19 research outputs found

    Adaptive selection of primal constraints for isogeometric BDDC deluxe preconditioners

    Get PDF
    Isogeometric analysis has been introduced as an alternative to finite element methods in order to simplify the integration of computer-aided design (CAD) software and the discretization of variational problems of continuum mechanics. In contrast with the finite element case, the basis functions of isogeometric analysis are often not nodal. As a consequence, there are fat interfaces which can easily lead to an increase in the number of interface variables after a decomposition of the parameter space into subdomains. Building on earlier work on the deluxe version of the BDDC (balancing domain decomposition by constraints) family of domain decomposition algorithms, several adaptive algorithms are developed in this paper for scalar elliptic problems in an effort to decrease the dimension of the global, coarse component of these preconditioners. Numerical experiments provide evidence that this work can be successful, yielding scalable and quasi-optimal adaptive BDDC algorithms for isogeometric discretizations

    Robust and scalable domain decomposition solvers for unfitted finite element methods

    Get PDF
    Unfitted finite element methods, e.g., extended finite element techniques or the so-called finite cell method, have a great potential for large scale simulations, since they avoid the generation of body-fitted meshes and the use of graph partitioning techniques, two main bottlenecks for problems with non-trivial geometries. However, the linear systems that arise from these discretizations can be much more ill-conditioned, due to the so-called small cut cell problem. The state-of-the-art approach is to rely on sparse direct methods, which have quadratic complexity and are thus not well suited for large scale simulations. In order to solve this situation, in this work we investigate the use of domain decomposition preconditioners (balancing domain decomposition by constraints) for unfitted methods. We observe that a straightforward application of these preconditioners to the unfitted case has a very poor behavior. As a result, we propose a customization of the classical BDDC methods based on the stiffness weighting operator and an improved definition of the coarse degrees of freedom in the definition of the preconditioner. These changes lead to a robust and algorithmically scalable solver able to deal with unfitted grids. A complete set of complex 3D numerical experiments shows the good performance of the proposed preconditioners.Peer ReviewedPostprint (author's final draft

    Parallel Element-Based Algebraic Multigrid for H (Curl) And H (Div) Problems Using the Parelag Library

    Get PDF
    This paper presents the use of element-based algebraic multigrid (AMGe) hierarchies, implemented in the Parallel Element Agglomeration Algebraic Multigrid Upscaling and Solvers (ParELAG) library, to produce multilevel preconditioners and solvers for H (curl) and H (div) formulations. ParELAG constructs hierarchies of compatible nested spaces, forming an exact de Rham sequence on each level. This allows the application of hybrid smoothers on all levels and the Auxiliary-Space Maxwell Solver or the Auxiliary-Space Divergence Solver on the coarsest levels, obtaining complete multigrid cycles. Numerical results are presented, showing the parallel performance of the proposed methods. As a part of the exposition, this paper demonstrates some of the capabilities of ParELAG and outlines some of the components and procedures within the library

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Development of scalable linear solvers for engineering applications

    Get PDF
    The numerical simulation of modern engineering problems can easily incorporate millions or even billions of unknowns. In several applications, particularly those with diffusive character, sparse linear systems with symmetric positive definite (SPD) matrices need to be solved, and multilevel methods represent common choices for the role of iterative solvers or preconditioners. The weak scalability showed by those techniques is one of the main reasons for their popularity, since it allows the solution of linear systems with growing size without requiring a substantial increase in the computational time and number of iterations. On the other hand, single-level preconditioners such as the adaptive Factorized Sparse Approximate Inverse (aFSAI) might be attractive for reaching strong scalability due to their simpler setup. In this thesis, we propose four multilevel preconditioners based on aFSAI targeting the efficient solution of ill-conditioned SPD systems through parallel computing. The first two novel methods, namely Block Tridiagonal FSAI (BTFSAI) and Domain Decomposition FSAI (DDFSAI), rely on graph reordering techniques and approximate block factorizations carried out by aFSAI. Then, we introduce an extension of the previous techniques called the Multilevel Factorization with Low-Rank corrections (MFLR) that ensures positive definiteness of the Schur complements as well as improves their approximation with the aid of tall-and-skinny correction matrices. Lastly, we present the adaptive Smoothing and Prolongation Algebraic MultiGrid (aSPAMG) preconditioner belonging to the adaptive AMG family that introduces the use of aFSAI as a flexible smoother; three strategies for uncovering the near-null space of the system matrix and two new approaches to dynamically compute the prolongation operator. We assess the performance of the proposed preconditioners through the solution of a set of model problems along with real-world engineering test cases. Moreover, we perform comparisons to other approaches such as aFSAI, ILU (ILUPACK), and BoomerAMG (HYPRE), showing that our new methods prove comparable, if not superior, in many test cases

    Generalization of Mixed Multiscale Finite Element Methods with Applications

    Get PDF
    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finite element methods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (ρAMGe). The former one, which is called mixed GMs- FEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on ρAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. Our numerical results show that the proposed methods are more efficient than the conventional methods while still being able to produce reliable solution for our targeted applications such as reservoir simulation. Moreover, the robustness of the mixed GMsFEM for linear elasticity with respect to the high contrast heterogeneity in Poisson ratio is evident from our numerical experiments. Lastly, our empirical results show good speedup and approximation by the proposed multilevel coarsening method

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore