
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-13-2015

COMPARATIVE ANALYSIS OF PARTICLE
SWARM OPTIMIZATION ALGORITHMS
FOR TEXT FEATURE SELECTION
Shuang Wu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Wu, Shuang, "COMPARATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION ALGORITHMS FOR TEXT FEATURE
SELECTION" (2015). Master's Projects. 386.
DOI: https://doi.org/10.31979/etd.k4cc-tvzq
https://scholarworks.sjsu.edu/etd_projects/386

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70410081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F386&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F386&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/386?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F386&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

COMPARATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION

ALGORITHMS FOR TEXT FEATURE SELECTION

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Shuang Wu

May 2015

ii

© 2015

Shuang Wu

ALL RIGHTS RESERVED

iii

The Designated Project Committee Approves the Project Titled

COMPARATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION

ALGORITHMS FOR TEXT FEATURE SELECTION

by

Shuang Wu

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2015

Dr. Sami Khuri

Dr. Suneuy Kim

Dr. Teng Moh

iv

ABSTRACT

COMPARATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION

ALGORITHMS FOR TEXT FEATURE SELECTION

by Shuang Wu

With the rapid growth of Internet, more and more natural language text documents

are available in electronic format, making automated text categorization a must in most

fields. Due to the high dimensionality of text categorization tasks, feature selection is

needed before executing document classification. There are basically two kinds of feature

selection approaches: the filter approach and the wrapper approach. For the wrapper

approach, a search algorithm for feature subsets and an evaluation algorithm for assessing

the fitness of the selected feature subset are required. In this work, I focus on the

comparison between two wrapper approaches. These two approaches use Particle Swarm

Optimization (PSO) as the search algorithm. The first algorithm is PSO based K-Nearest

Neighbors (KNN) algorithm, while the second is PSO based Rocchio algorithm. Three

datasets are used in this study. The result shows that BPSO-KNN is slightly better in

classification results than BPSO-Rocchio, while BPSO-Rocchio has far shorter

computation time than BPSO-KNN.

v

ACKNOWLEGEMENT

I would like to express my sincere gratitude to Dr. Sami Khuri for his instruction on

this project. I would also like to thank Dr. Suneuy Kim and Dr. Teng Moh for being my

committee members. Finally, I would like to thank my dear husband for being so

supportive in every way. I couldn't have done all these without his support.

vi

TABLE OF

CONTENTS

1 Introduction .. 1

2 Literature Review ... 4

2.1 Text Pre-processing, VSM and tf-idf ... 4

2.1.1 Text pre-processing ... 4

2.1.2 Vector Space Model (VSM) .. 5

2.1.3 Term frequency - inverse document frequency (tf-idf) 7

2.2 Feature Selection: Filter and Wrapper Approaches .. 8

2.3 Filter Approach: Entropy and Information Gain .. 9

2.4 Wrapper Approach: Particle Swarm Optimization with KNN and Rocchio 10

2.4.1 Particle Swarm Optimization ... 10

2.4.2 Evaluators: KNN and Rocchio .. 14

2.5 Weka and Classifiers ... 18

2.5.1 Weka .. 18

2.5.2 Classifiers ... 19

2.5.3 K-Fold Cross Validation ... 19

2.6 Measures for classification .. 20

2.6.1 Confusion Matrix .. 20

2.6.2 Accuracy and Error ... 21

2.6.3 Precision, recall and f-measure .. 21

vii

3 Experimental Study .. 23

3.1 Datasets ... 23

3.1.1 Reuters 21578 (R8 and R52) ... 23

3.1.2 WebKB ... 26

3.1.3 File Description... 26

3.1.4 Pre-processing ... 27

3.2 Implementation ... 28

3.2.1 VSM dataset generator .. 31

3.2.2 Filter Approach ... 32

3.2.3 Wrapper Approach .. 33

3.3 Result and Discussion ... 35

3.3.1 Reuters 21578--R8 .. 35

3.3.2 Reuters 21578--R52 .. 37

3.3.3 WebKB ... 38

3.3.4 Analysis of running times .. 39

3.3.5 Analysis of classification results and running times 41

3.3.6 Conclusion and Future Work ... 42

References ... 44

Appendix... 46

viii

LIST OF TABLES

Table 1: Classification Result of Reuters 21578--R8 .. 37

Table 2: Classification Result of Reuters 21578—R52 .. 38

Table 3: Classification Result of WebKB .. 39

Table 4: Comparison of Computation Time between BPSO-5NN and BPSO-Rocchio ... 40

Table 5: Average of Classification Accuracy Summary ... 41

ix

LIST OF FIGURES

Figure 1: Vector space classification into three classes .. 6

Figure 2: The feature filter approach .. 8

Figure 3: The wrapper approach to feature subset selection ... 8

Figure 4: Illustration of how the position of a particle is updated in PSO 12

Figure 5: Visualizing k-Nearest Neighbor Classification.. 16

Figure 6: Voronoi tessellation and decision boundaries (double lines) in 1NN

classification. The three classes are X, circle and diamond .. 17

Figure 7: Rocchio classification ... 18

Figure 8: 4 Fold Cross Validation .. 20

Figure 9: Confusion Matrix ... 21

Figure 10: Reuters 21578—R8 .. 24

Figure 11: Reuters 21578—R52 .. 25

Figure 12: WebKB .. 26

Figure 13: Pre-processed dataset of Reuters 21578—R8 .. 27

Figure 14: Data pipeline in experimental study .. 30

Figure 15: VSM dataset of Reuters 21578—R8 ... 31

Figure 16: Weka: Information Gain Attribute Evaluator .. 32

1

1 Introduction

With the rapid growth of Internet and mobile communication, we have many more

electrical documents available on all kinds of websites and cloud storages than ever

before. In order to better understand and organize these documents, automatic text

categorization has become a must for industrial and academic purposes. Text

categorization consists in classifying a document into one or several pre-defined

categories according to their contents. Many applications, such as search engines, take

advantage of this technology.

The first step of text categorization is to transform a document into a vector. Each

dimension of this vector corresponds to a term present in the whole dataset. If this term

ever occurs in this document, its value will be a non-zero double value. Therefore, it

brings a critical question: should we use all the terms appeared in the datasets? Or should

we just select some representative terms considering the fact that there are so many terms

in a dataset while not all of them are necessary for text categorization? This problem is

known as feature selection in machine learning because a term is regarded as a feature or

a dimension when a document is transformed into a vector in text categorization task.

Feature selection is extremely important for text categorization since it is quite normal to

have more than ten-thousand terms in a document dataset. Such high dimensionality

makes it very difficult to carry out text categorization using machine learning algorithms.

By doing feature selection, not only can we decrease the dimension, but also we can

eliminate redundant and irrelevant features, so that classification performance can be

improved, learning and executing process can be made faster, and the structure of the

learning model can be simplified [1].

2

There are basically two categories of feature selections: filter approaches and

wrapper approaches. Filter approach doesn’t need a specific learning algorithm. Metrics,

such as Information Gain, are used to measure features due to the information it carries.

