58 research outputs found

    On Complexity Classes of Spiking Neural P Systems

    Get PDF
    A sequence of papers have been recently published, pointing out various intractable problems which may be solved in certain fashions within the framework of spiking neural (SN) P systems. On the other hand, there are also results demonstrating limitations of SN P systems. In this paper we define recognizer SN P systems providing a general platform for this type of results. We intend to give a more systematic characterization of computational power of variants of SN P systems, and establish their relation to standard complexity classes

    On The Semantics of Annihilation Rules in Membrane Computing

    Get PDF
    It is well known that polarizationless recognizer P systems with active membranes, without dissolution, with division of elementary and non-elementary membranes, with antimatter and matter/antimatter annihilation rules can solve all problems in NP when the annihilation rules have (weak) priority over all the other rules. Until now, it was an open problem whether these systems can still solve all NP problems if the priority of the matter/antimatter annihilation rules is removed. In this paper we provide a negative answer to this question: we prove that the class of problems solvable by this model of P systems without priority of the matter/antimatter annihilation rules is exactly P. To the best of our knowledge, this is the rst paper in the literature of P systems where the semantics of applying the rules constitutes a frontier of tractability.Ministerio de Economía y Competitividad TIN2012-3743

    Limits on P Systems with Proteins and Without Division

    Get PDF
    In the field of Membrane Computing, computational complexity theory has been widely studied trying to nd frontiers of efficiency by means of syntactic or semantical ingredients. The objective of this is to nd two kinds of systems, one non-efficient and another one, at least, presumably efficient, that is, that can solve NP-complete prob- lems in polynomial time, and adapt a solution of such a problem in the former. If it is possible, then P = NP. Several borderlines have been defi ned, and new characterizations of different types of membrane systems have been published. In this work, a certain type of P system, where proteins act as a supporting element for a rule to be red, is studied. In particular, while division rules, the abstraction of cellular mitosis is forbidden, only problems from class P can be solved, in contrast to the result obtained allowing them.Ministerio de Economía y Competitividad TIN2017-89842-PNational Natural Science Foundation of China No 6132010600

    A new perspective on computational complexity theory in Membrane Computing

    Get PDF
    A single Turing machine can solve decision problems with an in nite number of instances. On the other hand, in the framework of membrane computing, a \solution" to an abstract decision problem consists of a family of membrane systems (where each system of the family is associated with a nite set of instances of the problem to be solved). An interesting question is to analyze the possibility to nd a single membrane system able to deal with the in nitely many instances of a decision problem. In this context, it is fundamental to de ne precisely how the instances of the problem are introduced into the system. In this paper, two different methods are considered: pre-computed (in polynomial time) resources and non-treated resources. An extended version of this work will be presented in the 20th International Conference on Membrane Computing.Ministerio de Economía, Industria y Competitividad TIN2017-89842-

    Recognizer P Systems with Antimatter

    Get PDF
    In this paper, we consider recognizer P systems with antimatter and the in uence of the matter/antimatter annihilation rules having weak priority over all the other rules or not. We rst provide a uniform family of P systems with active membranes which solves the strongly NP-complete problem SAT, the Satis ability Problem, without polarizations and without dissolution, yet with division for elementary membranes and with matter/antimatter annihilation rules having weak priority over all the other rules. Then we show that without this weak priority of the matter/antimatter annihilation rules over all the other rules we only obtain the complexity class PMinisterio de Economía y Competitividad TIN2012-3743

    The Computational Complexity of Tissue P Systems with Evolutional Symport/Antiport Rules

    Get PDF
    Tissue P systems with evolutional communication (symport/antiport) rules are computational models inspired by biochemical systems consisting of multiple individuals living and cooperating in a certain environment, where objects can be modified when moving from one region to another region. In this work, cell separation, inspired from membrane fission process, is introduced in the framework of tissue P systems with evolutional communication rules.The computational complexity of this kind of P systems is investigated. It is proved that only problems in class P can be efficiently solved by tissue P systems with cell separation with evolutional communication rules of length at most (��, 1), for each natural number �� ≥ 1. In the case where that length is upper bounded by (3, 2), a polynomial time solution to the SAT problem is provided, hence, assuming that P ̸= NP a new boundary between tractability and NP-hardness on the basis of the length of evolutional communication rules is provided. Finally, a new simulator for tissue P systems with evolutional communication rules is designed and is used to check the correctness of the solution to the SAT problem

    Frontiers of Membrane Computing: Open Problems and Research Topics

    Get PDF
    This is a list of open problems and research topics collected after the Twelfth Conference on Membrane Computing, CMC 2012 (Fontainebleau, France (23 - 26 August 2011), meant initially to be a working material for Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain (January 30 - February 3, 2012). The result was circulated in several versions before the brainstorming and then modified according to the discussions held in Sevilla and according to the progresses made during the meeting. In the present form, the list gives an image about key research directions currently active in membrane computing

    Counting Membrane Systems

    Get PDF
    A decision problem is one that has a yes/no answer, while a counting problem asks how many possible solutions exist associated with each instance. Every decision problem X has associated a counting problem, denoted by #X, in a natural way by replacing the question “is there a solution?” with “how many solutions are there?”. Counting problems are very attractive from a computational complexity point of view: if X is an NP-complete problem then the counting version #X is NP-hard, but the counting version of some problems in class P can also be NP-hard. In this paper, a new class of membrane systems is presented in order to provide a natural framework to solve counting problems. The class is inspired by a special kind of non-deterministic Turing machines, called counting Turing machines, introduced by L. Valiant. A polynomial-time and uniform solution to the counting version of the SAT problem (a well-known #P-complete problem) is also provided, by using a family of counting polarizationless P systems with active membranes, without dissolution rules and division rules for non-elementary membranes but where only very restrictive cooperation (minimal cooperation and minimal production) in object evolution rules is allowed

    A Characterization of PSPACE with Antimatter and Membrane Creation

    Get PDF
    The use of negative information provides a new tool for exploring the limits of P systems as computational devices. In this paper we prove that the combination of antimatter and annihilation rules (based on the annihilation of physical particles and antiparticles) and membrane creation (based on autopoiesis) provides a P system model able to solve PSPACE-complete problems. Namely, we provide a uniform family of P system in such P system model which solves the satis ability problem for quanti ed Boolean formulas (QSAT). In the second part of the paper, we prove that all the decision problems which can be solved with this P system model belong to the complexity class PSPACE, so this P system model characterises PSPACE.Ministerio de Economía y Competitividad TIN2012-3743

    P systems with evolutional symport and membrane creation rules solving QSAT

    Get PDF
    P systems are computing devices based on sets of rules that dictate how they work. While some of these rules can change the objects within the system, other rules can even change the own structure, like creation rules. They have been used in cell-like membrane systems with active membranes to efficiently solve NP-complete problems. In this work, we improve a previous result where a uniform family of P systems with evolutional communication rules whose left-hand side (respectively, right-hand side) have most 2 objects (resp., 2 objects) and membrane creation solved SAT efficiently, and we obtain an efficient solution to solve QBF-SAT or QSAT (a PSPACE-complete problem) having at most 1 object (respectively, 1 object) in their left-hand side (resp., right-hand side) and not making use of the environmentMinisterio de Ciencia e Innovación TIN2017-89842-
    corecore