀x)((∀x)α→ β)→ ((∀x)α→ (∀x)β) follows since for every

a, b, c ∈ A, a ≤ b implies c→ a ≤ c→ b. For the converse, note that for all a ∈ D,

‖(∀x)α‖AM,v ·
∧
{‖(∀x)α→ β‖AM,v(x=b) | b ∈ D}

= ‖(∀x)α‖AM,v(x=a) ·
∧
{‖(∀x)α→ β‖AM,v(x=b) | b ∈ D}

≤ ‖(∀x)α‖AM,v(x=a) · ‖(∀x)α→ β‖AM,v(x=a)

≤ ‖(∀x)α‖AM,v(x=a) · (‖(∀x)α→ β‖AM,v(x=a) → ‖β‖
A
M,v(x=a))

≤ ‖β‖AM,v(x=a).

It follows that

‖(∀x)α‖AM,v ·
∧
{‖(∀x)α→ β‖AM,v(x=b) | b ∈ D} ≤ ‖(∀x)β‖AM,v.

Now A-validity of (∀x)((∀x)α→ β)→ ((∀x)α→ (∀x)β) follows by residuation.

The result from Proposition 2.11 reveals one of the main motivations of this particular
definition of FLe-algebras. It can be interpreted as a type of soundness result: the
algebraic semantics for the one-variable fragment of the first-order substructural logic
QFLe, defined over all FLe-algebras, consists of monadic FLe-algebras.

Corollary 2.12. For all ϕ ∈ Fm�♦(LFLe),

MFLe |= e ≤ ϕ =⇒ |=QFLe ϕ
◦.

Whether the converse direction holds is currently an open problem. In Section 2.4,
we study this problem for particular subvarieties ofMFLe.

Remark 2.13. Note that the monadic FLe-algebra as defined here differ from the
monadic residuated lattices as defined by Rachůnek and Šalounová in [133]. The monadic
residuated lattices in that paper have less conditions on their FLe-reduct, since they
do not assume commutativity of the monoidal operation ·, and more conditions on the
modal part, since they satisfy both �(x ∨�y) ≈ �x ∨�y and ♦(x · x) ≈ ♦x · ♦x. As is
clear from Examples 2.9 and 2.10, monadic FLe-algebras satisfy neither of those identities.
In fact, the monadic residuated lattices from [133] that are commutative coincide exactly
with the monadic FLe-algebras as defined here that satisfy these two additional identities.

2.2 Relatively Complete Subalgebras

Halmos already noticed in [79] that the set of modal values {♦b | b ∈ B} for a monadic
Boolean algebra 〈B;♦〉 was significant. He showed that the range of the modality ♦ is a
so-called “relatively complete” subalgebra that uniquely determines the modality. Since
then, similar results have been obtained for, e.g., monadic Heyting algebras and monadic
MV-algebras. In this section, we apply similar methods to monadic FLe-algebras. In
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particular, we show that the range of � for a monadic FLe-algebra 〈A;�,♦〉 captures
exactly this notion of relative completeness.

Let 〈A;�,♦〉 be a monadic FLe-algebra. Let �A and ♦A denote the sets {�a | a ∈ A}
and {♦a | a ∈ A}, respectively. By (L2) and (L11), it follows that �A = ♦A. Combining
this with (L14) and (L15) additionally implies that for any c ∈ �A, �c = ♦c = c.

Lemma 2.14. Let 〈A;�,♦〉 be a monadic FLe-algebra. Then �A = ♦A is a subuniverse
of A.

Proof. We show that �A is closed under all operations of A. Firstly, note that f, e ∈ �A
by (L4) and (L5), respectively. Now consider c, d ∈ �A. Then c∧d = �c∧�d = �(c∧d) ∈
�A by (L3), so �A is closed under ∧. Similarly, c∨d = ♦c∨♦d = ♦(c∨d) ∈ ♦A by (L22)
and so �A = ♦A is closed under ∨. By (L20), we obtain c ·d = c ·♦d = ♦(c ·♦d) ∈ ♦A and
so �A = ♦A is closed under ·. Lastly, by (L6), c→ d = ♦c→ �d = �(c→ �d) ∈ �A
and so �A = ♦A is closed under →.

We let �A denote the subalgebra of A with universe �A. For any a ∈ A, note that

�a = max{c ∈ �A | c ≤ a} and ♦a = min{c ∈ �A | a ≤ c}.

To see this, note that by (L1), �a ∈ {c ∈ �A | c ≤ a}. Now consider any c ∈ A such that
c ≤ a. Then c = �c ≤ �a by (L9) and so �a = max{c ∈ �A | c ≤ a}. The fact that
♦a = min{c ∈ �A | a ≤ c} follows similarly. This leads us to the following definition,
first introduced for monadic Boolean algebras in [79].

Definition 2.15. Let A be an FLe-algebra. A subalgebra A0 of A is called relatively
complete if for any a ∈ A, the sets {c ∈ A0 | c ≤ a} and {c ∈ A0 | a ≤ c} contain a
greatest and least element, respectively.

As shown above, �A is a relatively complete subalgebra of any monadic FLe-algebra
〈A;�,♦〉. Conversely, any relatively complete subalgebra A0 of an FLe-algebra A
determines two modalities. We define modalities �0 and ♦0 such that for each a ∈ A,

�0a := max{c ∈ A0 | c ≤ a} and ♦0a := min{c ∈ A0 | a ≤ c}.

Using these definitions, it follows that, as for monadic Boolean algebras, the modalities
determine a relatively complete subalgebra, and vice versa.

Lemma 2.16. Let A0 be a relatively complete subalgebra of an FLe-algebra A. Then
〈A;�0,♦0〉 is a monadic FLe-algebra.

Proof. We show that 〈A;�0,♦0〉 satisfies the properties (L1)-(L7).
(L1) This follows by definition of �0.
(L2) Since ♦0a ∈ A0 by definition, we have �0♦0a = max{c ∈ A0 | c ≤ ♦0a} = ♦0a.
(L3) Since �0a ≤ a and �0b ≤ b, we have �0a ∧ �0b ≤ a ∧ b and so �0a ∧ �0b ∈

{c ∈ A0 | c ≤ a ∧ b}. We claim that �0a ∧�0b = max{c ∈ A0 | c ≤ a ∧ b}. Consider any
c ∈ A0 such that c ≤ a ∧ b, i.e. c ≤ a and c ≤ b. Since c ∈ A0, we have c ≤ �0a and
c ≤ �0b, hence c ≤ �0a ∧�0b. So �0(a ∧ b) = �0a ∧�0b.

(L4) This follows since f ∈ A0, as A0 is a subalgebra.
(L5) This follows since e ∈ A0, as A0 is a subalgebra.
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(L6) Since a ≤ ♦0a by definition of ♦0, we have ♦0a → �0b ≤ a → �0b, so
♦0a→ �0b ∈ {c ∈ A0 | c ≤ a→ �0b}. Now consider any c ∈ A0 such that c ≤ a→ �0b.
Then by residuation, a ≤ c→ �0b. As A0 is a subalgebra of A, we have c→ �0b ∈ A0
and so by the definition of ♦0, we obtain ♦0a ≤ c → �0b. Applying residuation again
gives c ≤ ♦0a→ �0b. Therefore, ♦0a→ �0b = max{c ∈ A0 | c ≤ a→ �0b}, as required.

(L7) Since �0b ≤ b by definition of �0, we have �0a → �0b ≤ �0a → b, i.e.,
�0 → �0b ∈ {c ∈ A0 | c ≤ �0a → b}. Now take any c ∈ A0 such that c ≤ �0a → b,
which gives c · �0a ≤ b. Since A0 is a subalgebra of A, it follows that c · �0a ∈ A0,
and so we obtain c ·�0a ≤ max{d ∈ A0 | d ≤ b} = �0b. Hence, c ≤ �0a→ �0b and so
�0a→ �0b = �0(�0a→ b).

Putting together these results, we obtain the following characterization of monadic
FLe-algebras.
Theorem 2.17. There exists a one-to-one correspondence between
(1) monadic FLe-algebras 〈A;�,♦〉;

(2) pairs 〈A,A0〉 of FLe-algebras where A0 is a relatively complete subalgebra of A,
witnessed by the maps 〈A;�,♦〉 7→ 〈A,�A〉 and 〈A,A0〉 7→ 〈A;�0,♦0〉.
Proof. First, let 〈A;�,♦〉 be a monadic FLe-algebra. As noted, �a = max{c ∈ �A |
c ≤ a} and ♦a = min{c ∈ �A | a ≤ c}, and so by Lemma 2.14, �A is a relatively
complete subalgebra of A. Conversely, consider a pair 〈A,A0〉 of FLe-algebras where
A0 is a relatively complete subalgebra of A. By Lemma 2.16, 〈A;�0,♦0〉 is a monadic
FLe-algebra.

Secondly, we need that this correspondence between (1) and (2) is one-to-one. For a
monadic FLe-algebra 〈A;�,♦〉, if we let A0 := �A, we have �a = �0a and ♦a = ♦0a
for all a ∈ A. Also, for a pair 〈A,A0〉 of FLe-algebras with A0 a relatively complete
subalgebra of A, it suffices to note that A0 = �0A by definition of �0.

Note that this theorem reduces the study of a monadic FLe-algebra to the study of
some particular pair of FLe-algebras. In many cases, the FLe-algebras are well-studied,
allowing us to apply results for these algebras in the study of monadic FLe-algebras.
Example 2.18. For any FLe-algebra A, A is trivially a relatively complete subalgebra of
A. Therefore 〈A,A〉 corresponds to a monadic FLe-algebra, where � and ♦ are identity
maps.
Example 2.19. Recall the monadic FLe-algebra 〈H;�,♦〉 from Figure 2.1. The relatively
complete subalgebra corresponding to the modalities is the set H0 = {⊥, c,>}.
Remark 2.20. For another characterization of relatively complete subalgebras, we say
that for two posets 〈P,≤P 〉 and 〈Q,≤Q〉, an order-preserving function h : P → Q has a
right adjoint �h : Q→ P and left adjoint ♦h : Q→ P if for all a ∈ P , b ∈ Q,

a ≤P �hb ⇐⇒ h(a) ≤Q b and ♦hb ≤P a ⇐⇒ b ≤Q h(a),

respectively. One can then show that for a subalgebra A0 of an FLe-algebra A, the
inclusion map i : A0 → A has a right adjoint if and only if {c ∈ A0 | c ≤ a} contains a
greatest element for each a ∈ A, and i has a left adjoint if and only if {c ∈ A0 | a ≤ c}
contains a least element for each a ∈ A. It follows that A0 is relatively complete if and
only if i : A0 → A has a right and left adjoint.
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We would like to extend the characterization of Theorem 2.17 to any class K of
monadic FLe-algebras. If K is a variety defined overMFLe using identities that do not
contain � or ♦, such a generalization is straightforward. Examples include monadic
Boolean algebras, monadic Heyting algebras and monadic Gödel algebras. We let KFLe

denote the class {A | 〈A;�,♦〉 ∈ K} of FLe-reducts of members of K. Note that if K
is defined overMFLe using identities that do not contain � or ♦, then KFLe is itself a
variety.4

Corollary 2.21. Let V be a subvariety of MFLe that is defined over MFLe using
identities that do not contain � or ♦. Then there exists a one-to-one correspondence
between

(1) members 〈A;�,♦〉 of V;

(2) pairs 〈A,A0〉 of members of VFLe where A0 is a relatively complete subalgebra of
A,

witnessed by the maps 〈A;�,♦〉 7→ 〈A,�A〉 and 〈A,A0〉 7→ 〈A;�0,♦0〉.

Such a characterization is not valid for all classes K of monadic FLe-algebras. For
example, consider the monadic residuated lattice 〈Ł3;�,♦〉 as given in Figure 2.2. The
set A0 = {0, 1} is the relatively complete subuniverse of Ł3 that corresponds to the given
modalities � and ♦. However, 〈Ł3;�,♦〉 = 〈Ł3;�0,♦0〉 is not (term-equivalent to) a
monadic MV-algebra, as it does not satisfy ♦(x · x) ≈ ♦x · ♦x. A characterization like
those given in Theorem 2.17 and Corollary 2.21 therefore does not hold for the variety of
monadic MV-algebras, since these algebras by definition satisfy ♦(x · x) ≈ ♦x · ♦x.

To extend the result of Theorem 2.17 to all classes K of monadic FLe-algebras, we
extend the notion of relative completeness. For any FLe-algebra A, a subalgebra A0 of
A is called K-relatively complete if it is relatively complete and 〈A;�0,♦0〉 is a member
of K.

Theorem 2.22. Let K be a class of FLe-algebras. Then there exists a one-to-one
correspondence between

(1) monadic FLe-algebras 〈A;�,♦〉 ∈ K;

(2) pairs 〈A,A0〉 of FLe-algebras where A0 is a K-relatively complete subalgebra of A,

witnessed by the maps 〈A;�,♦〉 7→ 〈A,�A〉 and 〈A,A0〉 7→ 〈A;�0,♦0〉.

Proof. For any monadic FLe-algebra 〈A;�,♦〉 ∈ K, A0 := �A is a K-relatively com-
pletely subalgebra of A, since 〈A;�,♦〉 = 〈A;�0,♦0〉. Conversely, for a K-relatively
complete subalgebra A0 of an FLe-algebra A, we have 〈A;�0,♦0〉 by definition. That
the correspondence is one-to-one follows as in the proof of Theorem 2.17.

Although K-relative completeness is a rather abstract notion, it becomes easier to
digest in particular cases. We discuss an interesting example.

4It is an open problem whether VFLe is a variety for all varieties V of monadic FLe-algebras. We
conjecture this not to be the case.
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Example 2.23. Consider the varietyMMV of monadic MV-algebras (over the language
LFLe). Note thatMMVFLe consists of all MV-algebras. For any such A ∈ MMVFLe ,
a relatively complete subalgebra A0 of A isMMV-relatively complete if 〈A;�0,♦0〉 ∈
MMV. This amounts to the condition that for all a, b ∈ A,

�0(a ∨�0b) = �0a ∨�0b and ♦0(a · a) = ♦0a · ♦0a.

This is in turn equivalent to the notion of m-relative completeness, as introduced in [60].
An equivalent formulation, as taken from [44], defines a subalgebra A0 to be m-relatively
complete if it is relatively complete and for all a ∈ A, c1, c2 ∈ A0,

(1) if c1 ≤ c2 ∨ a, there exists c3 ∈ A0 such that c1 ≤ c2 ∨ c3 and c3 ≤ a;

(2) if a · a ≤ c1, there exists c3 ∈ A0 such that a ≤ c3 and c3 · c3 ≤ c1.

Condition (1) here is equivalent to �0(a ∨ �0b) = �0a ∨ �0b holding for all a, b ∈ A,
whereas condition (2) is equivalent to ♦0(a · a) = ♦0a · ♦0a holding for all a ∈ A.

Remark 2.24. Similarly to Remark 2.20, there exists an additional characterization of
K-relative completeness in terms of adjoints, for classes K of monadic FLe-algebras. For
FLe-algebras A and B, we say that an order-preserving function h : A→ B has a right
K-adjoint �h : B → A and left K-adjoint ♦h : B → A if �h is a left-adjoint of h, ♦h is a
right-adjoint of h, and 〈B;�h,♦h〉 is a member of K. It can then be proved that A0 is a
K-relatively complete subalgebra of A if and only if the inclusion map i : A0 → A has
left and right K-adjoints.

Remark 2.25. In [22], Bezhanishvili extends the correspondence between monadic
Heyting algebras and pairs consisting of a Heyting algebra and a relatively complete
subalgebra to a categorical equivalence (for an introduction to category theory, see,
e.g., [3]). A similar equivalence can be found for any class K of monadic FLe-algebras.
Indeed, on one side we have the category K of members of K as objects and modal
homomorphisms as morphisms. On the other side we have the category K2

FLe
of pairs

〈A,A0〉 of FLe-algebras such that A ∈ KFLe and A0 is a K-relatively complete subalgebra
of A as objects or, equivalently, the inclusion map iA : A0 → A has left and right
K-adjoints �A and ♦A respectively. As morphisms, it has pairs 〈f, f0〉 of functions
f : A→ B and f0 : A0 → B0 such that

(i) f is a homomorphism;

(ii) f ◦ iA = iB ◦ f0;

(iii) �B ◦ f = f0 ◦�A;

(iv) ♦B ◦ f = f0 ◦ ♦A.

Conditions (ii)–(iv) are equivalent to the commutativity of the diagram in Figure 2.3.
Categories K and K2

FLe
can be shown to be isomorphic. We leave the details to the reader.
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A0 A

B0 B

iA

f0

�A

♦A
f

iB

�B

♦B

Figure 2.3: Commutative diagram defining morphisms for K2
FLe

2.3 Congruences
We now turn our attention to the study of congruences. The congruences of FLe-algebras
have been well-studied (see, e.g., [28,71,89]). In this section we apply similar methods to
monadic FLe-algebras. Moreover, we show that the congruence structure of a monadic
FLe-algebra 〈A;�,♦〉 is determined by the relatively complete subalgebra �A.

Let us first fix notation and recall the necessary notions from universal algebra and
the theory of FLe-algebras. For any algebra A, a congruence is an equivalence relation
Θ ⊆ A2 compatible with the operations of A. For a ∈ A, we write [a]Θ to denote the
equivalence class {b ∈ A | 〈a, b〉 ∈ Θ}, and let A/Θ denote the quotient algebra with
universe A/Θ := {[a]Θ | a ∈ A} and the induced operations. The lattice of congruences
of A, ordered by inclusion, is denoted by Con(A). Now let A be an FLe-algebra. We
let A− denote the set {a ∈ A | a ≤ e} of negative elements of A. Let T ⊆ A. We call
a subset H ⊆ A T -convex (or simply convex, if T is clear from the context) if for all
a, b ∈ H, c ∈ T , a ≤ c ≤ b implies c ∈ H. We say that H ⊆ A is an f -free subuniverse of
A if H is closed under the operations ∧,∨, ·,→ and e ∈ H, but not necessarily f ∈ H.
If f ∈ H, we sometimes pedantically call H a pointed subuniverse of A. We let C(A)
denote the lattice of all A-convex f -free subuniverses of A ordered by inclusion. For
an f -free subuniverse H of A and a ∈ A, we write H(a) to denote the smallest f -free
subuniverse that contains H ∪ {a}, which we can alternatively write as

H(a) = {b ∈ A | h · an ≤ b ≤ (h · an)→ e for some h ∈ H and n ∈ N}.

We extend these definitions to the setting of monadic FLe-algebras: for a monadic FLe-
algebra 〈A;�,♦〉, we say that H ⊆ A is an f-free subuniverse of 〈A;�,♦〉 if H is an
f -free subuniverse of A closed under � and ♦. If f ∈ H, we call H a pointed subuniverse
of 〈A;�,♦〉. We let C(〈A;�,♦〉) denote the lattice of all A-convex f -free subuniverses
of 〈A;�,♦〉 ordered by inclusion.

To give a characterization of congruences for monadic FLe-algebras, we need a couple
of lemmas. For the bulk of the proofs, we refer to [71]. We give only the parts relevant
to the modalities.
Lemma 2.26. Let 〈A;�,♦〉 be a monadic FLe-algebra. If Θ is a congruence on 〈A;�,♦〉,
then HΘ := [e]Θ is an A-convex f -free subuniverse of 〈A;�,♦〉.
Proof. Note that for a ∈ [e]Θ, �aΘ�e = e and ♦aΘ♦e = e, hence �a,♦a ∈ [e]Θ. The
rest of the proof follows from [71, Theorem 3.47].
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Lemma 2.27. Let 〈A;�,♦〉 be a monadic residuated lattice. If H is an A-convex f -free
subuniverse of 〈A;�,♦〉, then

ΘH := {〈a, b〉 ∈ A2 | a · h ≤ b and b · h ≤ a for some h ∈ H}

is a congruence on 〈A;�,♦〉.

Proof. Consider 〈a, b〉 ∈ ΘH . By definition, there exist h ∈ H such that a · h ≤ b and
b · h ≤ a. To show that 〈�a,�b〉 ∈ Θ, note that from a · h ≤ b and (L1), we have
a ·�h ≤ a · h ≤ b, and similarly b ·�h ≤ b · h ≤ a. Then a ≤ �h→ b and b ≤ �h→ a,
so by (L9) and (L7), we obtain �a ≤ �(�h → b) = �h → �b, i.e. �a · �h ≤ �b and
similarly, �b ·�h ≤ �a. Since �h ∈ H, we have 〈�a,�b〉 ∈ ΘH . For compatibility with
♦, we have a · h ≤ b ≤ ♦b and b · h ≤ a ≤ ♦a by (L8), so a ≤ h→ ♦b and b ≤ h→ ♦a.
Applying (L10) and (L23) gives ♦a ≤ ♦(h → ♦b) ≤ �h → ♦b, i.e. ♦a · �h ≤ ♦b and
similarly, ♦b ·�h ≤ ♦a. Since �h ∈ H, 〈♦a,♦b〉 ∈ ΘH .

The rest of the proof follows from [71, Theorem 3.47].

We summarize the characterization of congruences in the following theorem. Its proof
is based on the one found in [71, Theorem 3.47] and we will not recall it here.

Theorem 2.28. Let 〈A;�,♦〉 be a monadic FLe-algebra. Then

Con(〈A;�,♦〉) ∼= C(〈A;�,♦〉),

as witnessed by the following lattice isomorphisms

Con(〈A;�,♦〉)→ C(〈A;�,♦〉);
Θ 7→ HΘ := [e]Θ

C(〈A;�,♦〉)→ Con(〈A;�,♦〉);
H 7→ ΘH := {(a, b) ∈ A2 | h · a ≤ b and h · b ≤ a for some h ∈ H}.

Remark 2.29. For FLe-algebras, other alternative characterizations of congruences have
been considered. We indicate here how two such characterizations can be extended
to the setting of monadic FLe-algebras. Firstly, recall that a subset M ⊆ A is called
a submonoid of an FLe-algebra A if e ∈ M and M is closed under ·. We extend this
definition to the monadic setting by defining M ⊆ A to be a monadic submonoid of a
monadic FLe-algebra 〈A;�,♦〉 if M is a submonoid of A and M is closed under �. One
can then prove that Con(〈A;�,♦〉) is isomorphic to the lattice of all subsets M ⊆ A−

that are A−-convex submonoids of 〈A;�,♦〉.
Secondly, for an FLe-algebra A, a deductive filter is a subset F ⊆ A that is upwards

closed, e ∈ F , a ∈ F implies a∧e ∈ F , and a, b ∈ F implies a·b ∈ F . This characterization
can be extended to the setting of monadic FLe-algebras. Indeed, congruences of a monadic
FLe-algebra 〈A;�,♦〉 correspond to deductive filters F ⊆ A of A that are closed under
�. The details are left to the reader.