Features are ranked according to the score gained using metrics and then selected out.

Wrapper approach, in contrast, needs to have a particular learning algorithm. A subset of

features is selected out to be used in this algorithm so that it can be evaluated by the

classification accuracy [2]. Generally speaking, the wrapper approach has better

performance than the filter approach because it considers the whole subset of features

rather than a single feature. However, the filter approach is argued to be more efficient

and more general.

In this work, I used both the filter approach and the wrapper approach. The filter

approach was used at first to reduce the dimension to the level that the dimension of a

dataset can be processed with not so much effort when using the wrapper approach. Here

I take advantage of the fast computation of the filter approach. Because if I use the

wrapper approach directly, the computation time of feature selection will be quite long

due to the complexity of calculation of accuracy. What’s more, it is more convenient and

efficient to get rid of some noisy and unnecessary features using the filter approach

before I compare the two different wrapper approaches in question.

For the filter approach, I used Information Gain to measure the score of each

feature. After the dimension reduction by Information Gain, I compared two wrapper

approaches. As stated before, the wrapper approach needs a specific machine learning

algorithm to calculate the accuracy of classification. There are two classifiers I used in

this study. One is the K-Nearest Neighbors, the other is Rocchio. Meanwhile, I also used

3

a method to search the feature space. Suppose we have a dataset with n features, the size

of search space would be 2
n
. Considering the fact that the dimension of dataset after the

filter approach is still quite high, it is impossible to search the whole space exhaustively

in most cases [1]. Therefore, in this work, I used Particle Swarm Optimization (PSO)

which is a heuristic algorithm that belongs to evolutionary computation technique. This

kind of technique, including PSO, Genetic Algorithms (GA), Ant Colony Optimization

(ACO) etc., is famous for its global search ability. Compared to other evolutionary search

algorithms, PSO has fewer parameters, and is less computationally expensive. It also has

the advantage of converging more quickly. Therefore, PSO is considered to be a

promising search method for feature selection problems [3].

The rest of this report is organized in the following fashion: 1) In the Literature

Review section, I go through the basic concept of Vector Space Model and term

frequency-inverse document frequency, explain what the filter approach and the wrapper

approach are and go into detail about the filter method -- information gain and the

wrapper approaches -- Particle Swarm Optimization based K-Nearest Neighbors and

Rocchio which I used in this work. I also briefly introduce Weka and the three classifiers

used. 2) In the Experimental Study section, I show the two corpuses used in my

experiment and elaborate implementation and experiment procedures. I show the results

of text classification and analyze comparatively for Binary PSO-KNN and Binary PSO-

Rocchio. At the end, I draw a conclusion and discuss the possible improvement for future

work.

4

2 Literature Review

2.1 Text Pre-processing, VSM and tf-idf

Text categorization (TC) belongs to the task of Natural Language Processing and

Data Mining. It takes unstructured texts which are natural languages as input, and uses

machine learning algorithms to classify the input into different categories from a pre-

defined set [4]. If every text instance in this dataset has only one category, it is a single-

label TC task. If every instance has two or more categories, it is a multi-label TC task [5].

In this work, I only consider the case of single-label TC task because multi-label TC task

is much more complex and beyond the scope of my study. Compared to other

classification problems which are not formed by data of natural languages, the feature

space of TC is especially high dimensional and sparse. In TC, many features are noisy

and unnecessary. For example, there are words like “a”, “the” and “my” that cannot offer

any information in TC problem. Therefore, it is quite necessary to execute dimension

reduction before classification procedure.

2.1.1 Text pre-processing

Text-preprocessing procedure usually includes the following steps: 1) conversion to

UTF-8 encoding; 2) removing hyphens, punctuation marks, numbers, digits, non-English

letters and diacritics; 3) removing stop words (such as “the”, “at”, “I” and “on”); 4)

eliminating rare words (words that occur less than five times in the dataset); and 5)

executing word stemming [2].

5

2.1.2 Vector Space Model (VSM)

Before we go deep into dimension reduction, let us first take a look at the concept

of Vector Space Model (VSM). VSM is an algebraic model for representing text

documents as vectors of terms or phrases [19]. The set of terms are the terms that are

present in the whole dataset of TC problems, and the class label of one entry is from

categories of a pre-defined set as mentioned before. Usually, if a term occurs in a

document, the vector of this term in the entry of this document will not be zero.

So what makes VSM model valid for TC? There is a basic hypothesis in using

VSM for classification which is called contiguity hypothesis. It assumes that “Documents

in the same class form a contiguous region and regions of different classes do not

overlap.” [11] How should we interpret this hypothesis? There are many TC tasks that

can be classified by word patterns. For example, suppose we have a TC task that has

three classes -- China, Kenya and UK. Documents that belong to the China class tend to

have high values on features such as Beijing, Chinese and Mao, while documents that

belong to UK tend to have high values on dimensions such as London, British and Queen.

Documents from different classes therefore have clear and contiguous regions of their

own, as shown in Fig. 1, and it should be feasible to draw boundaries among all the

classes so that classification can be applied [11].

6

Figure 1: Vector space classification into three classes [11]

 Whether the documents belonging to the same class can be mapped into a

contiguous region is highly influenced by decisions we made for document representation,

such as stop list and weighting type. For instance, suppose we have two classes of

documents, one is written by a single person, the other is written by a group of people.

We can imagine that for the documents that belong to the single person class, the value

on the dimension “I” would be quite high, and it is extremely useful information for

classification. However, if we didn’t look deep into this factor and just use normal stop-

words list, it is highly likely that “I” will be removed. Therefore, when we don’t choose

document representation wisely, the contiguity hypothesis cannot hold, making vector

space classification not successful [11].

I used two vector space classification methods in my work, K-Nearest Neighbors

(KNN) and Rocchio. KNN classification does not require training a model, it just sees

which class is the majority of the classes of the k nearest neighbors of the document in

question, and assigns this label to this document. Rocchio classification calculates the

7

center of mass of all the documents in each class and divides the problem space into

regions based on centroids. Both methods will be discussed in the next sections.

2.1.3 Term frequency - inverse document frequency (tf-idf)

The values of terms in VSM can be calculated using several methods. Among them,

term frequency-inverse document frequency (tf-idf) is a widely-used statistics method [2].

Tf-idf is used to describe how critical a term is to a document in a corpus. To get to know

tf-idf, we will need to know what term frequency (tf) and inverse document frequency

(idf) are. Suppose we have a corpus of k documents, tf and idf of a term t are defined as

follows:

 tf(t,d) = the number of times t appears in document d / total number of terms in

the document d

 idf(t) = log(k / the number of documents in the corpus in which t occurs at least

once)

Therefore,

 Tf-idf(t,d) = tf(t, d) * idf (t)

Intuitively, if a term appears in a document very frequently and it does not occur in

other documents often, it means that this term offers important information for

classifying this document. For example, the term “football” appears in a document very

often, but doesn’t appear in other documents, this information reveals that it is quite

possible that this document belongs to the “sports” category. However, if we consider the

term “report”, although it might also appear very frequently in the same document, it can

be found in other documents quite often. Therefore, the term “report” cannot give us

much information about this document.

