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ABSTRACT 

COMPARATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION 

ALGORITHMS FOR TEXT FEATURE SELECTION 

by Shuang Wu 

With the rapid growth of Internet, more and more natural language text documents 

are available in electronic format, making automated text categorization a must in most 

fields. Due to the high dimensionality of text categorization tasks, feature selection is 

needed before executing document classification. There are basically two kinds of feature 

selection approaches: the filter approach and the wrapper approach. For the wrapper 

approach, a search algorithm for feature subsets and an evaluation algorithm for assessing 

the fitness of the selected feature subset are required. In this work, I focus on the 

comparison between two wrapper approaches. These two approaches use Particle Swarm 

Optimization (PSO) as the search algorithm. The first algorithm is PSO based K-Nearest 

Neighbors (KNN) algorithm, while the second is PSO based Rocchio algorithm. Three 

datasets are used in this study. The result shows that BPSO-KNN is slightly better in 

classification results than BPSO-Rocchio, while BPSO-Rocchio has far shorter 

computation time than BPSO-KNN. 
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1 Introduction 

With the rapid growth of Internet and mobile communication, we have many more 

electrical documents available on all kinds of websites and cloud storages than ever 

before. In order to better understand and organize these documents, automatic text 

categorization has become a must for industrial and academic purposes. Text 

categorization consists in classifying a document into one or several pre-defined 

categories according to their contents. Many applications, such as search engines, take 

advantage of this technology. 

The first step of text categorization is to transform a document into a vector. Each 

dimension of this vector corresponds to a term present in the whole dataset. If this term 

ever occurs in this document, its value will be a non-zero double value. Therefore, it 

brings a critical question: should we use all the terms appeared in the datasets? Or should 

we just select some representative terms considering the fact that there are so many terms 

in a dataset while not all of them are necessary for text categorization? This problem is 

known as feature selection in machine learning because a term is regarded as a feature or 

a dimension when a document is transformed into a vector in text categorization task. 

Feature selection is extremely important for text categorization since it is quite normal to 

have more than ten-thousand terms in a document dataset. Such high dimensionality 

makes it very difficult to carry out text categorization using machine learning algorithms. 

By doing feature selection, not only can we decrease the dimension, but also we can 

eliminate redundant and irrelevant features, so that classification performance can be 

improved, learning and executing process can be made faster, and the structure of the 

learning model can be simplified [1]. 
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There are basically two categories of feature selections: filter approaches and 

wrapper approaches. Filter approach doesn’t need a specific learning algorithm. Metrics, 

such as Information Gain, are used to measure features due to the information it carries. 

Features are ranked according to the score gained using metrics and then selected out. 

Wrapper approach, in contrast, needs to have a particular learning algorithm. A subset of 

features is selected out to be used in this algorithm so that it can be evaluated by the 

classification accuracy [2]. Generally speaking, the wrapper approach has better 

performance than the filter approach because it considers the whole subset of features 

rather than a single feature. However, the filter approach is argued to be more efficient 

and more general.  

In this work, I used both the filter approach and the wrapper approach. The filter 

approach was used at first to reduce the dimension to the level that the dimension of a 

dataset can be processed with not so much effort when using the wrapper approach. Here 

I take advantage of the fast computation of the filter approach. Because if I use the 

wrapper approach directly, the computation time of feature selection will be quite long 

due to the complexity of calculation of accuracy. What’s more, it is more convenient and 

efficient to get rid of some noisy and unnecessary features using the filter approach 

before I compare the two different wrapper approaches in question. 

For the filter approach, I used Information Gain to measure the score of each 

feature. After the dimension reduction by Information Gain, I compared two wrapper 

approaches. As stated before, the wrapper approach needs a specific machine learning 

algorithm to calculate the accuracy of classification. There are two classifiers I used in 

this study. One is the K-Nearest Neighbors, the other is Rocchio.  Meanwhile, I also used 
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a method to search the feature space. Suppose we have a dataset with n features, the size 

of search space would be 2
n
. Considering the fact that the dimension of dataset after the 

filter approach is still quite high, it is impossible to search the whole space exhaustively 

in most cases [1]. Therefore, in this work, I used Particle Swarm Optimization (PSO) 

which is a heuristic algorithm that belongs to evolutionary computation technique. This 

kind of technique, including PSO, Genetic Algorithms (GA), Ant Colony Optimization 

(ACO) etc., is famous for its global search ability. Compared to other evolutionary search 

algorithms, PSO has fewer parameters, and is less computationally expensive. It also has 

the advantage of converging more quickly. Therefore, PSO is considered to be a 

promising search method for feature selection problems [3]. 

The rest of this report is organized in the following fashion: 1) In the Literature 

Review section, I go through the basic concept of Vector Space Model and term 

frequency-inverse document frequency, explain what the filter approach and the wrapper 

approach are and go into detail about the filter method -- information gain and the 

wrapper approaches -- Particle Swarm Optimization based K-Nearest Neighbors and 

Rocchio which I used in this work.  I also briefly introduce Weka and the three classifiers 

used. 2) In the Experimental Study section, I show the two corpuses used in my 

experiment and elaborate implementation and experiment procedures. I show the results 

of text classification and analyze comparatively for Binary PSO-KNN and Binary PSO-

Rocchio. At the end, I draw a conclusion and discuss the possible improvement for future 

work. 
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2 Literature Review 

2.1 Text Pre-processing, VSM and tf-idf 

Text categorization (TC) belongs to the task of Natural Language Processing and 

Data Mining. It takes unstructured texts which are natural languages as input, and uses 

machine learning algorithms to classify the input into different categories from a pre-

defined set [4]. If every text instance in this dataset has only one category, it is a single-

label TC task. If every instance has two or more categories, it is a multi-label TC task [5]. 

In this work, I only consider the case of single-label TC task because multi-label TC task 

is much more complex and beyond the scope of my study. Compared to other 

classification problems which are not formed by data of natural languages, the feature 

space of TC is especially high dimensional and sparse. In TC, many features are noisy 

and unnecessary. For example, there are words like “a”, “the” and “my” that cannot offer 

any information in TC problem. Therefore, it is quite necessary to execute dimension 

reduction before classification procedure. 