We now use the characterization of congruences described in Theorem 2.28 to study
the prevalent role that the relatively complete subalgebra �A plays in the context
of monadic FLe-algebras. In fact, we will prove that the congruences of a monadic
FLe-algebra are determined by �A. To show this, we first need a pair of lemmas.
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Lemma 2.30. Let H be an A-convex f-free subuniverse of a monadic FLe-algebra
〈A;�,♦〉. Then H ∩�A is a �A-convex f -free subuniverse of �A.

Proof. As both H and �A are f -free subuniverses of 〈A;�,♦〉, so is H ∩ �A. The
�A-convexity of H ∩�A follows by the A-convexity of H.

Lemma 2.31. Let 〈A;�,♦〉 be a monadic FLe-algebra. If H is a �A-convex f-free
subuniverse of �A, then

{a ∈ A | h ≤ a ≤ h→ e for some h ∈ H} = {a ∈ A | �a ∈ H and ♦a ∈ H}

is an A-convex f -free subuniverse of 〈A;�,♦〉.

Proof. We first show that {a ∈ A | �a ∈ H and ♦a ∈ H} = {a ∈ A | h ≤ a ≤ h →
e for some h ∈ H}. Consider a ∈ A such that h ≤ a ≤ h → e for some h ∈ H. It then
follows from h, h→ e ∈ �A and property (L9) that h = �h ≤ �a ≤ �(h→ e) = h→ e.
Similarly, h = ♦h ≤ ♦a ≤ ♦(h→ e) = h→ e, and so �a,♦a ∈ H. Conversely, consider
a ∈ A such that �a,♦a ∈ H. Let h := �a ∧ (♦a→ e) ∈ H. Then

a · h ≤ a · (♦a→ e) ≤ ♦a · (♦a→ e) ≤ e,

and h ≤ �a ≤ a, so h ≤ a ≤ h→ e.
A proof showing that K := {a ∈ A | h ≤ a ≤ h → e for some h ∈ H} is an A-

convex f -free subuniverse of A can be found in [71, Theorem 3.47], so it suffices to show
closure under � and ♦. Let a ∈ K. Then �a,♦a ∈ H. Since ��a = ♦�a = �a and
�♦a = ♦♦a = ♦a, it follows that �a,♦a ∈ K.

Theorem 2.32. Let 〈A;�,♦〉 be a monadic FLe-algebra. Then

Con(〈A;�,♦〉) ∼= Con(�A),

as witnessed by the following isomorphisms

C(〈A;�,♦〉)→ C(�A);
H 7→ H ∩�A

C(�A)→ C(〈A;�,♦〉);
H 7→ {a ∈ A | h ≤ a ≤ h→ e for some h ∈ H} = {a ∈ A | �a ∈ H and ♦a ∈ H}.

Proof. If we show that the proposed maps are indeed isomorphisms, it follows by Theo-
rem 2.28 that Con(〈A;�,♦〉) ∼= Con(�A). The maps are obviously order-preserving and
are well-defined by Lemmas 2.30 and 2.31. We show that they compose to identity maps,
from which it follows that they are bijections.

Firstly, let H be an A-convex f -free subuniverse of 〈A;�,♦〉. Then H = {a ∈ A |
�a ∈ H ∩�A and ♦a ∈ H ∩�A}. The left-to-right inclusion follows since H is closed
under � and ♦. For the converse inclusion, consider a ∈ A such that �a ∈ H ∩�A and
♦a ∈ H ∩�A. Since �a ≤ a ≤ ♦a, a ∈ H by the A-convexity of H.

Secondly, consider a �A-convex f -free subuniverse H of �A. Since c = �c = ♦c for
any c ∈ H, it easily follows that H = {a ∈ A | �a ∈ H and ♦a ∈ H} ∩�A.
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This result reduces the study of congruences of some monadic FLe-algebra 〈A;�,♦〉
to the study of the congruences of the FLe-algebra �A. In many cases, the congruences
of (subalgebras of) the FLe-reduct are easier to study or well-studied already, for example
in the case of monadic Heyting algebras, monadic MV-algebras, monadic Gödel algebras
or monadic abelian `-groups. We take full advantage of this fact in the next section,
where we study particular classes of monadic FLe-algebras.

Corollary 2.33. Let 〈A;�,♦〉 be a monadic FLe-algebra. Then 〈A;�,♦〉 is subdirectly
irreducible (simple) if and only if �A is subdirectly irreducible (simple).

2.4 Functional Completeness

Recall that in Corollary 2.12, we showed a soundness result for the variety MFLe
with respect to the first-order substructural logic QFLe. As mentioned, the converse
direction of completeness is an open problem. In this section, we aim to investigate this
problem of completeness for some subvarieties ofMFLe. To express exactly what kind
of completeness results we obtain, we first require some additional terminology.

Let B be an FLe-algebra and W a non-empty set. We write BW to denote the direct
power of B overW , that is, the FLe-algebra with the universe BW of functions f : W → B
with operations defined pointwise.

Definition 2.34. Let B be an FLe-algebra and W a non-empty set. For each f ∈ BW

we call ∧{f(v) | v ∈ W} and ∨{f(v) | v ∈ W} the lower and upper limit point of f , if
they exist, respectively. Now let A be any subalgebra of BW such that the lower and
upper limit point exist for each f ∈ A. We define for each f ∈ A, w ∈W ,

�f(w) :=
∧
{f(v) | v ∈W} and ♦f(w) :=

∨
{f(v) | v ∈W}.

By Proposition 2.11, 〈A;�,♦〉 is a monadic FLe-algebra. Any monadic FLe-algebra
〈A;�,♦〉 constructed in such a way is called functional. A variety V of monadic FLe-
algebras is called functionally complete if V is generated by its functional members.

Note that the mentioned completeness problem forMFLe reduces to showing that
MFLe is functionally complete. ForMFLe, this is again an open problem, but it has
been solved for a number of subvarieties of MFLe. For example, Bezhanishvili and
Harding proved functional completeness for the variety of monadic Heyting algebras
in [24]. Additionally, the standard completeness results imply that the varieties of
monadic MV-algebras and crisp monadic Gödel algebras are generated by the functional
algebras 〈ŁN;�,♦〉 and 〈GN;�,♦〉, respectively. Slightly weaker results for these varieties
were obtained by Castaño et al. in [45] through different methods.

In this section we apply similar methods to varieties of monadic FLe-algebras that
satisfy some particular properties. The goal is not functional completeness itself, but
rather a slightly weaker generation result. Indeed, we are interested in the following
generalization of functional monadic FLe-algebras.

Definition 2.35. A monadic FLe-algebra 〈A;�,♦〉 is called relatively functional if A is
a subalgebra of BW for some FLe-algebra B and non-empty set W , and �A consists of
only constant functions.
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Let 〈A;�,♦〉 be a relatively functional monadic FLe-algebra. Then for each f ∈ A,

�f(w) =
∨
{g ∈ �A | g(v) ≤ f(v) for all v ∈W}

♦f(w) =
∧
{g ∈ �A | f(v) ≤ g(v) for all v ∈W}.

Moreover, this is indeed a generalization of a functional monadic FLe-algebra: any
relatively functional monadic FLe-algebra 〈A;�,♦〉 is functional if the lower and upper
limit points exist for each f ∈ A and

�A = {fb | b a lower or upper limit point of some g ∈ A},

where for each b ∈ B, fb : W → B is the constant function mapping each w to b. In
Section 4.3 we apply the methods outlined in this section to obtain proper functional
completeness for the variety of monadic abelian `-groups.

Let us now introduce the varieties of monadic FLe-algebras that we will study in this
section. We are interested in three properties in particular. Firstly, we consider varieties
V such that the members of VFLe are semilinear. An FLe-algebra is called semilinear if it
a subdirect product of FLe-chains. It was shown in [28] (see also [89]) that an FLe-algebra
is semilinear if and only if it satisfies the identity

e ≈ ((x→ y) ∧ e) ∨ ((y → x) ∧ e).

An alternative axiomatization was given in [81] using the two identities

e ≤ (x→ y) ∨ (y → x) and e ∧ (x ∨ y) ≈ (e ∧ x) ∨ (e ∧ y).

We say that a class of FLe-algebras K is semilinear if all its members are. We write lin(K)
to denote the class of all linearly ordered members of K.

Secondly, we consider varieties V of monadic FLe-algebras such that the class lin(VFLe)
has the amalgamation property. A class K of algebras is said to have the amalgamation
property if for any A,B,C ∈ K and embeddings f : A→ B and g : A→ C, there exist
D ∈ K (called the amalgam) and embeddings f ′ : B → D and g′ : C → D such that
f ′ ◦ f = g′ ◦ g. That is, the following diagram commutes.

B

A D

C

f ′f

g g′

We say that K has the generalized amalgamation property if for any A ∈ K, any family of
algebras {Bi}i∈I ⊆ K and embeddings fi : A→ Bi, there exist C ∈ K and embeddings
gi : Bi → C such that gi ◦ fi = gj ◦ fj for all i, j ∈ I. For lin(V), where V is any variety
of FLe-algebras, the two notions coincide.5

Lemma 2.36 (cf. [45, Theorem 3.3]). Let V be a variety of FLe-algebras. If lin(V) has
the amalgamation property, then it has the generalized amalgamation property.

5In fact, it is shown in [45] that the two notions coincide if K is elementary (as a class of first-order
structures).
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Finally, we consider monadic FLe-algebras satisfying the equality �(x∨�y) ≈ �x∨�y,
i.e., the algebraic formulation of the constant domain axiom (cd�). The main theorem of
this section (Theorem 2.43) concerns varieties V of monadic FLe-algebras such that

(i) VFLe is semilinear;

(ii) the class lin(VFLe) has the generalized amalgamation property;

(iii) V |= �(x ∨�y) ≈ �x ∨�y.

Although these seem like rather heavy restrictions, it is worth noting that the varieties
of monadic MV-algebras, crisp monadic Gödel algebras, and monadic abelian `-groups all
satisfy these three conditions. Indeed, they satisfy the identity �(x ∨�y) ≈ �x ∨�y by
definition. Moreover, MV-algebras, Gödel algebras and abelian `-groups are well-known to
be semilinear. Finally, the class of linearly ordered abelian `-groups has the amalgamation
property, as shown by Pierce in [128]. Mundici’s correspondence between linearly ordered
abelian `-groups and linearly ordered MV-algebras then implies the same for the class of
linearly ordered MV-algebras; for a concrete proof, see, e.g., [105, Proposition 62]. The
class of linearly ordered Gödel algebras was shown to have the amalgamation property by
Maksimova in [99]. Lemma 2.36 then implies that all these classes have the generalized
amalgamation property.

Let us first focus on a variety V of monadic FLe-algebras whose FLe-reducts are
semilinear. It is useful to recall a number of results from the literature regarding semilinear
FLe-algebras. Let A be an FLe-algebra. We call an A-convex f -free subuniverse H ⊆ A of
A prime if it is a meet-prime element in the lattice C(A), i.e., if I ∩J ⊆ H implies I ⊆ H
or J ⊆ H, for all I, J ∈ C(A). We write A/H to denote the quotient A/ΘH , where
ΘH is the congruence corresponding to H via the isomorphisms given in Theorem 2.28,
and write a/H to denote [a]ΘH

. In the presence of semilinearity, we can give a useful
equivalent characterization of prime convex f -free subuniverses. We also recall a property
of semilinear FLe-algebras that is useful in the proofs to follow.

Lemma 2.37 ([32, Lemma 4.2]). Let A be a semilinear FLe-algebra. Then for any
A-convex f -free subuniverse H of A, the following are equivalent:

(1) H is a prime A-convex f -free subuniverse of A;

(2) for all a, b ∈ A, (a→ b) ∧ e ∈ H or (b→ a) ∧ e ∈ H;

(3) A/H is linearly ordered.

Proof. The equivalence between (1) and (2) can be found in [32, Lemma 4.2]. For the
equivalence between (2) and (3), first suppose that (2) holds. Let a, b ∈ A and suppose
without loss of generality that (a→ b) ∧ e ∈ H. Note that

(a→ b) ∧ e ≤ (a→ b) ∧ e ≤ ((a→ b) ∧ e)→ e,

and so 〈(a→ b) ∧ e, e〉 ∈ ΘH . We can conclude that [a]ΘH
≤ [b]ΘH

. Conversely, suppose
that (3) holds. Consider a, b ∈ A and assume without loss of generality that [a]ΘH

≤ [b]ΘH
.

Then 〈(a → b) ∧ e, e〉 ∈ ΘH , that is, h ≤ (a → b) ∧ e ≤ h → e for some h ∈ H. By
convexity of H, it follows that (a→ b) ∧ e ∈ H.
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Remark 2.38. As noted in [32], if A is not semilinear, then (1) and (2) are not equivalent.
Indeed, if A is not semilinear, then there exist a, b ∈ A such that

c := ((a→ b) ∧ e) ∨ ((b→ a) ∧ e) < e.

Let P be an A-convex f -free subuniverse of A that is maximal with respect to not
containing c, which exists by Zorn’s Lemma and is necessarily meet-prime in C(A). Then
neither (a → b) ∧ e nor (b → a) ∧ e are elements of P by convexity. So P is a prime
A-convex f -free subuniverse of A not satisfying (2).

Lemma 2.39 (cf. [28, Proposition 6.13]). Let A be a semilinear FLe-algebra, and H an
A-convex f -free subuniverse of A. Then for each a, b ∈ A,

H((a→ b) ∧ e) ∩H((b→ a) ∧ e) = H(((a→ b) ∧ e) ∨ ((b→ a) ∧ e)) = H.

The following lemma shows that prime convex f -free subuniverses exist in the context
of semilinear FLe-algebras. In fact, any convex f -free subuniverse can be extended to a
prime one. The result generalizes the prime ideal theorem for Boolean algebras.

Lemma 2.40. Let A be a semilinear FLe-algebra, H ⊆ A an A-convex f -free subuniverse
of A, and a ∈ A \H. Then there exists a prime A-convex f-free subuniverse P of A
such that H ⊆ P and a 6∈ P .

Proof. Consider the set D = {I ∈ C(A) | H ⊆ I, a 6∈ I} ordered by set-inclusion. Then
H ∈ D and for any chain {Ix}x∈X ⊆ D, we have ⋃x∈X Ix ∈ D. By Zorn’s Lemma, D
contains a maximal element P .

We argue that P is prime. For a contradiction, suppose that there exist elements
b, c ∈ A such that (b→ c) ∧ e, (c→ b) ∧ e 6∈ P . We consider the smallest convex f -free
subuniverses P ((b → c) ∧ e) and P ((c → b) ∧ e) generated by P ∪ {(b → c) ∧ e} and
P ∪{(c→ b)∧e}, respectively. Since P is maximal and P ⊆ P ((b→ c)∧e), P ((c→ b)∧e),
it follows that a ∈ P ((b → c) ∧ e) ∩ P ((c → b) ∧ e). By Lemma 2.39, we deduce that
a ∈ P , contradicting P ∈ D.

Unlike the variety of semilinear FLe-algebras, the variety of monadic FLe-algebras
whose FLe-reducts are semilinear is not necessarily generated by its linearly ordered
members. By Lemma 2.40 above, we do however obtain a slightly weaker result. Let us
call a monadic FLe-algebra 〈A;�,♦〉 chain-monadic if �A is linearly ordered. We show
that a variety V of monadic FLe-algebras such that VFLe is semilinear is generated by its
chain-monadic members.

Theorem 2.41. Let V be a variety of monadic FLe-algebras such that VFLe is semilinear.
Then every 〈A;�,♦〉 ∈ V is a subdirect product of chain-monadic FLe-algebras in V.

Proof. Consider a monadic FLe-algebra 〈A;�,♦〉 such that A is semilinear. Let S
be the set of all prime �A-convex f -free subuniverses P of �A. By Theorem 2.32,
each P ∈ S corresponds to a (not necessarily prime) A-convex f -free subuniverse
P�♦ = {a ∈ A | �a ∈ P and ♦a ∈ P} of 〈A;�,♦〉. By Lemma 2.40, for each r ∈ �A\{e},
there exists P ∈ S such that r 6∈ P . Hence, ⋂S = {e}. Now consider any a ∈ A\e. Then
�a 6= e or ♦a 6= e, since if �a = e = ♦a, e = �a ≤ a ≤ ♦a = e. It follows that there exists
P ∈ S such that �a 6∈ P or ♦a 6∈ P , and so a 6∈ P�♦. Hence, ⋂{P�♦ | P ∈ S} = {e}
and we obtain a subdirect embedding 〈A;�,♦〉 ↪→ ∏

P∈S〈A;�,♦〉/P�♦, defined by
a 7→ (P 7→ a/P�♦), such that each �A/P�♦ = �A/P is linearly ordered.
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We have now established that to study a variety of monadic FLe-algebras whose
FLe-reducts are semilinear, it suffices to study those members 〈A;�,♦〉 such that �A is
linearly ordered. Let us now consider such algebras that additionally satisfy the identity
�(x ∨�y) ≈ �x ∨�y. For a ∈ A, we write |a| to denote a ∧ (a→ e) ∧ e.

Lemma 2.42. Let 〈A;�,♦〉 be a chain-monadic FLe-algebra satisfying the identity
�(x ∨�y) ≈ �x ∨�y. Then for each a ∈ A \ {e}, there exists a prime A-convex f -free
subuniverse P of A such that a 6∈ P and P ∩�A = {e}.

Proof. We apply Zorn’s Lemma to the set D = {H ∈ C(A) | for all c ∈ �A\{e}, |a|∨|c| 6∈
H}. It it easy to check that for any chain {Hi}i∈I ⊆ D, also

⋃
i∈I Hi ∈ D. We show that

{e} ∈ D. Consider any c ∈ �A \ {e}. For a contradiction, suppose that |a| ∨ |c| = e.
Then, using the identity �(x ∨�y) ≈ �x ∨�y and that c ∈ �A, we obtain

e = �e = �(|a| ∨ |c|) = �(|a| ∨�|c|) = �|a| ∨�|c| = �|a| ∨ |c| .

Moreover, we have e = ♦e = ♦(|a| ∨ |c|) = ♦|a| ∨ ♦|c| = ♦|a| ∨ |c|. Since �A is linearly
ordered, it follows that |c| = e or �|a| = ♦|a| = e. The former case gives a contradiction
with c 6= e and the latter implies a = e, again a contradiction. So D is non-empty, and
Zorn’s Lemma gives a maximal element P of D.

We show that P is prime. For a contradiction, suppose not. Then there exist
b, c ∈ A such that (b → c) ∧ e 6∈ P and (c → b) ∧ e 6∈ P . By maximality of P , neither
P ((b→ c) ∧ e) nor P ((c→ b) ∧ e) are members of D, so there exist p, q ∈ �A \ {e} such
that |a| ∨ |p| ∈ P ((b→ c) ∧ e) and |a| ∨ |q| ∈ P ((c→ b) ∧ e). As �A is linearly ordered,
we can assume without loss of generality that |p| ≤ |q|, and so |a| ∨ |p| ≤ |a| ∨ |q| ≤ e.
Convexity then implies that |a| ∨ |q| ∈ P ((b → c) ∧ e). But then |a| ∨ |q| ∈ P ((b →
c) ∧ e) ∩ P ((c→ b) ∧ e) = P by Lemma 2.39, a contradiction with P ∈ D.

We now have all the ingredients necessary to prove the promised functional repre-
sentation for all members of varieties of monadic FLe-algebras satisfying the properties
(i)–(iii) mentioned at the start of this section.

Theorem 2.43. Let V be a variety of monadic FLe-algebras satisfying �(x ∨ �y) ≈
�x∨�y such that VFLe is semilinear and lin(VFLe) has the amalgamation property. Then
for any chain-monadic 〈A;�,♦〉 ∈ V, there exist a linearly ordered B ∈ VFLe, a non-
empty set I, and an embedding ρ : A → BI such that ρ(�A) consists only of constant
functions and ρ(�A) is a V-relatively complete subuniverse of ρ(A). In particular, for
all a ∈ A, i ∈ I,

ρ(�a)(i) =
∨
{ρ(c)(i) | c ∈ �A, ρ(c) ≤ ρ(a)}

ρ(♦a)(i) =
∧
{ρ(c)(i) | c ∈ �A, ρ(a) ≤ ρ(c)}.

Proof. Let I be the family of all prime A-convex f -free subuniverses P of A such
that P ∩ �A = {e}. For each a ∈ A \ {e}, by Lemma 2.42 there exists P ∈ I such
that a 6∈ P and so ⋂P∈I P = {e}. Hence, we obtain a subdirect representation of
〈A;�,♦〉 given by σ : A → ∏

P∈I A/P . Since P ∩ �A = {e} for each P ∈ I, the maps
{(πP ◦ σ)|�A : �A→ A/P}P∈I are embeddings.
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Using amalgamation, we obtain an amalgam B ∈ VFLe with embeddings γP : A/P → B
such that γP ◦ πP ◦ σ|�A = γQ ◦ πQ ◦ σ|�A for all P,Q ∈ I. Defining

γ :=
∏
P∈I

γP :
∏
P∈I

A/P → BI

yields an embedding ρ := γ ◦ σ : A→ BI . Moreover, for any c ∈ �A and P,Q ∈ I, we
have

ρ(c)(P ) = γP (σ(c)(P )) = γP (πP (σ(c))) = γQ(πQ(σ(c))) = γQ(σ(c)(Q)) = ρ(c)(Q).

That is, ρ(c) is a constant function. To show that ρ(�A) is a V-relatively completely
subuniverse of ρ(A), it suffices to show that for all a ∈ A,

ρ(�a) =
∨
{ρ(c) | c ∈ �A, ρ(c) ≤ ρ(a)}

ρ(♦a) =
∧
{ρ(c) | c ∈ �A, ρ(a) ≤ ρ(c)}.

Indeed, this would imply that ρ is a map between 〈A;�,♦〉 and the monadic FLe-algebra
corresponding to 〈ρ(A), ρ(�A)〉 preserving � and ♦, and hence prove that ρ is an
isomorphism between 〈A,�A〉 and 〈ρ(A), ρ(�A)〉.

Firstly note that for c ∈ �A, ρ(c) ≤ ρ(a) if and only if c ≤ a. Indeed, c ≤ a implies
ρ(c) ≤ ρ(a) since ρ is an FLe-homomorphism. Conversely, ρ(c)(P ) = γP (πP (σ(c))) and
ρ(a)(P ) = γP (πP (σ(a))), so since γP is an embedding, ρ(c) ≤ ρ(a) implies that

c/P = πP (σ(c)) ≤ πP (σ(a)) = a/P

for all P ∈ I. Since ⋂P∈I P = {e}, this implies c ≤ a, as required.
Now note that, as �a ≤ a, we have

ρ(�a)(P ) ∈ {ρ(c)(P ) | c ∈ �A, ρ(c) ≤ ρ(a)}.