8

2.2 Feature Selection: Filter and Wrapper Approaches

There are generally two categories of feature selection--the filter approach and the

wrapper approach.

The filter approach, as shown in Fig. 2, was proposed before the wrapper approach,

and it assesses the merits of features from the dataset without taking a specific machine

learning algorithm into consideration. The filter approach always has the disadvantage of

missing interactions between features [2], and it also ignores the possible effects on the

performance of machine learning algorithm of the selected feature subsets [6].

Figure 2: The feature filter approach [6]

Realizing the disadvantage of the filter approach, Ron Kohavi and George John

proposed the wrapper approach in 1997, as shown in Fig. 3. In the wrapper approach, a

machine learning algorithm is used as a black box when executing the feature subset

search, which means that we don’t need to have the knowledge of this algorithm and we

only need the interface. By using the interface, we evaluate the merits of feature subsets

according to the accuracy of the induced classifier to obtain the optimal feature subset [6].

Figure 3: The wrapper approach to feature subset selection [6]

9

2.3 Filter Approach: Entropy and Information Gain

Information theory was developed by Shannon, and its key concept is entropy.

Entropy measures the uncertainty of random variables [3].

Let X be a random variable, its uncertainty can be measured by entropy H(X)

which is defined as following:

H(X) = (1)

where p(x) = Pr(X=x) is the probability density function of X.

For two variables X and Y, when X is unknown and Y is known, the uncertainty of

X given Y is the conditional entropy H(X|Y) defined as following:

H(X|Y) = (2)

From this definition, we know that if X completely depends on Y, then H(X|Y) is zero; if

X has nothing to do with Y, then H(X|Y) is H(X).

Information gain is defined as follows:

IG(X, Y) = H(X) - H(X|Y) =

 (3)

By definition, it is clear that information gain means the decrease in the uncertainty of X

by knowing Y. Therefore, if X completely depends on Y, then IG(X, Y) is H(X); if X has

nothing to do with Y, then IG(X, Y) is 0.

For feature selection tasks, a filter approach using information gain evaluates the

worth of an attribute by measuring the information gain with respect to the class [10],

which can be shown as:

IG(Class, Feature) = H(Class) - H(Class|Feature) (4)

10

2.4 Wrapper Approach: Particle Swarm Optimization with KNN and Rocchio

2.4.1 Particle Swarm Optimization

For a TC problem, suppose we have a corpus that has n features in total, then the

search space will be 2
n
. Usually n is bigger than a thousand, and can be reached to up to

nearly ten thousand. Therefore, it is impossible to use exhaustive search because the

search space is so large in most situations. We can see that the search strategy can

strongly influence the result of feature selection. A lot of search techniques, such as

greedy algorithms, have been used in feature selection problems. However, many suffer

from getting stuck in local optima [3].

Evolutionary computation algorithms are well-known for their global search ability.

Compared to other evolutionary algorithms such as Genetic Algorithms (GA), Particle

Swarm Optimization (PSO) has the advantages of having fewer parameters, less

computation and faster convergence. Therefore, PSO has been widely used for feature

selection over recent years [3].

PSO was developed by Kennedy and Eberhart in 1995. They were inspired by

observing the swarm behavior in flocks of birds, schools of fish, and swarms of bees that

are thought to have Swarm Intelligence. PSO is a population-based optimization tool that

can be used for a variety of optimization problems [8]. The canonical PSO was originally

developed for continuous optimization problems, but it is not very practical because lots

of practical engineering problems, such as feature selection, are combinatorial

optimization problems. That’s why Binary PSO was developed. We study at the

canonical PSO first, and then discuss BPSO that was used in my work.

11

2.4.1.1 Canonical PSO

The canonical PSO model utilizes a population of particles. These particles are

scattered in the problem space of the optimization problem in question. So how are these

particles represented? They are represented by their positions and their velocities in this

problem space. Like a flock of birds, these particles move iteratively through the d-

dimension problem space based on a given rule, trying to find out the global optimal

position. The definition of the global optimal position is the position in the d-dimension

space where the fitness value is optimal. At the beginning of the search, the position of

each particle is randomly initialized. In each iteration, the velocity of each particle is

computed according to the PSO rule, and the position of each particle will be updated in

accordance with its velocity. When a pre-defined criterion is reached, iterations stop.

For example, suppose we have an optimization problem of three variables and each

variable has the domain of real number, then the problem space is a three dimension

space. If we try to use PSO to solve this problem, and we plan to use ten particles in this

case, we can initialize the initial position of each particle. For example, particle No.1 has

initial position (1.22, 4.53, 5.78), particle No.2 has initial position (10.25, 1.36, 15.75). In

each iteration, velocity of each particle is computed using the PSO rule. For example, the

velocity of particle No.1 could be (-3.23, 1.48, -9.68), then its position will be updated

accordingly, and the fitness of each particle will be calculated and recorded.

So what is the rule of calculating the velocity? In PSO, there are two kinds of

positions that are quite important. The first is the best position ever occurred for one

particle, which is called the best personal position. The best position means that this

position gains the best fitness out of all the positions this particle has been to. The second

12

is the best position ever occurred for the whole swarm, which is called the best global

position. The core idea of calculating the velocity of each particle is that the movement of

each particle is always a combination of its current velocity, the trend to move to the best

personal position and the trend to move to the best global position. After we get the

velocity, we can then obtain the next position of this particle. Fig. 4 gives an illustration

of this procedure.

Figure 4: Illustration of how the position of a particle is updated in PSO [12]

Let us see the formula for the PSO rule. For each particle, the position is

represented by a position-vector Xi = (xi1, xi2, …, xij, …)(i is the index of the particle, j is

the index of dimension); the velocity is represented by a velocity-vector Vi = (vi1, vi2, …,

vij, …); the best personal position is represented by a position-vector Pi = (pi1, pi2, …,

pij, …); and the global best position is represented by a position-vector G = (g1, g2, …,

gj, …). During iteration t, the new velocity and the new position are updated as follows:

Vi (t+1)=ω* Vi (t)+ c1 *rand*(Pi - Xi (t)) + c2 *rand*(G - Xi (t)) (5)

Xi (t+1) = Xi (t) + Vi (t+1) (6)

In equation (5), ω is called the inertia factor, which is used to control the impact of

current velocity to the next iteration’s velocity. It regulates the balance between the local

13

and global search abilities of the particle swarm. rand is the random number distributed

in [0,1] and is used to keep the randomness and diversity of the positions of the

population. Positive constants c1 and c2 represent the weighting coefficients that pull the

particle towards the personal best position or the global best position [8]. After we get the

velocity using equation (5), we can use equation (6) to obtain the next iteration’s position

of each particle.

The global best position is improved round by round in PSO procedure. The end

criteria of PSO are usually to reach the maximum number of iterations or to stop the

iterations after several rounds of no improvement.