2.1.1 Text pre-processing 

Text-preprocessing procedure usually includes the following steps: 1) conversion to 

UTF-8 encoding; 2) removing hyphens, punctuation marks, numbers, digits, non-English 

letters and diacritics; 3) removing stop words (such as “the”, “at”, “I” and “on”); 4) 

eliminating rare words (words that occur less than five times in the dataset); and 5) 

executing word stemming [2]. 



5 

 

2.1.2 Vector Space Model (VSM) 

Before we go deep into dimension reduction, let us first take a look at the concept 

of Vector Space Model (VSM). VSM is an algebraic model for representing text 

documents as vectors of terms or phrases [19]. The set of terms are the terms that are 

present in the whole dataset of TC problems, and the class label of one entry is from 

categories of a pre-defined set as mentioned before. Usually, if a term occurs in a 

document, the vector of this term in the entry of this document will not be zero.  

So what makes VSM model valid for TC? There is a basic hypothesis in using 

VSM for classification which is called contiguity hypothesis. It assumes that “Documents 

in the same class form a contiguous region and regions of different classes do not 

overlap.” [11] How should we interpret this hypothesis? There are many TC tasks that 

can be classified by word patterns. For example, suppose we have a TC task that has 

three classes -- China, Kenya and UK. Documents that belong to the China class tend to 

have high values on features such as Beijing, Chinese and Mao, while documents that 

belong to UK tend to have high values on dimensions such as London, British and Queen. 

Documents from different classes therefore have clear and contiguous regions of their 

own, as shown in Fig. 1, and it should be feasible to draw boundaries among all the 

classes so that classification can be applied [11]. 
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Figure 1: Vector space classification into three classes [11] 

 Whether the documents belonging to the same class can be mapped into a 

contiguous region is highly influenced by decisions we made for document representation, 

such as stop list and weighting type. For instance, suppose we have two classes of 

documents, one is written by a single person, the other is written by a group of people. 

We can imagine that for the documents that belong to the single person class, the value 

on the dimension “I” would be quite high, and it is extremely useful information for 

classification. However, if we didn’t look deep into this factor and just use normal stop-

words list, it is highly likely that “I” will be removed. Therefore, when we don’t choose 

document representation wisely, the contiguity hypothesis cannot hold, making vector 

space classification not successful [11]. 

I used two vector space classification methods in my work, K-Nearest Neighbors 

(KNN) and Rocchio. KNN classification does not require training a model, it just sees 

which class is the majority of the classes of the k nearest neighbors of the document in 

question, and assigns this label to this document. Rocchio classification calculates the 
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center of mass of all the documents in each class and divides the problem space into 

regions based on centroids. Both methods will be discussed in the next sections. 

2.1.3 Term frequency - inverse document frequency (tf-idf) 

The values of terms in VSM can be calculated using several methods. Among them, 

term frequency-inverse document frequency (tf-idf) is a widely-used statistics method [2]. 

Tf-idf is used to describe how critical a term is to a document in a corpus. To get to know 

tf-idf, we will need to know what term frequency (tf) and inverse document frequency 

(idf) are. Suppose we have a corpus of k documents, tf and idf of a term t are defined as 

follows: 

 tf(t,d) = the number of times t appears in document d / total number of terms in 

the document d 

 idf(t) = log(k / the number of documents in the corpus in which t occurs at least 

once) 

Therefore, 

 Tf-idf(t,d) = tf(t, d) * idf (t)  

Intuitively, if a term appears in a document very frequently and it does not occur in 

other documents often, it means that this term offers important information for 

classifying this document. For example, the term “football” appears in a document very 

often, but doesn’t appear in other documents, this information reveals that it is quite 

possible that this document belongs to the “sports” category. However, if we consider the 

term “report”, although it might also appear very frequently in the same document, it can 

be found in other documents quite often. Therefore, the term “report” cannot give us 

much information about this document. 
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2.2 Feature Selection: Filter and Wrapper Approaches 

There are generally two categories of feature selection--the filter approach and the 

wrapper approach.  

The filter approach, as shown in Fig. 2, was proposed before the wrapper approach, 

and it assesses the merits of features from the dataset without taking a specific machine 

learning algorithm into consideration. The filter approach always has the disadvantage of 

missing interactions between features [2], and it also ignores the possible effects on the 

performance of machine learning algorithm of the selected feature subsets [6].  

 

Figure 2: The feature filter approach [6] 

Realizing the disadvantage of the filter approach, Ron Kohavi and George John 

proposed the wrapper approach in 1997, as shown in Fig. 3. In the wrapper approach, a 

machine learning algorithm is used as a black box when executing the feature subset 

search, which means that we don’t need to have the knowledge of this algorithm and we 

only need the interface. By using the interface, we evaluate the merits of feature subsets 

according to the accuracy of the induced classifier to obtain the optimal feature subset [6]. 

 

Figure 3: The wrapper approach to feature subset selection [6] 
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2.3 Filter Approach: Entropy and Information Gain 

Information theory was developed by Shannon, and its key concept is entropy. 

Entropy measures the uncertainty of random variables [3].  

Let X be a random variable, its uncertainty can be measured by entropy H(X) 

which is defined as following: 

H(X) =                   (1) 

where p(x) = Pr(X=x) is the probability density function of X.  

For two variables X and Y, when X is unknown and Y is known, the uncertainty of 

X given Y is the conditional entropy H(X|Y) defined as following: 

H(X|Y) =                           (2) 

From this definition, we know that if X completely depends on Y, then H(X|Y) is zero; if 

X has nothing to do with Y, then H(X|Y) is H(X). 

Information gain is defined as follows: 

IG(X, Y) = H(X) - H(X|Y) =                     
      

        
 (3) 

By definition, it is clear that information gain means the decrease in the uncertainty of X 

by knowing Y. Therefore, if X completely depends on Y, then IG(X, Y) is H(X); if X has 

nothing to do with Y, then IG(X, Y) is 0. 

