385 research outputs found

    Derived rules for predicative set theory: an application of sheaves

    Get PDF
    We show how one may establish proof-theoretic results for constructive Zermelo-Fraenkel set theory, such as the compactness rule for Cantor space and the Bar Induction rule for Baire space, by constructing sheaf models and using their preservation properties

    Effective Choice and Boundedness Principles in Computable Analysis

    Full text link
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice principles which are cornerstones among Weihrauch degrees and it turns out that certain core theorems in analysis can be classified naturally in this structure. In particular, we study theorems such as the Intermediate Value Theorem, the Baire Category Theorem, the Banach Inverse Mapping Theorem and others. We also explore how existing classifications of the Hahn-Banach Theorem and Weak K"onig's Lemma fit into this picture. We compare the results of our classification with existing classifications in constructive and reverse mathematics and we claim that in a certain sense our classification is finer and sheds some new light on the computational content of the respective theorems. We develop a number of separation techniques based on a new parallelization principle, on certain invariance properties of Weihrauch reducibility, on the Low Basis Theorem of Jockusch and Soare and based on the Baire Category Theorem. Finally, we present a number of metatheorems that allow to derive upper bounds for the classification of the Weihrauch degree of many theorems and we discuss the Brouwer Fixed Point Theorem as an example

    A syntactic approach to continuity of T-definable functionals

    Full text link
    We give a new proof of the well-known fact that all functions (NN)N(\mathbb{N} \to \mathbb{N}) \to \mathbb{N} which are definable in G\"odel's System T are continuous via a syntactic approach. Differing from the usual syntactic method, we firstly perform a translation of System T into itself in which natural numbers are translated to functions (NN)N(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}. Then we inductively define a continuity predicate on the translated elements and show that the translation of any term in System T satisfies the continuity predicate. We obtain the desired result by relating terms and their translations via a parametrized logical relation. Our constructions and proofs have been formalized in the Agda proof assistant. Because Agda is also a programming language, we can execute our proof to compute moduli of continuity of T-definable functions

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Choice principles in elementary topology and analysis

    Get PDF
    summary:Many fundamental mathematical results fail in {\bf{ZF}}, i.e., in Zermelo-Fraenkel set theory without the Axiom of Choice. This article surveys results --- old and new --- that specify how much ``choice'' is needed {\it precisely} to validate each of certain basic analytical and topological results

    Towards a Convenient Category of Topological Domains

    Get PDF
    We propose a category of topological spaces that promises to be convenient for the purposes of domain theory as a mathematical theory for modelling computation. Our notion of convenience presupposes the usual properties of domain theory, e.g. modelling the basic type constructors, fixed points, recursive types, etc. In addition, we seek to model parametric polymorphism, and also to provide a flexible toolkit for modelling computational effects as free algebras for algebraic theories. Our convenient category is obtained as an application of recent work on the remarkable closure conditions of the category of quotients of countably-based topological spaces. Its convenience is a consequence of a connection with realizability models
    corecore