Moreover, consider any c ∈ �A such that ρ(c) ≤ ρ(a). As shown above, this is equivalent
to c ≤ a. Then c = �c ≤ �a, and so ρ(c) ≤ ρ(�a). This yields

ρ(�a)(P ) =
∨
{ρ(c)(P ) | c ∈ �A, ρ(c) ≤ ρ(a)}.

The proof of ρ(♦a)(P ) = ∧
{ρ(c)(P ) | c ∈ �A, ρ(a) ≤ ρ(c)} follows analogously.

Corollary 2.44. Let V be a variety of monadic FLe-algebras satisfying �(x ∨ �y) ≈
�x∨�y such that VFLe is semilinear and lin(VFLe) has the amalgamation property. Then
V is generated by its relatively functional chain-monadic members.

As mentioned at the start of this section, there are a number of varieties to which
this result can be applied. We summarize them in the following corollary.

Corollary 2.45. The following varieties of monadic FLe-algebras are generated by their
relatively functional chain-monadic members:

• the variety of monadic MV-algebras;

• the variety of crisp monadic Gödel algebras;
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• the variety of monadic abelian `-groups.

It is worth pointing out again that for monadic MV-algebras and crisp monadic Gödel
algebras, stronger results are known already. Indeed, Rutledge showed in [138] that the
variety of monadic MV-algebras is generated by the single functional algebra 〈ŁN;�,♦〉,
and the variety of crisp monadic Gödel algebras is generated by the single functional
algebra 〈GN;�,♦〉 [42]. In Section 4.3, we use the methods from this section to show that
the variety of monadic abelian `-groups is generated by the functional algebra 〈A;�,♦〉
whose universe consists of all bounded functions f : N→ R.



CHAPTER 3

Monadic Gödel Logics

This chapter focuses on monadic Gödel logics. In particular, we consider the modal Gödel
logics S5(A) and S5(A)C for Gödel sets A (see Definition 1.20). These modal Gödel
logics are then matched to one-variable fragments IKL1(K) of first-order intermediate
logics for countable linear frames K (see Definition 1.10). In Section 3.1, we define for
each countable linear frame K a Gödel set A such that for all α ∈ Fm1(LIL),

|=IKL1(K) α ⇐⇒ |=S5(A) α
∗.

In particular, we show that for all α ∈ Fm1(LIL),

|=IKL1 α ⇐⇒ |=S5(G) α
∗.

In Section 3.2, we prove the converse: for each Gödel set A, there exists a countable
linear frame K such that for all α ∈ Fm1(LIL),

|=IKL1(K) α ⇐⇒ |=S5(A) α
∗.

Note that in [13], Beckmann and Preining investigated similar questions: they matched
CDIKL(K)-validity for countable linear frames K to A-validity of certain Gödel sets A.
The results obtained in the first two sections of this chapter are both more general, as we
drop the constant domain condition, and less general, as we only consider one-variable
fragments. In Section 3.3, we show that the one-variable fragment of an intermediate
logic defined over a linear frame can be interpreted in the one-variable fragment of the
constant domain logic over the same frame. In light of the previous sections, this also
gives an interpretation of S5(A) into S5(A)C for any Gödel set A. Finally, we turn
to decidability and complexity. In Section 3.4, we prove a finite model property for
S5(A)C. To this end, we introduce an alternative semantics, as S5(A)C does not have
the finite model property with respect to its S5(A)C-models. In particular, we deduce
that the variety of crisp monadic Gödel algebras — the algebraic semantics of S5(G)C

(see Example 2.7) — is generated by its finite members. This alternative semantics is
investigated further in Section 3.5 to obtain decidability and complexity results for S5(A)
and S5(A)C for a large class of Gödel sets A.

The results in this chapter have appeared in [39] and [40] with co-authors Caicedo,
Metcalfe, and Rodríguez.
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3.1 From Linear Frames to Gödel Sets

In this section, we match the one-variable fragment of an intermediate logic IKL(K) defined
over a single countable linear frame K to a corresponding logic S5(A) for some Gödel set
A. In particular, we match the one-variable fragment of the intermediate logic defined
over 〈Q,≤〉 to the standard Gödel modal logic S5(G). If we recall from Example 1.12 that
IKL(〈Q,≤〉)-validity coincides with IKL-validity, this proves the correspondence between
IKL1 and S5(G).

Let K = 〈K,�〉 be any countable linear frame. A subset U ⊆ K is called an upset of
K if whenever k ∈ U , l ∈ K, and k � l, also l ∈ U . For each k ∈ K, we denote the upset
{l ∈ K | k � l} by [k). Now let Up(K) be the set of all upsets of K. Then 〈Up(K),⊆〉 is
a complete linearly ordered set with greatest and least elements K and ∅, respectively.
Moreover, since K is countable, there exists a complete (i.e., preserving all suprema and
infima) order-embedding of 〈Up(K),⊆〉 into 〈[0, 1],≤〉 (see [86]). Hence we may identify
Up(K) with a Gödel set and obtain an S5(Up(K))-model based on the Gödel algebra,
Up(K) := 〈Up(K),∩,∪,→, ∅,K〉, where

X → Y :=
{
K if X ⊆ Y ;
Y otherwise.

Now let M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉 be any IKL1(K)-model. We define for all
a, b ∈

⋃
k∈K Dk and i ∈ N,

W :=
⋃
k∈K

Dk;

U(a) := {k ∈ K | a ∈ Dk};

Rab :=
{
K a = b

U(a) ∩ U(b) a 6= b;
V (pi, a) := {k ∈ K | a ∈ Ik(Pi)}.

Note that each V (pi, a) is an upset of K since k � l implies Ik(Pi) ⊆ Il(Pi). Moreover,
Raa = K, Rab = Rba, and Rab∩Rbc ⊆ Rac for all a, b, c ∈W . HenceMM := 〈W,R, V 〉
is an S5(Up(K))-model. Moreover, if M is a CDIKL1(K)-model, thenMM is universal.
We now prove that the definition of V extends to all formulas, i.e., for all ϕ ∈ Fm�♦(LIL),
a ∈W ,

V̄ (ϕ, a) = {k ∈ K |M, k |=a ϕ◦, a ∈ Dk}.

Lemma 3.1. Let K = 〈K,�〉 be a countable linear frame and M = 〈K,�, {Dk}k∈K ,
{Ik}k∈K〉 any IKL1(K)-model over K with MM = 〈W,R, V 〉. Then for any ϕ ∈
Fm�♦(LIL), k ∈ K, and a ∈ Dk,

M, k |=a ϕ◦ ⇐⇒ k ∈ V̄ (ϕ, a).

Proof. We begin with the following useful observation. If a ∈ Dk and b ∈ W , then
b ∈ Dk if and only if k ∈ Rab. Just note that if b = a, this is trivial, and if b 6= a, then
k ∈ U(a) ∩ U(b) if and only if k ∈ U(b), i.e., b ∈ Dk.
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We prove the claim by induction on the length of ϕ. The base cases for ⊥, >, and pi
are immediate from the definitions, and the cases for ∧ and ∨ are straightforward, so we
just consider the cases for →, �, and ♦.

• Suppose that ϕ = ψ1 → ψ2. Then

M, k |=a (ψ1 → ψ2)◦ ⇐⇒ M, l |=a ψ◦1 implies M, l |=a ψ◦2 for all l � k
⇐⇒ l ∈ V̄ (ψ1, a) implies l ∈ V̄ (ψ2, a) for all l � k
⇐⇒ [k) ∩ V̄ (ψ1, a) ⊆ V̄ (ψ2, a)
⇐⇒ [k) ⊆ (V̄ (ψ1, a)→ V̄ (ψ2, a))
⇐⇒ k ∈ V̄ (ψ1 → ψ2, a).

• Suppose that ϕ = �ψ. Then

M, k |=a (�ψ)◦ ⇐⇒ M, l |=b ψ◦ for all l � k and b ∈ Dl

⇐⇒ l ∈ V̄ (ψ, b) for all l � k, b ∈W with l ∈ Rab
⇐⇒ [k) ∩Rab ⊆ V̄ (ψ, b) for all b ∈W
⇐⇒ [k) ⊆ (Rab→ V̄ (ψ, b)) for all b ∈W
⇐⇒ k ∈

⋂
{Rab→ V̄ (ψ, b) | b ∈W}

⇐⇒ k ∈ V̄ (�ψ, a).

• Suppose that ϕ = ♦ψ. Then

M, k |=a (♦ψ)◦ ⇐⇒ M, k |=b ψ◦ for some b ∈ Dk

⇐⇒ k ∈ V̄ (ψ, b) and k ∈ Rab for some b ∈W
⇐⇒ k ∈

⋃
{Rab ∩ V̄ (ψ, b) | b ∈W}

⇐⇒ k ∈ V̄ (♦ψ, a).

From this lemma, it follows that 6|=IKL1(K) ϕ
◦ implies that 6|=S5(Up(K)) ϕ for any

ϕ ∈ Fm�♦(LIL). For the converse direction, letM = 〈W,R, V 〉 be any S5(Up(K))-model
and fix w0 ∈W . We define for each k ∈ K and i ∈ N,

Dk := {v ∈W | k ∈ Rw0v};
Ik(Pi) := {v ∈W | k ∈ V (pi, v)} ∩Dk.

It is easily checked that if k � l, then Dk ⊆ Dl and Ik(Pi) ⊆ Il(Pi) for each i ∈ N.
Hence we obtain an IKL1-model MM,w0 := 〈K,�, {Dk}k∈K , {Ik}k∈K〉. Moreover, ifM
is universal, then MM,w0 is a CDIKL1(K)-model.

Lemma 3.2. Let K = 〈K,�〉 be a countable linear frame and let M = 〈W,R, V 〉 be
an S5(Up(K))-model with w0 ∈ W and MM,w0 = 〈K,�, {Dk}k∈K , {Ik}k∈K〉. For any
ϕ ∈ Fm�♦(LIL), k ∈ K, and v ∈ Dk,

MM,w0 , k |=v ϕ◦ ⇐⇒ k ∈ V̄ (ϕ, v).
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Proof. Note first that if v ∈ Dk, then k ∈ Rw0v and for any l � k and u ∈W ,

l ∈ Rw0u =⇒ l ∈ Ruw0 ∩Rw0v ⊆ Ruv
l ∈ Ruv =⇒ l ∈ Rw0v ∩Rvu ⊆ Rw0u;

that is, Rw0u ∩ [k) = Rvu ∩ [k).
We prove the claim by induction on the length of ϕ. The base cases for ⊥, >, and pi

are immediate from the definitions and the cases for ∧ and ∨ are straightforward, so we
just consider the cases for →, �, and ♦.

• Suppose that ϕ = ψ1 → ψ2. Then MM,w0 , k |=v (ψ1 → ψ2)◦

⇐⇒ MM,w0 , l |=v ψ◦1 implies MM,w0 , l |=v ψ◦2 for all l � k
⇐⇒ l ∈ V̄ (ψ1, v) implies l ∈ V̄ (ψ2, v) for all l � k
⇐⇒ [k) ∩ V̄ (ψ1, v) ⊆ V̄ (ψ2, v)
⇐⇒ [k) ⊆ (V̄ (ψ1, v)→ V̄ (ψ2, v))
⇐⇒ k ∈ V̄ (ψ1 → ψ2, v).

• Suppose that ϕ = �ψ. Then MM,w0 , k |=v (�ψ)◦

⇐⇒ MM,w0 , l |=u ψ◦ for all l � k and u ∈ Dl

⇐⇒ l ∈ V̄ (ψ, u) for all l � k, u ∈W with l ∈ Rw0u

⇐⇒ l ∈ V̄ (ψ, u) for all l � k, u ∈W with l ∈ Rvu
⇐⇒ [k) ∩Rvu ⊆ V̄ (ψ, u) for all u ∈W
⇐⇒ [k) ⊆ (Rvu→ V̄ (ψ, u)) for all u ∈W
⇐⇒ k ∈ (Rvu→ V̄ (ψ, u)) for all u ∈W
⇐⇒ k ∈

⋂
{Rvu→ V̄ (ψ, u) | u ∈W}

⇐⇒ k ∈ V̄ (�ψ, v).

• Suppose that ϕ = ♦ψ. Then MM,w0 , k |=v (♦ψ)◦

⇐⇒ MM,w0 , k |=u ψ◦ for some u ∈ Dk

⇐⇒ k ∈ V̄ (ψ, u) for some u ∈W such that k ∈ Rw0u

⇐⇒ k ∈ V̄ (ψ, u) for some u ∈W such that k ∈ Rvu
⇐⇒ k ∈ V̄ (ψ, u) ∩Rvu for some u ∈W
⇐⇒ k ∈

⋃
{V̄ (ψ, u) ∩Rvu | u ∈W}

⇐⇒ k ∈ V̄ (♦ψ, v).

We now put these two lemmas together to obtain the desired correspondence, recalling
that the result for the constant domain case is implicit in [13].
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Theorem 3.3. For any countable linear frame K = 〈K,�〉 and α ∈ Fm1(LIL),

|=IKL1(K) α ⇐⇒ |=S5(Up(K)) α
∗

|=CDIKL1(K) α ⇐⇒ |=S5(Up(K))C α∗.

Proof. Suppose first that 6|=IKL1(K) α. Then there exists an IKL1(K)-model M = 〈K,�,
{Dk}k∈K , {Ik}k∈K〉, k ∈ K, and a ∈ Dk such that M, k 6|=a α. An application of
Lemma 3.1 with MM = 〈W,R, V 〉 yields k 6∈ V̄ (α∗, a). Hence V̄ (α∗, a) 6= K and
6|=S5(Up(K)) α

∗.
Suppose now that 6|=S5(Up(K)) α

∗. Then there exists an S5(Up(K))-model M =
〈W,R, V 〉 and w0 ∈ W such that V̄ (α∗, w0) 6= K. Let k ∈ K \ V̄ (α∗, w0). Then
Lemma 3.2 yields MM,w0 , k 6|=w0 α, so 6|=IKL1(K) α.

The second equivalence follows from the fact that if M is a CDIKL1(K)-model, then
MM is universal, and, conversely, if M is universal, then MM,w0 is a CDIKL1(K)-
model.

By choosing suitable linear frames, we obtain the corresponding Gödel modal logics
defined over certain notable Gödel sets.

Corollary 3.4. For any formula α ∈ Fm1(LIL) and n ∈ N+,

|=IKL1(〈N,≤〉) α ⇐⇒ |=S5(G↓) α
∗ |=CDIKL1(〈N,≤〉) α ⇐⇒ |=S5(G↓)C α∗

|=IKL1(〈N,≥〉) α ⇐⇒ |=S5(G↑) α
∗ |=CDIKL1(〈N,≥〉) α ⇐⇒ |=S5(G↑)C α∗

|=IKL1(〈{1,...,n},≤〉) α ⇐⇒ |=S5(Gn) α
∗ |=CDIKL1(〈{1,...,n},≤〉) α ⇐⇒ |=S5(Gn)C α∗.

For the logic S5(G), however, the obvious choice of a countable linear frame Q =
〈Q,≤〉 produces a Gödel set Up(Q) that is not order-isomorphic to [0, 1]. Indeed, as
explained in [13], the Gödel set Up(Q) is isomorphic to the Cantor set C[0,1]. In the
next section, we will show that there exists a matching countable linear frame for every
Gödel set A, but first we give here a construction that directly relates S5(G)-validity to
IKL1(Q)-validity.

For technical reasons, we begin by showing that we can restrict our attention to
a particular class of S5(G)-models. We say that an S5(G)-model M = 〈W,R, V 〉 is
irrational if V̄ (ϕ,w) is irrational, 0, or 1 for all ϕ ∈ Fm�♦(LIL) and w ∈W .

Lemma 3.5. For any countable S5(G)-modelM = 〈W,R, V 〉, there exists an irrational
S5(G)-modelM′ = 〈W,R′, V ′〉 such that for all ϕ,ψ ∈ Fm�♦(LIL) and w, v ∈W ,

V̄ (ϕ,w) < V̄ (ψ, v) ⇐⇒ V̄ ′(ϕ,w) < V̄ ′(ψ, v).

Proof. By [86, Lemma 3.7], there exists a complete order-embedding f from the countable
set

S = {V̄ (ϕ,w) | w ∈W,ϕ ∈ Fm�♦(LIL)} ∪R[W ×W ]

into Q ∩ [0, 1]. For each q ∈ Q ∩ [0, 1], define

g(q) :=
{
π
3 q q ≤ 1

2 ;
π
6 + (2− π

3 )(q − 1
2) q > 1

2 .
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Then g is a complete order-embedding from Q∩ [0, 1] into ([0, 1]\Q)∪{0, 1} with g(0) = 0
and g(1) = 1. So h = g ◦ f is a complete order-embedding from S into ([0, 1] \Q)∪ {0, 1}
with h(0) = 0 and h(1) = 1. Now let M′ = 〈W,R′, V ′〉 where R′wv := h(Rwv) and
V ′(pi, w) := h(V (pi, w)) for w, v ∈W and i ∈ N. A straightforward induction on formula
length yields V̄ ′(ϕ,w) = h(V̄ (ϕ,w)) for all ϕ ∈ Fm�♦(LIL) and w ∈ W and the claim
follows immediately.

Now let (0, 1)Q := (0, 1) ∩Q and (0, 1)Q := 〈(0, 1)Q,≥〉. Given any irrational S5(G)-
modelM = 〈W,R, V 〉 and w0 ∈W , we define for q ∈ (0, 1)Q and i ∈ N,

Dq := {v ∈W | Rw0v ≥ q}
Iq(Pi) := {v ∈W | V (pi, v) ≥ q} ∩Dq.

It is easily checked that if q ≥ r, then Dq ⊆ Dr and Iq(Pi) ⊆ Ir(Pi) for each i ∈ N and
q, r ∈ (0, 1)Q, so we obtain an IKL1((0, 1)Q)-model

Mi
M,w0

:= 〈(0, 1)Q,≥, {Dq}q∈(0,1)Q , {Iq}q∈(0,1)Q〉.

Moreover, ifM is universal, then Mi
M,w0

is a CDIKL1((0, 1)Q)-model.
Lemma 3.6. Let M = 〈W,R, V 〉 be an irrational S5(G)-model with w0 ∈ W and
Mi
M,w0

= 〈(0, 1)Q,≥, {Dq}q∈(0,1)Q , {Iq}q∈(0,1)Q〉. For any ϕ ∈ Fm�♦(LIL), q ∈ (0, 1)Q,
and w ∈ Dq,

Mi
M,w0 , q |=

w ϕ◦ ⇐⇒ V̄ (ϕ,w) ≥ q.
Proof. We prove the claim by induction on the length of ϕ. The base cases for ⊥, >, and
pi are immediate from the definitions and the cases for ∧, ∨, and → are straightforward,
so we just consider the cases for � and ♦.

• For ϕ = �ψ, observe first that

Mi
M,w0 , q |=

w (∀x)ψ◦ ⇐⇒ Mi
M,w0 , r |=

v ψ◦ for all r ≤ q and v ∈ Dr

⇐⇒ V̄ (ψ, v) ≥ r for all r ≤ q and v ∈ Dr

and

V̄ (�ψ,w) ≥ q ⇐⇒
∧
{Rwv → V̄ (ψ, v) | v ∈W} ≥ q

⇐⇒ Rwv → V̄ (ψ, v) ≥ q for all v ∈W
⇐⇒ V̄ (ψ, v) ≥ q ∧Rwv for all v ∈W.

For the left-to-right direction suppose that V̄ (ψ, v) ≥ r for all r ≤ q and v ∈ Dr.
By assumption, w ∈ Dq, so Rw0w ≥ q. Let v ∈W . If q ≤ Rwv, then, by symmetry
and transitivity, Rw0v ≥ q, i.e., v ∈ Dq, and hence V̄ (ψ, v) ≥ q = q ∧ Rwv as
required. Suppose now that q > Rwv. Then Rw0w ≥ q > Rwv and, by transitivity,
Rwv = Rw0w ∧Rwv ≤ Rw0v. But also, if Rwv < Rw0v, then, by symmetry and
transitivity, Rwv < Rw0v ∧ Rw0w = Rww0 ∧ Rw0v ≤ Rwv, a contradiction. So
Rw0v = Rwv. It follows that for any r ∈ (0, 1)Q satisfying r ≤ Rw0v, we have
v ∈ Dr and hence V̄ (ψ, v) ≥ r. Finally, since (0, 1)Q is dense in (0, 1) \Q, we have
sup{r ∈ (0, 1)Q | Rw0v ≥ r} = Rw0v, so V̄ (ψ, v) ≥ Rw0v = q ∧Rwv.
For the right-to-left direction, suppose that V̄ (ψ, v) ≥ q ∧ Rwv for every v ∈ W .
Let r ≤ q and v ∈ Dr. Then Rw0v ≥ r. Since w ∈ Dq, also Rw0w ≥ q ≥ r, and by
symmetry and transitivity, Rwv ≥ r. So V̄ (ψ, v) ≥ q ∧Rwv ≥ r.
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• For ϕ = ♦ψ, observe first that since M is irrational and q ∈ (0, 1)Q, V̄ (ψ,w) ≥ q if
and only if V̄ (ψ,w) > q. Now observe that

Mi
M,w0 , q |=

w (∃x)ψ◦ ⇐⇒ Mi
M,w0 , q |=

v ψ◦ for some v ∈ Dq

⇐⇒ V̄ (ψ, v) ≥ q for some v ∈ Dq

and

V̄ (♦ψ,w) ≥ q ⇐⇒
∨
{Rwv ∧ V̄ (ψ, v) | v ∈W} ≥ q

⇐⇒
∨
{Rwv ∧ V̄ (ψ, v) | v ∈W} > q

⇐⇒ Rwv ∧ V̄ (ψ, v) ≥ q for some v ∈W.

For the left-to-right direction, suppose that V̄ (ψ, v) ≥ q for some v ∈ Dq. Since
w, v ∈ Dq, by transitivity, Rwv ≥ q and hence Rwv ∧ V̄ (ψ, v) ≥ q. For the right-
to-left direction, suppose that there exists v ∈ W such that Rwv ∧ V̄ (ψ, v) ≥ q,
i.e., Rwv ≥ q and V̄ (ψ, v) ≥ q. Since w ∈ Dq, also Rw0v ≥ q, so v ∈ Dq and
V̄ (ψ, v) ≥ q.

We can now use this last lemma to prove the desired result, noting that the constant
domain case was already proved in [145].

Theorem 3.7. For any α ∈ Fm1(LIL),

|=S5(G) α
∗ ⇐⇒ |=IKL1 α ⇐⇒ |=IKL1(Q) α

|=S5(G)C α∗ ⇐⇒ |=CDIKL1 α ⇐⇒ |=CDIKL1(Q) α.

Proof. Clearly, |=IKL1 α implies |=IKL1(Q) α. Suppose now that 6|=IKL1 α. This gives a count-
able linear frame K = 〈K,�〉 and an IKL1(K)-model M = 〈K,�, {Dk}k∈K , {Ik}k∈K〉,
k ∈ K, and a ∈ Dk such that M, k 6|=a α. An application of Lemma 3.1 with
MM = 〈W,R, V 〉 yields k 6∈ V̄ (α∗, a). Hence V̄ (α∗, a) 6= K and, since there exists
a complete embedding of 〈Up(K),⊆〉 into 〈[0, 1],≤〉, we obtain 6|=S5(G) α

∗.
Now suppose that 6|=S5(G) α

∗. It follows that there exist a countable S5(G)-model
M = 〈W,R, V 〉 and w ∈ W such that V̄ (α∗, w) < 1. By Lemma 3.5, there exist an
irrational S5(G)-model M′ = 〈W,R′, V ′〉 and r ∈ (0, 1)Q such that V̄ ′(α∗, w) < r < 1.
But then Lemma 3.6 gives an IKL1((0, 1)Q)-model Mi

M′,w such that Mi
M′,w, r 6|=w α. So

6|=IKL1((0,1)Q) α and since (0, 1)Q is order-isomorphic to Q, also 6|=IKL1(Q) α.
Finally, for the second chain of equivalences, it suffices to recall that if M is a

CDIKL1(K)-model, then MM is universal, and if M is universal, then Mi
M,w0

is a
CDIKL1((0, 1)Q)-model.

3.2 From Gödel Sets to Linear Frames

In the previous section, we proved that for every countable linear frame K, there exists
a Gödel set A such that the IKL1(K)-validity of any α ∈ Fm1(LIL) corresponds to the
S5(A)-validity of α∗ (Theorem 3.3). In this section, we prove the converse: for any
Gödel set A, there exists a countable linear frame K such that the S5(A)-validity of any
ϕ ∈ Fm�♦(LIL) corresponds to the IKL1(K)-validity of ϕ◦ (Theorem 3.12).
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We follow the strategy used in [13] to establish a correspondence between first-order
Gödel logics and constant domain logics defined over a countable linear frame, making the
necessary adjustments to accommodate many-valued relations and increasing domains.
First we show that for any countable Gödel set A, the algebra A is isomorphic to Up(K)
for some linear frame K. Then, for the general case, we partition any Gödel set A into a
countable part and an uncountable part. Using this partition and the result for countable
Gödel sets, we show that |=S5(A) coincides with |=S5(B) for some Gödel set B such that
B is isomorphic to some Up(K). Theorem 3.3 then gives the desired result.

Recall from Section 1.2 the definition of a limit point and perfect set, as well as the
Cantor-Bendixson Theorem. We also recall a useful lemma proved in [130].

Lemma 3.8 ([130, Section 5.4.1]). Let C ⊆ [0, 1] be a countable set and X ⊆ [0, 1] a
perfect set. Then there exists an order-embedding h from C into X preserving all existing
suprema and infima, and satisfying h(inf C) = inf X if inf C ∈ C.

We first consider the case of countable Gödel sets.

Lemma 3.9. For any countable Gödel set A, there exists a countable linear frame K
such that Up(K) and A are isomorphic.

Proof. We call a ∈ A left isolated in A if a 6∈ L(A), i.e., if sup{b ∈ A | b < a} < a, and
define K := {a ∈ A | a left isolated in A}. Note that K is non-empty, since otherwise
A would be perfect and thus uncountable. Let K := 〈K,≥〉 and consider the map
h : Up(K)→ A; U 7→ supU . Since A is closed, h is well-defined. First we show that h is
an order-embedding. Suppose that U ( U ′ for some U,U ′ ∈ Up(K), and let a ∈ U ′ \ U .
Since a is left isolated in A, we have h(U) = supU < a ≤ supU ′ = h(U ′). It remains to
prove that h is surjective. Given a ∈ A, we consider the upset Ua := {b ∈ K | b ≤ a} of
K. Note that h(Ua) ≤ a. Suppose for a contradiction that h(Ua) < a. Then a 6∈ K, since
if a ∈ K, clearly h(Ua) = a. So a is not left isolated in A, i.e., sup{b ∈ A | b < a} = a,
and [h(Ua), a] ∩ A contains infinitely many points. Moreover, for any c ∈ A such that
h(Ua) < c < a, the set [c, a]∩A is again infinite and contains no left isolated points. But
then [c, a] ∩A is perfect and hence uncountable, a contradiction.

It follows that h is an order-isomorphism and since h(∅) = 0 and h(K) = 1, h is an
isomorphism between the Gödel algebras Up(K) and A.

For an uncountable Gödel set A, we obtain a partition of A into a non-empty
(uncountable) perfect kernel X and a countable set C, by the Cantor-Bendixson Theorem
(Theorem 1.14). To deal with such uncountable Gödel sets, we prove the following lemma,
noting that the case for S5(A)C follows already from results in [13].

Lemma 3.10. Let A be a Gödel set with a non-empty perfect kernel X, and let B :=
A ∪ [inf X, 1]. Then for all ϕ ∈ Fm�♦(LIL),

|=S5(A) ϕ ⇐⇒ |=S5(B) ϕ and |=S5(A)C ϕ ⇐⇒ |=S5(B)C ϕ.

Proof. The right-to-left-direction of both statements follows from the fact that A ⊆ B.
For the other direction, suppose that V̄B(ϕ,w) < 1 for some S5(B)-model MB =
〈W,RB, VB〉 and w ∈W . For each subformula �ψ or ♦ψ of ϕ, there exists a countable
subset W�ψ or W♦ψ of W such that, respectively, V̄B(�ψ,w) = ∧

{Rwv → V̄ (ψ, v) |
v ∈ W�ψ} or V̄B(♦ψ,w) = ∨

{Rwv ∧ V̄ (ψ, v) | v ∈ W♦ψ}. An easy induction yields
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V̄ ′B(ϕ,w) < 1 when R′B and V ′B are RB and VB restricted to W ′ = {w} ∪ ⋃{Wψ′ |
ψ′ is a subformula �ψ or ♦ψ of ϕ}. We may therefore assume that W is countable and
hence also that C := {V̄B(ψ, v) | ψ a subformula of ϕ, v ∈W} is countable. So, as B is
uncountable, there exists b ∈ B \ C such that V̄B(ϕ,w) < b < 1. By Lemma 3.8, there
exists an order-embedding h from [inf X, b] ∩ (C ∪ {b}) into X. We define the following
function kb : B → A such that for every a ∈ B,

kb(a) :=


a a < inf X;
h(a) inf X ≤ a ≤ b;
1 otherwise.

Now letMA := 〈W,RA, VA〉 be the S5(A)-model where RAvu := kb(RBvu), VA(pi, v) :=
kb(VB(pi, v)) for all u, v ∈W and each pi that occurs in ϕ and VA(pj , v) := 1 for all other
propositional variables pj .1

We claim that this valuation extends to all subformulas of ϕ; that is, V̄A(ψ, v) =
kb(V̄B(ψ, v)) for every subformula ψ of ϕ and v ∈ W . It follows from this claim that
V̄A(ϕ,w) < 1, since

either V̄B(ϕ,w) < inf X and V̄A(ϕ,w) = V̄B(ϕ,w) < b < 1
or inf X ≤ V̄B(ϕ,w) < b and V̄A(ϕ,w) = h(V̄B(ϕ,w))

< h(b) ≤ 1.

So 6|=S5(A) ϕ. Moreover, if MB is universal, then so is MA, so we also obtain that
6|=S5(B)C ϕ implies 6|=S5(A)C ϕ.

We prove the claim by induction on the length of a subformula ψ of ϕ. The base cases
follow by definition and the cases for the propositional connectives are straightforward,
using the fact that kb(c ? d) = kb(c) ? kb(d) for all c, d ∈ B and ? ∈ {∧,∨,→}. For a
subformula �ψ of ϕ, we have

V̄A(�ψ, v) =
∧
{RAvu→ V̄A(ψ, u) | u ∈W}

=
∧
{kb(RBvu)→ kb(V̄B(ψ, u)) | u ∈W}

=
∧
{kb(RBvu→ V̄B(ψ, u)) | u ∈W}

= kb(
∧
{RBvu→ V̄B(ψ, u) | u ∈W}) (3.1)

= kb(V̄B(�ψ, v)).

To prove (3.1), there are three cases to consider:

(i) V̄B(�ψ, v) < inf X. Then kb(V̄B(�ψ, v)) = V̄B(�ψ, v). Moreover, U := {u ∈ W |
RBvu0 → V̄B(ψ, u0) < inf X} 6= ∅ and, by definition, kb(RBvu → V̄B(ψ, u)) =
RBvu→ V̄B(ψ, u) for all u ∈ U .

(ii) inf X ≤ V̄B(�ψ, v) ≤ b. By the choice of b, we have V̄B(�ψ, v) < b. So inf X ≤
RBvu → V̄B(ψ, u) for all u ∈ W and RBvt → V̄B(ψ, t) < b for some t ∈ W . It
follows that ∧{kb(RBvu → V̄B(ψ, u)) | u ∈ W} = ∧

{h(RBvu → V̄B(ψ, u)) | u ∈
W,RBvu→ V̄B(ψ, u) < b} and the fact that h preserves infima concludes the case.

1Note that this function differs slightly from the one used for the constant domain case in [12].
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(iii) b < V̄B(�ψ, v). Then b ≤ RBvu→ V̄B(ψ, u) for all u ∈ W and hence kb(RBvu→
V̄B(ψ, u)) = 1 = kb(V̄B(�ψ, v)) for all u ∈W .

Next, for a subformula ♦ψ, we have

V̄A(♦ψ, v) =
∨
{RAvu ∧ V̄A(ψ, u) | u ∈W}

=
∨
{kb(RBvu) ∧ kb(V̄B(ψ, u)) | u ∈W}

=
∨
{kb(RBvu ∧ V̄B(ψ, u)) | u ∈W}

= kb(
∨
{RBvu ∧ V̄B(ψ, u) | u ∈W}) (3.2)

= kb(V̄B(♦ψ, v)).

To prove (3.2), there are again three cases to consider:

(i) V̄B(♦ψ, v) < inf X. Then kb(V̄B(♦ψ, v)) = V̄B(♦ψ, v) and, since RBvu∧ V̄B(ψ, u) <
inf X for all u ∈ W , also kb(RBvu ∧ V̄B(ψ, u)) = RBvu ∧ V̄B(ψ, u) for all u ∈ W ,
yielding (3.2).

(ii) inf X ≤ V̄B(♦ψ, v) ≤ b. If inf X ≤ RBvt ∧ V̄B(ψ, t) for some t ∈ W , then (3.2)
follows since h preserves existing suprema. Otherwise RBvu ∧ V̄B(ψ, u) < inf X
for all u ∈ W , and so V̄B(♦ψ, v) = inf X. But then kb(RBvu ∧ V̄B(ψ, u)) =
RBvu ∧ V̄B(ψ, u) for all u ∈ W , and their join is inf X. The equality (3.2) then
follows from the fact that h(inf X) = inf X.

(iii) b < V̄B(♦ψ, v). Then there exists u ∈ W such that b < RBvu ∧ V̄B(ψ, u), i.e.,
kb(RBvu ∧ V̄B(ψ, u)) = 1 = kb(V̄B(♦ψ, v)).

We will also make use of the following lemma from [13] for composing Gödel sets and
linear frames.

Lemma 3.11 ([13, Lemma 24]). Let A1 and A2 be Gödel sets and let K1 = 〈K1,�1〉
and K2 = 〈K2,�2〉 be linear frames with K1 ∩ K2 = ∅ such that Up(K1) ∼= A1 and
Up(K2) ∼= A2. Define K := 〈K,�〉, where K := K1 ∪K2 and

� := �1 ∪ �2 ∪ {〈k2, k1〉 | k2 ∈ K2, k1 ∈ K1},

and for any ρ ∈ (0, 1), the Gödel set

A := ρA1 ∪ ((1− ρ)A2 + ρ).

Then Up(K) ∼= A.

We are now able to prove the main theorem of this section.

Theorem 3.12. For each Gödel set A, there exists a countable linear frame K such that
for all ϕ ∈ Fm�♦(LIL),

|=S5(A) ϕ ⇐⇒ |=IKL1(K) ϕ
◦

|=S5(A)C ϕ ⇐⇒ |=CDIKL1(K) ϕ
◦.
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Proof. Let A be a Gödel set. By the Cantor-Bendixson Theorem (Theorem 1.14), there
exists a partition of A into a countable set C and a perfect set X. If A is countable, then
X = ∅ and so by Lemma 3.9 and Theorem 3.3, we are done. Now suppose that A is
uncountable and so X 6= ∅. We define

A1 := A ∪ [inf X, 1] and A2 := (A ∩ [0, inf X]) ∪ C[inf X,1],

where C[inf X,1] is the middle third Cantor set on the interval [inf X, 1]. Note that the
perfect kernel X2 of A2 is C[inf X,1] and so A2 ∪ [inf X2, 1] = A1. By Lemma 3.10, for all
ϕ ∈ Fm�♦(LIL),

|=S5(A) ϕ ⇐⇒ |=S5(A1) ϕ ⇐⇒ |=S5(A2) ϕ
|=S5(A)C ϕ ⇐⇒ |=S5(A1)C ϕ ⇐⇒ |=S5(A2)C ϕ.

If inf X = 0, then A1 = [0, 1], in which case S5(A) coincides with S5(G) and S5(A)C

coincides with S5(G)C. If inf X > 0, we can write A2 = ρB1 ∪ ((1 − ρ)B2 + ρ), where
ρ = inf X, B1 = (1/ρ)(A ∩ [0, ρ]), and B2 = C[0,1]. Since A ∩ [0, ρ] ⊆ C ∪ {inf X}, B1
is countable. Therefore, by Lemma 3.9, B1 is isomorphic to Up(K1) for some linear
frame K1 = 〈K1,�1〉. Moreover, B2 is isomorphic to Up((0, 1)Q). So by Lemma 3.11,
we obtain a linear frame K = 〈K,�〉 such that A2 is isomorphic to Up(K). Theorem 3.3
then completes the proof.

3.3 An Interpretation Theorem

In this section, we provide an interpretation of the one-variable fragment IKL1(K)
defined over a linear frame K in the one-variable fragment of the corresponding constant
domain logic CDIKL1(K), thereby obtaining also an interpretation of S5(A) in S5(A)C

for any Gödel set A. The key idea is to describe the domains of an IKL1-model using a
distinguished unary predicate P0 for the corresponding CDIKL1-model. To this end, let
Fm0

1(LIL) ⊆ Fm1(LIL) denote the set of one-variable first-order formulas not containing
P0. An IKL0

1(K)-model, based on a linear frame K = 〈K,�〉, is an IKL1(K)-model M =
〈K,�, {Dk}k∈K , {Ik}k∈K〉 such that the functions {Ik}k∈K are restricted to {Pi}i∈N+ .

Now let K = 〈K,�〉 be any linear frame and let M = 〈K,�, {D}, {Ik}k∈K〉 be a
CDIKL1(K)-model satisfying ⋂

k∈K
Ik(P0) 6= ∅.

Define for each k ∈ K and i ∈ N+,

Dk := Ik(P0) and I0
k(Pi) := Ik(Pi) ∩Dk.

Then M0 := 〈K,�, {Dk}k∈K , {I0
k}k∈K〉 is an IKL0

1(K)-model. Indeed, M 7→ M0 is a
surjective map from CDIKL1(K)-models to IKL0

1(K)-models.
For each α ∈ Fm0

1(LIL), we define αc ∈ Fm1(LIL) inductively by relativizing quantifiers
to the unary predicate P0. That is, (Pi(x))c := Pi(x) for each i ∈ N+, ⊥c := ⊥, >c := >,
(α ? β)c := αc ? βc for ? ∈ {∧,∨,→}, and

((∀x)α)c := (∀x)(P0(x)→ αc)
((∃x)α)c := (∃x)(P0(x) ∧ αc).
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Lemma 3.13. Let K = 〈K,�〉 be a linear frame and let M = 〈K,�, {D}, {Ik}k∈K〉 be
a CDIKL1(K)-model satisfying ⋂k∈K Ik(P0) 6= ∅. Then for any α ∈ Fm0

1(LIL), k ∈ K,
and a ∈ Ik(P0),

M0, k |=a α ⇐⇒ M, k |=a αc.

Proof. We prove the claim by induction on the length of α. For the base case, using the
assumption that a ∈ Ik(P0) = Dk, we have for each i ∈ N+,

M0, k |=a Pi(x) ⇐⇒ a ∈ I0
k(Pi) ⇐⇒ a ∈ Ik(Pi) ⇐⇒ M, k |=a Pi(x).

The cases for the propositional connectives follow easily using the induction hypothesis
and the definition of αc, so we just check the cases for the quantifiers:

M0, k |=a (∀x)β ⇐⇒ M0, l |=b β for all l � k and b ∈ Dl

⇐⇒ M, l |=b βc for all l � k and b ∈ Il(P0)
⇐⇒ (M, l |=b P0(x) ⇒ M, l |=b βc) for all l � k, b ∈ D
⇐⇒ M, l |=b P0(x)→ βc for all l � k and b ∈ D
⇐⇒ M, k |=a (∀x)(P0(x)→ βc)
⇐⇒ M, k |=a ((∀x)β)c;

M0, k |=a (∃x)β ⇐⇒ M0, k |=b β for some b ∈ Dk

⇐⇒ M, k |=b βc for some b ∈ Ik(P0)
⇐⇒ (M, k |=b P0(x) and M, k |=b βc) for some b ∈ D
⇐⇒ M, k |=b P0(x) ∧ βc for some b ∈ D
⇐⇒ M, k |=a (∃x)(P0(x) ∧ βc)
⇐⇒ M, k |=a ((∃x)β)c.

Theorem 3.14. For any linear frame K = 〈K,�〉 and formula α ∈ Fm0
1(LIL),

|=IKL1(K) (∀x)α ⇐⇒ |=CDIKL1(K) ((∀x)α)c.

Proof. (⇒) Suppose that 6|=CDIKL1(K) ((∀x)α)c, i.e., M1, k0 6|=a αc for some CDIKL1(K)-
model M1 = 〈K,�, {D}, {Ik}k∈K〉, k0 ∈ K, and a ∈ Ik0(P0). Let K0 := 〈[k0),�〉.
Then also M2, k0 6|=a αc, where M2 is the CDIKL1(K0)-model 〈[k0),�, {D}, {Ik}k∈[k0)〉
satisfying ⋂k∈[k0) Ik(P0) 6= ∅. An application of Lemma 3.13 yields M0

2, k0 6|=a α. We can
then extend M0

2 to an IKL0
1(K)-model by defining Dl := Dk0 and Il(Pi) := Ik0(Pi) for all

l ∈ K such that l ≺ k0, giving 6|=IKL1(K) (∀x)α as required.
(⇐) Suppose that 6|=IKL1(K) (∀x)α, i.e., (∀x)α is not valid in some IKL1(K)-model

M. Since α does not contain P0, we can assume that M is an IKL0
1(K)-model. Because

the map (−)0 is surjective, there exists a CDIKL1(K)-model N such that M = N0. By
Lemma 3.13, the formula ((∀x)α)c is not valid in N and hence 6|=CDIKL1(K) ((∀x)α)c as
required.

Now let Fm0
�♦(LIL) ⊆ Fm�♦(LIL) denote the set of modal formulas over LIL not

containing p0. For each ϕ ∈ Fm0
�♦(LIL), we define ϕc ∈ Fm�♦(LIL) inductively by

relativizing modalities to p0. That is, (pi)c := pi for each i ∈ N+, ⊥c := ⊥, >c := >,
(ϕ ? ψ)c := ϕc ? ψc for ? ∈ {∧,∨,→}, (�ϕ)c := �(p0 → ϕc), and (♦ϕ)c := ♦(p0 ∧ ϕc).
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Theorem 3.15. For any formula ϕ ∈ Fm0
�♦(LIL) and Gödel set A,

|=S5(A) ϕ ⇐⇒ |=S5(A)C (�ϕ)c.

Proof. Consider any Gödel set A. By Theorem 3.12, there exists a countable linear
frame K such that both |=S5(A) ϕ if and only if |=IKL1(K) ϕ

◦, and |=S5(A)C ϕ if and only
if |=CDIKL1(K) ϕ

◦ hold. Note that the translations (−)◦ and (−)c commute on formulas
ϕ ∈ Fm0

�♦(LIL). Combining this with Theorem 3.14 gives for every ϕ ∈ Fm0
�♦(LIL),

|=S5(A) ϕ ⇐⇒ |=S5(A) �ϕ

⇐⇒ |=IKL1(K) (�ϕ)◦

⇐⇒ |=CDIKL1(K) ((�ϕ)◦)c

⇐⇒ |=CDIKL1(K) ((�ϕ)c)◦

⇐⇒ |=S5(A)C (�ϕ)c.

Recall that in Proposition 1.24, we showed that the sets of logics S5(A) and S5(A)C,
where A ranges over infinite Gödel sets, are infinite. Moreover, recall from Theorem 1.13
that there are at most countably infinitely many first-order Gödel logics, and so there
are only countably infinitely many logics S5(A)C. It follows now by Theorem 3.15 that
there are exactly countably infinitely many different logics S5(A).

Corollary 3.16. The sets of logics S5(A) and S5(A)C (considered as sets of valid
formulas), where A ranges over all Gödel sets, are countably infinite.

Remark 3.17. The distinguished unary predicate P0 used in the interpretation (−)c
corresponds exactly to the existence predicate as considered by Iemhoff in the context of
Scott logics in [87]. It is moreover closely related to the possibilistic semantics for the
modal Gödel logic KD45(G) studied in [35]. The exact nature of this relation is still to
be determined.

