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Abstract. Unfitted finite element methods, e.g., extended finite element techniques or the so-called
finite cell method, have a great potential for large scale simulations, since they avoid the generation of
body-fitted meshes and the use of graph partitioning techniques, two main bottlenecks for problems
with non-trivial geometries. However, the linear systems that arise from these discretizations can be
much more ill-conditioned, due to the so-called small cut cell problem. The state-of-the-art approach
is to rely on sparse direct methods, which have quadratic complexity and are thus not well suited
for large scale simulations. In order to solve this situation, in this work we investigate the use of
domain decomposition preconditioners (balancing domain decomposition by constraints) for unfitted
methods. We observe that a straightforward application of these preconditioners to the unfitted case
has a very poor behavior. As a result, we propose a customization of the classical BDDC methods
based on the stiffness weighting operator and an improved definition of the coarse degrees of freedom
in the definition of the preconditioner. These changes lead to a robust and algorithmically scalable
solver able to deal with unfitted grids. A complete set of complex 3D numerical experiments show
the good performance of the proposed preconditioners.
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1. Introduction

The use of unfitted finite element methods (FEMs) is an appealing approach for different reasons.
They are interesting in coupled problems that involve interfaces (e.g., fluid-structure interaction [7]
or free surface flows), or situations in which one wants to avoid the generation of body-fitted meshes.
These type of techniques have been named in different ways. Unfitted FEMs for capturing interfaces
are usually denoted as eXtended FEM (XFEM) [10], whereas these techniques are usually denoted as
embedded (or immersed) boundary methods, when the motivation is to simulate a problem using a
(usually simple Cartesian) background mesh. Recently, different realizations of the method have been
coined in different ways, depending on the way the numerical integration is performed, how Dirichlet
boundary conditions are enforced on no-matching surfaces, or the type of stabilization, if any, being
used. To mention some examples, the finite cell method combines an XFEM-type functional space,
a numerical integration based on adaptive cell refinement and full sub-cell integration, to perform
integration on cut cells, and a Nitsche weak imposition of boundary conditions [29]. CutFEM makes
also use of Nitsche’s method, but includes additional “ghost penalty" stabilization terms to improve the
the stability of the algorithm [13]. The huge success of isogeometrical analysis methods (spline-based
discretization) and the severe limitations of this approach in complex 3D geometries will probably
increase the interest of unfitted methods in the near future [19].

The main showstopper up to now for the succesful application of unfitted methods for realistic
applications is the linear solver step. The condition number of the resulting linear system does not
only depend on the characteristic size of the background mesh elements, but also on the characteristic
size of the cut elements; cut elements can be arbitrarily small and can have arbitrarily high aspect ratios
for small cut cell situations. Enforcing some reasonable thresholds, one can use robust sparse direct
solvers for these problems. However, sparse direct methods are very expensive, due to their quadratic
complexity, which is especially dramatic at large scales. Scalability is also hard to get, especially at
very large scales. For large scale applications with body-fitted meshes in CSE, iterative solvers, usually
Krylov solvers combined with preconditioners, is the natural way to go. Scalable preconditioners
at large scales are usually based on algebraic multigrid (AMG) and domain decomposition solvers
[4, 17, 22, 31]. Unfortunately, the lack of robust and scalable iterative solvers for unfitted FEM
has limited the applicability of unfitted methods in real applications. It is well-known that some
rudimentary methods, e.g., Jacobi preconditioners, can solve the issue of the ill-conditioning that comes
from cut elements. However, these preconditioners are neither scalable nor optimal. Different serial
linear solvers for unfitted FEMs have been recently proposed (see, e.g., [11, 15, 18, 27]). The methods
in [11, 27] consider a segregation of nodes into healthy and ill nodes, and a domain decomposition solver
for the ill nodes. The method is only applied to 2D problems in [27] and serial computations, and
the domain decomposition solver is not scalable, due to the fact that no coarse correction is proposed.
The method in [11] proposes to use an AMG method for the healthy nodes. A specific-purpose serial
AMG solver is designed in [18] and a serial incomplete factorization solver is considered in [15].

Motivated by the lack of robust (with respect to the element cuts) and scalable parallel solvers
for unfitted methods, we develop in this work a domain decomposition solver with these desired
properties based on the balancing domain decomposition by constraints (BDDC) framework. First, we
provide a short description of the mathematical analysis that proves the scalability of BDDC methods
on body-fitted meshes. Next, we show an example that proves that the use of standard BDDC
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methods cannot be robust with respect to the element cuts. In fact, the method performs poorly
when straighforwardly applied to unfitted meshes. Next, we propose (based on heuristic arguments
and numerical experimentation, but motivated from the mathematical body of domain decomposition
methods) a modified BDDC method. First, we consider stiffness weighting operator (already proposed
in the original BDDC article [16]), relying on the diagonal of the (sub-assembled stiffness matrix).
The use of this weighting operators proves to be essential for the robustness of the solver. Next, we
consider enhanced coarse spaces, with a sub-partition of the edge constraints. Since no mathematical
analysis is available for domain decomposition methods with stiffness weighting, we have performed
a comprehensive set of numerical experiments on 3D geometries with different levels of complexity.
The methods are not only robust and algorithmically weakly scalable, but what is more surprising,
the number of iterations seems to be independent of the domain shape too. Furthermore, the cost
of the modified weighted operator is identical to the standard one, and the algorithm has the same
building blocks as the standard BDDC preconditioner. This is good, since one can use the extremely
scalable implementation of these methods, e.g., in the FEMPAR library [1, 5] or in the PETSc library
[36]. In any case, the cost of the new method can differ from the standard one in the number of
coarse degrees of freedom (DOFs). We have observed that in practice, the CPU cost of the modified
formulation is very close to the one of the standard preconditioner. In fact, as we increase the size
of the coarse problem of the modified solver (which is robust for unfitted methods) tends to the one
of the standard preconditioner (which performs very bad for unfitted meshes). We note that the
preconditioner proposed herein could also be readily applied to XFEM-enriched interface problems
and other discretization techniques (e.g., discontinuous Galerkin methods).

Let us describe the outline of this work. In Sect. 2 we show the unfitted FE method considered in
this paper, in particular our choice to integrate in cut cells and the surface intersection algorithm.
(In any case, the preconditioners proposed later on do not depend on these choices, and can be used
in other situations). We also state the model problem, its discretization, and the mesh and subdomain
partitions. The standard BDDC preconditioner and its building blocks for body-fitted meshes are
presented in Sect. 3. In Sect. 4, we show a breakdown example of the preconditioner on unfitted
meshes, an expensive solution that is provably robust, and a cheap solution based on the stiffness
weighting and (optionally) two slightly larger coarse spaces. A complete set of complex 3D numerical
experiments are included in Sect. 5 to show experimentally the good performance of the proposed
preconditioner. Finally, some conclusions are drawn and future work is described in Sect. 6.