For feature selection tasks, a filter approach using information gain evaluates the 

worth of an attribute by measuring the information gain with respect to the class [10], 

which can be shown as: 

IG(Class, Feature) = H(Class) - H(Class|Feature) (4) 
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2.4 Wrapper Approach: Particle Swarm Optimization with KNN and Rocchio 

2.4.1 Particle Swarm Optimization 

For a TC problem, suppose we have a corpus that has n features in total, then the 

search space will be 2
n
. Usually n is bigger than a thousand, and can be reached to up to 

nearly ten thousand. Therefore, it is impossible to use exhaustive search because the 

search space is so large in most situations. We can see that the search strategy can 

strongly influence the result of feature selection. A lot of search techniques, such as 

greedy algorithms, have been used in feature selection problems. However, many suffer 

from getting stuck in local optima [3]. 

Evolutionary computation algorithms are well-known for their global search ability. 

Compared to other evolutionary algorithms such as Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO) has the advantages of having fewer parameters, less 

computation and faster convergence. Therefore, PSO has been widely used for feature 

selection over recent years [3]. 

PSO was developed by Kennedy and Eberhart in 1995. They were inspired by 

observing the swarm behavior in flocks of birds, schools of fish, and swarms of bees that 

are thought to have Swarm Intelligence.  PSO is a population-based optimization tool that 

can be used for a variety of optimization problems [8]. The canonical PSO was originally 

developed for continuous optimization problems, but it is not very practical because lots 

of practical engineering problems, such as feature selection, are combinatorial 

optimization problems. That’s why Binary PSO was developed. We study at the 

canonical PSO first, and then discuss BPSO that was used in my work. 
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2.4.1.1 Canonical PSO 

The canonical PSO model utilizes a population of particles. These particles are 

scattered in the problem space of the optimization problem in question. So how are these 

particles represented? They are represented by their positions and their velocities in this 

problem space. Like a flock of birds, these particles move iteratively through the d-

dimension problem space based on a given rule, trying to find out the global optimal 

position. The definition of the global optimal position is the position in the d-dimension 

space where the fitness value is optimal. At the beginning of the search, the position of 

each particle is randomly initialized. In each iteration, the velocity of each particle is 

computed according to the PSO rule, and the position of each particle will be updated in 

accordance with its velocity. When a pre-defined criterion is reached, iterations stop.  

For example, suppose we have an optimization problem of three variables and each 

variable has the domain of real number, then the problem space is a three dimension 

space. If we try to use PSO to solve this problem, and we plan to use ten particles in this 

case, we can initialize the initial position of each particle. For example, particle No.1 has 

initial position (1.22, 4.53, 5.78), particle No.2 has initial position (10.25, 1.36, 15.75). In 

each iteration, velocity of each particle is computed using the PSO rule. For example, the 

velocity of particle No.1 could be (-3.23, 1.48, -9.68), then its position will be updated 

accordingly, and the fitness of each particle will be calculated and recorded.  

So what is the rule of calculating the velocity? In PSO, there are two kinds of 

positions that are quite important. The first is the best position ever occurred for one 

particle, which is called the best personal position. The best position means that this 

position gains the best fitness out of all the positions this particle has been to. The second 
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is the best position ever occurred for the whole swarm, which is called the best global 

position. The core idea of calculating the velocity of each particle is that the movement of 

each particle is always a combination of its current velocity, the trend to move to the best 

personal position and the trend to move to the best global position. After we get the 

velocity, we can then obtain the next position of this particle. Fig. 4 gives an illustration 

of this procedure.  

 

Figure 4: Illustration of how the position of a particle is updated in PSO [12] 

Let us see the formula for the PSO rule. For each particle, the position is 

represented by a position-vector Xi = (xi1, xi2, …, xij, …)(i is the index of the particle, j is 

the index of dimension); the velocity is represented by a velocity-vector Vi = (vi1, vi2, …, 

vij, …); the best personal position is represented by a position-vector Pi = (pi1, pi2, …, 

pij, …); and the global best position is represented by a position-vector G = (g1, g2, …, 

gj, …). During iteration t, the new velocity and the new position are updated as follows: 

Vi (t+1)=ω* Vi (t)+ c1 *rand*( Pi - Xi (t)) + c2 *rand*( G - Xi (t)) (5) 

Xi (t+1) = Xi (t) + Vi (t+1) (6) 

In equation (5), ω is called the inertia factor, which is used to control the impact of 

current velocity to the next iteration’s velocity. It regulates the balance between the local 
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and global search abilities of the particle swarm. rand is the random number distributed 

in [0,1] and is used to keep the randomness and diversity of the positions of the 

population. Positive constants c1 and c2 represent the weighting coefficients that pull the 

particle towards the personal best position or the global best position [8]. After we get the 

velocity using equation (5), we can use equation (6) to obtain the next iteration’s position 

of each particle. 

The global best position is improved round by round in PSO procedure. The end 

criteria of PSO are usually to reach the maximum number of iterations or to stop the 

iterations after several rounds of no improvement.  

2.4.1.2 Binary PSO  

In order to broaden the usage of PSO model, in 1997, Kennedy and Eberhart 

developed Binary PSO (BPSO) for discrete problems [1]. The difference between BPSO 

and the canonical PSO is that in each dimension, there are only two possible values -- 0 

and 1, and the velocity of particle represents the probability of this particle taking 1 as its 

position in this dimension. Therefore, equation (5) is still applicable in BPSO only that 

position-vector Xi, personal best position Pi and global best position G are now vectors 

with only of 0 or 1. Furthermore, a sigmoid function is applied to transform Vi to the 

range of (0, 1) [1]. The position update equation of BPSO is defined as follows: 

S(Vi (t+1)) =  
 

            
 (7) 

Xi (t+1) =  
                      

           
  (8) 

where S(Vi (t+1)) is the sigmoid function, and rand is a random number distributed in 

[0,1]. 
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So how do we apply BPSO to feature selection? Feature selection is in essence an 

optimization problem. The representation of a particle’s position is an n-bit binary vector, 

where n is the number of features. When the bit is 1, it means that the corresponding 

feature is selected; when this bit is 0, it means otherwise. 

2.4.2 Evaluators: KNN and Rocchio 

When using BPSO as a search method to search for feature subsets in problem 

space, I used K-Nearest Neighbors (KNN) and Rocchio as the evaluation algorithms to 

calculate the accuracy of classification on each selected subset. The best global position 

is updated after each iteration. 

The reason for selecting KNN and Rocchio is that most research of wrapper 

approach used KNN as learning algorithm, while Rocchio was seldom mentioned. KNN 

and Rocchio are both similarity based. However, the running time of Rocchio is much 

shorter than KNN. It is worth to compare KNN and Rocchio as learning algorithms in 

wrapper approach for TC tasks. 

2.4.2.1 Similarity Measurements: Euclidean Distance V.S Cosine Similarity 

Before I discuss KNN and Rocchio, we need to be familiar with two measurements 

for distance -- Euclidean distance and Cosine Similarity. Both of them are used quite 

often in Vector Space Model.  

The Euclidean distance is the straight line distance between two vectors in vector 

space [20].  

The Cosine similarity measures the cosine of the angle between two vectors in 

vector space. Compared to Euclidean distance, it is a measure of similarity of orientation 

rather than magnitude. Therefore, if two vectors are of the same orientation, their cosine 
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similarity is 1 because the cosine of 0° is 1; while for two vectors at 90°, their cosine 

similarity is 0 [21].  

When using cosine similarity, a vector is often normalized by dividing the value of 

each dimension by the length of the vector, thus making all the length of all vectors into 1. 

Therefore, for normalized vectors, the cosine is simply the dot product of two vectors 

because denominators have all become 1.  

For sparse dimension space, cosine similarity is a better choice than Euclidean 

distance [11]. Therefore, in my work, cosine similarity was used in the KNN 

implementation, and normalization was applied to datasets before calculating cosine 

similarity to reduce the computation time. 

2.4.2.2 K-Nearest Neighbors (KNN) 

Compared to most other machine learning methods, which can be called “eager” 

learning methods, KNN is a kind of method that belongs to “lazy” learning or “instance -

based” learning. For “eager” machine learning algorithms, such as Support Vector 

Machine and decision tree, prior assumptions are made about model class and the 

learning process is about tuning the model class parameters to the training dataset. After 

training, prediction will be made using the obtained model. So for “eager” methods, most 

of the effort is spent on the model learning phase rather than the prediction phase. While 

for “lazy” machine learning algorithms, such as KNN, there is no explicit assumption 

about the structure of a prediction function or optimization criterion. No learning effort is 

involved except for storing all the training instances into memory. The main endeavor is 

put on the prediction phase to predict labels according to the similarity between the 

instance in question and the other instances in the training dataset [13]. 
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Given the definition of distance which could be Euclidean distance or cosine 

similarity, for 1NN, we just assign the document in question to the class of its nearest 

neighbor. For KNN (k > 1), we assign the majority class of it k nearest neighbors to the 

document in question.  The class of the nearest neighbor can be used to break a tie if 

needed. The basic logic of KNN is that according to the contiguity hypothesis mentioned 

earlier, we assume that the document in question has the same class as the training 

documents surrounding its local area. Fig. 5 is a visualization of KNN with 2 classes. 

 

Figure 5: Visualizing k-Nearest Neighbor Classification [13] 

Fig. 6 shows the decision boundaries in 1NN which are concatenated segments of 

the Voronoi tessellation. According to Wikipedia [22], “A tessellation of a flat surface is 

the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps 

and no gaps.” Voronoi tessellation consists of Voronoi cells, and all vectors that are 

closer to the object vector than other object vectors are within the scope of its 

corresponding Voronoi cell. For TC task, each object vector is a document vector. As we 

can see from Fig. 6, all the Voronoi cells are convex polygons containing its 

corresponding object vector. For KNN (k > 1), it is the same situation. The space is also 

divided into convex polygons [11]. 
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Figure 6: Voronoi tessellation and decision boundaries (double lines) in 1NN 

classification. The three classes are X, circle and diamond. [11] 

1NN is not very robust and very sensitive to noise. The classification totally 

depends on the class of a single training data, so the result will be distorted if this single 

data is mislabeled or atypical. KNN (k > 1) is more robust in this sense. But we also need 

to note that if k is too large, the neighborhood may include instances from other classes. 

Usually, the parameter k is decided based on the experience about the classification 

problem in question. Quite often k is chosen to be an odd number to lessen the situation 

of ties. k =3 and k = 5 are frequently used; however, numbers between 50 and 100 are 

also possible options in some situations [11]. 

2.4.2.3 Rocchio 

Rocchio classification uses centroids to define the decision boundaries. The 

assumption of contiguity hypothesis of Vector Space Model makes the calculation of 

centroid valid and applicable for Rocchio classification. The centroid of a class is defined 
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as the center of mass of its instance vectors. The set of points with equal distance to the 

centroids of two classes form the decision boundary of these two classes. For a 2-

dimension classification problem, the boundary is always a line. For a space whose 

number of dimension is more than 2, the decision boundary is a hyperplane. Fig. 7 shows 

an illustration of Rocchio classification of the China, UK and Kenya problem we 

mentioned earlier. 

 

Figure 7: Rocchio classification [11] 

2.5 Weka and Classifiers 

2.5.1 Weka 

Weka (Waikato Environment for Knowledge Analysis) is a machine learning and 

data mining open source software written in Java and is issued under the GNU General 

Public License [10]. It was developed by the University of Waikato, New Zealand and 

got its name from an endemic bird of New Zealand which is also called weka. 
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Weka supports several standard machine learning and data mining tasks such as 

data preprocessing, classification, clustering, feature selection and visualization. In my 

work, I used its classification and feature selection functions. 

2.5.2 Classifiers 

A classifier is an algorithm used to implement classification task. I used three 

classifiers in Weka, to execute classification tasks in my work: 

 J48 (Weka implementation of C4.5 decision tree) -- an algorithm used to build a 

decision tree from a set of training data using the concept of information entropy 

[23] 

 Naïve Bayes -- a simple probabilistic classifier based on applying Bayes' theorem 

with strong (naïve) independence assumptions between the features [24] 

 Support Vector Machine (SVM) -- an algorithm that performs classification by 

constructing a hyperplane or set of hyperplanes in a multi-dimensional space [25] 

2.5.3 K-Fold Cross Validation 

The usual practice of validation is to use a holdout method, which reserves a certain 

amount of instances for testing and leaves the rest for training. The common holdout 

percentage is one-third for testing [10]. 