3.4 A Finite Model Property

In this section, we establish a finite model property for the logic S5(A)C for any Gödel
set A. Using the interpretation from Theorem 3.15, this also establishes the finite model
property for S5(A). Crucially, however, this property does not hold in general with
respect to the S5(A)C-models as defined in Section 1.3. Indeed, for any Gödel set A
containing at least one right accumulation point c, the formula ♦(p1 → �p1) is valid in all
finite S5(A)C-models, but not in any infinite universal S5(A)C-model 〈N+, V 〉 satisfying
V (p1, n) ∈ A ∩ (c, c+ 1

n ] for each n ∈ N+. We introduce an alternative semantics here,
related to the semantics proposed in [38].2

Let P ⊆ {pi}i∈N be a set of propositional variables and let Fm�♦(LIL, P ) denote the set
of formulas in Fm�♦(LIL) with variables in P . A relativized universal S5(A)C-model over
P (for short, ruS5(A)C-model over P ) based on a Gödel set A is a tripleM = 〈W,V, T 〉

2This paper contains a flawed proof that all logics S5(A)C have the finite model property with respect
to an alternative semantics. More precisely, Lemma 23 of [38] is false unless T� = T♦; this restriction
does not cause any problems for S5(G)C, but is not sufficient for other cases.
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consisting of finite non-empty sets W and T satisfying {0, 1} ⊆ T ⊆ A, and a map
V : P ×W → A. The map V is extended inductively to V̄ : Fm�♦(LIL, P )×W → A as
follows, where ? ∈ {∧,∨,→}:

V̄ (⊥, w) = 0
V̄ (>, w) = 1

V̄ (ϕ ? ψ,w) = V̄ (ϕ,w) ? V̄ (ψ,w)
V̄ (�ϕ,w) =

∨
{r ∈ T | r ≤

∧
{V̄ (ϕ, v) | v ∈W}}

V̄ (♦ϕ,w) =
∧
{r ∈ T | r ≥

∨
{V̄ (ϕ, v) | v ∈W}}.

We say that ϕ ∈ Fm�♦(LIL, P ) is valid inM if V̄ (ϕ,w) = 1 for all w ∈W .
Note that since W and T are finite, V̄ (�ϕ,w), V̄ (♦ϕ,w) ∈ T for all �ϕ,♦ϕ ∈

Fm�♦(LIL, P ) and w ∈ W , and these values are independent of w. Moreover, a simple
induction on the length of ϕ ∈ Fm�♦(LIL, P ) shows that always

V̄ (ϕ,w) ∈ BM := {V (pi, v) | pi ∈ P, v ∈W} ∪ T.

Indeed,M may also be viewed as an ruS5(BM)C-model over P ; that is, we may assume
that V is a function from P ×W to BM. In particular, if P is finite, thenM is a truly
finite object.

Recall that R(A) and L(A) denote the sets of right and left accumulation points,
respectively, of a Gödel set A. An ruS5(A)C-modelM = 〈W,V, T 〉 over P ⊆ {pi}i∈N is
called Σ-normal for Σ ⊆ Fm�♦(LIL, P ) if for all �ϕ,♦ψ ∈ Σ and w ∈W ,

V̄ (�ϕ,w) 6∈ R(A) =⇒ V̄ (�ϕ,w) = V̄ (ϕ, v) for some v ∈W
V̄ (♦ψ,w) 6∈ L(A) =⇒ V̄ (♦ψ,w) = V̄ (ψ, v) for some v ∈W.

Let us also call Σ ⊆ Fm�♦(LIL) a fragment if it is closed under subformulas. The next
lemma shows that (roughly speaking) for a finite fragment, validity in a (possibly infinite)
universal S5(A)C-model can be matched to validity in a corresponding ruS5(A)C-model
that is normal for the fragment.

Lemma 3.18. Let A be a Gödel set and letM = 〈W,V 〉 be a universal S5(A)C-model
with w ∈W . For any P ⊆ {pi}i∈N and finite fragment Σ ⊆ Fm�♦(LIL, P ), there exists a
Σ-normal ruS5(A)C-modelM′ = 〈W ′, V ′, T 〉 over P with w ∈W ′ ⊆W , |W ′| ≤ |Σ|, and
|BM′ | ≤ |Σ|2, satisfying V̄ ′(ϕ, v) = V̄ (ϕ, v) for all ϕ ∈ Σ and v ∈W ′.

Proof. We define

T := {V̄ (�ϕ,w) | �ϕ ∈ Σ} ∪ {V̄ (♦ϕ,w) | ♦ϕ ∈ Σ} ∪ {0, 1}

and write T = {0 = t0 < t1 < · · · < tn = 1}. Then for each �ϕ ∈ Σ, we have
V̄ (�ϕ,w) = ti for some 0 ≤ i ≤ n and we choose a witness v�ϕ ∈W satisfying

ti ∈ R(A) =⇒ V̄ (ϕ, v�ϕ) ∈ [ti, ti+1) ∩A
ti 6∈ R(A) =⇒ V̄ (�ϕ,w) = V̄ (ϕ, v�ϕ) = ti.
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Similarly, for each ♦ϕ ∈ Σ, we have V̄ (♦ϕ,w) = ti for some 0 ≤ i ≤ n, and we choose a
witness v♦ϕ ∈W satisfying

ti ∈ L(A) =⇒ V̄ (ϕ, v♦ϕ) ∈ (ti−1, ti] ∩A
ti 6∈ L(A) =⇒ V̄ (♦ϕ,w) = V̄ (ϕ, v♦ϕ) = ti.

We now define
W ′ := {w} ∪ {v�ϕ | �ϕ ∈ Σ} ∪ {v♦ϕ | ♦ϕ ∈ Σ}

and V ′(pi, v) := V (pi, v) for all pi ∈ P and v ∈ W ′. Then by construction, M′ :=
〈W ′, V ′, T 〉 is a Σ-normal ruS5(A)C-model over P and clearly |W ′| ≤ |Σ|. It follows by
induction on formula length that V̄ ′(ϕ, v) = V̄ (ϕ, v) for all ϕ ∈ Σ, v ∈ W ′. The base
cases and the cases of the propositional connectives are straightforward. If ϕ = �ψ, then
V̄ (�ψ,w) = ti for some 0 ≤ i ≤ n, and we have two cases. If ti ∈ R(A), then

V̄ (�ψ,w) =
∧
{V̄ (ψ, v) | v ∈W}

≤
∧
{V̄ (ψ, v) | v ∈W ′}

≤ V̄ (ψ, v�ψ) < ti+1,

and if ti 6∈ R(A), then

V̄ (�ψ,w) =
∧
{V̄ (ψ, v) | v ∈W}

≤
∧
{V̄ (ψ, v) | v ∈W ′}

≤ V̄ (ψ, v�ψ) = ti.

Together with the induction hypothesis, this gives

V̄ (�ψ,w) =
∨
{r ∈ T | r ≤

∧
{V̄ (ψ, v) | v ∈W ′}}

=
∨
{r ∈ T | r ≤

∧
{V̄ ′(ψ, v) | v ∈W ′}}

= V̄ ′(�ψ,w).

The case ϕ = ♦ψ is very similar. It easily follows also that |BM′ | ≤ |Σ|2.

The second crucial lemma proceeds in the other direction; it shows that (roughly
speaking) validity for a fragment in an ruS5(A)C-model can be matched to validity in a
corresponding universal S5(A)C-model. The key idea here is to approximate values in
the set T taken by formulas �ϕ and ♦ϕ by taking multiple copies of the set of worlds
and choosing elements in A that get closer and closer to the values in T from the left or
right as appropriate.

Lemma 3.19. Let M = 〈W,V, T 〉 be a Σ-normal ruS5(A)C-model over a finite set
P ⊆ {pi}i∈N for a fragment Σ ⊆ Fm�♦(LIL, P ). Then there exists a (countable) universal
S5(A)C-modelM′ = 〈W ′, V ′〉 such that W ⊆W ′ and V̄ (ϕ,w) = V̄ ′(ϕ,w) for all ϕ ∈ Σ
and w ∈W .

Proof. Let T = {0 = t0 < t1 < · · · < tN = 1}. For each ti ∈ R(A), we fix a strictly
descending sequence (rin)n∈N+ ⊆ A∩ (ti, ti+1) such that ti < rin < ti + 1

n for each n ∈ N+.
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Similarly, for each ti ∈ L(A), we fix a strictly ascending sequence (sin)n∈N+ ⊆ A∩ (ti−1, ti)
such that ti − 1

n < sin < ti for each n ∈ N+. For each 0 ≤ i < N , we write

[ti, ti+1] ∩BM = {ti = bi0 < bi1 < · · · < biki
< biki+1 = ti+1}.

Note that BM = ⋃
0≤i<N ([ti, ti+1] ∩BM).

We now define a map hn : BM → A for each n ∈ N, where

(i) h0 : BM → A is the identity embedding;

(ii) if n > 0 is odd, then hn(tN ) := tN and for each i ∈ {0, 1, . . . , N − 1}, we define
hn(ti) := ti and for each j ∈ {1, . . . , ki},

hn(bij) :=
{
rin+ki−j ti ∈ R(A);
bij ti 6∈ R(A);

(iii) if n > 0 is even, then hn(tN ) := tN and for each i ∈ {0, 1, . . . , N − 1}, we define
hn(ti) := ti, and for each j ∈ {1, . . . , ki},

hn(bij) :=
{
si+1
n+j ti+1 ∈ L(A);
bij ti+1 6∈ L(A).

Note that each hn : BM → A is a strictly order-preserving embedding that fixes T .
For each n ∈ N, let Wn denote a disjoint copy of W with elements wn ∈ Wn

corresponding to the element w ∈W , with W0 = W . Now for each pi ∈ P , w ∈W , and
n ∈ N, define

W ′ :=
⋃
n∈N

Wn and V ′(pi, wn) := hn(V (pi, w)).

Defining also V ′(pj , wn) := 0 for pj 6∈ P and n ∈ N, we obtain a universal S5(A)C-model
M′ := 〈W ′, V ′〉.

We prove by induction on formula length that V̄ ′(ϕ,wn) = hn(V̄ (ϕ,w)) for all ϕ ∈ Σ,
w ∈W , and n ∈ N. The base cases follow by definition and the fact that each hn fixes
0 and 1. The cases for propositional connectives follow from the fact that each hn is a
strictly order-preserving embedding fixing 0 and 1.

Now consider ϕ = �ψ ∈ Σ with V̄ (�ψ,w) = ti. Then V̄ (�ψ,w) ≤ V̄ (ψ, v) and
so hn(V̄ (�ψ,w)) ≤ hn(V̄ (ψ, v)) for all v ∈ W . We consider two cases. If ti 6∈ R(A),
then since M is Σ-normal, there exists v ∈ W such that V̄ (�ψ,w) = V̄ (ψ, v) and so
hn(V̄ (ψ, v)) = ti for all n ∈ N. If ti ∈ R(A), then i < N and there exists v ∈ W such
that V̄ (ψ, v) ∈ [ti, ti+1) ∩BM. Then by construction, hn(V̄ (ψ, v)) ∈ [ti, rin] ⊆ [ti, ti + 1

n)
for each odd n ∈ N. In both cases,

ti ≤
∧
{hn(V̄ (ψ, v)) | v ∈W ; n ∈ N}

≤
∧
{hn(V̄ (ψ, v)) | v ∈W ; n ∈ N odd}

= ti = V̄ (�ψ,w).
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Applying the induction hypothesis then gives

V̄ ′(�ψ,w) =
∧
{V̄ ′(ψ,wn) | w ∈W ; n ∈ N}

=
∧
{hn(V̄ (ψ,w)) | w ∈W ; n ∈ N}

= V̄ (�ψ,w).

The case for ϕ = ♦ψ ∈ Σ is similar. So we have V̄ ′(ϕ,wn) = hn(V̄ (ϕ,w)) for all
ϕ ∈ Σ, w ∈ W , and n ∈ N. Taking n = 0 then gives V̄ ′(ϕ,w) = V (ϕ,w) for all ϕ ∈ Σ
and w ∈W .

Let Pϕ denote the (finite) set of propositional variables occurring in a formula
ϕ ∈ Fm�♦(LIL), and let Σϕ denote the fragment of subformulas in ϕ. The following
theorem expresses the desired finite model property S5(A)C, recalling that an ruS5(A)C-
modelM over a finite set of variables not only has a finite set of worlds, but may be
considered a finite object if A is replaced by BM.

Theorem 3.20. Let A be a Gödel set. For any ϕ ∈ Fm�♦(LIL),

|=S5(A)C ϕ ⇐⇒ ϕ is valid in all Σϕ-normal ruS5(A)C-models over Pϕ.

Proof. If 6|=S5(A)C ϕ, then there exists a universal S5(A)C-modelM = 〈W,V 〉 and w ∈W
such that V̄ (ϕ,w) < 1. By Lemma 3.18, there exists a Σϕ-normal ruS5(A)C-model
M′ = 〈W ′, V ′, T 〉 over Pϕ such that V̄ ′(ϕ,w) = V̄ (ϕ,w) < 1.

Conversely, if V̄ (ϕ,w) < 1 for some w ∈W in a Σϕ-normal ruS5(A)C-model 〈W,V, T 〉
over Pϕ, then, by Lemma 3.19, there exists a universal S5(A)C-model 〈W ′, V ′〉 such that
V̄ ′(ϕ,w) = V̄ (ϕ,w) < 1.

It is worth noting that Theorem 3.20 also establishes an algebraic finite model property.
Recall the definition of a crisp monadic Gödel algebra from Example 2.7, and let cMGA
denote the variety of all crisp monadic Gödel algebras. Consider the functional crisp
monadic Gödel algebra 〈GW ;�,♦〉; that is, for each f ∈ [0, 1]W ,

�f(w) =
∧
{f(v) | v ∈W} and ♦f(w) =

∨
{f(v) | v ∈W}.

In light of Theorem 2.22, this functional crisp monadic Gödel algebra corresponds exactly
to the pair consisting of the Gödel algebra GW and the cMGA-relatively complete
subalgebra with universe {fr | r ∈ [0, 1]}, where for each r ∈ [0, 1], fr : W → [0, 1] is
the constant function mapping each w ∈ W to r. Since this functional crisp monadic
Gödel algebra together with an evaluation e : {pi}i∈N → GW corresponds exactly to the
universal S5(G)C-model 〈W,V 〉 where V (pi, w) := e(pi)(w) for all i ∈ N and w ∈W , it
follows that

|=S5(G)C ϕ ⇐⇒ 〈GW ;�,♦〉 |= > ≈ ϕ for all sets W.

Theorem 3.20 now establishes an algebraic finite model property for S5(A)C. Indeed, an
ruS5(G)C-modelM = 〈W,V, T 〉 corresponds to the pair consisting of the Gödel algebra
BW
M and the cMGA-relatively complete subalgebra with universe {fr | r ∈ T}, together

with an evaluation e : {pi}i∈N → BW
M where e(pi)(w) := V (pi, w) for all i ∈ N and w ∈W .

Corollary 3.21. The variety cMGA of crisp monadic Gödel algebras has the finite
model property, i.e., it is generated by its finite members.
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3.5 Decidability and Complexity
The finite model property established in Theorem 3.20 does not directly yield decidability
of S5(A)C-validity for an arbitrary Gödel set A. In order to check the normality condition
for an ruS5(A)C-model, we require some representation of the sets R(A) and L(A), which
in general, might not even be recursive. We resolve this issue here by specifying sufficient
conditions on a Gödel set A that ensure the decidability and even co-NP-completeness
of S5(A)C-validity, and hence also of S5(A)-validity and the corresponding one-variable
fragments of first-order Gödel logics and intermediate logics with or without constant
domains.

Observe first that to determine the S5(A)C-validity of a formula ϕ ∈ Fm�♦(LIL) it
suffices, by Lemmas 3.18 and 3.19, to check validity in Σϕ-normal ruS5(A)C-models
M = 〈W,V, T 〉 over Pϕ. Indeed, as remarked in the previous section, such anM may be
viewed as an ruS5(BM)C-model, where BM is finite. Let us also note that the property
of Σϕ-normality ofM is determined by the sets Tr := T ∩ R(A) and Tl := T ∩ L(A). It
therefore follows that the S5(A)C-validity of a formula ϕ ∈ Fm�♦(LIL) of length n is
determined by structures of the form

〈W,V,B,≤, 0, 1, T, Tr, Tl〉

satisfying the following conditions:

(i) |W |, |T |, |Tr|, |Tl| ≤ n and |B|, |V | ≤ n2;

(ii) {0, 1}, Tr, Tl ⊆ T ⊆ B and 0 6∈ Tl, 1 6∈ Tr;

(iii) ≤ ⊆ B2 is a linear order with top and bottom elements 1 and 0, respectively;

(iv) 〈W,V, T 〉 is an ruS5(BM)C-model over Pϕ such that for all �ψ,♦ψ ∈ Σϕ and
w ∈W ,

V̄ (�ψ,w) 6∈ Tr =⇒ V̄ (�ψ,w) = V̄ (ψ, v) for some v ∈W
V̄ (♦ψ,w) 6∈ Tl =⇒ V̄ (♦ψ,w) = V̄ (ψ, v) for some v ∈W ;

(v) the finite structure 〈B,≤, 0, 1, T, Tr, Tl〉 is consistent with A; that is, there exists
an order-embedding f : 〈B,≤, 0, 1〉 → 〈A,≤, 0, 1〉 preserving 0 and 1 such that

f [Tr] = f [T ] ∩ R(A) and f [Tl] = f [T ] ∩ L(A).

Theorem 3.22. Let A be a Gödel set. Then S5(A)C-validity and S5(A)-validity are
decidable (co-NP-complete) relative to the problem of checking the consistency of finite
structures 〈B,≤, 0, 1, T, Tr, Tl〉 with A.

Proof. Consider the following procedure to check the non-validity of a formula ϕ ∈
Fm�♦(LIL) of length n in S5(A)C, where we may assume that all sets involved are subsets
of {0, . . . , n2}:

(1) Guess a structure 〈W,V,B,≤, 0, 1, T, Tr, Tl〉 satisfying (i), (ii), (iii), and (iv);

(2) Check that V̄ (ϕ, i) < 1 for some i ∈W ;



3.5. Decidability and Complexity 77

(3) Check that 〈B,≤, 0, 1, T, Tr, Tl〉 is consistent with A.

It is easy to see that (1) and (2) are problems with complexity in NP, and hence that the
complexity of the full procedure is decidable (in NP) relative to step (3). Co-NP-hardness
follows from the fact that propositional classical logic CL can be interpreted in S5(A)C.
Finally, the same result for S5(A)-validity follows from the interpretation of S5(A) in
S5(A)C provided by Theorem 3.15.

Determining the consistency with respect to a Gödel set A of some structure
〈B,≤, 0, 1, T, Tr, Tl〉 is trivial for some Gödel sets. For example, such a structure is
consistent with A = G if and only if Tr = T \ {0} and Tl = T \ {1}, with A = G↑ if
and only if Tr = ∅ and Tl = {1}, and with A = G↓ if and only if Tr = {0} and Tl = ∅.
Determining consistency with respect to other Gödel sets may be more complicated,
however. The following observation simplifies the problem.

A finite structure 〈B,≤, 0, 1, T, Tr, Tl〉 satisfying (ii) and (iii) may be coded via a
finite word in the alphabet {a, t, r, l, d}, where each letter represents the “status” of an
element of B with respect to their membership in T , Tr, and Tl:

a for an element of B \ T ; r for an element of Tr \ Tl;
d for an element of Tr ∩ Tl; l for an element of Tl \ Tr.
t for an element of T \ (Tr ∪ Tl);

We say that a finite word in the alphabet {a, t, r, l, d} is consistent with a Gödel set A
if this is true of the corresponding finite structure. In light of Theorem 3.22, to determine
the decidability of S5(A)C-validity it suffices to determine all words consistent with the
Gödel set A. Note that these words necessarily start with t or r (the possible status
of 0) and end with t or l (the possible status of 1). For two Gödel sets A and B, we
write A ⊕ B to denote the ordered sum of A and B, identifying the top element of A
and bottom element of B, A` to denote the Gödel set A with the ordering reversed, and⊕
ω A to denote the (countably) infinite ordered sum of A with itself adding a new top

element. If additionally A is countable, we write A×lex B to denote the lexicographic
product of A and B. Through squeezing, stretching, and shifting, we can harmlessly
assume that the result of these operations are again Gödel sets.3 We state a number of
examples of Gödel sets and their class of consistent words in Table 3.1.

Note that all these classes of words consistent with the respective Gödel sets in
Table 3.1 form regular sets of words and are therefore decidable in linear time (for
background on regular languages, see, e.g., [85]). It is not difficult to check that this
property is preserved by the operations mentioned. That is, if the sets of words consistent
with Gödel sets A and B are regular, then so are the sets of words consistent with A⊕B,
A`, ⊕ω A, and, if A is countable, A×lex B. This gives a large family of Gödel sets with
a linearly decidable consistency problem. Note that A⊕G1 adds a new top element and
G1⊕A adds a new bottom element to A. Hence, the disjoint ordered sum can be defined
as A⊕d B := A⊕G1 ⊕B.
Corollary 3.23. S5(A)C and S5(A) are co-NP-complete for A = G, A = G↑, A = G↓,
A = Gn for any n ∈ N+, and all finite combinations of these Gödel sets by ⊕, (−)`, ⊕ω,
and ×lex if the first argument is countable.

3For example, we can formally define the ordered sum A ⊕ B as follows: let f : [0, 1] → [1, 2] and
g : [0, 2]→ [0, 1] be the maps such that x 7→ x+ 1 and x 7→ x

2 , respectively. Then A⊕B can be defined
as g[A ∪ f [B]].
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Gödel set A Words consistent with A
G {rwl | w ∈ {a, d}∗}
Gn (n ∈ N+) {twt | w ∈ {a, t}∗ of length at most n− 1}
G↑ {twl | w ∈ {a, t}∗}
G↓ {rwt | w ∈ {a, t}∗}
G↑ ⊕G↑ {twl | w ∈ {a, t}∗} ∪ {twlw′l | w,w′ ∈ {a, t}∗}
G↓ ⊕G↑ {twt | w ∈ {a, t}∗} ∪ {twdw′t | w,w′ ∈ {a, t}∗}⊕

ω G↑ {twl | w ∈ {a, t, l}∗}⊕
ω G↓ {rwl | w ∈ {a, t, r}∗}

G↑ ×lex G↑ {twl | w ∈ {a, t, l}∗}
G↓ ×lex G↑ {rwl | w ∈ {a, t}∗}

Table 3.1: Examples of Gödel sets and corresponding consistent words (i.e. struc-
tures).

In light of Theorem 3.3, this also yields decidability results for various one-variable
fragments CDIKL1(K) and IKL1(K). Note that Up(ω) and Up(ω`) can be viewed as the
Gödel sets G↓ and G↑, respectively, where ω and ω` should be read as the ordinal ω with
the usual and reverse ordering, respectively. In general, for any ordinal α, Up(α) and
Up(α`) have the same order structure as the ordinals (α+ 1)` and α+ 1, respectively.
Using Cantor’s normal form, any such successor ordinal 2 ≤ α+ 1 < ωω (and its reverse
(α + 1)`) can be viewed as a finite combination of G↑ by ⊕, (−)`, ⊕ω, and ×lex. For
example, for any n ≥ 2,

ω + n = G↑ ⊕Gn
ω2 + 1 =

⊕
ω
G↑

ω2 + ω + 1 = G↑ ×lex G↑ = (
⊕

ω
G↑)⊕G↑

ω3 + ω2 + 5 =
⊕

ω
(
⊕

ω
G↑)⊕G↑ ⊕G↑ ⊕G5.