2. Unfitted FE method

2.1. Cell partition and subdomain partition. Let Ω ⊂ Rd be an open bounded polygonal domain,
with d ∈ {2, 3} the number of spatial dimensions. For the sake of simplicity and without loss of
generality, we consider that the domain boundary is defined as the zero level-set of a given scalar
function φls, namely ∂Ω .= {x ∈ Rd : φls(x) = 0}. We note that the problem geometry could be
described using 3D CAD data instead of level-set functions, by providing techniques to compute the
intersection between cell edges and surfaces (see, e.g., [26]). In any case, the way the geometry is
handled does not affect the domain decomposition solver presented below. Like in any other immersed
boundary method, we build the computational mesh by introducing an artificial domain Ωart such
that it has a simple geometry easy to mesh using Cartesian grids and it includes the physical domain
Ω ⊂ Ωart (see Fig. 1a).

Let us construct a partition of Ωart into cells, represented by θart. We are interested in θart being
a Cartesian mesh into hexahedra for d = 3 or quadrilaterals for d = 2, even though unstructured
background meshes can also be considered. Cells in θart can be classified as follows: a cell e ∈ θart such
that e ⊂ Ω is an internal cell; if e∩Ω = ∅, e is an external cell; otherwise, e is a cut cell (see Fig. 1b).
The set of interior (resp. external and cut) cells is represented with θin and its union Ωin ⊂ Ω (resp.
(θext,Ωext) and (θcut,Ωcut)). Furthermore, we define the set of active cells as θact

.= θin ∪ θcut and its
union Ωact. Let us also consider a subdomain partition Θ of Ωact, obtained by aggregation of active
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Figure 1. Immersed boundary setup.

cells in θact, i.e., there is an element partition θωact
.= {e ∈ θact : e ⊂ ω} for any ω ∈ Θ. The interface

of the subdomain partition is Γ .= ∪ω∈Θ∂ω \ ∂Ω.
To generate the subdomain partition in the context of immersed boundary methods is simple, since

Cartesian meshes are allowed. For uniform Cartesian meshes, the elements can be easily aggregated
into uniform subdomains as shown in Fig. 1d, whereas for adaptive Cartesian meshes the elements can
be efficiently aggregated using space-filling curves [2]. In both cases, the partitions can be generated
efficiently in parallel without using graph-based partitioning techniques [20], which are otherwise re-
quired for complex unstructured body-fitted meshes. In fact, the elimination of both body-fitted mesh
generation and graph partitioning is the main motivation of this work.

2.2. Model problem and space discretization. Let us consider as a model problem the Poisson
equation with Dirichlet and Neumann boundary conditions: find u ∈ H1(Ω) such that

−∆u = f in Ω, u = gD on ΓD, ∇u · n = gN on ΓN, (1)

where (ΓD,ΓN) is a partition of the domain boundary (the Dirichlet and Neumann boundaries, respec-
tively), f ∈ H−1(Ω), gD ∈ H1/2(ΓD), and gN ∈ H−1/2(ΓN).

For the space discretization, we consider H1-conforming FE spaces on conforming meshes. For
unfitted grids, it is not possible to include Dirichlet conditions in the approximation space in a strong
manner. Thus, we consider Nitsche’s method [8, 28] to impose Dirichlet boundary conditions weakly
on ΓD. It provides a consistent numerical scheme with optimal converge rates (also for high-order
elements) that is commonly used in the immersed boundary community [33]. We define the space
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V̄ ⊂ H1(Ω) as the global FE space related to the mesh θact. Further, we define the FE-wise operators:

Ae(u, v) .=
∫
e∩Ω
∇u ·∇v dV +

∫
ΓD∩e

(βuv − v (n ·∇u)− u (n ·∇v)) dS,

`e(v) .=
∫

ΓD∩e

(
βvgD − (n ·∇v) gD) dS,

defined for a generic mesh element e ∈ θact. Vector n denotes the outwards normal to ∂Ω. The bilinear
form Ae(·, ·) includes the usual form resulting for the integration by parts of (1) and the additional
term associated with the weak imposition of Dirichlet boundary conditions with Nitsche’s method. The
right-hand side operator `e(·) includes additional terms related to Nitsche’s method. We will make
abuse of notation, using the same symbol for a bilinear form, e.g., A : V→ V′, and its corresponding
linear operator, i.e., 〈Au, v〉 .= A(u, v).

The coefficient β > 0 is a mesh-dependent parameter that has to be large enough to ensure the
coercivity of Ae(·, ·). As shown in [15], coercivity is mathematically guaranteed by considering an
element-wise constant coefficient β such that

βe ≥ Ce
.= sup
v∈V̄

Be(v, v)
De(v, v)

for all the mesh elements e ∈ θcut intersecting the boundary ΓD. In previous formula, βe is the value
of β restricted to element e, whereas De(·, ·) and Be(·, ·) are the forms defined as

De(u, v) .=
∫
e∩Ω
∇u ·∇v dV, and Be(u, v) .=

∫
ΓD∩e

(n ·∇u) (n ·∇v) dS.

Since V̄ is finite dimensional, and De(·, ·) and Be(·, ·) are symmetric and bilinear forms, the value Ce
(i.e., the minimum admissible coefficient βe) can be computed numerically as Ce

.= λ̃max, being λ̃max
the largest eigenvalue of the generalized eigenvalue problem (see [15] for details):

Bex = λ̃Dex. (2)

In this work, we chose βe
.= 2λ̃max in all the examples in order to be on the safe side, as suggested

in [15]. Let us note that both operators have the same kernel, the space of constants. Thus, the
generalized eigenvalue problem (2) is well-posed (see [15] for more details).

The global FE operator Ā : V̄→ V̄′. and right-hand side term ` ∈ V̄′ are stated as the sum of the
element contributions, i.e.,

Ā(u, v) .=
∑
e∈θact

Ae(u, v), `(v) .=
∑
e∈θact

`e(v), for u, v ∈ V̄.

Further, we define b : V̄′ → V̄ as b(v) .= f(v) + gN(v) + `(v), for v ∈ V̄.
The global problem can be stated in operator form as: find u ∈ V̄ such that Āu = b in V̄′. After

the definition of the set of DOFs N̄ and the corresponding FE basis (of shape functions) {φa(x)}a∈N̄
that span V̄, the previous problem leads to a linear system to be solved. At large scales, sparse linear
systems are usually solved with Krylov iterative methods [32] due to the quadratic complexity of
sparse direct methods. Here, we can consider a conjugate gradient (CG) iterative method since Ā is
symmetric positive definite. The convergence rate of the conjugate gradient method is very sensitive to
the condition number of the operator, namely k2(Ā) .= |Ā|2/|Ā−1|2, where |Ā|2 denotes the operator
2-norm. As shown in [15] (under over-optimistic assumptions), the condition number scales as

k2(Ā) ∼ min
e∈θcut

η−(2pe+1−2/d)
e , ηe

.= |e ∩ Ω|
|e|

,

where pe is the polynomial degree of the interpolation at element e. Thus, arbitrarily high condition
numbers are expected in practice since the position of the interface cannot be controlled. In turn,
the convergence rate of the iterative solver is expected to be very slow and highly sensitive to the
position of the geometry unless a robust preconditioner is considered. Our goal is to develop a BDDC
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preconditioner able to deal with the bad conditioning properties associated with cut elements, be quasi-
optimal with respect to h (the characteristic element size of θact), and be weakly scalable (not dependent
on the number of subdomains for a fixed subdomain problem size). Attaining these objectives, we will
have at our disposal a solver for embedded boundary systems that will efficient exploit distributed
memory resources for large scale problems.