However, it is quite possible that the holdout set is unrepresentative, especially 

when the size of the dataset is small, which means that the amount of instances for 

training and testing is limited. K-fold cross validation is extremely useful in this situation. 

In cross validation, data is divided into a fixed number of folds, or partitions. Take 4-fold 

cross validation as an example. Data is split into 4 approximately equal partitions; each in 

turn is used for testing and the rest is used for training, i.e., one-fourth is used for testing 
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and three-fourth is used for training. We repeat this procedure 4 times so that every 

instance is used exactly once for testing in the end [10]. Fig. 8 shows the procedure of 4-

fold cross validation [4]. 

 

Figure 8: 4 Fold Cross Validation [17] 

2.6 Measures for classification 

There are several measures for assessing classification performance, and I used 

accuracy, precision, recall and f-measure in this work. All of them are based on confusion 

matrix. 

2.6.1 Confusion Matrix 

A confusion matrix contains information about actual and predicted classification 

done by a classification system [16]. Fig. 9 shows the confusion matrix for a two-class 

(Yes and No) classifier [18]. If an instance is actually a Yes class, and is predicted as Yes, 

then it is a True Positive case; if an instance is actually a No class, and is predicted as Yes, 

then it is a False Positive (FP) case. Similarly, if an instance is actually a Yes class, and is 

predicted as No, then it is a False Negative (FN) case; if an instance is actually a No class, 

and is predicted as No, then it is a True Positive (TP) case. Confusion matrix shows the 

numbers of instances which belongs TP, FP, FN and TN. Two-class confusion matrix can 

be easily generalized to multiclass case. 
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Figure 9: Confusion Matrix [18] 

2.6.2 Accuracy and Error 

Accuracy and error are two basic criteria for classification [18]. They are defined as 

follows: 

accuracy =  
     

           
 (9) 

error = 1 - accuracy =  
     

           
 (10) 

However, when it comes to unbalanced dataset, accuracy and error become 

meaningless. Consider the case of prediction of occurrence of earthquake. Earthquake is a 

rare event. If a classifier always predict no, it can gain very high accuracy. However, the 

accuracy doesn’t mean that this classifier is a good one; it only means that this dataset is 

quite unbalanced. In this case, FN should have higher weight. That is the reason for 

which we need better measurements than accuracy and error in this kind of situation [18].  

2.6.3 Precision, recall and f-measure 

Precision, Recall and F-measure are other three widely used measures in 

classification. They are defined as below: 
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precision = 
  

     
 (11) 

recall = 
  

     
 (12) 

f- measure = 
                  

                
 (13) 

Precision means the percentage of instances classified as positive which are really 

positive. Recall means the ability of predicting the positive instance as positive. F-

measure is the harmonic mean of precision and recall.  

To get a flavor of these three measures, assume the case of a search engine. The 

search engine needs to classify the documents in a dataset into two classes -- relevant or 

irrelevant, and to return the relevant documents. Therefore, precision here means how 

many of the returned documents are really relevant; while recall means how many of the 

relevant documents are returned as relevant. Then how about f-measure? Imagine two 

extreme situations: 1) the search engine only returned one document and this document is 

indeed relevant, so the precision is 100%. But the recall is quite low because there are a 

lot of relevant documents were classified as irrelevant and not returned. 2) The search 

engine returned all the documents which mean it classified all the documents as relevant. 

The recall in this situation is 100%, but the precision is quite low. These two extreme 

situations explain why f-measure is needed -- f-measures of these two extreme situations 

are both low, because f-measure shows the balance between precision and recall. 

In the next section, we study the implementation and experiments of this project. 

The implementation contains three parts: 1) generating feature subsets using raw training 

dataset, 2) generating classification dataset using raw testing dataset based on the 
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obtained feature subsets, and 3) executing Weka classification. We also discuss the 

classification results and come to a conclusion. 

3 Experimental Study 

3.1 Datasets 

The datasets that I used in this work are two corpuses which are widely used in TC 

tasks. Ana Cardoso-Cachopo preprocessed these two corpuses and shared them online, 

making it much easier for us to focus on the TC task itself [15]. 

3.1.1 Reuters 21578 (R8 and R52) 

The first corpus is Reuters 21578, which is currently the most widely used corpus 

for TC research. The data was originally collected and classified by Carnegie Group, Inc. 

and Reuters, Ltd. in 1987 [14]. In the original version of Reuters 21578, many of the 

documents are labeled as having no topics or have more than one topic. What’s more, 

because some classes only have very few documents, the class distribution for the 

original version is much skewed. Therefore, two sub-collections are usually used for TC 

tasks, which are called R8 and R52. Both of them are formed by single-labeled 

documents. R8 is the set of 8 classes with the highest number of positive training 

examples, while R52 is the set of 52 classes with the highest number of positive training 

examples and with at least one testing examples [15]. Fig. 10 and Fig. 11 show the 

distributions of documents per class of R8 and R52. 



24 

 

 

Figure 10: Reuters 21578—R8 [15] 
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Figure 11: Reuters 21578—R52 [15] 
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3.1.2 WebKB 

The second corpus is WebKB, which are webpages collected by the World Wide 

Knowledge Base project of the CMU text learning group [15]. These webpages were 

collected from the computer science department of several well-known universities in 

1997 and were labeled into seven classes: Student, Faculty, Staff, Department, Course, 

Project and Other. However, Ana [15] chose to discard the classes Department and Staff 

because there were only a few pages from each university. She also got rid of the class 

Other because pages were very different among this class [15]. Fig. 12 shows the 

distribution of classes of WebKB. 

 

Figure 12: WebKB [15] 

3.1.3 File Description 

All of the dataset files are text files. Each line of a text file represents one document. 