Moreover, for any pair of linear frames K and L we have Up(K`) = Up(K)`,
Up(K ⊕d L) = Up(L) ⊕ Up(K), and if ⊕d

ω K denotes the (countably) infinite disjoint
ordered sum of K with itself, then Up(⊕d

ω K) = ⊕
ω Up(K). These observations together

with Theorem 3.3 yield the following decidability results.

Corollary 3.24. IKL1(K) and CDIKL1(K) are co-NP-complete if K is any finite combi-
nation of countable ordinals below ωω by (−)`, ⊕d, and ⊕d

ω.

This notion of consistency can also be used to compare logics.

Theorem 3.25. Let A1 and A2 be two Gödel sets. Suppose that any finite structure
〈B,≤, 0, 1, T, Tr, Tl〉 satisfying (ii) and (iii) is consistent with A1 if and only if it is
consistent with A2. Then for all ϕ ∈ Fm�♦(LIL),

|=S5(A1)C ϕ ⇐⇒ |=S5(A2)C ϕ.
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Proof. Suppose that 6|=S5(A1)C ϕ for some ϕ ∈ Fm�♦(LIL). Then by Lemma 3.18, there
exists a Σϕ-normal ruS5(A1)C-modelM = 〈W,V, T 〉 over Pϕ such that V̄ (ϕ,w) < 1 for
some w ∈W . Then the finite structure 〈BM,≤, 0, 1, T, T ∩R(A1), T ∩L(A1)〉 is consistent
with A1, so by assumption it is also consistent with A2. We may therefore assume that
BM ⊆ A2, T ∩R(A1) = T ∩R(A2), and T ∩ L(A1) = T ∩ L(A2). By Lemma 3.19,M can
be extended to a universal S5(A2)C-modelM′ = 〈W ′, V ′〉 such that V̄ ′(ϕ,w) < 1 and so
6|=S5(A2)C ϕ. The other direction follows by symmetry.

Even undecidable Gödel sets can have a decidable consistency problem. For example,
consider any countable limit ordinal α ≥ ω2. Then the words consistent with α+ 1 are
all twl with w ∈ {a, t, l}∗. The same holds for ω2 + 1, so by Theorem 3.25, we obtain for
any ϕ ∈ Fm�♦(LIL),

|=S5(α+1)C ϕ ⇐⇒ |=S5(ω2+1)C ϕ.

As undecidable countable ordinals α ≥ ω2 exist, such as the Church-Kleene ordinal, there
are logics S5(A)C (and corresponding one-variable fragments) for which A is undecidable,
but have a decidable validity problem. In contrast, none of the full first-order Gödel
logics determined by these ordinals are recursively enumerable [11].

Remark 3.26. In a currently unpublished manuscript, Caicedo has extended the results
in this section. He has provided a full classification of all logics S5(A)C, showing that
for any Gödel set A, S5(A)C-validity coincides with S5(B)C-validity for some countable
Gödel set B obtained as in Corollary 3.23. It then follows that the logics S5(A)C and
S5(A) are co-NP-complete for any Gödel set A and so also, by Theorems 3.3 and 3.12,
that the one-variable fragments CDIKL1(K) and IKL1(K) are co-NP-complete for any
countable linear frame K.





CHAPTER 4

Monadic Abelian Logic

In this chapter we focus on the one-variable fragment of first-order Abelian logic, defined
over the ordered additive group of the reals. Recall that (first-order) Abelian logic is
closely connected to (first-order) Łukasiewicz logic. Indeed, in Theorem 1.15 we gave
a translation (−)• such that for any α ∈ Fm∀∃(LŁ) that does not contain the unary
predicate P0,

|=∀∃Ł α ⇐⇒ |=∀∃R α•.

This translation restricts to the one-variable fragment. Under the modal translation, this
gives an interpretation of S5(Ł)C into S5(R)C.

One advantage of studying Abelian logic over Łukasiewicz logic is that in Abelian logic,
there exists a natural separation between the multiplicative (group) and additive (lattice)
fragments. Recall that the propositional language of Abelian logic LA contains binary
connectives ∧, ∨, and +, a unary connective −, and a constant 0̄. The multiplicative
fragment, where we consider the language Lm

A := LA \ {∧,∨}, is the topic of Section 4.2.
We propose an axiomatization for the one-variable fragment of this multiplicative first-
order Abelian logic or, equivalently, the multiplicative fragment of S5(R)C, and prove
completeness syntactically. We make use of a normal form theorem, as well as a Herbrand
theorem. The Herbrand theorem is proved in Section 4.1. In that section, we also
use the Herbrand theorem to prove decidability of (full) S5(R)C, and we prove a finite
model property. In Section 4.3 we further focus on the full logic S5(R)C. We propose an
axiomatization and prove completeness via algebraic means. To be precise, we consider
the variety of monadic abelian `-groups, as defined in Example 2.8, for which we prove a
functional representation theorem. This representation theorem is a strengthening of the
result from Corollary 2.45, making use of some additional properties of monadic abelian
`-groups. We then establish completeness with respect to the real-valued semantics via a
partial embedding lemma for linearly ordered abelian `-groups.

4.1 A Herbrand Theorem

In this section, we prove some general properties of first-order Abelian logic. In particular,
we prove a Herbrand theorem for first-order Abelian logic. This Herbrand Theorem
will prove useful in proving completeness for the multiplicative fragment of S5(R)C in
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Section 4.2. Moreover, we use it to prove decidability of the one-variable fragment of first-
order Abelian logic or, equivalently, of S5(R)C. To formulate the Herbrand Theorem, we
need to consider object constants. For the remainder of this chapter, we assume that the
set of terms contains, in addition to object variables x, y, z, . . . , object constants c, d, . . . .
We call a formula α ∈ Fm∀∃(LA) constant-free if α contains no such object constants, and
variable-free if α contains no variables. For convenience, we often write x̄ and c̄ to denote
an n-tuple of object variables or constants, respectively. Given tuples c̄ = c1, . . . , cn and
d̄ = d1, . . . , dm of object constants, we write d̄ ⊆ c̄ for {d1, . . . , dm} ⊆ {c1, . . . , cn}. We
can now prove the Herbrand Theorem.

Theorem 4.1. For any quantifier-free formula α ∈ Fm∀∃(LA) with free variables in
x̄ = x1, . . . , xm and constants in c̄ = c1, . . . , cn with n ∈ N+,

|=∀∃R (∃x1) . . . (∃xm)α(x̄) ⇐⇒ |=∀∃R
∨
{α(d̄) | d̄ ⊆ c̄}.

Proof. The right-to-left direction follows using the easily-verified fact that β(c) →
(∃y)β(y) is R-valid for any β ∈ Fm∀∃(LA) and constant c. For the converse, we suppose
contrapositively that ∨{α(d̄) | d̄ ⊆ c̄} is not R-valid. Then there exists an R-structure
M = 〈D, I〉 and M-evaluation v such that ‖α(d̄)‖RM,v < 0 for all d̄ ⊆ c̄ . Consider now
the R-structure M′ := 〈D′, I ′〉 and M′-evaluation v′ such that D′ := {v(c1), . . . , v(cn)},
I ′ maps each P to the restriction of I(P ) to D′, and v′ coincides on c1, . . . , cn with v.
Then

‖(∃x1) . . . (∃xm)α(x̄)‖RM′,v′ =
∨
{‖α(d̄)‖RM,v | d̄ ⊆ c̄} < 0.

So 6|=∀∃R (∃x1) . . . (∃xm)α(x̄).

Remark 4.2. We have shown this Herbrand theorem to hold for existential sentences
(∃x1) . . . (∃xm)α(x̄) that contain only object variables and object constants. First-order
Abelian logic with arbitrary function symbols does not admit a Herbrand theorem. It
does however, as in the case of first-order Łukasiewicz logic, admit an “approximate”
Herbrand theorem. For details on the Łukasiewicz case, see [10]. The proof in that paper
can be adapted to the first-order Abelian logic that allows arbitrary function symbols.
In fact, it also admits Skolemization.

For one-variable formulas, Theorem 4.1 can be used to prove decidability. To see
this, note firstly that R-validity is preserved by all quantifier shifts; that is, for all
α, β ∈ Fm∀∃(LA), variable x that does not occur free in β, and ? ∈ {∧,∨,+},

|=∀∃R (∀x)(α ? β)↔ ((∀x)α ? β) |=∀∃R (∃x)(α→ β)↔ ((∀x)α→ β)
|=∀∃R (∃x)(α ? β)↔ ((∃x)α ? β) |=∀∃R (∀x)(β → α)↔ (β → (∀x)α)
|=∀∃R (∀x)(α→ β)↔ ((∃x)α→ β) |=∀∃R (∃x)(β → α)↔ (β → (∃x)α),

where we recall that we write α→ β for β +−α and α↔ β for (α→ β)∧ (β → α). Now
consider any one-variable formula α ∈ Fm1(LA). First, we replace all free occurences of x
with a single new object constant c. Then we iteratively replace each positive occurrence
of a subformula (∀x)β(x) and negative occurrence of a subformula (∃x)β(x) with β(d) for
a new object constant d. Here, the occurrence of a subformula χ in α is called positive if
χ occurs under an even number of negations −, and negative otherwise. Note that in this
step, it is crucial that α is a one-variable formula. Indeed, for any subformula (∀x)β(x) or
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(∃x)β(x) of α, β(x) does not contain any free variable other than x. Finally, we rename
the bound variables and apply the quantifier shifts, pushing all remaining quantifiers
outwards. This yields a sentence χ = (∃x1) . . . (∃xm)χ′ such that χ′ is quantifier-free and

|=∀∃R α ⇐⇒ |=∀∃R χ.

Theorem 4.1 then tells us that α is R-valid if and only if a particular quantifier-free
sentence containing some object constants is R-valid. Checking the validity of such
quantifier-free sentences in R is decidable via standard linear programming arguments.
We obtain the following decidability result.

Corollary 4.3. The one-variable fragment of first-order Abelian logic, and hence also
S5(R)C, is decidable.

Finally, we show that, similar to S5(Ł)C but unlike S5(G)C, S5(R)C enjoys a finite
model property.

Proposition 4.4. For any ϕ ∈ Fm�♦(LA), |=S5(R)C ϕ if and only if ϕ is S5(R)C-valid
in all universal S5(R)C-models 〈W,V 〉 where W is finite.

Proof. It suffices to prove that for any universal S5(R)C-model 〈W,V 〉, finite set of
formulas Σ, finite set X ⊆W and ε > 0, there exists a universal S5(R)C-model 〈W ′, V ′〉
such that X ⊆W ′ ⊆W , W ′ is finite and for all ϕ ∈ Σ, w ∈W ′,

∣∣∣V̄ ′(ϕ,w)− V̄ (ϕ,w)
∣∣∣ < ε.

Indeed, if some ϕ ∈ Fm�♦(LA) is not S5(R)C-valid, there exists a universal S5(R)C-model
〈W,V 〉 and w ∈W such that V̄ (ϕ,w) < 0. We can then apply the claim with Σ = {ϕ},
X = {w}, and ε =

∣∣∣V̄ (ϕ,w)
∣∣∣. We prove the claim by induction on the sum of the length

of formulas in Σ.
For the base case, Σ contains only propositional variables or 0̄. We can then define

the universal S5(R)C-model 〈X,V ′〉 where V ′(pi, w) := V (pi, w) for all i ∈ N, w ∈ X. It
follows directly that V̄ (ϕ,w) = V̄ ′(ϕ,w) for all ϕ ∈ Σ, w ∈ X.

Now suppose that Σ = Σ′′ ∪ {ϕ + ψ}. We apply the induction hypothesis to
Σ′ := Σ′′ ∪ {ϕ,ψ}, X and ε/2 to obtain a universal S5(R)C-model 〈W ′, V ′〉 such that
X ⊆W ′ and

∣∣∣V̄ ′(χ,w)− V̄ (χ,w)
∣∣∣ < ε/2 for all χ ∈ Σ′, w ∈W ′. Then∣∣∣V̄ ′(ϕ+ ψ,w)− V̄ (ϕ+ ψ,w)
∣∣∣ =

∣∣∣V̄ ′(ϕ,w)− V̄ (ϕ,w) + V̄ ′(ψ,w)− V̄ (ψ,w)
∣∣∣

≤
∣∣∣V̄ ′(ϕ,w)− V̄ (ϕ,w)

∣∣∣+ ∣∣∣V̄ ′(ψ,w)− V̄ (ψ,w)
∣∣∣

<
ε

2 + ε

2 = ε.

The case for −ϕ is similar. Suppose that Σ = Σ′′ ∪ {ϕ ∧ ψ}. We apply the induction
hypothesis to Σ′ := Σ′′∪{ϕ,ψ}, X and ε to obtain an appropriate universal S5(R)C-model
〈W ′, V ′〉. Consider w ∈W ′ and assume without loss of generality that V̄ (ϕ,w) ≤ V̄ (ψ,w).
If V̄ ′(ϕ,w) ≤ V̄ ′(ψ,w), then∣∣∣V̄ ′(ϕ ∧ ψ,w)− V̄ (ϕ ∧ ψ,w)

∣∣∣ =
∣∣∣V̄ ′(ϕ,w)− V̄ (ϕ,w)

∣∣∣ < ε.

If V̄ ′(ψ,w) ≤ V̄ ′(ϕ,w), it follows that
∣∣∣V̄ ′(ψ,w)− V̄ (ϕ,w)

∣∣∣ < ε from V̄ (ϕ,w) ≤ V̄ (ψ,w),∣∣∣V̄ ′(ϕ,w)− V̄ (ϕ,w)
∣∣∣ < ε, and

∣∣∣V̄ ′(ψ,w)− V̄ (ψ,w)
∣∣∣ < ε.
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Finally, we can assume that Σ consists only of formulas �ϕ1, . . . ,�ϕn,♦ψ1, . . . ,♦ψm
and propositional variables. For each �ϕi and ♦ψj , we pick vi ∈ W and uj ∈ W such
that ∣∣∣V̄ (�ϕi, vi)− V̄ (ϕ, vi)

∣∣∣ < ε

4 and
∣∣∣V̄ (♦ψj , uj)− V̄ (ψj , uj

∣∣∣ < ε

4 ,

respectively. We then apply the induction hypothesis to

Σ′ := (Σ \ {�ϕ1, . . . ,�ϕn,♦ψ1, . . . ,♦ψm}) ∪ {ϕ1, . . . , ϕn, ψ1, . . . , ψm},

X ′ := X ∪ {v1, . . . , vn, u1, . . . , um} and ε/4 to obtain an appropriate S5(R)C-model
〈W ′, V ′〉. Since W ′ is finite, there exists v′i ∈ W ′ such that V̄ ′(�ϕi, v′i) = V̄ ′(ϕi, v′i)
for each i ≤ n, and u′j ∈ W ′ such that V̄ ′(♦ψj , u′j) = V̄ ′(ψj , u′j) for each j ≤ m.
Therefore, for each i ≤ n and w ∈W ′,∣∣∣V̄ ′(�ϕi, w)− V̄ (�ϕi, w)

∣∣∣ =
∣∣∣V̄ ′(ϕi, v′i)− V̄ (�ϕi, w)

∣∣∣
≤
∣∣∣V̄ ′(ϕi, v′i)− V̄ (ϕi, v′i)

∣∣∣+ ∣∣∣V̄ (ϕi, v′i)− V̄ (�ϕ,w)
∣∣∣

<
ε

4 +
∣∣∣V̄ (ϕi, v′i)− V̄ (�ϕ,w)

∣∣∣
≤ ε

4 +
∣∣∣V̄ (ϕi, vi)− V̄ (�ϕ,w)

∣∣∣+ ∣∣∣V̄ (ϕi, v′i)− V̄ (ϕi, vi)
∣∣∣

<
ε

2 +
∣∣∣V̄ (ϕi, v′i)− V̄ (ϕi, vi)

∣∣∣ .
To finish the approximation, we suppose for a contradiction that

∣∣∣V̄ (ϕi, v′i)− V̄ (ϕi, vi)
∣∣∣ ≥

ε/2. Note that by definition we have V̄ (�ϕi, w) ≤ V̄ (ϕi, v′i) and V̄ (�ϕi, w) ≤ V̄ (ϕi, vi), so
the assumption and

∣∣∣V̄ (�ϕi, w)− V̄ (ϕi, vi)
∣∣∣ < ε/4 yields that V̄ (ϕi, vi) < V̄ (ϕi, v′i). There-

fore, as
∣∣∣V̄ ′(ϕi, vi)− V̄ (ϕi, vi)

∣∣∣ < ε/4,
∣∣∣V̄ ′(ϕi, v′i)− V̄ (ϕi, v′i)

∣∣∣ < ε/4 and our assumption,
we obtain V̄ ′(ϕi, vi) < V̄ ′(ϕi, v′i) = V̄ ′(�ϕi, w), a contradiction. It follows that

∣∣∣V̄ ′(�ϕi, w)− V̄ (�ϕi, w)
∣∣∣ < ε

2 +
∣∣∣V̄ (ϕi, v′i)− V̄ (ϕi, vi)

∣∣∣
<
ε

2 + ε

2 = ε.

Similarly, we can show that
∣∣∣V̄ ′(♦ψj , w)− V̄ (♦ψj , w)

∣∣∣ < ε for any j ≤ m, w ∈W .

Although this finite model property does not (directly) provide an alternative proof
of decidability, it does show that to determine S5(R)C-validity, it suffices to consider
S5(R)C-models 〈W,V 〉 that are “witnessed”. That is, for each ϕ ∈ Fm�♦(LA),

V̄ (�ϕ,w) = min{V̄ (ϕ, v) | v ∈W}
V̄ (♦ϕ,w) = max{V̄ (ϕ, v) | v ∈W}.

In Section 4.3, we provide an algebraic proof of this fact.
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4.2 The Multiplicative Fragment
In this section, we focus on the multiplicative fragment of first-order Abelian logic, that is,
the fragment concerned with formulas not containing the lattice connectives ∧ and ∨.1 We
let Lm

A denote the language LA \ {∧,∨}. The goal of this section is to prove completeness
for the multiplicative fragment of the one-variable fragment of first-order Abelian logic
or, equivalently, the multiplicative fragment of S5(R)C. Note that such a multiplicative
fragment has been considered for a weaker modal logic in [61]. To be more precise, in [61]
the authors consider a modal logic K(R) defined by a real-valued Kripke semantics that
is similar to S5(R)C-models, but where the relation R is a classical two-valued relation,
without any additional properties. Completeness for the multiplicative fragment of K(R)
is proved in [61], but completeness for the full logic is still an open problem. In the next
section, we prove completeness for the (full) stronger logic S5(R)C.

Let us first consider the proof system HAm by removing the axiom and rule schema
for ∧ and ∨ from the system HA presented in Figure 1.3. This proof system is complete
with respective to the multiplicative fragment of propositional Abelian logic defined as
Am = 〈Lm

A , 〈〈R,+,−, 0〉,R≥0〉〉. A proof can be found in, e.g., [43].

Proposition 4.5 ([43]). For all ϕ ∈ Fm(Lm
A ),

`HAm ϕ ⇐⇒ |=Am ϕ.

We note the following useful property of Am.

Lemma 4.6. Let ϕ ∈ Fm(Lm
A ). Then ϕ is Am-valid if and only if V̄ (ϕ) = 0 for all

Am-valuations V .

Proof. The right-to-left direction follows directly. For the other direction, suppose that
ϕ is Am-valid and, for a contradiction, assume that V̄ (ϕ) > 0 for some Am-valuation V .
Then define the Am-valuation V ′ with V ′(pi) := −V (pi) for each i ∈ N. A straightforward
induction on the length of ϕ then shows that V̄ ′(ϕ) = −V̄ (ϕ) < 0, contradicting the
Am-validity of ϕ.

This result extends to quantifier-free formulas α ∈ Fm∀∃(Lm
A ) and formulas ϕ ∈

Fm�♦(Lm
A ) that contain no modalities. The absence of the lattice connectives as well

as the quantifiers and modalities, respectively, is essential here. Indeed, consider the
S5(R)C-valid formulas (p1 ∧ p2)→ p1 and �p1 → p1. Now consider any S5(R)C-model
〈W,V 〉 where W = {w1, w2}, V (p1, w1) = 2, and V (p2, w1) = V (p1, w2) = 1. It follows
that V̄ ((p1 ∧ p2)→ p1, w1) = V̄ (�p1 → p1, w1) = 1 > 0.

Now let S5(Am) denote the proof system that extends HAm with the modal axiom
and rule schema from Figure 4.1, as well the as rule schema

nϕ
ϕ (conn) (n ≥ 2).

Soundness of this system is easy to check.

Lemma 4.7. Let ϕ ∈ Fm�♦(Lm
A ). If `S5(Am) ϕ, then |=S5(R)C ϕ.

1Note that we follow here standard terminology from the linear and substructural logic literature in
referring to the multiplicative fragment of Abelian logic, even though the group multiplication for the real
numbers is in fact addition.
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(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)
(T) �ϕ→ ϕ
(5) ♦ϕ→ �♦ϕ

(M) �(ϕ+ ϕ)→ (�ϕ+�ϕ)
ϕ

�ϕ
(nec)

Figure 4.1: Modal Axiom and Rule Schema

To prove completeness, we require some additional properties. First, we show that
occurrences of � and ♦ can be shifted inwards, showing that each formula ϕ ∈ Fm�♦(Lm

A )
is provably equivalent in S5(Am) to a formula without nested modalities. For ϕ,ψ ∈
Fm�♦(Lm

A ), let us write `S5(Am) ϕ ≡ ψ to denote that `S5(Am) ϕ→ ψ and `S5(Am) ψ → ϕ.

Lemma 4.8. For any ϕ,ψ ∈ Fm�♦(Lm
A ),

(i) `S5(Am) �(ϕ+�ψ) ≡ �ϕ+�ψ

(ii) `S5(Am) �(ϕ+ ♦ψ) ≡ �ϕ+ ♦ψ

(iii) `S5(Am) ��ϕ ≡ �ϕ

(iv) `S5(Am) �♦ϕ ≡ ♦ϕ

(v) `S5(Am) �nϕ ≡ n�ϕ for all n ∈ N

(vi) `S5(Am) �(ϕ+ ψ)→ (�ϕ+ ♦ψ)

(vii) `S5(Am) ♦(ϕ+ ψ)→ (♦ϕ+ ♦ψ).