2.4.1.2 Binary PSO

In order to broaden the usage of PSO model, in 1997, Kennedy and Eberhart

developed Binary PSO (BPSO) for discrete problems [1]. The difference between BPSO

and the canonical PSO is that in each dimension, there are only two possible values -- 0

and 1, and the velocity of particle represents the probability of this particle taking 1 as its

position in this dimension. Therefore, equation (5) is still applicable in BPSO only that

position-vector Xi, personal best position Pi and global best position G are now vectors

with only of 0 or 1. Furthermore, a sigmoid function is applied to transform Vi to the

range of (0, 1) [1]. The position update equation of BPSO is defined as follows:

S(Vi (t+1)) =

 (7)

Xi (t+1) =

 (8)

where S(Vi (t+1)) is the sigmoid function, and rand is a random number distributed in

[0,1].

14

So how do we apply BPSO to feature selection? Feature selection is in essence an

optimization problem. The representation of a particle’s position is an n-bit binary vector,

where n is the number of features. When the bit is 1, it means that the corresponding

feature is selected; when this bit is 0, it means otherwise.

2.4.2 Evaluators: KNN and Rocchio

When using BPSO as a search method to search for feature subsets in problem

space, I used K-Nearest Neighbors (KNN) and Rocchio as the evaluation algorithms to

calculate the accuracy of classification on each selected subset. The best global position

is updated after each iteration.

The reason for selecting KNN and Rocchio is that most research of wrapper

approach used KNN as learning algorithm, while Rocchio was seldom mentioned. KNN

and Rocchio are both similarity based. However, the running time of Rocchio is much

shorter than KNN. It is worth to compare KNN and Rocchio as learning algorithms in

wrapper approach for TC tasks.

2.4.2.1 Similarity Measurements: Euclidean Distance V.S Cosine Similarity

Before I discuss KNN and Rocchio, we need to be familiar with two measurements

for distance -- Euclidean distance and Cosine Similarity. Both of them are used quite

often in Vector Space Model.

The Euclidean distance is the straight line distance between two vectors in vector

space [20].

The Cosine similarity measures the cosine of the angle between two vectors in

vector space. Compared to Euclidean distance, it is a measure of similarity of orientation

rather than magnitude. Therefore, if two vectors are of the same orientation, their cosine

15

similarity is 1 because the cosine of 0° is 1; while for two vectors at 90°, their cosine

similarity is 0 [21].

When using cosine similarity, a vector is often normalized by dividing the value of

each dimension by the length of the vector, thus making all the length of all vectors into 1.

Therefore, for normalized vectors, the cosine is simply the dot product of two vectors

because denominators have all become 1.

For sparse dimension space, cosine similarity is a better choice than Euclidean

distance [11]. Therefore, in my work, cosine similarity was used in the KNN

implementation, and normalization was applied to datasets before calculating cosine

similarity to reduce the computation time.

2.4.2.2 K-Nearest Neighbors (KNN)

Compared to most other machine learning methods, which can be called “eager”

learning methods, KNN is a kind of method that belongs to “lazy” learning or “instance -

based” learning. For “eager” machine learning algorithms, such as Support Vector

Machine and decision tree, prior assumptions are made about model class and the

learning process is about tuning the model class parameters to the training dataset. After

training, prediction will be made using the obtained model. So for “eager” methods, most

of the effort is spent on the model learning phase rather than the prediction phase. While

for “lazy” machine learning algorithms, such as KNN, there is no explicit assumption

about the structure of a prediction function or optimization criterion. No learning effort is

involved except for storing all the training instances into memory. The main endeavor is

put on the prediction phase to predict labels according to the similarity between the

instance in question and the other instances in the training dataset [13].

16

Given the definition of distance which could be Euclidean distance or cosine

similarity, for 1NN, we just assign the document in question to the class of its nearest

neighbor. For KNN (k > 1), we assign the majority class of it k nearest neighbors to the

document in question. The class of the nearest neighbor can be used to break a tie if

needed. The basic logic of KNN is that according to the contiguity hypothesis mentioned

earlier, we assume that the document in question has the same class as the training

documents surrounding its local area. Fig. 5 is a visualization of KNN with 2 classes.

Figure 5: Visualizing k-Nearest Neighbor Classification [13]

Fig. 6 shows the decision boundaries in 1NN which are concatenated segments of

the Voronoi tessellation. According to Wikipedia [22], “A tessellation of a flat surface is

the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps

and no gaps.” Voronoi tessellation consists of Voronoi cells, and all vectors that are

closer to the object vector than other object vectors are within the scope of its

corresponding Voronoi cell. For TC task, each object vector is a document vector. As we

can see from Fig. 6, all the Voronoi cells are convex polygons containing its

corresponding object vector. For KNN (k > 1), it is the same situation. The space is also

divided into convex polygons [11].

17

Figure 6: Voronoi tessellation and decision boundaries (double lines) in 1NN

classification. The three classes are X, circle and diamond. [11]

1NN is not very robust and very sensitive to noise. The classification totally

depends on the class of a single training data, so the result will be distorted if this single

data is mislabeled or atypical. KNN (k > 1) is more robust in this sense. But we also need

to note that if k is too large, the neighborhood may include instances from other classes.

Usually, the parameter k is decided based on the experience about the classification

problem in question. Quite often k is chosen to be an odd number to lessen the situation

of ties. k =3 and k = 5 are frequently used; however, numbers between 50 and 100 are

also possible options in some situations [11].

2.4.2.3 Rocchio

Rocchio classification uses centroids to define the decision boundaries. The

assumption of contiguity hypothesis of Vector Space Model makes the calculation of

centroid valid and applicable for Rocchio classification. The centroid of a class is defined

18

as the center of mass of its instance vectors. The set of points with equal distance to the

centroids of two classes form the decision boundary of these two classes. For a 2-

dimension classification problem, the boundary is always a line. For a space whose

number of dimension is more than 2, the decision boundary is a hyperplane. Fig. 7 shows

an illustration of Rocchio classification of the China, UK and Kenya problem we

mentioned earlier.

Figure 7: Rocchio classification [11]

2.5 Weka and Classifiers

2.5.1 Weka

Weka (Waikato Environment for Knowledge Analysis) is a machine learning and

data mining open source software written in Java and is issued under the GNU General

Public License [10]. It was developed by the University of Waikato, New Zealand and

got its name from an endemic bird of New Zealand which is also called weka.

19

Weka supports several standard machine learning and data mining tasks such as

data preprocessing, classification, clustering, feature selection and visualization. In my

work, I used its classification and feature selection functions.

2.5.2 Classifiers

A classifier is an algorithm used to implement classification task. I used three

classifiers in Weka, to execute classification tasks in my work:

 J48 (Weka implementation of C4.5 decision tree) -- an algorithm used to build a

decision tree from a set of training data using the concept of information entropy

[23]

 Naïve Bayes -- a simple probabilistic classifier based on applying Bayes' theorem

with strong (naïve) independence assumptions between the features [24]

 Support Vector Machine (SVM) -- an algorithm that performs classification by

constructing a hyperplane or set of hyperplanes in a multi-dimensional space [25]

2.5.3 K-Fold Cross Validation

The usual practice of validation is to use a holdout method, which reserves a certain

amount of instances for testing and leaves the rest for training. The common holdout

percentage is one-third for testing [10].