3. Domain decomposition for body-fitted FE meshes

In this section, we briefly introduce the BDDC method as usually considered in the literature for
conventional body-fitted meshes [16]. The description of the algorithm is concise and we mainly focus
on the parts that are modified later in Sect. 4 to deal with unfitted meshes. We refer the reader to
[12, 25] for a detailed exposition of BDDCmethods and to [3, 4] for the practical implementation details.
We have also included a short proof of the condition numbers for body-fitted meshes. It is important
for the subsequent discussion to explain the breakdown of the standard algorithm for unifitted meshes
and motivate robust modifications. In this section, Ω ≡ Ωact and the Dirichlet boundary conditions
are strongly enforced in the definition of the FE spaces.

3.1. Sub-assembled problem. Non-overlapping domain decomposition preconditioners rely on the
definition of a sub-assembled FE problem, in which contributions between subdomains have not been
assembled. In order to do so, at every subdomain ω ∈ Θ, we consider the FE space Vω associated to
the element partition θωact with homogeneous Dirichlet boundary conditions on ∂ω ∩ ∂ΩD. One can
define the subdomain operator Aω(u, v) =

∑
e∈θω

act
Ae(u, v), for u, v ∈ Vω.

Subdomain spaces lead to the sub-assembled space of functions V .= Πω∈ΘVω. For any u ∈ V, we
define its restriction to a subdomain ω ∈ Θ as uω. Any function u ∈ V can be represented by its
unique decomposition into subdomain functions as {uω ∈ Vω}ω∈Θ. We also define the sub-assembled
operator A(u, v) .= Πω∈ΘAω(uω, vω).

With these definitions, V̄ can be understood as the subspace of functions in V that are continuous
on the interface Γ, and Ā is the Galerkin projection of A onto V̄. We note that θact and the FE
type defines V̄, whereas Θ is also required to define the local spaces {Vω}ω∈Θ and the sub-assembled
space V, respectively. We consider Lagrangian FE spaces, where DOFs are associated to nodes (spatial
points). We represent the set of nodes related to the FE space V with N (analogusly for Nω).

3.2. Coarse DOFs. A key ingredient in domain decomposition preconditioners is to classify the set
of nodes of the FE space V̄. The interface ∂e of every FE in the mesh θact can be decomposed into
vertices, edges, and faces. By a simple classification of these entities, based on the set of subdomains
that contain them, one can also split the interface Γ into faces, edges, and vertices (at the subdomain
level), that will be called geometrical objects. We represent the set of geometrical objects by Λ. In all
cases, edges and faces are open sets in their corresponding dimension. By construction, faces belong to
two subdomains and edges belong to more than two subdomains in three-dimensional problems. This
classification of Ω into objects automatically leads to a partition of interface DOFs into DOF objects,
due to the fact that every DOF in a FE does belong to only one geometrical entity. These definitions
are heavily used in domain decomposition preconditioners (see, e.g., [35, p. 88]).

Next, we associate to some (or all) of these geometrical objects a coarse DOF. In BDDC methods,
we usually take as coarse DOFs mean values on a subset of objects ΛO. Typical choices of ΛO are
ΛO

.= ΛC , when only corners are considered, ΛO
.= ΛC∪ΛE , when corners and edges are considered, or

ΛO
.= Λ, when corners, edges, and faces are considered. These choices lead to three common variants of

the BDDC method referred as BDDC(c), BDDC(ce) and BDDC(cef), respectively. This classification
of DOFs into objects can be restricted to any subdomain ω ∈ Θ, leading to the set of subdomain
objects ΛO(ω).

With the classification of the interface nodes and the choice of the objects in ΛO, we can define
the coarse DOFs and the corresponding BDDC space. Given an object λ ∈ ΛO(ω), let us define its
restriction operator Rωλ on a function u ∈ Vω as follows: Rωλ(u)(ξ) = u(ξ) for a node ξ ∈ Nω that
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belongs to the geometrical object λ, and zero otherwise. We define the BDDC space Ṽ ⊂ V as the
subspace of functions v ∈ V such that the constraint

αωλ(vω) .=
∫
λ

Rωλ(vω) is identical for all ω ∈ neigh(λ), (3)

where neigh(λ) stands for the set of subdomains that contain the object λ. (The integral on λ is just
the value at the vertex, when λ is a vertex.) Thus, every λ ∈ ΛO defines a coarse DOF value (3)
that is continuous among subdomains. Further, we can define the BDDC operator Ã as the Galerkin
projection of A onto Ṽ.

3.3. Transfer operator. The next step is to define a transfer operator from the sub-assembled space
V to the continuous space V̄. The transfer operator is the composition of a weighting operator and a
harmonic extension operator.

(1) The weighting operator W takes a function u ∈ V and computes mean values on interface
nodes, i.e.,

Wu(ξ) .=
∑
ω∈neigh(ξ) uω(ξ)
|neigh(ξ)| ,

at every node ξ ∈ N of the FE mesh θact, where neigh(ξ) stands for the set of subdomains that
contain the node ξ. It leads to a continuous function Wu ∈ V̄. It is clear that this operator
only modifies the DOFs on the interface. We denote this weighting as topological weighting,
since it is defined from the topology of the mesh and the subdomain partition.

(2) Next, let us define the bubble space V0
.= {v ∈ V : v = 0 on Γ} and the Galerkin projection A0

of A onto V0. We also define the trivial injection I0 from V0 to V̄. The harmonic extension
reads as Ev .= (I − I0A−1

0 IT0 Ā)v for a function v ∈ V̄, where I is the identity operator in V̄.
This operator corrects interior DOFs only. The computation of A−1

0 involves to solve local
problems with homogeneous Dirichlet boundary conditions on Γ. The set of discrete global
harmonic functions is V⊥0

.= {v ∈ V : A(v, w) = 0, ∀w ∈ V0}.
The transfer operator Q : V→ V̄ is defined as Q .= EW.

3.4. Preconditioner and condition number bounds. With all these ingredients, we are now in
position to define the BDDC preconditioner. This preconditioner is an additive Schwarz preconditioner
(see, e.g., [35, Ch. 2]), with corrections in V0 and the BDDC correction in Ṽ with the transfer Q. As
a result, the BDDC preconditioner reads as:

M .= I0A−1
0 IT0 +QÃ−1QT .

For body-fitted meshes and second order elliptic problems, the BDDC preconditioned operator, namely
MĀ, has a condition number bounded as follows (see [25]).

Theorem 3.1. The operatorMĀ, whereM can be the preconditioner BDDC(c) or BDDC(ce) in 2D
and BDDC(ce) and BDDC(cef) in 3D, has a condition number bounded by:

k2(MĀ) ≤ C̃
(

1 + log2
(
H

h

))
, (4)

where C̃ is a constant independent from the sizes h and H (the characteristic mesh and subdomain
size). In the case of BDDC(ce), every face λF ∈ ΛF must have an edge λE ∈ ΛE on its boundary, i.e.,
λE ⊂ ∂λF .