Proof. Derivations for (i)–(iv) are obtained, similarly to other “S5” logics, using the
modal axiom schema (K), (T), and (5), and are omitted here. For (v), we note first
that n�ϕ→ �nϕ is derivable in S5(Am) for n ∈ N using (nec) and (K) together with
the axioms of HAm. For the converse, observe that �(2k)ϕ → (2k)�ϕ is derivable
in S5(Am) for k ∈ N using repeated applications of (M), (mp), and the axiom (+1).
But then also for any n ≥ 1, we can choose k ∈ N such that 2k ≥ n and observe that
(�nϕ+ (2k − n)�ϕ)→ �(2k)ϕ and hence (�nϕ+ (2k − n)�ϕ)→ (2k)�ϕ are derivable
in S5(Am). Since (((2k − n)�ϕ) → ((2k − n)�ϕ)) → 0̄ is derivable in S5(Am), also
�nϕ → n�ϕ is derivable in S5(Am) as required. Finally, for the case n = 0 just note
that �0̄→ 0̄ is an instance of (T).

A derivation for (vi) is obtained using (K) and the axioms of HAm. For a derivation
of (vii), note that since ϕ → ♦ϕ is S5(Am)-derivable, so is (ϕ + ψ) → (♦ϕ + ♦ψ). It
follows using (nec) and (K) that ♦(ϕ+ψ)→ ♦(♦ϕ+♦ψ) is S5(Am)-derivable. Using that
`S5(Am) ♦(♦ϕ+ ♦ψ) ≡ ♦ϕ+ ♦ψ, we obtain a derivation for ♦(ϕ+ ψ)→ (♦ϕ+ ♦ψ).

Let us write ∑n
i=1 ϕi to denote ϕ1 + . . . + ϕn for any ϕ1, . . . , ϕn ∈ Fm�♦(LA). An

easy induction on formula length using Lemma 4.8 (i)–(iv) yields the following normal
form property for formulas in Fm�♦(Lm

A ).
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Lemma 4.9. Let ϕ ∈ Fm�♦(Lm
A ). Then there exist formulas ϕ0, . . . , ϕn, ψ1, . . . , ψm ∈

Fm(Lm
A ) such that

`S5(Am) ϕ ≡ ϕ0 +
n∑
i=1
�ϕi +

m∑
j=1
♦ψj .

Remark 4.10. It is not possible to obtain a similar normal form property for all
ϕ ∈ Fm�♦(LA) simply by shifting boxes; e.g., �(p1 ∨ (p2 +�p3)) is not equivalent to a
formula that has no nested modalities.

Secondly, we make use of a well-known duality principle for linear programming stating
that either one or another linear system has a solution, but not both (see, e.g., [58, p.
136]). More precisely, we use a result known as Gordan’s Theorem, that states that for
any M ∈ Zm×n, either yTM < 0 for some y ∈ Rm or Mx = 0 for some x ∈ Nn\{0}. The
following lemma is a consequence of this principle.

Lemma 4.11. For any formulas α1, . . . , αn ∈ Fm∀∃(Lm
A ) that are quantifier- and variable-

free,

|=∀∃R α1 ∨ · · · ∨ αn ⇐⇒ |=∀∃R
n∑
j=1

λjαj for some λ1, . . . , λn ∈ N that are not all 0.

Proof. Let β1, . . . , βm denote all predicates Pi(c) occurring in α1, . . . , αn. We can assume
without loss of generality that each αj is of the form ∑m

i=1mijβj , where M = (mij) ∈
Zm×n. It can now be checked that α1 ∨ · · · ∨ αn is not R-valid if and only if there
exists y ∈ Rm such that yTM < 0, by, for each i = 1, . . . ,m, identifying the coordinates
yi of y with ‖βi‖RM,v for an R-structure M and M-evaluation v in which α1 ∨ · · · ∨ αn
fails. Hence, by the duality principle mentioned above, the R-validity of α1 ∨ · · · ∨ αn is
equivalent to Mx = 0 for some x ∈ Nn \ {0}. The latter condition is in turn equivalent
to the existence of x ∈ Nn \ {0} such that xTMT y = 0 for all y ∈ Rm. By construction of
M , this happens if and only if there exists x ∈ Nn \ {0} such that ∑n

j=1 xj‖αj‖RM,v = 0
for all R-structures M and M-evaluations v, which finally corresponds to the existence
of x1, . . . , xn ∈ N not all zero such that ∑n

j=1 xjαj is R-valid.

We now have all the tools necessary to prove the completeness theorem for S5(Am).

Theorem 4.12. For all ϕ ∈ Fm�♦(Lm
A ),

`S5(Am) ϕ ⇐⇒ |=S5(R)C ϕ.

Proof. The left-to-right direction follows from Lemma 4.7. For the converse, suppose that
ϕ is S5(R)C-valid. By Lemma 4.9, there exists formulas ϕ0, . . . , ϕn, ψ1, . . . , ψm ∈ Fm(Lm

A )
such that `S5(Am) ϕ ≡ ψ, where

ψ = ϕ0 +
n∑
i=1
�ϕi +

m∑
j=1
♦ψj .

To show that `S5(Am) ϕ, it now suffices to show that `S5(Am) ψ. As ϕ is S5(R)C-valid, it
follows that under the first-order translation,

|=∀∃R ϕ◦0(x) +
n∑
i=1

(∀x)ϕ◦i (x) +
m∑
j=1

(∃x)ψ◦j (x).
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Let us now leave the one-variable setting, and rename each variable in ψ◦ with a fresh
variable, giving

|=∀∃R ϕ◦0(x0) +
n∑
i=1

(∀xi)ϕ◦i (xi) +
m∑
j=1

(∃xn+j)ψ◦j (xn+j).

We then use the quantifier shifts mentioned in Section 4.1 to bring the formula in prenex
form, and quantify over x0, giving

|=∀∃R (∀x0) . . . (∀xn)(∃xn+1) . . . (∃xn+m)(
n∑
i=0

ϕ◦i (xi) +
m∑
j=1

ψ◦j (xn+j)).

It follows that for object constants c̄ = c0, . . . , cn,

|=∀∃R (∃xn+1) . . . (∃xn+m)(
n∑
i=0

ϕ◦i (ci) +
m∑
j=1

ψ◦j (xn+j)).

We can now apply the Herbrand Theorem (Theorem 4.1) to deduce that

|=∀∃R
∨
{
n∑
i=0

ϕ◦i (ci) +
m∑
j=1

ψ◦j (dj) | {d1, . . . , dm} ⊆ {c0, . . . , cn}}.

The duality principle from Lemma 4.11 now gives us λd̄ ∈ N for each d̄ ⊆ c̄ that are not
all zero such that

|=∀∃R
∑
d̄⊆c̄

λd̄
( n∑
i=0

ϕ◦i (ci) +
m∑
j=1

ψ◦j (dj)
)
.

Rewriting this, with µ := ∑
d̄⊆c̄ λd̄, we obtain

|=∀∃R
n∑
i=0

µϕ◦i (ci) +
∑
d̄⊆c̄

λd̄

m∑
j=1

ψ◦j (dj).

Regrouping the second part of this formula gives

|=∀∃R
n∑
i=0

µϕ◦i (ci) +
n∑
i=0

m∑
j=1

λij ψ
◦
j (cj),

where λij ∈ N for i = 0, . . . , n, j = 1, . . . ,m, and ∑n
i=0 λij = µ for each j = 1, . . . ,m.

Another reformulation then gives

|=∀∃R
n∑
i=0

(
µϕ◦i (ci) +

m∑
j=1

λij ψ
◦
j (ci)

)
.

Since the object constants in each member of the summand are distinct, it follows that
for each i = 0, . . . , n,

|=∀∃R µϕ◦i (ci) +
m∑
j=1

λij ψ
◦
j (ci),
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and hence
|=∀∃R µϕ◦i (x) +

m∑
j=1

λij ψ
◦
j (x).

Moving back to the modal setting, we obtain that for all i = 0, . . . , n,

|=S5(R)C µϕi +
m∑
j=1

λij ψj .

Since these formulas do not contain any modalities, Proposition 4.5 tells us that for each
i = 0, . . . , n,

`S5(Am) µϕi +
m∑
j=1

λij ψj .

We can now apply (nec) and use formulas (vi) and (vii) from Lemma 4.8 to obtain for all
i = 1, . . . , n,

`S5(Am) µϕ0 +
m∑
j=1

λ0j ♦ψj and `S5(Am) µ�ϕi +
m∑
j=1

λij ♦ψj ,

where we also used (T) in the case i = 0. Combining these results using the axiom
schema (+1) gives

`S5(Am) µϕ0 +
n∑
i=1

µ�ϕi +
n∑
i=0

m∑
j=1

λij ♦ψj .

We recall that µ = ∑n
i=0 λij for each j = 1, . . . ,m. Using this fact and some rewriting

gives

`S5(Am) µϕ0 + µ
n∑
i=1
�ϕi + µ

m∑
j=1
♦ψj .

An application of (conµ) then finally shows that `S5(Am) ψ, as required.

Let us finally note that, as for first-order classical logic, the monadic fragment of
multiplicative first-order Abelian logic coincides (up to equivalence of sentences) with
its one-variable fragment. Indeed, consider any sentence α ∈ Fm∀∃(Lm

A ). We apply the
R-valid quantifier shifts (∀x)(α1+α2)↔ ((∀x)α1+α2) and (∃x)(α1+α2)↔ ((∃x)α1+α2)
(where x is not free in α2) repeatedly, pushing quantifiers inwards. We then obtain a
sentence β ∈ Fm∀∃(Lm

A ) such that |=∀∃R α ↔ β, and no subformula (∀x)β′ or (∃x)β′
contains a free variable different to x. We can hence rename all variables to a single
variable to obtain a sentence χ ∈ Fm1(Lm

A ) such that |=∀∃R α ↔ χ. Since S5(R)C

is decidable by Corollary 4.3, multiplicative first-order Abelian logic provides a first
interesting example (as far as we know) of a first-order infinite-valued logic with a
decidable monadic fragment.

4.3 The Full One-Variable Fragment
We will now consider the one-variable fragment of first-order Abelian logic, i.e., the
logic S5(R)C, over the full language, including the lattice operations. The goal of this
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section is to prove completeness of a proof system for S5(R)C. More precisely, we show
completeness of S5(A), which denotes the proof system extending HA with the modal
axiom and rule schema from Figure 4.1 together with the axiom schema

(∧�) (�ϕ ∧�ψ)→ �(ϕ ∧ ψ)
(∧♦) (♦ϕ ∧ ♦ψ)→ ♦(ϕ ∧ ♦ψ).

Completeness will be established through algebraic methods, following a method similar
to that of Section 2.4. In particular, we strengthen the generation result of the variety of
monadic abelian `-groups from Corollary 2.45, and then use a finite embedding result of
abelian `-groups into R to obtain the desired completeness.

To express these results, we first require the necessary terminology from the theory
of abelian `-groups. For the details, we refer to, e.g., [1]. An abelian `-group A is called
an abelian o-group if the lattice order of A is linear. A non-empty subset B ⊆ A that is
closed under the operations of A forms an `-subgroup B of A, where B is called an `-ideal
of A if it is also convex. For an abelian `-group, its `-ideals play the same role as the
convex f -free subuniverses do for an FLe-algebra; that is, the lattice of congruences of A
is isomorphic to the lattice of its `-ideals, where both lattices are ordered by inclusion.2
Using this isomorphism, we can consider the quotient A/K of A by an `-ideal K. We
can represent this quotient by the right cosets of K in A. Indeed, the set of right cosets
of K in A forms an abelian `-group A/K with lattice order K + a ≤ K + b :⇔ a ≤ b+ c
for some c ∈ K. An `-ideal K of A is called prime if A/K is linearly ordered. For an
element a ∈ A and `-ideal K of A, we write K(a) to denote the smallest `-ideal of A
containing K ∪ {a}. Some useful properties of `-ideals are summarized in the following
lemma. We define |b| := b ∨ −b for any b ∈ A.

Lemma 4.13 (cf. [1, Proposition 1.2.3, Theorem 1.2.10]). Let A be an abelian `-group,
K an `-ideal of A, and a, b ∈ A. Then:

(1) K(a) = {b ∈ A | |b| ≤ |k|+ n |a| for some k ∈ K,n ∈ N};

(2) if a, b ≥ 0, then K(a) ∩K(b) = K(a ∧ b);

(3) K is prime if and only if for each a, b ∈ A such that a ∧ b = 0, a ∈ K or b ∈ K.

Note that for any abelian `-group A and non-empty set W , the algebra AW whose
universe consists of all functions f : W → A with operations defined pointwise is again
an abelian `-group. For our purposes, we are particularly interested in the case where A
is an abelian o-group. We generalize the notion of a bounded function to this setting: a
function f : W → A is called bounded if there exists a ∈ A such that 0 ≤ a and |f(w)| ≤ a
for all w ∈W . The set of bounded functions from W to A forms an `-subgroup B(W,A)
of AW .

Now let us recall the definition of a monadic abelian `-group from Example 2.8.

Definition 4.14. A monadic abelian `-group is an algebra 〈A,∧,∨,+,−, 0,�〉, also
written 〈A;�〉, such that A = 〈A,+,−, 0〉 is an abelian `-group with defined operator

2In fact, using the term equivalence given in Example 1.7, the universe of an `-ideal of an abelian
`-group A is a convex 0-free subuniverse of the term-equivalent FLe-algebra, and vice versa.
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♦a := −�−a satisfying for all a, b ∈ A,

(M1) �(a+ b) ≤ �a+ ♦b (M4) �(a ∧ b) = �a ∧�b
(M2) �a ≤ a (M5) �(a ∨�b) = �a ∨�b
(M3) ♦a = �♦a (M6) �(a+ a) = �a+�a.

Remark 4.15. In [53], Cimadamore and Díaz Varela introduced a monadic version of
abelian `-groups with a distinguished element, playing the role of a strong unit, proving
a categorical equivalence with monadic MV-algebras. Their notion of monadic abelian
`-groups coincides with our notion as defined in this thesis, if we discard the distinguished
element. To state this formally, let us recall the definition as found in [53]. A CD-monadic
`-group is an algebra A = 〈A,∧,∨,+,−, 0, u,♦〉 such that 〈A,∧,∨,+,−, 0〉 is an abelian
`-group, u > 0 is a fixed element of A, and ♦ : A→ A is a unary operation satisfying for
all a, b, c ∈ A with c ≥ 0,

(G1) a ≤ ♦a (G6) ♦(♦a+ ♦b) = ♦a+ ♦b
(G2) ♦(a ∨ b) = ♦a ∨ ♦b (G7) ♦(c ∧ u) = ♦c ∧ u
(G3) ♦0 = 0 (G8) ♦(c+ c) = ♦c+ ♦c
(G4) ♦u = u (G9) ♦(a ∧ 0) = ♦a ∧ 0.
(G5) ♦(−♦a) = −♦a

It is not hard to show that for any monadic abelian `-group 〈A;�〉, 〈A,∧,∨,+,−, 0, 0,♦〉 is
a CD-monadic `-group. Conversely, for a CD-monadic `-group A, we leave it to the reader
to verify that 〈A,∧,∨,+,−, 0,�〉, where �a := −♦−a for all a ∈ A, satisfies conditions
(M1)–(M4). Proofs for conditions (M5) and (M6) can be found in [127, Proposition 2.1].
For completeness, we recount them here. We require two additional useful properties for
CD-monadic `-groups proved in [53]: for all a, b ∈ A,

(G13) ♦(a− ♦b) = ♦a− ♦b
(G13+) ♦(a+ ♦b) = ♦a+ ♦b.

To prove that (M5) holds, note that a ∧ ♦b = ((a − ♦b) ∧ 0) + ♦b. It follows by (G9),
(G13), and (G13+), that

♦(a ∧ ♦b) = ♦(((a− ♦b) ∧ 0) + ♦b) = ♦((a− ♦b) ∧ 0) + ♦b
= (♦(a− ♦b) ∧ 0) + ♦b
= ((♦a− ♦b) ∧ 0) + ♦b
= ♦a ∧ ♦b.

For (M6), observe that −a ≤ −a∨ 0 ≤ ♦(−a∨ 0), so 0 ≤ a+♦(−a∨ 0). Using (G6) and
(G13+), we obtain

♦(2(a+ ♦(−a ∨ 0))) = ♦(2a+ 2♦(−a ∨ 0))
= ♦(2a+ ♦2♦(−a ∨ 0))
= ♦2a+ ♦2♦(−a ∨ 0)
= ♦2a+ 2♦(−a ∨ 0).

Again using (G13+), we obtain

2♦(a+ ♦(−a ∨ 0)) = 2(♦a+ ♦(−a ∨ 0)) = 2♦a+ 2♦(−a ∨ 0).
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Finally, condition (G8) implies that ♦(2(a+ ♦(−a ∨ 0))) = 2♦(a+ ♦(−a ∨ 0)). It follows
that ♦2a+ 2♦(−a ∨ 0) = 2♦a+ 2♦(−a ∨ 0), and so ♦2a = 2♦a as required.

A standard Lindenbaum-Tarski argument, which we will not recount here, can be
used to prove that S5(A) is complete with respect to the varietyM`G of monadic abelian
`-groups.

Lemma 4.16. For all ϕ ∈ Fm�♦(LA),

`S5(A) ϕ ⇐⇒ M`G |= 0̄ ≤ ϕ.

Similar to the terminology adopted for monadic FLe-algebras in Chapter 2, we say
that a monadic abelian `-group 〈A;�〉 is functional if the term-equivalent monadic
FLe-algebra is functional. That is, A is the subalgebra of BW for some abelian `-group
B and non-empty set W , and for each f ∈ A, w ∈W , ∧{f(w) | w ∈W} exists in A and

�f(w) =
∧
{f(w) | w ∈W}.

Note that then, each f ∈ A is bounded and we can assume A to be a subalgebra of
B(W,B). We are particularly interested in the case when B = R, in which case we
call A standard. If �f(w) = min{f(w) | w ∈ W} for each f ∈ A, w ∈ W , we call A
witnessed. We say that 〈A;�〉 is chain-monadic if �A is an abelian o-group.

The remainder of this section is dedicated to proving thatM`G is generated by its
witnessed standard members. Recall that we have already obtained a weaker generation
result for the varietyM`G in Corollary 2.45. We first strengthen this generation result
by showing thatM`G is generated by all witnessed functional chain-monadic abelian
`-groups, and then we use a finite embedding theorem of abelian o-groups into the reals
to obtain the desired result. We will follow largely the same strategy as outlined in
Section 2.4, using some additional properties of monadic abelian `-groups.

Before we get to this stronger generation result, let us first recount some of the
results from Chapter 2 using the terminology of monadic abelian `-groups. Recall
from Example 2.8 that monadic abelian `-groups are term-equivalent to monadic FLe-
algebras 〈A;�,♦〉 such that A is term-equivalent to an abelian `-group and the identities
�(x ∨�y) ≈ �x ∨�y) and ♦(x · x) ≈ ♦x · ♦x are satisfied. The following result is then
an immediate corollary of Theorem 2.22.

Corollary 4.17. There exists a one-to-one correspondence between

(1) monadic abelian `-groups 〈A;�〉;

(2) pairs 〈A,A0〉 of abelian `-groups such that A0 is an M`G-relatively complete
`-subgroup of A,

witnessed by the maps 〈A;�〉 7→ 〈A,�A〉 and 〈A,A0〉 7→ 〈A;�0〉.

Recall that an abelian `-group A0 is anM`G-relatively complete `-subgroup of an
abelian `-group A if A0 is a relatively complete `-subgroup of A and for all a, b ∈ A,

�0(a ∨�0b) = �0a ∨�0b and �0(a+ a) = �0a+�0a.

We can also give a more concrete characterization, as done in the following lemma. Note
that this result resembles the definition of m-relative completeness for MV-algebras (see
Example 2.23).
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Lemma 4.18. Let A be an abelian `-group and B a relatively complete `-subgroup of A.
Then B isM`G-relatively complete if and only if for all a ∈ A, c1, c2 ∈ A0, the following
conditions hold:

(1) if c1 ≤ c2 ∨ a, there exists c3 ∈ A0 such that c3 ≤ a and c1 ≤ c2 ∨ c3;

(2) if c1 ≤ a+ a, there exists c3 ∈ A0 such that c3 ≤ a and c1 ≤ c3 + c3.

Proof. We show first that (1) is equivalent to �0(a ∨�0b) = �0a ∨�0b for a, b ∈ A. For
one direction, suppose that (1) holds. Consider any a, b ∈ A. Then �0a ∨�0b ≤ a ∨�0b
and so �0a∨�0b = �0(�0a∨�0b) ≤ �0(a∨�0b). To prove that �0(a∨�0b) ≤ �0a∨�0b,
consider any c1 ∈ A0 such that c1 ≤ a ∨ �0b. By (1), we obtain c3 ∈ A0 such that
c1 ≤ c3∨�0b and c3 ≤ a. It then follows that c3 ≤ �0a. Hence, c1 ≤ c3∨�0b ≤ �0a∨�0b.
Since this holds for any c1 ∈ A0 such that c1 ≤ a∨�0b, we obtain �0(a∨�0b) ≤ �0a∨�0b
by definition of �0. For the converse direction, consider c1, c2 ∈ A0 and a ∈ A such that
c1 ≤ c2 ∨ a. We let c3 = �0a. Obviously, c3 ≤ a. Moreover,

c2 ∨ c3 = �0c2 ∨�0a = �0(�0c2 ∨ a) = �0(c2 ∨ a).

Since c1 ∈ A0 and c1 ≤ c2 ∨ a, we obtain c1 ≤ �0(c2 ∨ a) = c2 ∨ c3 as required.
Secondly, we show that (2) is equivalent to �0(a+ a) = �0a+�0a for all a ∈ A. For

one direction, suppose that (2) holds and let a, b ∈ A. Note that �0a+�0a ≤ a+ a, and
hence �0a+�0a = �0(�0a+�0a) ≤ �0(a+ a). For the converse inequality, consider
c1 ∈ A0 such that c1 ≤ a + a. By (2), there exists c3 ∈ A0 such that c1 ≤ c3 + c3 and
c3 ≤ a. It follows that c3 ≤ �0a by definition of �0, so c1 ≤ c3 + c3 ≤ �0a+�0a. Hence,

�0(a+ a) =
∨
{d ∈ A0 | d ≤ a+ a} ≤ �0a+�0a.

Conversely, suppose that �0a+�0a = �0(a+ a) for all a ∈ A, and consider c1 ∈ A0 and
a ∈ A such that c1 ≤ a+ a. Then c1 = �c1 ≤ �0(a+ a) = �0a+�0a, so it suffices to
take c3 = �0a.

For a monadic abelian `-group 〈A;�〉, we say that K is a monadic `-ideal of 〈A;�〉 if
K is an `-ideal of A and a ∈ K implies �a ∈ K. As a consequence of Theorem 2.28, the
lattice of congruences of 〈A;�〉 is isomorphic to the lattice of monadic `-ideals of 〈A;�〉,
where both lattices are ordered by inclusion.3 We can again represent the quotient
〈A;�〉/K of 〈A;�〉 by a monadic `-ideal K using the right cosets; that is, we define
〈A;�〉/K := 〈A/K;�K〉 where �K(K+a) := K+�a for all a ∈ A. The following result
is then an immediate consequence of Theorem 2.32.