However, it is quite possible that the holdout set is unrepresentative, especially

when the size of the dataset is small, which means that the amount of instances for

training and testing is limited. K-fold cross validation is extremely useful in this situation.

In cross validation, data is divided into a fixed number of folds, or partitions. Take 4-fold

cross validation as an example. Data is split into 4 approximately equal partitions; each in

turn is used for testing and the rest is used for training, i.e., one-fourth is used for testing

20

and three-fourth is used for training. We repeat this procedure 4 times so that every

instance is used exactly once for testing in the end [10]. Fig. 8 shows the procedure of 4-

fold cross validation [4].

Figure 8: 4 Fold Cross Validation [17]

2.6 Measures for classification

There are several measures for assessing classification performance, and I used

accuracy, precision, recall and f-measure in this work. All of them are based on confusion

matrix.

2.6.1 Confusion Matrix

A confusion matrix contains information about actual and predicted classification

done by a classification system [16]. Fig. 9 shows the confusion matrix for a two-class

(Yes and No) classifier [18]. If an instance is actually a Yes class, and is predicted as Yes,

then it is a True Positive case; if an instance is actually a No class, and is predicted as Yes,

then it is a False Positive (FP) case. Similarly, if an instance is actually a Yes class, and is

predicted as No, then it is a False Negative (FN) case; if an instance is actually a No class,

and is predicted as No, then it is a True Positive (TP) case. Confusion matrix shows the

numbers of instances which belongs TP, FP, FN and TN. Two-class confusion matrix can

be easily generalized to multiclass case.

21

Figure 9: Confusion Matrix [18]

2.6.2 Accuracy and Error

Accuracy and error are two basic criteria for classification [18]. They are defined as

follows:

accuracy =

 (9)

error = 1 - accuracy =

 (10)

However, when it comes to unbalanced dataset, accuracy and error become

meaningless. Consider the case of prediction of occurrence of earthquake. Earthquake is a

rare event. If a classifier always predict no, it can gain very high accuracy. However, the

accuracy doesn’t mean that this classifier is a good one; it only means that this dataset is

quite unbalanced. In this case, FN should have higher weight. That is the reason for

which we need better measurements than accuracy and error in this kind of situation [18].

2.6.3 Precision, recall and f-measure

Precision, Recall and F-measure are other three widely used measures in

classification. They are defined as below:

22

precision =

 (11)

recall =

 (12)

f- measure =

 (13)

Precision means the percentage of instances classified as positive which are really

positive. Recall means the ability of predicting the positive instance as positive. F-

measure is the harmonic mean of precision and recall.

To get a flavor of these three measures, assume the case of a search engine. The

search engine needs to classify the documents in a dataset into two classes -- relevant or

irrelevant, and to return the relevant documents. Therefore, precision here means how

many of the returned documents are really relevant; while recall means how many of the

relevant documents are returned as relevant. Then how about f-measure? Imagine two

extreme situations: 1) the search engine only returned one document and this document is

indeed relevant, so the precision is 100%. But the recall is quite low because there are a

lot of relevant documents were classified as irrelevant and not returned. 2) The search

engine returned all the documents which mean it classified all the documents as relevant.

The recall in this situation is 100%, but the precision is quite low. These two extreme

situations explain why f-measure is needed -- f-measures of these two extreme situations

are both low, because f-measure shows the balance between precision and recall.

In the next section, we study the implementation and experiments of this project.

The implementation contains three parts: 1) generating feature subsets using raw training

dataset, 2) generating classification dataset using raw testing dataset based on the

23

obtained feature subsets, and 3) executing Weka classification. We also discuss the

classification results and come to a conclusion.

3 Experimental Study

3.1 Datasets

The datasets that I used in this work are two corpuses which are widely used in TC

tasks. Ana Cardoso-Cachopo preprocessed these two corpuses and shared them online,

making it much easier for us to focus on the TC task itself [15].

3.1.1 Reuters 21578 (R8 and R52)

The first corpus is Reuters 21578, which is currently the most widely used corpus

for TC research. The data was originally collected and classified by Carnegie Group, Inc.

and Reuters, Ltd. in 1987 [14]. In the original version of Reuters 21578, many of the

documents are labeled as having no topics or have more than one topic. What’s more,

because some classes only have very few documents, the class distribution for the

original version is much skewed. Therefore, two sub-collections are usually used for TC

tasks, which are called R8 and R52. Both of them are formed by single-labeled

documents. R8 is the set of 8 classes with the highest number of positive training

examples, while R52 is the set of 52 classes with the highest number of positive training

examples and with at least one testing examples [15]. Fig. 10 and Fig. 11 show the

distributions of documents per class of R8 and R52.

24

Figure 10: Reuters 21578—R8 [15]

25

Figure 11: Reuters 21578—R52 [15]

26

3.1.2 WebKB

The second corpus is WebKB, which are webpages collected by the World Wide

Knowledge Base project of the CMU text learning group [15]. These webpages were

collected from the computer science department of several well-known universities in

1997 and were labeled into seven classes: Student, Faculty, Staff, Department, Course,

Project and Other. However, Ana [15] chose to discard the classes Department and Staff

because there were only a few pages from each university. She also got rid of the class

Other because pages were very different among this class [15]. Fig. 12 shows the

distribution of classes of WebKB.

Figure 12: WebKB [15]

3.1.3 File Description

All of the dataset files are text files. Each line of a text file represents one document.

Each document consists of its class and its terms -- the first word of each line represents

this document’s class, then a TAB character, then a sequence of “words” delimited by

spaces which represent the terms contained in this document [15]. A snapshot of the text

file is shown in Fig. 13.

27

Figure 13: Pre-processed dataset of Reuters 21578—R8

3.1.4 Pre-processing

As mentioned earlier, the datasets I used are already pre-processed. According to

Ana Cardoso-Cachopo, the following pre-processing has been done [15]:

1. Substitute TAB, NEWLINE and RETURN characters by SPACE.

2. Keep only letters (that is, turn punctuation, numbers, etc. into SPACES).

3. Turn all letters to lowercase.

4. Substitute multiple SPACES by a single SPACE.

5. Add the title/subject of each document in the beginning of the document's

text.

6. Remove words that are less than 3 characters long. For example, removing

"he" but keeping "him".

7. Remove the 524 SMART stopwords. Some of them had already been

removed, because they were shorter than 3 characters.

28

8. Apply Porter's Stemmer to the remaining words.

3.2 Implementation

I determined to use 5 as k in this work after trying values 3 and 5 because k=5 got

better results; therefore BPSO-KNN will be called BPSO-5NN in the following

paragraphs.

Four software components were implemented in Java: VSM dataset generator,

BPSO-5NN algorithms, BPSO-Rocchio algorithms, and Feature filter.