Proof. The BDDC method can be casted in the abstract additive Schwarz setting (see [12, Ch. 7] and
[35, Ch. 2]). As a result, the condition number of the preconditioned operator is k2(MĀ) = λmax

λmin
,

with λmin = 1 and

λmax
.= max
ṽ∈Ṽ

〈AQṽ,Qṽ〉
〈Aṽ, ṽ〉

≤ 1 + max
ṽ∈Ṽ∩V⊥

0

〈A(Qṽ − ṽ),Qṽ − ṽ〉
〈Aṽ, ṽ〉

,
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where we have used the triangle inequality and the energy minimization property of discrete har-
monic functions in the last bound (see [25]). In order to bound λmax, we need some further elabo-
ration. We can decompose any discrete harmonic function v ∈ V⊥0 as the sum of object functions
v =

∑
λ∈Λ

∑
ω∈neigh(λ) ERωλ(v). For body-fitted meshes, it is clear that

Rωλ(v) = 0, on ∂ω \ λ, ∀λ ∈ Λ, ∀ω ∈ neigh(λ). (5)

Further, given v ∈ V⊥0 , λ ∈ Λ, and subdomains ω, ω′ ∈ neigh(λ), we define the jump function J λω,ω′(v) ∈
V⊥0 that is equal to zero in all subdomains but ω, where it take the value J λω,ω′(v)(ξ) .= vω(ξ)− vω′(ξ)
if ξ ∈ λ and zero otherwise. Thus, we get

w
.= Qv − v =

∑
λ∈Λ

∑
ω∈neigh(λ)

ERωλ(Qv − v) =
∑
λ∈Λ

∑
ω∈neigh(λ)

∑
ω′neigh(λ)

1
|neigh(λ)|J

λ
ω,ω′(v). (6)

Using standard domain decomposition theory, one can prove the following bound (see, e.g., [25]):

‖J λω,ω′(v)‖A .
(

1 + logρ
(
H

h

))
|v|2H1(ω),

where ρ = 1 for edges and 2 for faces. The bound for faces in BDDC(cef) differs from the fact that
αωλ(v) 6= αω

′

λ (v) in general. It can be bounded similarly relying on the assumption that there exists an
edge in ∂λ that is in ΛO (see [35, p. 182] for more details).

�

In a weak scaling test (i.e., refining the mesh and the partition at the same rate), H/h is constant
and so is the condition number bound regardless of the problem size. This property leads to an optimal
weak scaling of the preconditioner (i.e., to increase h and H in the same proportion) when used within
a conjugate gradient iteration. That is, the number of iterations needed to solve the problem up to
a certain (relative) tolerance is proportional to the condition number k2(MĀ), and as the condition
number is bounded by a constant independent of the problem size, so are also the number of iterations.
The coarse DOFs can be reduced, including only a subset of edges in ΛO. We refer to [24] for more
details and the extension to linear elasticity problems.

4. Domain decomposition solvers for unfitted FE meshes

The BDDC method presented in the previous section can be applied verbatim to unfitted meshes. In
that case, the computational mesh is θact and the extended domain Ωact. It obviously requires specific
strategies for integrating the problem matrices within cut elements and to impose Dirichlet conditions
on unfitted boundaries, but the BDDC solver can be applied unaltered. The question is, however,
whether the performance of BDDC is strongly deteriorated or not when moving from body-fitted to
unfitted meshes.

The bound for the condition number in (4) cannot be extended to unfitted methods. One of the
problems is that (5) for the physical subdomain ω ∩ Ω, namely

Rωλ(v) = 0, on ∂(ω ∩ Ω) \ λ, ∀λ ∈ Λ, ∀ω ∈ neigh(λ),

is not true for unfitted meshes, since a partition can have cut cells on the subdomain interface. As a
result, the mathematical theory of substructuring domain decomposition methods, which is grounded
on the object decomposition of functions and trace theorems, cannot be readily applied. In fact, it is
easy to find examples that prove that the standard BDDC method breaks down for unfitted meshes.

4.1. Breakdown example. Assuming that (5) holds for the unfitted problem at hand (which cannot
be enforced in practice), it is easy to check that the standard analysis of BDDC methods, relying
on trace inequalities, holds. We observe that w in (6) vanishes on corners for v ∈ Ṽ, since corner
values are identical on all subdomains. Thus, only edge and face objects must be considered. Let us
consider edge terms. We consider λ ∈ ΛE and ω, ω′ ∈ neigh(λ). Using the standard analysis of BDDC
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methods, we note that the mean value of any v ∈ Ṽ is continuous between subdomains for BDDC(ce)
and BDDC(cef), i.e., αωλ(v) = αω

′

λ (v). We have:

‖J λω,ω′(v)‖A = |J λω,ω′(v)|H1(ω) = C|J λω,ω′(v)|
H

1
2 (∂ω)

≤ |Rωλ(v)− αωλ(v)|
H

1
2 (∂ω)

+ |Rω
′

λ (v)− αω
′

λ (v)|
H

1
2 (∂ω′)

, (7)

where we have used the trace theorem in H1(ω), the fact that the mean value of functions in Ṽ are
continuous between subdomains, the fact that J λω,ω′(v) is discrete harmonic, and (5). More specifically,
(5) is used to say that J λω,ω′(v) = 0 on ∂ω\λ. We proceed analogously for faces in BDDC(cef). However,
if (5) does not hold, additional terms would appear on the boundary, e.g., the ones related to Nitsche’s
method, in the first equality in (7), that cannot be bounded as above.1 Even for Neumann boundary
conditions on the unfitted boundary only, bounds cannot be independent of cuts, as described with
the following example.

Let us consider the problem in Fig. 2 and the BDDC(c) preconditioner in 2D. The left side of the
domain is at distance ε to the interface. The underlying PDE is a Poisson problem with Neumann
boundary conditions on the left (moving) side and Dirichlet Boundary conditions on the rest of the
boundary, defined on a 2D rectangular domain that is dicretized with an unfitted mesh of bilinear
Lagrange elements and partitioned into eight uniform subdomains. The example is designed in such
a way that, as ε tends to zero, the area of subdomains ω1 and ω5 tend to zero (see Fig. 2a). Now, we
consider a function v ∈ Ṽ that vanishes everywhere but in ω1, where it has value 1 on all DOFs that
belong to the edge shared by ω1 and ω2 and zero elsewhere. Thus, the energy of the function before
weighting is

∫
ω1 |∇v|2 = C1ε, where C1 is a constant independent from h. On the other hand, after

communication, the energy related to ω2 is
∫
ω2 |∇v|2 ≥ C2 for some C2 independent of ε and h. As a

result, the condition number is bounded by C2
C1ε

.2 As a result,

λmax = max
ṽ∈Ṽ

〈AQṽ,Qṽ〉
〈Aṽ, ṽ〉

(8)

tends to ∞ as ε→ 0, i.e., the condition number of the BDDC preconditioner cannot be uniform with
respect to the surface intersection. (Similar examples can be designed for 3D problems and the other
variants of the preconditioner.) It is clearly observed that the usual topological weighting operator
leads to a solver that is not robust with respect to the position of the interface. It is also observed
experimentally in Fig. 2 that the iteration count explodes as ε tends to zero.

(a)
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Figure 2. Algebraic weighting vs topological weighting.

1We note that Nitsche’s methods for unfitted FEMs can require arbitrarily large penalty methods also affected by
the small cut cell problem.

