44 research outputs found

    A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems

    Get PDF
    The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramati-cally reshaped the requirements for control and communication systems within the factory systems of the future. The aforementioned technological revolution strongly affects industrial smart and distributed measurement systems as well, pointing to ever more integrated and intelligent equipment devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, communication networks and protocols play a key role, directly impacting on the measurement accuracy, causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical integration, and interoperability between Information Technology (IT) and Operational Technology (OT), fostered the development of enhanced communication subsystems. Indeed, established tech-nologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking (TSN), aiming at reshaping the Ethernet standard to support for time-, mission-and safety-critical traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is provided, while contextualizing TSN within the complex existing industrial technological panorama, particularly focusing on industrial distributed measurement systems. In particular, this paper has to be considered a technical review of the most important features of TSN, while underlining its applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology is addressed in the last part of the survey, since wireless communication represents an appealing opportunity in the industrial measurement context. In this respect, a test case is presented, to point out the need for wirelessly connected sensors networks. In particular, by reviewing some literature contributions it has been possible to show how wireless technologies offer the flexibility necessary to support advanced mobile IIoT applications

    Industrial internet and its role in process automation

    Get PDF
    Modern process automation undergoes a major shift in the way it addresses conventional challenges. Moreover, it is adapting to the newly arising challenges due to changing business scenarios. Nowadays, the areas of the automation that recently were rather separate start to merge and the border between them is fading. This situation only adds struggle to the already highly competitive production industry. In order to be successful, companies should adopt new approaches to the way their processes are automated, controlled, and managed. One of these approaches is the so-called Industrial Internet. It is the next step after the traditional paradigm of the process automation pyramid that leads to the new vision of interconnected processes, services, machines and people. However, general company does not usually eager to implement the new technology to its business. One of the reasons for this is that it does not see the advantages that the Industrial Internet brings. This is due to the lack of sufficient number of successful implementation examples in various industrial areas and of clear business scenarios for the use of the Industrial Internet. Aim of the presented thesis is to create a convincing Industrial Internet application scenario. For the implementation, a mineral concentration plant was chosen as one of the industrial premises that possesses the shortage of the Industrial Internet examples. Literature review section describes the process automation state of art. It lists and reviews the research and development initiatives related to the Industrial Internet. Moreover, the Industrial Internet fundamentals are given. Finally, it describes the Industrial Internet applications and the case studies. In the practical part, at first, the description of the mineral concentration plant is given. Then, the next section describes the Industrial Internet application scenario. In the following section technical guidelines for the system implementation are given. Also, in the concluding part of the thesis the future direction of research work are discussed

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Tendencias en Instrumentación y Control de Procesos

    Get PDF
    Este documento presenta las tendencias relacionadas con la Instrumentación y el Control de Procesos. Se presentan las políticas estatales que sirven de apoyo a la incorporación de estas tecnologías, por parte del Sena y de las empresas del sector industrial. A través de revisión bibliográfica se explora el grado de desarrollo a nivel mundial de este campo, y cómo se pueden implementar a nivel local. Al final del documento se enumeran algunas actividades que se pueden desarrollar en el centro de formación para facilitar a instructores y aprendices conocer las tecnologías para aplicar en negocios de economía naranja o industria 4.0

    The impact of the convergence of information technology and industrial automation on operational excellence in the manufacturing environment.

    Get PDF
    Thesis (MBA)-University of KwaZulu-Natal, 2007.The need to increase productivity, improve quality and increase flexibility whist continuously reducing costs is driving manufacturers to search for alternative means of converting the product idea into a manufactured product. Plant automation systems which are the nervous system and increasingly the intelligence of the plant have an integral role to play in this regard. This study investigates the convergence between traditional IT and Industrial Automation with a view to understanding how this phenomenon will affect operational excellence within the manufacturing environment. The study further investigates the key determinants of success for automation systems within the broader business context and how this can lead to an advantage over competitors. The study is limited to manufacturing operations within the greater Durban area. The results revealed that there is a clear relationship between industrial automation and information technology in manufacturing organisations. However, of interest is the fact that in the majority of the organisations surveyed the two functions operate as separate entities within the organisation resulting in overlaps of responsibility and accountability for key equipment and processes. Factory efficiency was found to be the key determinant of success in the majority of the organisations surveyed whilst the provisioning of production data when used strategically was found to have a positive effect in allowing the organisation to gain an advantage over its competitors. Due to the limitation of the short time frame allocated to this research, the study could not go in detail into the drivers of these findings consequently recommendations for further research is made

