759 research outputs found

    On the probability of finding non-interfering paths in wireless multihop networks

    Get PDF
    Abstract. Multipath routing can improve system performance of capacity-limited wireless networks through load balancing. However, even with a single source and destination, intra-flow and inter-flow interference can void any performance improvement. In this paper, we show that establishing non-interfering paths can, in theory, leverage this issue. In practice however, finding non-interfering paths can be quite complex. In fact, we demonstrate that the problem of finding two non-interfering paths for a single source-destination pair is NP-complete. Therefore, an interesting problem is to determine if, given a network topology, non-interfering multipath routing is appropriate. To address this issue, we provide an analytic approximation of the probability of finding two non-interfering paths. The correctness of the analysis is verified by simulations

    Approaching Gaussian Relay Network Capacity in the High SNR Regime: End-to-End Lattice Codes

    Get PDF
    We present a natural and low-complexity technique for achieving the capacity of the Gaussian relay network in the high SNR regime. Specifically, we propose the use of end-to-end structured lattice codes with the amplify-and-forward strategy, where the source uses a nested lattice code to encode the messages and the destination decodes the messages by lattice decoding. All intermediate relays simply amplify and forward the received signals over the network to the destination. We show that the end-to-end lattice-coded amplify-and-forward scheme approaches the capacity of the layered Gaussian relay network in the high SNR regime. Next, we extend our scheme to non-layered Gaussian relay networks under the amplify-and-forward scheme, which can be viewed as a Gaussian intersymbol interference (ISI) channel. Compared with other schemes, our approach is significantly simpler and requires only the end-to-end design of the lattice precoding and decoding. It does not require any knowledge of the network topology or the individual channel gains

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Local heuristic for the refinement of multi-path routing in wireless mesh networks

    Full text link
    We consider wireless mesh networks and the problem of routing end-to-end traffic over multiple paths for the same origin-destination pair with minimal interference. We introduce a heuristic for path determination with two distinguishing characteristics. First, it works by refining an extant set of paths, determined previously by a single- or multi-path routing algorithm. Second, it is totally local, in the sense that it can be run by each of the origins on information that is available no farther than the node's immediate neighborhood. We have conducted extensive computational experiments with the new heuristic, using AODV and OLSR, as well as their multi-path variants, as underlying routing methods. For two different CSMA settings (as implemented by 802.11) and one TDMA setting running a path-oriented link scheduling algorithm, we have demonstrated that the new heuristic is capable of improving the average throughput network-wide. When working from the paths generated by the multi-path routing algorithms, the heuristic is also capable to provide a more evenly distributed traffic pattern

    Random Access Transport Capacity

    Full text link
    We develop a new metric for quantifying end-to-end throughput in multihop wireless networks, which we term random access transport capacity, since the interference model presumes uncoordinated transmissions. The metric quantifies the average maximum rate of successful end-to-end transmissions, multiplied by the communication distance, and normalized by the network area. We show that a simple upper bound on this quantity is computable in closed-form in terms of key network parameters when the number of retransmissions is not restricted and the hops are assumed to be equally spaced on a line between the source and destination. We also derive the optimum number of hops and optimal per hop success probability and show that our result follows the well-known square root scaling law while providing exact expressions for the preconstants as well. Numerical results demonstrate that the upper bound is accurate for the purpose of determining the optimal hop count and success (or outage) probability.Comment: Submitted to IEEE Trans. on Wireless Communications, Sept. 200
    • …
    corecore