Each document consists of its class and its terms -- the first word of each line represents 

this document’s class, then a TAB character, then a sequence of “words” delimited by 

spaces which represent the terms contained in this document [15]. A snapshot of the text 

file is shown in Fig. 13. 
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Figure 13: Pre-processed dataset of Reuters 21578—R8 

3.1.4 Pre-processing 

As mentioned earlier, the datasets I used are already pre-processed. According to 

Ana Cardoso-Cachopo, the following pre-processing has been done [15]: 

1. Substitute TAB, NEWLINE and RETURN characters by SPACE. 

2. Keep only letters (that is, turn punctuation, numbers, etc. into SPACES). 

3. Turn all letters to lowercase. 

4. Substitute multiple SPACES by a single SPACE. 

5. Add the title/subject of each document in the beginning of the document's 

text. 

6. Remove words that are less than 3 characters long. For example, removing 

"he" but keeping "him". 

7. Remove the 524 SMART stopwords. Some of them had already been 

removed, because they were shorter than 3 characters. 
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8. Apply Porter's Stemmer to the remaining words. 

3.2 Implementation 

I determined to use 5 as k in this work after trying values 3 and 5 because k=5 got 

better results; therefore BPSO-KNN will be called BPSO-5NN in the following 

paragraphs.  

Four software components were implemented in Java: VSM dataset generator, 

BPSO-5NN algorithms, BPSO-Rocchio algorithms, and Feature filter. 

The whole data pipeline of my implementation is illustrated in Fig. 14. The 

implementation of this project consists of three steps: 

1. Generate Feature Selection (FS) subsets using raw training dataset as shown 

in Fig. 14. The output of this step are three feature subsets -- Information 

Gain FS subset, BPSO-5NN FS subset and BPSO-Rocchio FS subset, which 

correspond to {3}, {4} and {5} in Fig. 14:  

a. Data transformation: implement the Vector Space Model (VSM) 

dataset generator using Java programming language to transform the 

pre-processed Raw Training datasets {1} ({1} in Fig. 14) into VSM 

Training dataset {2} with the tf-idf weighting. 

b. Filter approach: use software tool Weka to execute the first round of 

feature selection using Information Gain filter method on {2} to get 

Information Gain FS subset {3}. 

c. Wrapper approaches: implement BPSO-KNN and BPSO-Rocchio 

algorithm using Java programming language, and execute the second 

round of feature selection using BPSO-KNN and BPSO-Rocchio 
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relatively to get BPSO-5NN FS subset {4} and BPSO-Rocchio FS 

subset {5}. 

2. Generating four types of dataset used in classification using raw testing 

dataset as shown in Fig. 14. In this work, four types of datasets were used in 

the final classification tasks. They are Original VSM testing dataset {7}, 

Information Gain VSM testing dataset {8}, BPSO-5NN VSM testing 

dataset {9}, BPSO-Rocchio VSM testing dataset {10}: 

a. Type 1: Use VSM dataset generator to transform Raw Testing 

dataset {6} to obtain {7} 

b. Type 2: Use feature filter to filter {6} based on {3}, then use  VSM 

dataset generator to obtain {8} 

c. Type 3: Use feature filter to filter {6} based on {4}, then use  VSM 

dataset generator to obtain {9} 

d. Type 4: Use feature filter to filter {6} based on {5}, then use  VSM 

dataset generator to obtain {10} 

3. Executing Weka Classification. Use three classifiers from Weka (J48, Naïve 

Bayes, LibSVM) to run classification on four types of dataset, which are 

{7}, {8}, {9} and {10}. The classification tasks were executed using 10-

fold cross validation. 
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Figure 14: Data pipeline in experimental study 
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3.2.1 VSM dataset generator 

In order to transform the pre-processed Raw Training dataset and Filtered Testing 

dataset into SVM dataset, a VSM dataset generator was implemented in Java. The main 

task of this implementation is to calculate tf-idf of each term in each document. First, I 

count the total number of documents and calculate the number of documents that a 

specific term has occurred for each term to get idf. Second, I go through each document 

to calculate the number of appearance of a specific term and divide it by total number of 

terms in the document to get tf. By multiplying idf and tf, I get tf-idf weighting of each 

term in each document and outputted them into a new text file to make the VSM dataset. 

A comma was used to separate class and terms. See Fig. 15 for the format of the obtained 

VSM datasets. 

 

Figure 15: VSM dataset of Reuters 21578—R8 
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3.2.2 Filter Approach 

In this step, I used Weka to execute the first round of feature selection using 

Information Gain filter approach. 

3.2.2.1 Information Gain Attribute Evaluator and Ranker 

Weka provides both filter and wrapper approaches in its feature selection library. I 

used the Information Gain Attribute Evaluator which is a filter method to carry out the 

first round feature selection. For a filter method such as Information Gain, its evaluation 

is not based on a feature subset but a single feature. Therefore, the search method can 

only be a rank method rather than the feature subset search method.  I chose the top n 

attributes whose values are not zero as the selected feature subset in this step. Fig. 16 

shows the snapshot of Weka Information Gain Attribute Evaluator. 

 

Figure 16: Weka: Information Gain Attribute Evaluator 
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3.2.3 Wrapper Approach 

Two wrapper approaches were used in this work -- BPSO-5NN and BPSO-Rocchio. 

Both used BPSO as search method. I implemented this part in Java as well. The 

algorithm of BPSO was first implemented, leaving an interface for the fitness evaluator. 

5NN and Rocchio were then implemented separately fitting the BPSO interface so that 

they can be used to calculate the classification accuracy when a specific feature subset 

needs to be evaluated. 

3.2.3.1 BPSO procedure 

The step by step view of the whole BPSO implementation procedure is explained in 

what follows: 

1. A population of particles was created in an N-dimension feature space. Each 

particle has three vectors -- its current position vector, its current velocity 

vector and its personal best position vector. There is another vector for 

global best position. At the beginning, the current position vector and the 

current velocity vector of each particle were initialized randomly, and the 

personal best position was initialized with a value equal to its corresponding 

current position vector. The global best position was initialized by selecting 

the position with the best fitness value within all the particles’ current 

positions. 