    An industrial analytics methodology and fog computing cyber-physical system for Industry 4.0 embedded machine learning applications

    Get PDF
    Industrial cyber-physical systems are the primary enabling technology for Industry 4.0, which combine legacy industrial and control engineering, with emerging technology paradigms (e.g. big data, internet-of-things, artificial intelligence, and machine learning), to derive self-aware and self-configuring factories capable of delivering major production innovations. However, the technologies and architectures needed to connect and extend physical factory operations to the cyber world have not been fully resolved. Although cloud computing and service-oriented architectures demonstrate strong adoption, such implementations are commonly produced using information technology perspectives, which can overlook engineering, control and Industry 4.0 design concerns relating to real-time performance, reliability or resilience. Hence, this research compares the latency and reliability performance of cyber-physical interfaces implemented using traditional cloud computing (i.e. centralised), and emerging fog computing (i.e. decentralised) paradigms, to deliver real-time embedded machine learning engineering applications for Industry 4.0. The findings highlight that despite the cloud’s highly scalable processing capacity, the fog’s decentralised, localised and autonomous topology may provide greater consistency, reliability, privacy and security for Industry 4.0 engineering applications, with the difference in observed maximum latency ranging from 67.7% to 99.4%. In addition, communication failures rates highlighted differences in both consistency and reliability, with the fog interface successfully responding to 900,000 communication requests (i.e. 0% failure rate), and the cloud interface recording failure rates of 0.11%, 1.42%, and 6.6% under varying levels of stress

    Edge and Big Data technologies for Industry 4.0 to create an integrated pre-sale and after-sale environment

    Get PDF
    The fourth industrial revolution, also known as Industry 4.0, has rapidly gained traction in businesses across Europe and the world, becoming a central theme in small, medium, and large enterprises alike. This new paradigm shifts the focus from locally-based and barely automated firms to a globally interconnected industrial sector, stimulating economic growth and productivity, and supporting the upskilling and reskilling of employees. However, despite the maturity and scalability of information and cloud technologies, the support systems already present in the machine field are often outdated and lack the necessary security, access control, and advanced communication capabilities. This dissertation proposes architectures and technologies designed to bridge the gap between Operational and Information Technology, in a manner that is non-disruptive, efficient, and scalable. The proposal presents cloud-enabled data-gathering architectures that make use of the newest IT and networking technologies to achieve the desired quality of service and non-functional properties. By harnessing industrial and business data, processes can be optimized even before product sale, while the integrated environment enhances data exchange for post-sale support. The architectures have been tested and have shown encouraging performance results, providing a promising solution for companies looking to embrace Industry 4.0, enhance their operational capabilities, and prepare themselves for the upcoming fifth human-centric revolution

    Utilising a fieldbus protocol in a water quality monitoring system

    Get PDF
    This thesis presents a new water quality monitoring system developed at the University of Durham in conjunction with Partech Instruments Ltd. The system uses a fieldbus protocol to create an open, distributed control network, replacing the dedicated products currently offered. Echelon LonWorks has been used to create three nodes: a suspended solids sensor, a general-purpose interactive monitoring tool, and a universal relay setpoint module. When connected, these nodes provide a means of activating relays when the suspended solids level reaches a definable level, while providing a numerical display for the operator. The sensor may be calibrated for a number of different applications. The sensor uses infra-a-red light to monitor the light absorption and 90 scatter within the solution. By dynamically adjusting the intensity of the emitted light, the sensor is able to increase its range over conventional devices. Signal processing, linearization and calibration operations are carried out within the sensor software. The final measurement is communicated as a LonWorks network variable, allowing the sensor to be treated as an interoperable device. Several third-party products have been connected to the network and a high degree of interoperability demonstrated. Three network management software packages have been investigated, and their suitability assessed. The final prototype system shows the power, flexibility and cost-saving that a fieldbus protocol can provide in an industrial control environment

    Challenges and Opportunities in Applied System Innovation

    Get PDF
    This book introduces and provides solutions to a variety of problems faced by society, companies and individuals in a quickly changing and technology-dependent world. The wide acceptance of artificial intelligence, the upcoming fourth industrial revolution and newly designed 6G technologies are seen as the main enablers and game changers in this environment. The book considers these issues not only from a technological viewpoint but also on how society, labor and the economy are affected, leading to a circular economy that affects the way people design, function and deploy complex systems

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin
    corecore