2We note that it could not happen if (5) would hold (as in body-fitted methods), because the gradient would increase
as 1

ε
.
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4.2. Enlarged coarse spaces and adaptive BDDC methods. In order to fix the BDDC precondi-
tioner for unifitted FE meshes, one could consider as coarse corner DOFs all the nodes that violate (5)
and are on the interface. Such approach would lead to a huge space. The authors note that reduced
coarse spaces could be considered, especially when the cut cells are related to Neumann boundary
conditions. In any case, even though improved solutions can be designed, the coarse space is still too
large for practical computations. In the following section, we consider a different approach related to
stifness weighting.

Recently, adaptive BDDC methods have been developed based on the idea to use specral solvers to
define the coarse space in such a way that the bound for (8) can be controlled by the user (see, e.g.,
[14, 21, 23, 30, 34, 37]). The analysis of these methods does not rely on trace theorems (a difference
with respect to classical BDDC methods). The analysis is algebraic (not relying on trace theorems,
functional analysis tools, or FE inverse inequalities) and these algorithms could readily be used for
unfitted FE methods to lead to provably robust solvers. However, such approach has two limitations:
the additional cost related to the eigenvalue solvers is very large and it only pays the price in some
cases, and it would lead to a severe load imbalance (only subdomains intersected by the surface would
really require these eigenvalue solvers for many problems of interest). For these reasons, we do not
pursue this line in this work.

4.3. Stifness weighting operator. In this section, we will present a modification of the BDDC
preconditioner that has been experimentally observed to be robust with respect to small cuts in
unfitted FE methods with a moderate increase of the coarse solver size. The use of stiffness matrix-
based weighting has previously been used in other situations [16] with good results, e.g., to increase
robustness of BDDC preconditioners in isogeometric analysis [9]. Unfortunately, there are no rigorous
condition number bounds for this approach.

We can represent functions in V̄ as vectors in R|N |, and define the symmetric positive definite
matrix Aab

.= 〈Aφb, φa〉 (analogously for the subassembled subdomain matrix Aωab). We introduce the
so-called algebraic weighting operatorW : V→ V̄ for a given function u ∈ V and a node ξ of the mesh:

Wu(ξ) .=
∑
ω∈neigh(ξ)A

ω
ξξuω(ξ)∑

ω∈neigh(ξ)A
ω
ξξ

, (9)

Formula (9) provides the node values after the weighting, which uniquely defines a FE function in V̄.
This type of weighting is referred to as the algebraic weighting since it is defined from the problem
matrices, in contrast to the topological weighting (see Sect. 3.3) that is only based on the topology of
the partition.

As we will show, the algebraic weighting leads to a much more robust BDDC method with respect
to the relative position of domain boundary ∂Ω and the unfitted grid. We consider the 2D example
in Fig. 2, for which the BDDC preconditioner with topological weighting is not robust. Fig. 2b shows
the number of PGC iterations in function of the position of the interface. It is clearly observed
that the usual topological weighting operator leads to a solver that is not robust with respect to the
position of the interface. The iteration count explodes as ε tends to zero. On the other hand, the
algebraic weighting operator leads to an extremely robust solver. The number of iterations are nearly
independent of the position of the interface, even when the value ε/h reaches machine precision.

Using the algebraic weighting, we have successfully solved also complex 3D examples (see the nu-
merical results in Sect. 5). However, we have observed that the number of iterations needed to solve
the systems for meshes with cut elements are (about 2 times) higher that the iterations needed to
solve the same problem without cutting the mesh elements. This increase in iterations is not dramatic,
but further improvement is possible. To this end, we propose two further enhancements of the BDDC
method based on the definition of the coarse objects that lead to almost identical iteration counts than
the case in which all cut cells are filled and the standard BDDC method is used.

4.4. New coarse objects: variant 1. The current mathematical analysis of BDDC methods is for
body-fitted meshes, and therefore, it implicitly assumes that the coarse objects are not intersected
by the boundary ∂Ω. However, when body-fitted meshes are allowed, the objects can be cut by ∂Ω
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(see Fig. 3a). In this situation, the main mathematical properties required to prove scalability of the
BDDC method are lost. It can lead to situations in which the corner constraints are exterior corners
of cells with close to zero ηe, possibly leading to close to singular local problems. Motivated by this
fact, we propose a modification in the definition of the coarse objects, which eliminates intersections
with the boundary ∂Ω. Since fixing the elements of the kernel (the constant for the Laplacian or
rigid-body modes for elasticity) for all the edges is enough in 3D (see, e.g., [24]), we will only consider
the modification of edge coarse DOFs.

• Nodes on coarse edges × New corners

(a) Before (b) After

Figure 3. Splitting a cut edge into several uncut edges (first variant).

The new objects are computed in two main steps. The first one is to build the standard objects ΛO of
the BDDC method for θact, as presented in Sect. 3.2. The second step is to identify the edges in ΛO cut
by the boundary and split them into new edges/corners, leading to uncut edges (see Fig. 3). We consider
a segregation of a coarse edge λ ∈ ΛE as follows. Given the set of FE edges t ⊂ λ, we segregate them
into interior edges t ⊂ Ω, exterior edges such that t ∩ Ω = ∅, and the remaining cut edges. All DOFs
on cut edges are considered as coarse corner DOFs. The rest of FE edges are agregated into connected
subedges (see Fig. 3b). This procedure is done efficiently by using the data structures commonly
available in domain decomposition codes and immersed boundary methods. It requires to perform a
loop on the edges objects (which are usually identified anyway in a domain decomposition code), and
determine if those edges are intersected by the interface or not. Intersection points are usually already
pre-computed in immersed boundary codes. As a result, no further significant overhead is introduced.
Moreover, this operation has to be performed only in the subdomains cut by the boundary, which is
typically a small set. The numerical examples (see Sect.5) show that by splitting edge objects in this
way, optimal weak scaling is recovered if Neumann boundary conditions are imposed on the unfitted
parts of the domain boundary ∂Ω.

4.5. New coarse objects: variant 2. However, the case of weak imposition of Dirichlet conditions
has been observed to be more challenging and requires further elaboration. In that case, we propose a
second strategy to split the edges. The method is motivated by the fact that the domain decomposition
analysis of non-spectral methods relies on trace theorems, and it requires constant weighting coefficients
within each coarse object in order to derive condition number bounds (see Eq. (6) and, e.g., [35, p.
141], [25], or [12, p. 208]).3 We note that the coefficient β required to ensure coercivity in Nitsche’s
method might be very different between neighbor elements (even different orders of magnitude) in
function of the location of the interface. This induces strong variations in the coefficients of the
stiffness matrix, and therefore highly oscillatory weighting coefficients, when they are computed as in
(9). As a result, the weighting coefficient might be non-constant within the BDDC objects cut by
the interface (see Fig. 4a), which violates one of the basic assumptions of the domain decomposition

3We note that the numerical analysis of more involved non-diagonal weighting operators (e.g., deluxe scaling, based
on spectral methods) does not rely on trace theorems.
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analysis. Motivated by this fact, we try to build objects that have constant weighting coefficients.
To this end, we follow two steps. First, we build the standard BDDC objects (Sect. 3.2). Then, we
split all coarse objects classified as edges that have non-constant weighting coefficients. Precisely, we
aggregate neighbor nodes on the edge that have the same weighting coefficient (note that many nodes
on a coarse edge have the same coefficient, up to machine precision, for a structured meshes and linear
elements), and then we set the remaining un-aggregated nodes as coarse corners (see Fig. 4b). Since
edges are one dimensional curves, this aggregation can be easily performed. Moreover, this process is
performed only for the small set of subdomains that are cut by the boundary. By modifying the coarse
objects in this way, an optimal weak scaling is also recovered for weak Dirichlet boundary conditions,
as showed in the following 3D numerical examples.

