887 research outputs found

    A Review on the Applications of Crowdsourcing in Human Pathology

    Full text link
    The advent of the digital pathology has introduced new avenues of diagnostic medicine. Among them, crowdsourcing has attracted researchers' attention in the recent years, allowing them to engage thousands of untrained individuals in research and diagnosis. While there exist several articles in this regard, prior works have not collectively documented them. We, therefore, aim to review the applications of crowdsourcing in human pathology in a semi-systematic manner. We firstly, introduce a novel method to do a systematic search of the literature. Utilizing this method, we, then, collect hundreds of articles and screen them against a pre-defined set of criteria. Furthermore, we crowdsource part of the screening process, to examine another potential application of crowdsourcing. Finally, we review the selected articles and characterize the prior uses of crowdsourcing in pathology

    'I See Something You Don't See'. A Computational Analysis of the Digital Services Act and the Digital Markets Act

    Get PDF
    none4siIn its latest proposals, the Digital Markets Act (DMA) and Digital Services Act (DSA), the European Commission puts forward several new obligations for online intermediaries, especially large online platforms and “gatekeepers.” Both are expected to serve as a blueprint for regulation in the United States, where lawmakers have also been investigating competition on digital platforms and new antitrust laws passed the House Judiciary Committee as of June 11, 2021. This Article investigates whether all stakeholder groups share the same understanding and use of the relevant terms and concepts of the DSA and DMA. Leveraging the power of computational text analysis, we find significant differences in the employment of terms like “gatekeepers,” “self-preferencing,” “collusion,” and others in the position papers of the consultation process that informed the drafting of the two latest Commission proposals. Added to that, sentiment analysis shows that in some cases these differences also come with dissimilar attitudes. While this may not be surprising for new concepts such as gatekeepers or self-preferencing, the same is not true for other terms, like “self-regulatory,” which not only is used differently by stakeholders but is also viewed more favorably by medium and big companies and organizations than by small ones. We conclude by sketching out how different computational text analysis tools, could be combined to provide many helpful insights for both rulemakers and legal scholars.Di Porto, Fabiana; Grote, Tatjana; Volpi, Gabriele; Invernizzi, RiccardoDi Porto, Fabiana; Grote, Tatjana; Volpi, Gabriele; Invernizzi, Riccard

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam

    CREATING A BIOMEDICAL ONTOLOGY INDEXED SEARCH ENGINE TO IMPROVE THE SEMANTIC RELEVANCE OF RETREIVED MEDICAL TEXT

    Get PDF
    Medical Subject Headings (MeSH) is a controlled vocabulary used by the National Library of Medicine to index medical articles, abstracts, and journals contained within the MEDLINE database. Although MeSH imposes uniformity and consistency in the indexing process, it has been proven that using MeSH indices only result in a small increase in precision over free-text indexing. Moreover, studies have shown that the use of controlled vocabularies in the indexing process is not an effective method to increase semantic relevance in information retrieval. To address the need for semantic relevance, we present an ontology-based information retrieval system for the MEDLINE collection that result in a 37.5% increase in precision when compared to free-text indexing systems. The presented system focuses on the ontology to: provide an alternative to text-representation for medical articles, finding relationships among co-occurring terms in abstracts, and to index terms that appear in text as well as discovered relationships. The presented system is then compared to existing MeSH and Free-Text information retrieval systems. This dissertation provides a proof-of-concept for an online retrieval system capable of providing increased semantic relevance when searching through medical abstracts in MEDLINE

    A COMPARATIVE STUDY ON ONTOLOGY GENERATION AND TEXT CLUSTERING USING VSM, LSI, AND DOCUMENT ONTOLOGY MODELS

    Get PDF
    Although using ontologies to assist information retrieval and text document processing has recently attracted more and more attention, existing ontology-based approaches have not shown advantages over the traditional keywords-based Latent Semantic Indexing (LSI) method. This paper proposes an algorithm to extract a concept forest (CF) from a document with the assistance of a natural language ontology, the WordNet lexical database. Using concept forests to represent the semantics of text documents, the semantic similarities of these documents are then measured as the commonalities of their concept forests. Performance studies of text document clustering based on different document similarity measurement methods show that the CF-based similarity measurement is an effective alternative to the existing keywords-based methods. Especially, this CF-based approach has obvious advantages over the existing keywords-based methods, including LSI, in dealing with text abstract databases, such as MEDLINE, or in P2P environments where it is impractical to collect the entire document corpus for analysis

    COMPARATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION ALGORITHMS FOR TEXT FEATURE SELECTION

    Get PDF
    With the rapid growth of Internet, more and more natural language text documents are available in electronic format, making automated text categorization a must in most fields. Due to the high dimensionality of text categorization tasks, feature selection is needed before executing document classification. There are basically two kinds of feature selection approaches: the filter approach and the wrapper approach. For the wrapper approach, a search algorithm for feature subsets and an evaluation algorithm for assessing the fitness of the selected feature subset are required. In this work, I focus on the comparison between two wrapper approaches. These two approaches use Particle Swarm Optimization (PSO) as the search algorithm. The first algorithm is PSO based K-Nearest Neighbors (KNN) algorithm, while the second is PSO based Rocchio algorithm. Three datasets are used in this study. The result shows that BPSO-KNN is slightly better in classification results than BPSO-Rocchio, while BPSO-Rocchio has far shorter computation time than BPSO-KNN
    corecore