2. Every iteration was carried out as follows: 

a. Calculate the fitness of each particle using either 5NN or Rocchio 

b. Update the personal best position of each particle 

c. Update the global best position of the whole swarm 
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d. Update the velocity of each particle using BPSO formula 

e. Update the position of each particle using the updated velocity 

3. Terminate iterations when the number of iteration was reached. 

3.2.3.2 Classification Accuracy 

The classification accuracy of a specific position that represents a specific feature 

subset was calculated using the procedure mention in [2] as follows: 

1. Assume a variable C=0. For each document vector in the dataset: 

a. Calculate the distance of this document vector to all the other 

document vectors. For 5NN, cosine similarity is used. For Rocchio, 

Euclidean distance is used. 

b. Classify this document vector. For 5NN, label it with the majority 

class of its 5 nearest neighbors. For Rocchio, label it with the class 

whose centroid is the nearest to it. 

2. If the prediction class is the same as the known class of this document 

vector, increase variable C by 1. 

After all the document vectors were processed, the classification accuracy of this 

specific position was calculated as C divided by the number of documents in the dataset. 

3.2.3.3 Fitness function 

The fitness value of each position is not just the classification accuracy. Because it 

is a feature selection task, the number of feature selected is also a critical factor to be 

considered. The fewer the features, the better the fitness value. Therefore, by taking both 

classification accuracy and number of feature selected into account, as suggested in [2], 

the fitness function is defined as follows: 
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Fitness = α * Classification Accuracy + β * (N-T)/N (14) 

where  

1. N is the total number of features. T is the number of feature selected. Therefore, 

the smaller T is, the larger (N-T)/N will be. 

2. α and β are used to define the importance of classification Accuracy and feature 

subset size. The sum of α and β is 1. 

3.2.3.4 BPSO Parameters 

After trying several different combinations of values, BPSO parameters were 

determined and set as follows:  

1. Inertia weight ω = 1.2, c1 = 1.49 and c2 = 1.49 

2. Termination criterion is a maximum of 50 iterations 

3. Swarm size is 16 particles 

4. α and β in fitness function was set to be 0.85 and 0.15, respectively 

3.3 Result and Discussion 

Table 1, 2 and 3 show the classification results of the classifiers of J48, Naïve 

Bayes and LibVSM using Weka. The classification results including four metrics: 

classification accuracy, precision, recall and f-measure. The results show the comparison 

among four types of dataset as mentioned before. The 2
nd

 to 5
th
 Column of Table 1, 2 and 

3 correspond to type 1 to 4 in Fig. 14, respectively. 

3.3.1 Reuters 21578--R8 

Table 1 shows the results of Reuters 21578--R8 dataset. There are three things that 

are noticeable in this result: 1) after two rounds of feature selection, the number of 
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features was reduced from 8576 to around 800. Even though it has been cut down to one 

tenth, the classification performance keeps basically the same. For Naïve Bayes 

classification, BPSO-5NN is even 1% better than the original dataset. 2) The number of 

features narrowed down from 1370 to around 800 for second round, which is a significant 

dimension reduction, and the classification performance also keeps basically the same. 3) 

The result of each metrics shows that BPSO-5NN and BPSO-Rocchio have almost the 

same performance. For J48 classification, the BPSO-Rocchio has even slightly better 

performance than BPSO-5NN. 
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Table 1: Classification Result of Reuters 21578--R8 

Classifier & Metrics 

Original 

Dataset 

Instances: 2189 

Attributes: 8576 

Information 

Gain 

Instances: 2189 

Attributes: 1370 

BPSO-5NN 

Instances: 2189 

Attributes: 791 

BPSO-Rocchio 

Instances: 2189 

Attributes: 855 

J48 

Accuracy 0.901325 0.902695 0.893102 0.901782 

Precision 0.899 0.9 0.889 0.897 

Recall 0.901 0.903 0.893 0.902 

F-Measure 0.9 0.901 0.891 0.899 

Naïve 

Bayes 

Accuracy 0.875286 0.885793 0.889447 0.871631 

Precision 0.913 0.917 0.913 0.911 

Recall 0.875 0.886 0.889 0.872 

F-Measure 0.892 0.899 0.9 0.889 

Lib 

SVM 

Accuracy 0.942896 0.946094 0.940155 0.920512 

Precision 0.942 0.945 0.939 0.917 

Recall 0.943 0.946 0.94 0.921 

F-Measure 0.941 0.945 0.939 0.918 

3.3.2 Reuters 21578--R52 

Table 2 shows the results of Reuters 21578--R52 dataset. 1) Compared to R8 

dataset, the dimension reduction of this R52 dataset was even more noticeable -- from 

9731 to 300, while the classification performance keeps basically the same. 2) For this 

dataset, the two PSO based algorithms gained nearly the same amount of features, and 

BPSO-5NN has a little bit better metric results than BPSO-Rocchio by 1% for each 

classifier.  
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Table 2: Classification Result of Reuters 21578—R52 

Classifier & Metrics 

Original 

Dataset 

Instances: 2568 

Attributes: 9731 

Information 

Gain 

Instances: 2568 

Attributes: 431 

BPSO-5NN 

Instances: 2568 

Attributes: 300 

BPSO-Rocchio  

Instances: 2568 

Attributes: 301 

J48 

Accuracy 0.78271 0.779984 0.778816 0.765187 

Precision 0.74 0.731 0.71 0.707 

Recall 0.783 0.78 0.779 0.765 

F-Measure 0.757 0.75 0.739 0.732 

Naïve 

Bayes 

Accuracy 0.765576 0.818925 0.807243 0.780374 

Precision 0.827 0.847 0.835 0.825 

Recall 0.766 0.819 0.807 0.78 

F-Measure 0.787 0.828 0.817 0.798 

Lib 

SVM 

Accuracy 0.872274 0.896807 0.879673 0.867601 

Precision 0.871 0.887 0.868 0.848 

Recall 0.872 0.897 0.88 0.868 

F-Measure 0.862 0.888 0.865 0.851 

3.3.3 WebKB 

Table 3 shows the results of Reuters WebKB dataset. 1) For this dataset, two 

rounds of feature selection reduced the number of features from 4799 to around 700. The 

classification performance keeps basically the same, while the two PSO based algorithms 

show better result for LibSVM classifier. 2) Two PSO based algorithm performs 

basically the same. BPSO-Rocchio has 100 features fewer features, and achieved 1% 

better results for LibSVM compared to its competitor. 
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Table 3: Classification Result of WebKB 