Corollary 4.19. Let 〈A;�〉 be a monadic abelian `-group. Then the lattice of monadic
`-ideals of 〈A;�〉 (ordered by inclusion) and the lattice of `-ideals of �A (ordered by
inclusion) are isomorphic, witnessed by the maps K 7→ K ∩�A and K 7→ K�♦ := {a ∈
A | �a ∈ K and ♦a ∈ K}.

As instances of Theorem 2.41 and Lemma 2.42, we obtain the following results.

Corollary 4.20. Each monadic abelian `-group is isomorphic to a subdirect product of
chain-monadic abelian `-groups.

3Under the term equivalence from Example 2.8, the universe of a monadic `-ideal of a monadic abelian
`-group is an f -free subuniverse of the corresponding monadic FLe-algebra, and vice versa.
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Corollary 4.21. Let 〈A;�〉 be a chain-monadic abelian `-group and a ∈ A \ 0. Then
there exists a prime `-ideal P of A such that a 6∈ P and P ∩�A = {0}.

The setting of monadic abelian `-groups allows for an additional prime generation
result that was not considered in Section 2.4. This result, shown in the following lemma,
will prove instrumental in obtaining the desired completeness result. Note that a similar
result was obtained for monadic MV-algebras in [45].

Lemma 4.22. Let 〈A;�〉 be a chain-monadic abelian `-group and a ∈ A. Then there
exists a prime `-ideal P of A such that P + a = P +�a and P ∩�A = {0}.

Proof. Let 〈A;�〉 be a chain-monadic abelian `-group and a ∈ A. We apply Zorn’s
Lemma to the set D of all `-ideals K of A such that K ∩ �A = {0} and a − �a ∈ K,
ordered by inclusion. First, we verify that D is non-empty. We show that the `-ideal
K(a−�a) of A generated by the element a−�a is in D. Consider any b ∈ K(a−�a)∩�A.
Then by Lemma 4.13(1) there exists some n ∈ N such that |b| ≤ n |a−�a|. In particular,
since 0 ≤ |a−�a|, we obtain |b| ≤ 2n |a−�a|. Then,

|b| = � |b| ≤ �(2n |a−�a|) since |b| ∈ �A
= 2n� |a−�a| using (M6)
= 2n�(a−�a) using (M2)
= 2n(�a−�a) using (M1), (M2), and (M3)
= 0.

So b = 0 and D 6= ∅. Moreover, it is easy to see that D is closed under taking unions of
chains, so Zorn’s Lemma yields a maximal element P ∈ D.

Suppose for a contradiction that P is not prime. Then Lemma 4.13(3) implies that
there exist b, c ∈ A with b ∧ c = 0 but b, c 6∈ P . By the maximality of P, there exist
r ∈ (P (b) ∩�G) \ {0} and s ∈ (P (c) ∩�G) \ {0}. Since �A is linearly ordered, we can
assume without loss of generality that |r| ≤ |s|. Convexity of P (c) then implies that also
r ∈ P (c) ∩�A. Hence, using Lemma 4.13(2), r ∈ P (b) ∩ P (c) = P (b ∧ c) = P (0) = P .
But P ∩ �A = {0}, so r = 0, a contradiction. That is, P is prime. Finally, note that
since a−�a ∈ P , also P + a = P +�a.

We can now prove the strengthened analogue of Theorem 2.43 forM`G. Its proof
is analogous to that of Theorem 2.43, aside from an application of Lemma 4.22 at the
end that shows that the obtained monadic abelian `-group is in fact witnessed. Recall
that the class of abelian o-groups has the amalgamation property [128], and hence by
Lemma 2.36, it has the generalized amalgamation property.

Theorem 4.23. Any chain-monadic abelian `-group 〈A;�〉 is isomorphic to a witnessed
functional chain-monadic abelian `-group.

Proof. Let 〈A;�〉 be a chain-monadic abelian `-group, and let {Pi}i∈I be the family
of all prime `-ideals P of A such that P ∩ �A = {0}. It follows from Corollary 4.21
that ⋂{Pi | i ∈ I} = {0} and hence that σ : A →

∏
i∈I A/Pi; a 7→ (a + Pi)i∈I is an

embedding between abelian `-groups. Moreover, for each i ∈ I, since Pi ∩�A = {0}, the
map πi ◦ σ|�A is an `-embedding, where πi is the i-th projection map.
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For the abelian o-group �A, family of abelian o-groups {A/Pi}i∈I and family of
`-embeddings {πi ◦ σ|�A : �A → A/Pi}i∈I , the generalized amalgamation property
provides an amalgam B with `-embeddings γi : A/Pi → B for each i ∈ I. Defining
γ := ∏

i∈I γi :
∏
i∈I A/Pi → BI yields an `-embedding ρ := γ ◦ σ : A→ BI . Observe now

that for all r ∈ �A and i, j ∈ I,

ρ(r)(i) = γi(σ(r)(i)) = γi(πi(σ(r))) = γj(πj(σ(r))) = γj(σ(r)(j)) = ρ(r)(j).

That is, ρ(r) is a constant function. Moreover, for each a ∈ A, there exists, by Lemma 4.22,
an i ∈ I such that Pi + a = Pi +�a and hence ρ(�a)(i) = ρ(a)(i). So for any a ∈ A and
i ∈ I, we obtain ρ(�a)(i) = min{ρ(a)(j) | j ∈ I}.

To prove the promised completeness result for S5(A), we make use of the following
folklore result from the theory of abelian `-groups.

Lemma 4.24 (cf. [51]). Let A be an abelian o-group. For each finite subset S of A,
there exists a function h : S → R satisfying for all a, b, c ∈ S,

(i) a ≤ b if and only if h(a) ≤ h(b);

(ii) if 0 ∈ S, then h(0) = 0;

(iii) a+ b = c if and only if h(a) + h(b) = h(c);

(iv) b = −a if and only if h(b) = −h(a).

Theorem 4.25. For any ϕ ∈ Fm�♦(LA),

`S5(A) ϕ ⇐⇒ |=S5(R)C ϕ.

Proof. For the left-to-right direction, it is easily checked that the axioms of S5(A) are
S5(R)C-valid and its rules preserve S5(R)C-validity. For the converse direction, suppose
that 6`S5(A) ϕ. By Lemma 4.16 and Corollary 4.20, there exist a chain-monadic abelian
`-group 〈A;�〉 and a valuation e : Fm�♦(LA)→ A, preserving all connectives in LA as
well as � and ♦, such that 0 6≤ e(ϕ). By Theorem 4.23, we may assume that A is a
witnessed `-subgroup of B(W,B) for some non-empty set W and abelian o-group B.
Hence there exists w0 ∈W such that e(ϕ)(w0) < 0. Let Σ be the set of subformulas of ϕ.
For each �ψ,♦ψ ∈ Σ, we choose w�ψ ∈W and w♦ψ ∈W such that

e(�ψ)(w�ψ) = e(ψ)(w�ψ) and e(♦ψ)(w♦ψ) = e(ψ)(w♦ψ),

respectively. These exist since A is witnessed. Let W ′ := {w�ψ ∈W | �ψ ∈ Σ} ∪ {w♦ψ |
♦ψ ∈ Σ} ∪ {w0} and define

S := {e(ψ)(w) | w ∈W ′, ψ ∈ Σ} ∪ {−e(ψ)(w) | w ∈W ′, ψ ∈ Σ} ∪ {0}.

Since both W ′ and Σ are finite, so is S. Using Lemma 4.24, we obtain a function
h : S → R satisfying the properties (i)–(iv). We consider the standard monadic abelian `-
group 〈B(W ′,R);�〉 and any valuation e′ : {pi}i∈N → R such that for each propositional
variable pi ∈ Σ and w ∈W ′,

e′(pi)(w) = h(e(pi)(w)).
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When extending e′ to a map e′ : Fm�♦(LA) → R preserving all connectives, a simple
induction on formula length shows that e′(ψ)(w) = h(e(ψ)(w)) for all ψ ∈ Σ and w ∈W ′,
and in particular,

e′(ϕ)(w0) = h(e(ϕ)(w0)) < h(0) = 0.

Finally, consider the S5(R)C-model 〈W ′, V 〉 where V (pi, w) := e′(pi)(w) for each w ∈W ′
and i ∈ N, and observe that V̄ (ϕ,w0) = e′(ϕ)(w0) < 0. Hence 6|=S5(R)C ϕ.

As an immediate corollary, we obtain that the variety M`G is generated by the
witnessed standard monadic abelian `-groups.

Corollary 4.26. The variety M`G is generated by the witnessed standard monadic
abelian `-groups. In particular, it is generated by the standard monadic abelian `-group
〈B(N,R);�〉.



CHAPTER 5

Conclusions and Open Problems

In this chapter, we present a short summary of the thesis and its major contributions. We
conclude by sketching a number of interesting questions that have arisen while writing
this thesis, and further open problems.

5.1 Summary of the Thesis
This thesis focused on the intersection between the study of one-variable fragments of
first-order logics and the study of many-valued modal logics. Its contents are hence of
interest to researchers in either field. We have considered three (classes of) first-order
logics in particular.

In Chapter 3, we matched the one-variable fragments of first-order intermediate
logics IKL(K) defined over some linearly ordered frame K to the many-valued modal
logics S5(A) for some Gödel set A (Theorems 3.3 and 3.12). This extends a related
correspondence obtained by Beckmann and Preining in [13] that matched first-order
intermediate logics CDIKL(K) to first-order Gödel logics with truth values in some
Gödel set A. In particular, we matched the one-variable fragment IKL1 of the first-order
intermediate logic IKL, defined over all linearly ordered intuitionistic Kripke frames,
to the modal Gödel logic S5(G). Although IKL was axiomatized by Corsi in [56],
an axiomatization of its one-variable fragment was lacking until now (Theorem 3.7).
Additionally, we provided an interpretation from each modal Gödel logic S5(A) into
its crisp counterpart S5(A)C. Using an alternative “relativized” semantics, we obtained
decidability and co-NP-completeness for a large class of the logics S5(A)C (Corollary 3.23).
Using the interpretation and the mentioned correspondences, this also gives decidability
and complexity for a large class of logics S5(A), and of one-variable fragments IKL1(K). In
fact, this work provides a basis to answer the question of decidability for all logics S5(A)C,
S5(A), and IKL1(K). As mentioned in Remark 3.26, Caicedo has in an unpublished
manuscript employed the methods from Sections 3.4 and 3.5 to obtain decidability for all
logics S5(A)C.

In Chapter 4, we investigated the one-variable fragment of first-order Abelian logic
or, equivalently, the modal Abelian logic S5(R)C. First-order Abelian logic had (to our
knowledge) not yet been studied in the literature, and is an interesting first-order logic in
its own right: it has a semantics based on well-known mathematical structures (both the
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real numbers and abelian `-groups), and its language is rich enough to interpret other logics
such as first-order Łukasiewicz logic, as shown in Theorem 1.15. We proved completeness
of the proof system S5(A) with respect to S5(R)C-validity, as well as completeness of
S5(Am) with respect to the multiplicative fragment of S5(R)C, that is, the fragment
consisting of formulas that do not contain the lattice connectives. The novelty of these
results lies in particular in the two distinct methods of proving completeness. The proof
of completeness for the multiplicative fragment of S5(R)C (Theorem 4.12) is syntactic
in nature, and is based on a partial Herbrand theorem, a normal form theorem, and a
linear programming result known as Gordan’s Theorem. The proof of completeness for
the full logic S5(R)C (Theorem 4.25) is algebraic in nature, taking ideas from [45]. We
defined the variety of monadic abelian `-groups, to which we applied methods established
in Chapter 2, as well as a finite embedding theorem for abelian o-groups. Translating
S5(A) into first-order logic also gives a proof system for the one-variable fragment of
first-order Abelian logic. Decidability of S5(R)C follows rather easily from the partial
Herbrand theorem (Corollary 4.3).

In Chapter 2, we investigated one-variable fragments in a much more general setting.
The contents of that chapter sprouted from the study of various algebras that emerge
when researching one-variable fragments, including monadic Boolean algebras, monadic
Heyting algebras, monadic MV-algebras, (crisp) monadic Gödel algebras, and monadic
abelian `-groups. We conducted an initial investigation into the algebraic semantics of
one-variable fragments in the rather general setting of substructural first-order logics that
admit the rule of exchange. We defined the variety of monadic FLe-algebras, intended as
the algebraic semantics for the one-variable fragment of the first-order substructural logic
QFLe. Equivalently, these monadic FLe-algebras can be viewed as the intended semantics
for the many-valued modal logic defined over all S5(A)C-models, where A ranges over
all FLe-algebras. We showed that the algebraic semantics of the one-variable fragment of
QFLe necessarily consists of monadic FLe-algebras (Corollary 2.12), but sufficiency still
remains an interesting open problem.

We also generalized to this setting a number of interesting properties that many
monadic algebras from the literature share. Firstly, we characterized the modalities of a
monadic FLe-algebra in terms of a relatively complete subalgebra of the FLe-reduct, which
leads to a characterization of monadic FLe-algebras in terms of pairs of FLe-algebras
(Theorems 2.17 and 2.22). Secondly, we gave an alternative characterization of the
congruences of monadic FLe-algebras in terms of f -free subuniverses (Theorem 2.28). We
also proved that such congruences are in fact completely determined by the relatively
complete subalgebra (Theorem 2.32). Finally, we have investigated the issue of functional
representation for particular varieties of monadic FLe-algebras. Inspired by methods
employed in [24, 45], we used the amalgamation property and semilinearity to prove that
some varieties of monadic FLe-algebras are generated by particular relatively functional
members (Corollary 2.44). These results have already lead to a completeness proof
of S5(A) with respect to S5(R)C-models (Theorem 4.25). We hope they can lead to
completeness results for other modal logics defined over particular S5(A)C-models.
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5.2 Open Problems and Future Work
To conclude, let us present some of the questions that have arisen while working on this
thesis, together with some ideas on how to tackle them.

Projection Operator ∆ In [4], Baaz proposed a projection operator ∆ to add to the
language of Gödel logic, defined for all x ∈ [0, 1] as

∆x =
{

1 x = 1;
0 x < 1.

Adding this operator greatly increases the expressive power of Gödel logic, as it allows
one to recover classical reasoning inside Gödel logic. It does however render the resulting
logic more complicated. Propositional Gödel logic G extended with this operator has
been axiomatized, and for the first-order extensions there exists a characterization similar
to that of Baaz et al. from [11]; for a survey of these results, see [131]. Decidability of
validity and satisfiability problems for these first-order logics and some of their fragments
have been considered in, e.g., [6, 7].

Modal Gödel logics extended with operations such as ∆ have been studied by Caicedo
et al. in [38] in the context of “order-based” modal logics. In that paper, it is shown
that the modal Gödel logic S5(G)C extended with ∆ is decidable.1 We expect that the
methods outlined in Sections 3.4 and 3.5 can be used to show that the same is true for all
modal Gödel logics S5(A)C and S5(A) extended with ∆. In fact, we deem it likely that
the results of these sections can be replicated for the more general order-based modal
logics S5(A)C, where A is an “order-based algebra” as defined in [38], rather than a
Gödel algebra.

Real-Valued Modal Logics Although first-order Abelian logic had previously not
been considered in the literature, modal Abelian logics have been studied in [61]. In that
paper, Diaconescu et al. considered a minimal modal Abelian logic K(R) defined over
real-valued Kripke models with a classical two-valued accessibility relation. They prove
decidability for K(R) and provide a proof system that is complete with respect to the
multiplicative fragment of K(R). In [140], Schnüriger obtains the same results for those
real-valued Kripke models whose accessibility relation is reflexive; in Chapter 4, we have
studied those models whose accessibility relation is an equivalence relation. This leaves a
large class of real-valued Kripke models — and their corresponding modal Abelian logics
— for further study, for example those with a transitive or symmetric accessibility relation.
Of such modal Abelian logics, we can study aspects such as decidability, complexity, and
axiomatizability. Similar questions can be asked about real-valued Kripke models with a
many-valued accessibility relation and their corresponding modal Abelian logics.

“Relativized” Semantics A theme that is found throughout the thesis is that of
a “relativized” semantics. It appears in Section 3.4, where we define the notion of an
ruS5(A)C-model to establish a finite model property. Rather than interpreting the value
of a modal formula �ϕ or ♦ϕ as an infimum or supremum of the relevant truth values of

1Due to the flawed proof pointed out in footnote 2 on page 71, it cannot be concluded from [38] that
all logics S5(A)C extended with ∆ are decidable.
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ϕ, respectively, we approximate the infima and suprema using a designated set of values
T . A similar phenomenon occurs in Chapter 2, where we consider relatively complete
subalgebras. Indeed, for a relatively complete subalgebra A0 of an FLe-algebra A, we
defined modalities �0 and ♦0 such that for each a ∈ A,

�0a = max{c ∈ A0 | c ≤ a} and ♦0a = min{c ∈ A0 | a ≤ c}.

That is, we approximate the value of a inside A0, either from below or above. The
functional representation proved in Theorem 2.43 has a similar flavor; indeed, the
relatively functional monadic FLe-algebras are exactly those algebras where the modal
values �f and ♦f are approximations of ∧w∈W f(w) and ∨w∈W f(v), respectively.

Since the modal Gödel logics S5(A)C can be equivalently characterized by ruS5(A)C-
models, the question arises whether the same thing can be said for modal Abelian logic
S5(R)C. This is not the case however. To make this precise, let A be any abelian `-group.
We define a relativized universal S5(A)C-model (ruS5(A)C-model for short) as a triple
M = 〈W,V, T 〉 consisting of non-empty setsW and T such that T is a relatively complete
subuniverse of A, and a map V : {pi}i∈N ×W → R such that for each i ∈ N the map
Vi : W → R; w 7→ V (pi, w), is bounded. The map V is then extended inductively to
V̄ : Fm�♦(LA)×W → A as follows:

V̄ (0̄, w) = 0
V̄ (−ϕ,w) = −V̄ (ϕ,w)

V̄ (ϕ+ ψ,w) = V̄ (ϕ,w) + V̄ (ψ,w)
V̄ (�ϕ,w) =

∨
{r ∈ T | r ≤

∧
{V̄ (ϕ, v) | v ∈W}}

V̄ (♦ϕ,w) =
∧
{r ∈ T | r ≥

∨
{V̄ (ϕ, v) | v ∈W}}.

We say that a formula ϕ ∈ Fm�♦(LA) is valid inM if V̄ (ϕ,w) ≥ 0 for all w ∈ W , and
ruS5(A)C-valid if it is valid in all ruS5(A)C-models.

We can now consider an ruS5(R)C-model 〈{w0}, V,Z〉, where V (p1, w0) = 0.75. It then
follows that V̄ (�p1, w0) = V̄ (�p1 +�p1, w0) = 0, but V̄ (�(p1 + p1), w0) = 1. We have
hence found an ruS5(R)C-model that falsifies the formula �(p1+p1)→ (�p1+�p1). Since
this formula is S5(R)C-valid, S5(R)C cannot be equivalently characterized by ruS5(R)C-
models. Note that this formula plays an important role in proving completeness for S5(R)C

in Section 4.3; indeed, its algebraic formulation �(x+ x) ≈ �x+�x is instrumental in
the proof of Lemma 4.22. We conjecture that it is precisely this formula that distinguishes
S5(R)C- and ruS5(R)C-models, that is, that the axiom system S5(A) without the axiom
schema (M) �(ϕ+ϕ)→ (�ϕ+�ϕ) is complete with respect to ruS5(R)C-validity. Note
that Corollary 2.45 already implies a slightly weaker completeness result: it shows that
a formula ϕ ∈ Fm�♦(LA) is derivable in the axiom system S5(A) without the axiom
schema (M) if and only if ϕ is ruS5(A)C-valid for all abelian o-groups A.

Investigating such a relativized semantics for other many-valued modal logics, partic-
ularly in the context of the functional representation result from Theorem 2.43, is left as
future research.

Constant Domain Axiom A formula with a recurring role in this thesis is the
constant domain axiom (cd) (∀x)(α∨ (∀x)β)→ ((∀x)α∨ (∀x)β). In intuitionistic Kripke
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frames, it characterizes the presence of constant, rather than increasing, domains; in
modal Gödel logics S5(G) and S5(G)C, it characterizes the crispness of the accessibility
relation; and in Theorem 2.43, it is used to ensure that the relatively complete subalgebra
�A consists only of constant functions. This raises a number of intriguing questions.
Does the constant domain axiom characterize crispness of the accessibility relation in
other many-valued modal logics S5(A)? Or perhaps in other more general many-valued
modal logics? Moreover, can a functional representation result, more general than that
of Theorem 2.43, be obtained without imposing the identity �(x ∨�y) ≈ �x ∨�y on
monadic FLe-algebras?

Non-commutative Monadic Residuated Lattices In Chapter 2 we have decided
on the framework of FLe-algebras rather than that of non-commutative FL-algebras. This
is partly due to the fact that all algebras considered in this thesis fit into this framework,
and partly due to the fact that non-commutative FL-algebras are more involved. An
obvious question to ask is then whether we can generalize the results of this chapter to
the non-commutative setting. Recall that a pointed residuated lattice (or FL-algebra) is
an algebra A = 〈A,∧,∨, ·, \, /, f, e〉 such that 〈A, ·, e〉 is a monoid, 〈A,∧,∨〉 is a lattice,
and · is left- and right-residuated with residuals \ and / respectively, that is, for all
a, b, c ∈ A,

a · b ≤ c ⇐⇒ b ≤ a\c and a · b ≤ c ⇐⇒ a ≤ c/b.

We propose the following definition of a monadic pointed residuated lattice.

Definition 5.1. A monadic pointed residuated lattice (or monadic FL-algebra) is an alge-
bra 〈A,∧,∨, ·, \, /, f, e,�,♦〉 such that A = 〈A,∧,∨, ·, \, /, f, e〉 is a pointed residuated
lattice and for all a, b ∈ A,

(L1) �a ≤ a (L6) �(a\�b) = ♦a\�b
(L2) �♦a = ♦a (L7) �(�b/a) = �b/♦a
(L3) �(a ∧ b) = �a ∧�b (L8) �(�a\b) = �a\�b
(L4) �f = f (L9) �(b/�a) = �b/�a.
(L5) �e = e

We conjecture that these monadic pointed residuated lattices play the same role
for first-order substructural logics as monadic FLe-algebras play for those first-order
substructural logics that admit exchange, and that we can obtain analogues of important
results of Chapter 2, including analogues of Theorem 2.22, Theorem 2.28, and Theo-
rem 2.32. Note that in [133], Rachůnek and Šalounová already studied a particular case
of monadic pointed residuated lattices, namely those satisfying �(x ∨�y) ≈ �x ∨�y
and �(x · x) ≈ �x ·�x (see Remark 2.13).
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