The whole data pipeline of my implementation is illustrated in Fig. 14. The

implementation of this project consists of three steps:

1. Generate Feature Selection (FS) subsets using raw training dataset as shown

in Fig. 14. The output of this step are three feature subsets -- Information

Gain FS subset, BPSO-5NN FS subset and BPSO-Rocchio FS subset, which

correspond to {3}, {4} and {5} in Fig. 14:

a. Data transformation: implement the Vector Space Model (VSM)

dataset generator using Java programming language to transform the

pre-processed Raw Training datasets {1} ({1} in Fig. 14) into VSM

Training dataset {2} with the tf-idf weighting.

b. Filter approach: use software tool Weka to execute the first round of

feature selection using Information Gain filter method on {2} to get

Information Gain FS subset {3}.

c. Wrapper approaches: implement BPSO-KNN and BPSO-Rocchio

algorithm using Java programming language, and execute the second

round of feature selection using BPSO-KNN and BPSO-Rocchio

29

relatively to get BPSO-5NN FS subset {4} and BPSO-Rocchio FS

subset {5}.

2. Generating four types of dataset used in classification using raw testing

dataset as shown in Fig. 14. In this work, four types of datasets were used in

the final classification tasks. They are Original VSM testing dataset {7},

Information Gain VSM testing dataset {8}, BPSO-5NN VSM testing

dataset {9}, BPSO-Rocchio VSM testing dataset {10}:

a. Type 1: Use VSM dataset generator to transform Raw Testing

dataset {6} to obtain {7}

b. Type 2: Use feature filter to filter {6} based on {3}, then use VSM

dataset generator to obtain {8}

c. Type 3: Use feature filter to filter {6} based on {4}, then use VSM

dataset generator to obtain {9}

d. Type 4: Use feature filter to filter {6} based on {5}, then use VSM

dataset generator to obtain {10}

3. Executing Weka Classification. Use three classifiers from Weka (J48, Naïve

Bayes, LibSVM) to run classification on four types of dataset, which are

{7}, {8}, {9} and {10}. The classification tasks were executed using 10-

fold cross validation.

30

Figure 14: Data pipeline in experimental study

31

3.2.1 VSM dataset generator

In order to transform the pre-processed Raw Training dataset and Filtered Testing

dataset into SVM dataset, a VSM dataset generator was implemented in Java. The main

task of this implementation is to calculate tf-idf of each term in each document. First, I

count the total number of documents and calculate the number of documents that a

specific term has occurred for each term to get idf. Second, I go through each document

to calculate the number of appearance of a specific term and divide it by total number of

terms in the document to get tf. By multiplying idf and tf, I get tf-idf weighting of each

term in each document and outputted them into a new text file to make the VSM dataset.

A comma was used to separate class and terms. See Fig. 15 for the format of the obtained

VSM datasets.

Figure 15: VSM dataset of Reuters 21578—R8

32

3.2.2 Filter Approach

In this step, I used Weka to execute the first round of feature selection using

Information Gain filter approach.

3.2.2.1 Information Gain Attribute Evaluator and Ranker

Weka provides both filter and wrapper approaches in its feature selection library. I

used the Information Gain Attribute Evaluator which is a filter method to carry out the

first round feature selection. For a filter method such as Information Gain, its evaluation

is not based on a feature subset but a single feature. Therefore, the search method can

only be a rank method rather than the feature subset search method. I chose the top n

attributes whose values are not zero as the selected feature subset in this step. Fig. 16

shows the snapshot of Weka Information Gain Attribute Evaluator.

Figure 16: Weka: Information Gain Attribute Evaluator

33

3.2.3 Wrapper Approach

Two wrapper approaches were used in this work -- BPSO-5NN and BPSO-Rocchio.

Both used BPSO as search method. I implemented this part in Java as well. The

algorithm of BPSO was first implemented, leaving an interface for the fitness evaluator.

5NN and Rocchio were then implemented separately fitting the BPSO interface so that

they can be used to calculate the classification accuracy when a specific feature subset

needs to be evaluated.

3.2.3.1 BPSO procedure

The step by step view of the whole BPSO implementation procedure is explained in

what follows:

1. A population of particles was created in an N-dimension feature space. Each

particle has three vectors -- its current position vector, its current velocity

vector and its personal best position vector. There is another vector for

global best position. At the beginning, the current position vector and the

current velocity vector of each particle were initialized randomly, and the

personal best position was initialized with a value equal to its corresponding

current position vector. The global best position was initialized by selecting

the position with the best fitness value within all the particles’ current

positions.

2. Every iteration was carried out as follows:

a. Calculate the fitness of each particle using either 5NN or Rocchio

b. Update the personal best position of each particle

c. Update the global best position of the whole swarm

34

d. Update the velocity of each particle using BPSO formula

e. Update the position of each particle using the updated velocity

3. Terminate iterations when the number of iteration was reached.

3.2.3.2 Classification Accuracy

The classification accuracy of a specific position that represents a specific feature

subset was calculated using the procedure mention in [2] as follows:

1. Assume a variable C=0. For each document vector in the dataset:

a. Calculate the distance of this document vector to all the other

document vectors. For 5NN, cosine similarity is used. For Rocchio,

Euclidean distance is used.

b. Classify this document vector. For 5NN, label it with the majority

class of its 5 nearest neighbors. For Rocchio, label it with the class

whose centroid is the nearest to it.

2. If the prediction class is the same as the known class of this document

vector, increase variable C by 1.

After all the document vectors were processed, the classification accuracy of this

specific position was calculated as C divided by the number of documents in the dataset.

3.2.3.3 Fitness function

The fitness value of each position is not just the classification accuracy. Because it

is a feature selection task, the number of feature selected is also a critical factor to be

considered. The fewer the features, the better the fitness value. Therefore, by taking both

classification accuracy and number of feature selected into account, as suggested in [2],

the fitness function is defined as follows:

35

Fitness = α * Classification Accuracy + β * (N-T)/N (14)

where

1. N is the total number of features. T is the number of feature selected. Therefore,

the smaller T is, the larger (N-T)/N will be.

2. α and β are used to define the importance of classification Accuracy and feature

subset size. The sum of α and β is 1.

3.2.3.4 BPSO Parameters

After trying several different combinations of values, BPSO parameters were

determined and set as follows:

1. Inertia weight ω = 1.2, c1 = 1.49 and c2 = 1.49

2. Termination criterion is a maximum of 50 iterations

3. Swarm size is 16 particles

4. α and β in fitness function was set to be 0.85 and 0.15, respectively

3.3 Result and Discussion

Table 1, 2 and 3 show the classification results of the classifiers of J48, Naïve

Bayes and LibVSM using Weka. The classification results including four metrics:

classification accuracy, precision, recall and f-measure. The results show the comparison

among four types of dataset as mentioned before. The 2
nd

 to 5
th
 Column of Table 1, 2 and

3 correspond to type 1 to 4 in Fig. 14, respectively.

3.3.1 Reuters 21578--R8

Table 1 shows the results of Reuters 21578--R8 dataset. There are three things that

are noticeable in this result: 1) after two rounds of feature selection, the number of

36

features was reduced from 8576 to around 800. Even though it has been cut down to one

tenth, the classification performance keeps basically the same. For Naïve Bayes

classification, BPSO-5NN is even 1% better than the original dataset. 2) The number of

features narrowed down from 1370 to around 800 for second round, which is a significant

dimension reduction, and the classification performance also keeps basically the same. 3)

The result of each metrics shows that BPSO-5NN and BPSO-Rocchio have almost the

same performance. For J48 classification, the BPSO-Rocchio has even slightly better

performance than BPSO-5NN.

