
On The Semantics of Annihilation Rules in
Membrane Computing

Daniel Dı́az-Pernil1, Rudolf Freund2,
Miguel A. Gutiérrez-Naranjo3, Alberto Leporati4

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics - University of Sevilla, Spain
sbdani@us.es

2Faculty of Informatics
Vienna University of Technology, Austria
rudi@emcc.at

3Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
magutier@us.es

4Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca, Italy
alberto.leporati@unimib.it

Summary. It is well known that polarizationless recognizer P systems with active mem-
branes, without dissolution, with division of elementary and non-elementary membranes,
with antimatter and matter/antimatter annihilation rules can solve all problems in NP
when the annihilation rules have (weak) priority over all the other rules. Until now, it was
an open problem whether these systems can still solve all NP problems if the priority of
the matter/antimatter annihilation rules is removed.

In this paper we provide a negative answer to this question: we prove that the class of
problems solvable by this model of P systems without priority of the matter/antimatter
annihilation rules is exactly P. To the best of our knowledge, this is the first paper in the
literature of P systems where the semantics of applying the rules constitutes a frontier
of tractability.

1 Introduction

The concept of antimatter was first introduced in the framework of membrane
computing as a control tool for the flow of spikes in spiking neural P systems
[6, 5, 10, 11]). In this context, when one spike and one anti-spike appear in the
same neuron, the annihilation occurs and both, spike and anti-spike, disappear.
The concept of antimatter and matter/antimatter annihilation rules later was

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51395931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

132 Dı́az-Pernil et al.

adapted to other contexts in membrane computing, and currently it is an active
research area [1, 2, 3].

In [3], the authors show that antimatter and matter/antimatter annihilation
rules are a frontier of tractability. The starting point is a well-known result in the
complexity theory of membrane computing: the decision problems which can be
solved by polarizationless recognizer P systems with active membranes, without
dissolution and with division of elementary and non-elementary membranes (de-
noted by AM0

−d,+ne) are exactly those in the complexity class P (see [4], Th. 2).

The main result in [3] is that systems from AM0
−d,+ne endowed with antimat-

ter and matter/antimatter annihilation rules (denoted by AM0
−d,+ne,+ant) can

solve all problems in NP and, hence, annihilation rules constitute a frontier of
tractability.

In this paper, we revisit the question of determining the computational
complexity of the problems which can be solved by P systems with the mat-
ter/antimatter annihilation rules not having priority over all the other rules. As
previously pointed out (see [3, 9]), the solution presented in [3] to an NP-complete
problem, namely Subset Sum, uses this weak priority of the annihilation rules, and
until now it has been an open problem if the model AM0

−d,+ne,+ant is still capable
to solve NP-complete problems without this priority. In this paper we show that
the answer to this open question is negative. We prove that the complexity class
of decision problems solvable by AM0

−d,+ne,+ant systems is exactly equal to P if
the priority relation is removed from the semantics for the annihilation rules.

In this way, we propose a new kind of frontier of tractability. Up to now, these
frontiers were based on syntactic ingredients of the P systems, that is, the type of
rules and not the way in which such rules are applied. In this paper, the frontier
of tractability is based on the semantics of the P system, i.e., on the way the rules
are applied.

The paper is organised as follows. First, we recall some concepts about recog-
nizer P systems, antimatter, matter/antimatter annihilation rules and the model
AM0

−d,+ne,+ant. Next, we prove our main result of computational complexity. The
paper ends with some final considerations.

2 Recognizer P Systems

First of all, we recall the main notions related to recognizer P systems and com-
putational complexity in membrane computing. For a detailed description see, for
example, [7, 8].

The main syntactic ingredients of a cell–like P system are the membrane struc-
ture, the multisets, and the evolution rules. A membrane structure consists of sev-
eral membranes arranged hierarchically inside a main membrane, called the skin.
Each membrane identifies a region inside the system. When a membrane has no
membrane inside, it is called elementary. The objects are instances of symbols from
a finite alphabet, and multisets of objects are placed in the regions determined by

On The Semantics of Annihilation Rules in Membrane Computing 133

the membrane structure. The objects can evolve according to given evolution rules,
associated with the regions.