Classifier & Metrics 

Original 

Dataset 

Instances: 1396 

Attributes: 4799 

Information 

Gain 

Instances: 1396 

Attributes: 1115 

BPSO-5NN 

Instances: 1396 

Attributes: 755 

BPSO-Rocchio  

Instances: 1396 

Attributes: 610 

J48 

Accuracy 0.777937 0.77149 0.768625 0.765759 

Precision 0.777 0.768 0.766 0.764 

Recall 0.778 0.771 0.769 0.766 

F-Measure 0.776 0.768 0.764 0.761 

Naïve 

Bayes 

Accuracy 0.765759 0.776504 0.757163 0.742837 

Precision 0.77 0.788 0.771 0.759 

Recall 0.766 0.777 0.757 0.743 

F-Measure 0.766 0.779 0.759 0.747 

Lib 

SVM 

Accuracy 0.793696 0.82235 0.81447 0.823066 

Precision 0.794 0.822 0.812 0.822 

Recall 0.794 0.822 0.814 0.823 

F-Measure 0.79 0.82 0.812 0.822 

3.3.4 Analysis of running times 

Table 4 shows the average computation time of 50 rounds of BPSO iteration for 

every dataset for BPSO-5NN and BPSO-Rocchio. The ratio between the two average 

iteration times is also computed to highlight the difference in computation time between 

the two approaches.  
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Table 4: Comparison of Computation Time between BPSO-5NN and BPSO-Rocchio 

 

Reuters 21578--R8  

(8 classes) 

Reuters 21578--R52 

(52 classes) 

WebKB 

(4 classes) 

BPSO-5NN 13.24 min 8.956 min 2.054 min 

BPSO-Rocchio 37.12 sec 1.962 min 5.046 sec 

Ratio 21.4 4.6 24.4 

 

Suppose the dataset has m classes and n instances.  

For BPSO-5NN, the computation time of each iteration mainly consists of two parts: 

1) Calculating cosine similarity between each instance, whose time complexity is O(n
2
). 2) 

Calculating the top 5 nearest neighbor which takes O(n). Therefore the time complexity 

of BPSO-5NN is O(n
2
).  

For BPSO-Rocchio, the computation time of each iteration mainly consists of two 

parts as well: 1) Calculating the Euclidean centroids of all the instances of m classes 

which takes O(n). 2) Calculating the Euclidean distance of each instance to these m 

centroids and find out the nearest one which takes O(mn). Therefore the time complexity 

of BPSO-Rocchio is O(n). 

From the table, we can see that for WebKB and Reuters 21578--R8, average 

iteration time of BPSO-5NN is over 20 times to that of BPSO-Rocchio, but this ratio is 

only 4.6 when it comes to Reuters 21578--R52. The 20 times difference fits the 

difference of computation time complexity between these two algorithms. For Reuters 

21578--R52, it has 52 classes, which means that for each instance, 52 Euclidean distances 

need to be counted in BPSO-Rocchio. Therefore, compared to the other two dataset 

which have much fewer classes, the time difference is not so significant. 
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3.3.5 Analysis of classification results and running times 

Table 5 shows the average classification accuracy of three classifiers for each 

dataset.  

Table 5: Average of Classification Accuracy Summary 

 
Original 

Dataset 

Information 

Gain 

BPSO-5NN BPSO-Rocchio 

Reuters 21578--R8 

0.909091 

(8576 features) 

0.911527 

(1370 features) 

0.907568 

(791 features) 

0.897975 

(855 features) 

Reuters 21578--R52 

0.806853 

(9731 features) 

0.831905 

(431 features) 

0.821911 

(300 features) 

0.804387 

(301 features) 

WebKB 

0.779131 

(4799 features) 

0.790115 

(1115 features) 

0.780086 

(755 features) 

0.777221 

(610 features) 

 

First of all, for all the three datasets, after two rounds of feature selection, the 

feature numbers were all greatly reduced. The classification accuracy of both PSO based 

algorithms are about the same compared to the accuracy using original dataset. BPSO-

5NN has better results than the original dataset for Reuters 21578--R52 and WebKB. 

This shows that this integrated feature selection method combining both the filter and 

wrapper method is successful -- greatly reduced dimension and good classification results 

were achieved in this work. 

Second, it is noticeable that the major dimension reduction happens in the first 

round of feature selection which is the filter approach phase, and the classification 

accuracies of the Information Gain phase are the highest for all three corpuses. However, 

because the major purpose of this work is to compare the feature selection performance 
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between BPSO-5NN and BPSO-Rocchio, and as previously mentioned, by performing 

the filter approach feature selection first, it is much easier to run the two PSO based 

wrapper algorithms. Therefore, more emphasize should be put on the results obtained 

from BPSO-5NN and BPSO-Rocchio dataset. 

Third, as we can see from Table 5, the overall classification performance of BPSO-

5NN is about 1% to 2% better than BPSO-Rocchio, but the computation time difference 

between this two is quite huge -- for datasets which have less than 10 classes, the ratio of 

computation time between the two PSO based wrapper algorithms can be up to 20 times. 

Therefore, for most situations, BPSO-Rocchio is a better choice especially when 

computation time is a factor. 

3.3.6 Conclusion and Future Work 

In this work, I implemented a two-round feature selection for text categorization 

combining both the filter and wrapper approaches. The filter approach is Information 

gain method. The two wrapper approaches are BPSO based 5NN and Rocchio. The 

comparison of the classification results was done in two levels: 1) Comparison between 

the original dataset and the two-round feature selected dataset; 2) Comparison between 

the two wrapper approaches -- BPSO-5NN and BPSO-Rocchio. The result shows: 1) this 

two-round feature selection implementation is successful -- the number of features was 

substantially reduced and the classification performance was slightly improved; 2) 

BPSO-Rocchio has much shorter computation time and comparable classification 

accuracy compared to BPSO-5NN.  

For future work, more corpuses can be tried using this implementation in 

distributed systems. Corpuses like 20 Newsgroups and Cade [15] were not used in this 
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study due to the extremely large size of their dataset. They should be tried in a distributed 

system in the two-round feature selections and used in the final classification task to 

verify the results reported in this work. 
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Appendix 

The source code of this writing project can be found in the following link in Github: 

https://github.com/shwu2012/CS298 
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