37

Table 1: Classification Result of Reuters 21578--R8

Classifier & Metrics

Original

Dataset

Instances: 2189

Attributes: 8576

Information

Gain

Instances: 2189

Attributes: 1370

BPSO-5NN

Instances: 2189

Attributes: 791

BPSO-Rocchio

Instances: 2189

Attributes: 855

J48

Accuracy 0.901325 0.902695 0.893102 0.901782

Precision 0.899 0.9 0.889 0.897

Recall 0.901 0.903 0.893 0.902

F-Measure 0.9 0.901 0.891 0.899

Naïve

Bayes

Accuracy 0.875286 0.885793 0.889447 0.871631

Precision 0.913 0.917 0.913 0.911

Recall 0.875 0.886 0.889 0.872

F-Measure 0.892 0.899 0.9 0.889

Lib

SVM

Accuracy 0.942896 0.946094 0.940155 0.920512

Precision 0.942 0.945 0.939 0.917

Recall 0.943 0.946 0.94 0.921

F-Measure 0.941 0.945 0.939 0.918

3.3.2 Reuters 21578--R52

Table 2 shows the results of Reuters 21578--R52 dataset. 1) Compared to R8

dataset, the dimension reduction of this R52 dataset was even more noticeable -- from

9731 to 300, while the classification performance keeps basically the same. 2) For this

dataset, the two PSO based algorithms gained nearly the same amount of features, and

BPSO-5NN has a little bit better metric results than BPSO-Rocchio by 1% for each

classifier.

38

Table 2: Classification Result of Reuters 21578—R52

Classifier & Metrics

Original

Dataset

Instances: 2568

Attributes: 9731

Information

Gain

Instances: 2568

Attributes: 431

BPSO-5NN

Instances: 2568

Attributes: 300

BPSO-Rocchio

Instances: 2568

Attributes: 301

J48

Accuracy 0.78271 0.779984 0.778816 0.765187

Precision 0.74 0.731 0.71 0.707

Recall 0.783 0.78 0.779 0.765

F-Measure 0.757 0.75 0.739 0.732

Naïve

Bayes

Accuracy 0.765576 0.818925 0.807243 0.780374

Precision 0.827 0.847 0.835 0.825

Recall 0.766 0.819 0.807 0.78

F-Measure 0.787 0.828 0.817 0.798

Lib

SVM

Accuracy 0.872274 0.896807 0.879673 0.867601

Precision 0.871 0.887 0.868 0.848

Recall 0.872 0.897 0.88 0.868

F-Measure 0.862 0.888 0.865 0.851

3.3.3 WebKB

Table 3 shows the results of Reuters WebKB dataset. 1) For this dataset, two

rounds of feature selection reduced the number of features from 4799 to around 700. The

classification performance keeps basically the same, while the two PSO based algorithms

show better result for LibSVM classifier. 2) Two PSO based algorithm performs

basically the same. BPSO-Rocchio has 100 features fewer features, and achieved 1%

better results for LibSVM compared to its competitor.

39

Table 3: Classification Result of WebKB

Classifier & Metrics

Original

Dataset

Instances: 1396

Attributes: 4799

Information

Gain

Instances: 1396

Attributes: 1115

BPSO-5NN

Instances: 1396

Attributes: 755

BPSO-Rocchio

Instances: 1396

Attributes: 610

J48

Accuracy 0.777937 0.77149 0.768625 0.765759

Precision 0.777 0.768 0.766 0.764

Recall 0.778 0.771 0.769 0.766

F-Measure 0.776 0.768 0.764 0.761

Naïve

Bayes

Accuracy 0.765759 0.776504 0.757163 0.742837

Precision 0.77 0.788 0.771 0.759

Recall 0.766 0.777 0.757 0.743

F-Measure 0.766 0.779 0.759 0.747

Lib

SVM

Accuracy 0.793696 0.82235 0.81447 0.823066

Precision 0.794 0.822 0.812 0.822

Recall 0.794 0.822 0.814 0.823

F-Measure 0.79 0.82 0.812 0.822

3.3.4 Analysis of running times

Table 4 shows the average computation time of 50 rounds of BPSO iteration for

every dataset for BPSO-5NN and BPSO-Rocchio. The ratio between the two average

iteration times is also computed to highlight the difference in computation time between

the two approaches.

40

Table 4: Comparison of Computation Time between BPSO-5NN and BPSO-Rocchio

Reuters 21578--R8

(8 classes)

Reuters 21578--R52

(52 classes)

WebKB

(4 classes)

BPSO-5NN 13.24 min 8.956 min 2.054 min

BPSO-Rocchio 37.12 sec 1.962 min 5.046 sec

Ratio 21.4 4.6 24.4

Suppose the dataset has m classes and n instances.

For BPSO-5NN, the computation time of each iteration mainly consists of two parts:

1) Calculating cosine similarity between each instance, whose time complexity is O(n
2
). 2)

Calculating the top 5 nearest neighbor which takes O(n). Therefore the time complexity

of BPSO-5NN is O(n
2
).

For BPSO-Rocchio, the computation time of each iteration mainly consists of two

parts as well: 1) Calculating the Euclidean centroids of all the instances of m classes

which takes O(n). 2) Calculating the Euclidean distance of each instance to these m

centroids and find out the nearest one which takes O(mn). Therefore the time complexity

of BPSO-Rocchio is O(n).

From the table, we can see that for WebKB and Reuters 21578--R8, average

iteration time of BPSO-5NN is over 20 times to that of BPSO-Rocchio, but this ratio is

only 4.6 when it comes to Reuters 21578--R52. The 20 times difference fits the

difference of computation time complexity between these two algorithms. For Reuters

21578--R52, it has 52 classes, which means that for each instance, 52 Euclidean distances

need to be counted in BPSO-Rocchio. Therefore, compared to the other two dataset

which have much fewer classes, the time difference is not so significant.

41

3.3.5 Analysis of classification results and running times

Table 5 shows the average classification accuracy of three classifiers for each

dataset.

Table 5: Average of Classification Accuracy Summary

Original

Dataset

Information

Gain

BPSO-5NN BPSO-Rocchio

Reuters 21578--R8

0.909091

(8576 features)

0.911527

(1370 features)

0.907568

(791 features)

0.897975

(855 features)

Reuters 21578--R52

0.806853

(9731 features)

0.831905

(431 features)

0.821911

(300 features)

0.804387

(301 features)

WebKB

0.779131

(4799 features)

0.790115

(1115 features)

0.780086

(755 features)

0.777221

(610 features)

First of all, for all the three datasets, after two rounds of feature selection, the

feature numbers were all greatly reduced. The classification accuracy of both PSO based

algorithms are about the same compared to the accuracy using original dataset. BPSO-

5NN has better results than the original dataset for Reuters 21578--R52 and WebKB.