• Nodes on coarse edges × Nodes on coarse corners

00.5

(a) Before

00.5

(b) After

Figure 4. Splitting a cut edge into several uncut edges (second variant).

5. Numerical experiments

5.1. Setup. In the numerical examples below, we consider the Poisson problem with the discretization
being used in Sect. 2.2 defined on five different complex 3D domains shown in Fig. 5. The chosen
geometries are 1) a sphere, 2) a body that reminds to a popcorn flake, 3) a hollow block, 4) a 3-by-3-
by-3 array of such blocks, and 5) a spiral. These geometries are used often in the literature to study
the performance of unfitted FE methods (see, e.g., [13]). This variety of shapes is considered here
to evaluate the versatility of the proposed solvers and their ability to deal with complex and diverse
3D domains. A detailed numerical experimentation is basic, since the solvers proposed are based on
heuristic motivations, and numerical experimentation is the only way to prove their robustness.

For each geometry, weak scalability tests are executed in order to evaluate the performance of the
solvers. To this end, a family of computational meshes are generated for each piece spanning from
coarse meshes up to fine meshes with several millions of elements (see Table 1 for details). Note that
the subdomain partitions are refined at the same rate than the meshes, leading to a constant ratio H/h,
which should lead to an optimal weak scaling of the BDDC preconditioner. That is, the number of
iterations of the underlying preconditioned conjugate gradient solver is expected to be (asymptotically)
independent of the problem size. The main purpose of the numerical example below is to check that the
proposed BDDC preconditioners for unfitted meshes have this optimal performance. In the remainder
of this sub-section, we further detail the setup of the numerical examples.

We define the source term and boundary conditions of the Poisson equation such that the PDE has
an exact solution, namely

u(x, y, z) = sin
(

5π
(
x2 + y2 + z2)1/2) , (x, y, z) ∈ Ω ⊂ R3.
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(a) Sphere. (b) Popcorn flake. (c) Block. (d) Array of blocks. (e) Spiral.

Figure 5. Geometries used in the numerical examples.

Table 1. Information of the computational meshes used in the examples.

Id. nsd nel nsdel ndof nsddof h H H/h

Sphere 1 8 1064 512 1461 729 0.1250 1.0000 8.0
2 32 7160 512 8577 729 0.0625 0.5000 8.0
3 160 51968 512 57123 729 0.0312 0.2500 8.0
4 1064 396040 512 415775 729 0.0156 0.1250 8.0
5 7160 3090104 512 3167421 729 0.0078 0.0625 8.0

Popcorn flake 1 8 1920 512 2559 729 0.1125 0.9000 8.0
2 60 12936 512 15181 729 0.0563 0.4500 8.0
3 324 95256 512 103701 729 0.0281 0.2250 8.0
4 1924 729768 512 762497 729 0.0141 0.1125 8.0
5 12936 5708900 512 5837623 729 0.0070 0.0563 8.0

Block 1 8 2120 512 3280 729 0.2312 1.8500 8.0
2 56 14336 512 18772 729 0.1156 0.9250 8.0
3 304 103152 512 120164 729 0.0578 0.4625 8.0
4 2120 776584 512 842652 729 0.0289 0.2312 8.0
5 14336 6011832 512 6272228 729 0.0145 0.1156 8.0

Array 1 216 53904 512 72796 729 0.2271 1.8167 8.0
2 1512 376696 512 451516 729 0.1135 0.9083 8.0
3 8208 2747880 512 3064716 729 0.0568 0.4542 8.0

Spiral 1 2 435 512 838 729 0.1500 1.2000 8.0
2 16 2277 512 3501 729 0.0750 0.6000 8.0
3 96 14309 512 18511 729 0.0375 0.3000 8.0
4 441 99991 512 115378 729 0.0188 0.1500 8.0
5 2277 744170 512 802975 729 0.0094 0.0750 8.0
6 14309 5733813 512 5963098 729 0.0047 0.0375 8.0

Legend
nsd: number of subdomains nel: total number of elements
nsdel: max. number of elements in a subdomain ndof : total number of DOFs
nsddof : max. number of DOFs in a subdomain h: element size, H: subdomain size.

We use the exact solution to assess the quality of the numerical approximations provided by the solvers.
In order to define the boundary conditions, we partition the boundary ∂Ω into two non-overlapping sets
Γbb and Γcut (see Fig. 6). The set Γbb is the intersection of ∂Ω with the bounding box used to define
the computational mesh, and Γcut is its complement, Γcut

.= ∂Ω−Γbb. After discretizing the bounding
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box with a Cartesian mesh, the set Γbb results to be aligned with the mesh faces. On the contrary, Γcut
is a non-conforming boundary living inside the cut elements. We define strong Dirichlet conditions
on the boundary Γbb. Since Γbb is aligned with the mesh, strong Dirichlet boundary conditions are
imposed by constraining the corresponding mesh nodes. On the other hand, we impose two different
types of boundary conditions on the unfitted surface Γcut, either weak Dirichlet boundary conditions
using Nitsche’s method or Neumann boundary conditions. Note that for the popcorn flake and the
spherical domain, the set Γbb is empty since all the boundary ∂Ω in non-conforming (see Fig. 6). In
these cases, we strongly impose the value of the solution at an interior node of Ω in order to have a
well posed problem when considering Neumann conditions on the entire boundary.

Γbb Γcut

(a) Sphere. (b) Popcorn flake. (c) Block. (d) Array of blocks. (e) Spiral.

Figure 6. Illustration of the sets Γbg and Γcut.

After the discretization process, the resulting systems of linear equations Ax = b are solved with a
BDDC-preconditioned conjugate gradient (PCG) solver. Convergence of the PCG solver is declared
when the 2-norm of the algebraic residual r .= b−Ax is smaller that the 2-norm of the right-hand-side
b times a tolerance, namely |r|2 < tol · |b|2. In all cases, the selected tolerance is tol = 10−9. With this
value, the error committed in solving the linear system is negligible in front of the discretization error
associated with the FE mesh. This is demonstrated by the fact that the optimal convergence rate of
FEM is obtained by using this tolerance for all the geometries (see Fig. 7).
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Figure 7. Convergence of the discretization error in H1 and L2 norms.