This shows that this integrated feature selection method combining both the filter and

wrapper method is successful -- greatly reduced dimension and good classification results

were achieved in this work.

Second, it is noticeable that the major dimension reduction happens in the first

round of feature selection which is the filter approach phase, and the classification

accuracies of the Information Gain phase are the highest for all three corpuses. However,

because the major purpose of this work is to compare the feature selection performance

42

between BPSO-5NN and BPSO-Rocchio, and as previously mentioned, by performing

the filter approach feature selection first, it is much easier to run the two PSO based

wrapper algorithms. Therefore, more emphasize should be put on the results obtained

from BPSO-5NN and BPSO-Rocchio dataset.

Third, as we can see from Table 5, the overall classification performance of BPSO-

5NN is about 1% to 2% better than BPSO-Rocchio, but the computation time difference

between this two is quite huge -- for datasets which have less than 10 classes, the ratio of

computation time between the two PSO based wrapper algorithms can be up to 20 times.

Therefore, for most situations, BPSO-Rocchio is a better choice especially when

computation time is a factor.

3.3.6 Conclusion and Future Work

In this work, I implemented a two-round feature selection for text categorization

combining both the filter and wrapper approaches. The filter approach is Information

gain method. The two wrapper approaches are BPSO based 5NN and Rocchio. The

comparison of the classification results was done in two levels: 1) Comparison between

the original dataset and the two-round feature selected dataset; 2) Comparison between

the two wrapper approaches -- BPSO-5NN and BPSO-Rocchio. The result shows: 1) this

two-round feature selection implementation is successful -- the number of features was

substantially reduced and the classification performance was slightly improved; 2)

BPSO-Rocchio has much shorter computation time and comparable classification

accuracy compared to BPSO-5NN.

For future work, more corpuses can be tried using this implementation in

distributed systems. Corpuses like 20 Newsgroups and Cade [15] were not used in this

43

study due to the extremely large size of their dataset. They should be tried in a distributed

system in the two-round feature selections and used in the final classification task to

verify the results reported in this work.

44

References

[1] B. Xue, M. Zhang and W. N. Browne, "Single feature ranking and binary particle

swarm optimisation based feature subset ranking for feature selection," in Proceedings of

the Thirty-Fifth Australasian Computer Science Conference - Volume 122, Melbourne,

Australia, 2012, pp. 27-36.

[2] H. K. Chantar and D. W. Corne, "Feature subset selection for Arabic document

categorization using BPSO-KNN," in Nature and Biologically Inspired Computing

(NaBIC), 2011 Third World Congress on, 2011, pp. 546-551.

[3] L. Cervante, Bing Xue, Mengjie Zhang and Lin Shang, "Binary particle swarm

optimisation for feature selection: A filter based approach," in Evolutionary Computation

(CEC), 2012 IEEE Congress on, 2012, pp. 1-8.

[4] Yaohong Jin, Wen Xiong and Cong Wang, "Feature selection for chinese text

categorization based on improved particle swarm optimization," in Natural Language

Processing and Knowledge Engineering (NLP-KE), 2010 International Conference on,

2010, pp. 1-6.

[5] A. Cardoso-Cachopo, “Improving Methods for Single-label Text Categorization,”

PhD Thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 2007.

[6] R. Kohavi and G. H. John, "Wrappers for Feature Subset Selection," Artif. Intell., vol.

97, pp. 273-324, dec, 1997.

[7] Xing Liu and Lin Shang, "A fast wrapper feature subset selection method based on

binary particle swarm optimization," in Evolutionary Computation (CEC), 2013 IEEE

Congress on, 2013, pp. 3347-3353.

[8] A. Abraham, H. Guo and H. Liu, "Swarm Intelligence: Foundations, Perspectives and

Applications," vol. 26, pp. 3-25, 2006.

[9] Y. Bengio and Y. Grandvalet, "No Unbiased Estimator of the Variance of K-Fold

Cross-Validation," J.Mach.Learn.Res., vol. 5, pp. 1089-1105, dec, 2004.

[10] I. Witten, E. Frank and M. Hall, Data Mining: Practical Machine Learning Tools

and Techniques, 3
rd

 ed, Amsterdam: Morgan Kaufmann Publishers, 2011.

[11] C. Manning, P. Raghavan & H. Schütze, Introduction to Information Retrieval,

Cambridge University Press, 2008. Retrieved April 2, 2015 from

http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

[12] F. Hembecker, H. Lopes and W. Godoy Jr., "Particle Swarm Optimization for the

Multidimensional Knapsack Problem," vol. 4431, pp. 358-365, 2007.

45

[13] T. Thanh, “Big Data Mining: Lazy/Instance-based Learning”, Retrieved April 2,

2015 from https://www.dropbox.com/s/nqysrn8s89rt18n/lazy%20learning.pdf

[14] D. Lewis, “Reuters-21578”, Retrieved April 2, 2015 from

http://www.daviddlewis.com/resources/testcollections/reuters21578/

[15] A. Cardoso-Cachopo, “Datasets for single-label text categorization”, Retrieved

April 3, 2015 from http://web.ist.utl.pt/acardoso/datasets/

[16] H. Hamilton, “Confusion Matrix”, Retrieved April 3, 2015 from

http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix/confusion_matrix.html

[17] R. Gutierrez-Osuna, “Lecture 13: Validation”, Retrieved April 3, 2015 from

http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf

[18] T. Thanh, “Big Data Mining: Data Mining Process: A Quick Run-Through”,

Retrieved April 2, 2015 from https://www.dropbox.com/s/kwn9fvo3qpcwtab/process.pdf

[19] Wikipedia, “Vector Space Model” entry, Retrieved April 2, 2015 from

http://en.wikipedia.org/wiki/Vector_space_model

[20] Wikipedia, “Euclidean distance” entry, Retrieved April 4, 2015 from

http://en.wikipedia.org/wiki/Euclidean_distance

[21] Wikipedia, “Cosine similarity” entry, Retrieved April 4, 2015 from

http://en.wikipedia.org/wiki/Cosine_similarity

[22] Wikipedia, “Tessellation” entry, Retrieved April 6, 2015 from

http://en.wikipedia.org/wiki/Tessellation

[23] Wikipedia, “C4.5 algorithm” entry, Retrieved April 5, 2015 from

http://en.wikipedia.org/wiki/C4.5_algorithm

[24] Wikipedia, “Naive Bayes classifier” entry, Retrieved April 5, 2015 from

http://en.wikipedia.org/wiki/Naive_Bayes_classifier

[25] Wikipedia, “Support vector machine” entry, Retrieved April 5, 2015 from

http://en.wikipedia.org/wiki/Support_vector_machine

46

Appendix

The source code of this writing project can be found in the following link in Github:

https://github.com/shwu2012/CS298

	San Jose State University
	SJSU ScholarWorks
	Spring 5-13-2015

	COMPARATIVE ANALYSIS OF PARTICLE SWARM OPTIMIZATION ALGORITHMS FOR TEXT FEATURE SELECTION
	Shuang Wu
	Recommended Citation

	tmp.1431531195.pdf.VZzua