Six different versions of the BDDC preconditioner are studied in the examples, see Table 2. They
differ in the definition of the coarse objects (either the Standard definition of section 3.2 or the extended
definitions for unfitted meshes in Sects. 4.4 and 4.5) and the subset of objects used to define the coarse
DOFs (either corners and edges, or corners edges and faces). In all the cases, the algebraic weighting
operator of Sect. 4.3 is considered. We do not include the topological weighting operator (detailed in
Sect. 3.3) since it leads to a solver that is not robust with respect to the relative position between
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the geometry and the mesh (see, e.g., the breakdown example in Sect. 4.1). We have experimentally
observed that the topological weighting operator leads to unacceptably large iteration counts for all the
3D geometries studied here. In particular, more than 1000 iterations are needed to solve the “popcorn
flake” with a medium-size mesh (mesh # 3 described in Table 1) for the case of Neumann boundary
conditions on Γcut. Thus, the breakdown of the method does not only appear inmanufactured examples
as the one in 4.1 but in all practical examples analyzed in this section.

Finally, in order to compare the performance of the proposed BDDC methods for unfitted grids, with
respect to the optimal behavior of BDDC for conventional conforming meshes, we construct auxiliary
meshes by replacing the cut elements by standard full elements (see Fig. 8). Our goal is to recover a
similar performance for cut elements, that the one obtained with full elements.

Table 2. Description of the BDDC preconditioners used in the numerical examples.

Identifier Object definition Selected objects Weighting operator

Standard BDDC(cef) As in Sect. 3.2 corners, edges, faces As in Sect. 4.3
Standard BDDC(ce) As in Sect. 3.2 corners, edges As in Sect. 4.3
1st variant BDDC(cef) As in Sect. 4.4 corners, edges, faces As in Sect. 4.3
1st variant BDDC(ce) As in Sect. 4.4 corners, edges As in Sect. 4.3
2nd variant BDDC(cef) As in Sect. 4.5 corners, edges, faces As in Sect. 4.3
2nd variant BDDC(ce) As in Sect. 4.5 corners, edges As in Sect. 4.3

(a) Cut elements. (b) Full elements.

Figure 8. The “popcorn flake” geometry reconstructed with cut elements and with
full elements.

5.2. “Popcorn flake” example. For the sake of clarity, we first present the numerical results for a
single geometry, namely the “popcorn flake” geometry in Fig. 5b. The results for the other shapes are
discussed in Sect. 5.3 below. Fig. 9 shows the result of the weak scaling test for this geometry, where
Fig. 9a is for the case of Neumann boundary conditions on Γcut, and Fig. 9b is for weak Dirichlet
boundary conditions. It is observed that the standard BDDC method leads to a perfect weak scaling
for the case of full elements (as expected) for the two types of boundary conditions. The performance
of the standard BDDC method when dealing with cut elements (i.e., red lines in Fig. 9) is decent, in the
sense that the number of iterations increases only mildly with the problem size, but it is clear that the
absolute number of iterations needed to solve the problems is more than twice the iterations required
for full elements (which is the target value). In contrast, both the 1st and 2nd variants of BDDC
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achieve a perfect weak scaling with iteration counts close to the ones associated with full elements for
the case of Neumann boundary contitions (see blue and yellow lines in Fig. 9a).
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(a) Results for Neumann boundary conditions.
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(b) Results for Dirichlet boundary conditions.

Figure 9. “Popcorn flake” example: Weak scalability test.

However, for Dirichlet boundary conditions, only the 2nd variant provides a perfect weak scaling
close to the one observed for full elements (see yellow line in Fig. 9b). In conclusion, the 1st variant of
the proposed method is enough to achieve a perfect weak scaling for Neumann boundary conditions,
whereas the 2nd variant is required for Dirichlet conditions imposed with Nitsche’s method. Similar
results are obtained if the coarse space is defined with corners, edges, and faces (cef), or only with
corners and edges (ce) (see Fig. 10). The main difference is that the iterations associated with corners
and edges are slightly larger than for corners, edges, and faces, which is the expected behavior in
BDDC methods. The iteration count is smaller in the later case since the associated coarse space is
larger.

Fig. 11 shows the size of the coarse space of the new BDDC methods, namely variants 1 and 2, with
respect to the size of the standard coarse space. Fortunately, the size of the coarse spaces associated
with variants 1 and 2 tends to be equal to the size of the standard coarse space in BDDC as the
mesh is refined (see Fig. 11). This behavior is explained by the fact that extra corners are only added
on edges that are close to cut elements. Since the number of BDDC objects in the interior of Ω
scales much faster that the objects cut by the boundary ∂Ω, the number of extra corners added near
the boundary become nearly negligible as the partition is refined. As a result, the finer is the mesh
the more competitive are the proposed BDDC preconditioners for unfitted meshes. Thanks to this
behavior and for the perfect weak scaling results in [4, 6], the proposed BDDC methods (variants 1 and
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Figure 10. “Popcorn flake” example: Weak scalability test. Comparison between
BDDC(cef) and BDDC(ce).

2) are suitable for large-scale problems requiring fine meshes and a large number of subdomains. For
Neumann boundary conditions, variant 1 is the best choice since it leads to a smaller coarse space than
variant 2 for approximately the same number of PCG iterations. For Dirichlet boundary conditions
with Nitsche’s method, the 2nd variant is the preferred choice specially for fine meshes, since it leads
to a better weak scaling.

3 3.5 4 4.5 5 5.5 6 6.5 7

Log10(DOFs)

1

1.5

2

2.5

3

C
o
a
rs

e
 D

O
F

 /
 C

o
a
rs

e
 D

O
F

 (
S

td
. 
B

D
D

C
)

1st variant BDDC(cef)

2nd variant BDDC(cef)

1st variant BDDC(ce)

2nd variant BDDC(ce)

Figure 11. “Popcorn flake” example: Size of the coarse space for the new BDDC
methods (variants 1 and 2 in Table 2) with respect the size of the usual coarse space
in BDDC.

All the results presented so far are obtained considering a fixed ratio H/h = 8 between the charac-
teristic sub-domain size H and the characteristic mesh size h. We evaluate the effect of H/h on the
number of iterations of the three variants of the BDDC preconditioner for the popcorn flake geometry
in Figures 12 and 13. As expected, the effect of H/h (measure of the local problem size) on the number
of iterations is very mild. An algorithmic strong scalability analysis, i.e., to fix the global problem
and consider P , 8P , and 64P processors, can be obtained by looking for a given value of DOFs at the
number of iterations for the three cases under consideration. These figures have not been included for
the sake of brevity.

It is also desirable that the corner detection mechanisms in variants 1 and 2 do not have a negative
impact in the load balancing of the local operations involved in the BDDC preconditioner, namely
the number of local Neumann problems required to compute the coarse basis functions, which is the
main algorithmic source of load imbalance (the number of local Dirichlet problems and constrained
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(a) Results for standard coarse space.
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(b) Results for 1st variant.
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Figure 12. “Popcorn flake” example: Influence of the ratio H/h in the linear solver
weak scaling. Results for weak Dirichlet boundary conditions, three different ra-
tios, H/h = 4, H/h = 8 and H/h = 16, and for the BDDC methods “Standard
BDDC(cef)”, “1st variant BDDC(cef)”, and “2nd variant BDDC(cef)” presented in
Table 2.

Neumann problems in the application step are identical for all subdomains). The effect of the proposed
method on the load balancing is studied in Fig. 14. Here, the extra extra corners added by 1st and 2nd
variants of the new method can potentially affect the load balancing. However, the load imbalance in



SOLVERS FOR UNFITTED FINITE ELEMENT METHODS 19

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Log10(DOFs)

1

1.2

1.4

1.6

1.8

2

C
o
a
rs

e
 D

O
F

 /
 C

o
a
rs

e
 D

O
F

 (
S

td
. 
B

D
D

C
)

1st variant BDDC(cef), H/h = 4

1st variant BDDC(cef), H/h = 8

1st variant BDDC(cef), H/h = 16
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Figure 13. “Popcorn flake” example: Influence of the ratio H/h in the coarse space
size of the new BDDC methods (variants 1 and 2 in Table 2). Results for three
different rations, H/h = 4, H/h = 8, and H/h = 16, and weak Dirichlet boundary
conditions.

terms of the coarse DOFs per subdomain is not getting worse as the mesh is refined (see Fig 14). The
results in Fig. 14 are for the 2nd variant of the BDDC(ce) method. Even better results are obtained
for the 1st variant and the BDDC(cef) method. The plots are not included for the sake of brevity
since they do not add extra information.

In a final phase of the experiment, we study the robustness of the methods with respect to the
position of the cut geometry. To this end, we slightly move the location of the background mesh by
an arbitrary value ε in one of the three spatial directions. By translating the mesh in this way, the
location of the geometry changes and creates different kinds of intersections with the mesh elements,
leading to cut elements with different active volume fractions that can affect the conditioning of the
problem in different ways. Our goal is to show that the proposed methods are not affected by this
translation and the different configurations of cut elements. The values for ε are chosen in the closed
interval [−h,+h], where h is the element size of the background mesh. Fig. 15 shows the number of
iterations of the PCG solver as a function of ε, for the mesh number 3 in Table 1. The results are for
weak Dirichlet boundary conditions, which is the most challenging case. The results in Fig. 15 show
that the 2nd variant is very robust with respect to the position of the interface. The maximum change
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Figure 14. “Popcorn flake” example: Distribution of the number of coarse basis
functions across the subdomains.

in the number of iterations is only 1 iteration for all the 51 different values of ε considered. The other
methods have also a decent robustness with a maximum change of 4 iterations.
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Figure 15. “Popcorn flake” example: Study of the influence of the position of the
boundary on the porposed methods.

5.3. Multi-body example: sphere, popcorn flake, block, array of blocks and spiral. The
purpose of this final example is to show that the proposed BDDC preconditioners are able to deal with
different complex geometries, and that the results obtained in previous example are qualitatively re-
produced also in other settings. To this end, we study the BDDC preconditioners for all the geometries
previously presented in Fig. 5. The results of the weak scalability test are presented in Fig. 16. The
figure shows that performance of the methods for this set of geometries is similar to the one previously
obtained for the “popcorn flake”. For Neumann boundary conditions a perfect weak scaling is obtained
for both the 1st and 2nd variants, whereas for Dirichlet boundary conditions a perfect weak scaling is
only obtained with the 2nd variant. It is remarkable that the number of iterations is almost identical
for all the geometries for the finest meshes (see 1st and 2nd variants for Neumann conditions, and 2nd
variant for Dirichlet conditions). This is true even for the array of blocks, which is the most complex
geometry considered herein.

The size of the coarse spaces behaves similar to the previous example (see Fig. 17). The increment
in the coarse space size associated with variants 1st and 2nd becomes smaller in front of the size of the
coarse space in standard BDDC as the mesh is refined. This is again due to the fact that the number of
objects in the bulk of the domain scales faster than the objects cut by the boundary. For that reason,
the sphere is the shape that presents a smaller increment in the coarse space size. It minimizes the cut
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(a) Results for Neumann boundary conditions.
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(b) Results for Dirichlet boundary conditions.

Figure 16. Multi-body example: Weak scalability test for all the different geometries
displayed in Fig. 5.

surface per unit of domain volume. Note, however, that the coarse space size of the variants 1 and 2
tends also to the coarse space size of standard BDDC for the other shapes (see, e.g., the spiral or the
array of blocks).
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Figure 17. Multi-body example: Size of the coarse space for the new BDDC methods
(variants 1 and 2 in Table 2) with respect to the size of the usual coarse space in BDDC.
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Finally, we study the robustness of the methods with respect to the position of the unfitted boundary
∂Ω. In all cases, we move the background mesh a value ε ∈ [−h,+h] to see the influence of the boundary
location. Fig. 18 shows the number of iterations of the PCG solver with respect to the value ε for
all the shapes. The results correspond to weak Dirichlet boundary conditions, which is the more
challenging case. The results are similar to previous example. It is observed that the performance
of the 2nd variant is very robust. It is almost independent of the position of the interface with a
maximum change of 1 iteration in all the considered geometries.
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Figure 18. Multi-body example: Study of the influence of the position of the bound-
ary on the porposed methods.

In summary, the presented results show that the proposed variants of the BDDC method are able
to provide excellent results for different and complex geometries discretized with unfitted FE meshes.
As in previous example, the 1st variant is already enough to achieve a perfect weak scaling for all the
shapes for the case of Neumann boundary conditions. The 2nd variant is the only one that leads to
perfect weak scaling for Dirichlet conditions. It is remarkable that the number of PCG iterations is
nearly independent from the geometry for the finest meshes. This shows that the methods are able
to effectively get rid of the complexities introduced by the considered geometries and cut elements.
The size of the coarse spaces of the new methods tends to the size for standard BDDC as the mesh is
refined. Therefore, the efficiency of the new methods is comparable to the one of standard BDDC for
fine meshes.

6. Conclusions

In this work, we have analyzed the main problems related to the use of BDDC methods to unfitted
FE meshes. From a mathematical point of view, there are different assumptions in the analysis of these
algorithms that do not hold anymore for unfitted meshes. As a result, the polylogarithmic condition
number bounds in BDDC methods are not true in general. In fact, using a breakdown example,
we have observed that the condition number of these methods cannot be robust with respect to the
intersection between the surface and the background mesh. One can fulfill again the assumptions of
the BDDC analysis by considering as corner constraint all the DOFs on the interface that belong to
cut cells. Unfortunately, even thought the resulting algorithm is perfectly robust, such approach would
lead to a dramatic increase in the coarse problem size, and it is not considered in practice.

Alternatively, and motivated by both numerical experimentation and the mathematical analysis of
BDDC methods, we have considered a stiffness-based weighting and a subdivision of the BDDC edges.
The first ingredient has turned to be an essential ingredient to get a robust BDDC solver for unfitted
meshes. On the other hand, the enrichment of the coarse BDDC space is especially important in
regions with weak imposition of Dirichlet boundary conditions. As usual, the use of stiffness weighting
is not backed up with a full mathematical theory. Instead, a complete set of numerical experiments
has been performed to show the robustness and algorithmic weak scalability of the proposed solvers.
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Future work will include the extension to more complex (non-coercive) physical problems and to
ghost penalty stabilization. The use of stabilized versions is expected to be easier than the problem
considered herein, since the condition number bound in these cases can be bounded independently of
the location of the intersection. Furthermore, we want to implement these solvers within the FEMPAR
library [1, 5], in order to show weak scalability results for its highly scalable implementation [3, 4] of
multilevel BDDC preconditioners. We also want to apply these methods to adaptive octree meshes
and space-filling curves [2].
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