The semantics of cell–like P systems is defined through a non-deterministic and
synchronous model. A configuration of a cell-like P system consists of a membrane
structure and a sequence of multisets of objects, each associated with one region
of the structure. At the beginning of the computation, the system is in the initial
configuration, which possibly comprises an input multiset. In each time step the
system transforms its current configuration into another configuration by applying
the evolution rules to the objects placed inside the regions of the system, in a
non-deterministic and maximally parallel manner (the precise semantics will be
described later). In this way, we get transitions from one configuration of the
system to the next one. A computation of the system is a (finite or infinite) sequence
of configurations such that each configuration –except the initial one– is obtained
from the previous one by a transition. A computation which reaches a configuration
where no more rules can be applied to the existing objects and membranes, is called
a halting computation. The result of a halting computation is usually defined by
the multiset associated with a specific output membrane (or the environment) in
the final configuration.

In this paper we deal with recognizer P systems, where all computations halt
and exactly one of the distinguished objects yes and no is sent to the environ-
ment, and only in the last step of any computation, in order to signal acceptance
or rejection, respectively. All recognizer P systems considered in this paper are
confluent, meaning that if computations start from the same initial configuration
then either all are accepting or all are rejecting.

Recognizer P systems can thus be used to recognize formal languages (equiva-
lently, solve decision problems). Let us recall that a decision problem X is a pair
(IX , θX) where IX is a language over a finite alphabet and θX is a predicate (a
total Boolean function) over IX . The elements of IX are called instances of the
problem, and those for which predicate θX is true (respectively false) are called
positive (respectively negative) instances. A polynomial encoding of a decision prob-
lem X is a pair (cod, s) of functions over IX , computable in polynomial time by a
deterministic Turing machine, such that for each instance u ∈ IX , s(u) is a natural
number representing the size of the instance and cod(u) is a multiset representing
an encoding of the instance. Polynomial encodings are stable under polynomial
time reductions.

2.1 The Class AM0
−d,+ne

A P system with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary membranes is a P system with Γ
as the alphabet of symbols, with H as the finite set of labels for membranes, and
where the rules are of the following forms:

(a0) [a→ u]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule, associated
with the membrane labelled with h. When the rule is applied, an object a ∈ Γ

134 Dı́az-Pernil et al.

inside that membrane is rewritten into the multiset u ∈ Γ ∗. (Note that here
and in the rest of the paper, we write u ∈ Γ ∗ to indicate both the multiset u
of objects from the alphabet Γ and one of the possible strings which represent
it.)

(b0) a []h → [b]h for h ∈ H, a, b ∈ Γ (send-in rules). An object from the region
immediately outside a membrane labelled with h is sent into this membrane,
possibly transformed into another object.

(c0) [a]h → b []h for h ∈ H, a, b ∈ Γ (send-out rules). An object is sent out from
the membrane labelled with h to the region immediately outside, possibly
transformed into another object.

(d0) [a]h → [b]h [c]h for h ∈ H, a, b, c ∈ Γ (division rules for elementary mem-
branes). An elementary membrane can be divided into two membranes with
the same label; object a in the original membrane is rewritten to b (respectively
to c) in the first (respectively second) generated membrane.

(e0) [[]h1
[]h2

]h0
→ [[]h1

]h0
[[]h2

]h0
, for h0, h1, h2 ∈ H (division rules for non-

elementary membranes). If the membrane with label h0 contains other mem-
branes than those with labels h1, h2, then such membranes and their contents
are duplicated and placed in both new copies of the membrane h0; all mem-
branes and objects placed inside membranes h1, h2, as well as the objects from
membrane h0 placed outside membranes h1 and h2, are reproduced in the new
copies of membrane h0.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by at most one rule (chosen in a non–
deterministic way), and each membrane can be the subject of at most one rule
of types (b0), (c0), (d0), and (e0).

• If at the same time a membrane labelled with h is divided by a rule of type
(d0) or (e0) and there are objects in this membrane which evolve by means of
rules of type (a0), then we suppose that first the evolution rules of type (a0)
are used, and then the division is produced. Of course, this process takes only
one step.

• The rules associated with membranes labelled with h are used for all copies of
this membrane with label h.

The class of all polarizationless recognizer P systems with active membranes,
without dissolution and with division of elementary and non-elementary mem-
branes is denoted by AM0

−d,+ne.

2.2 Polynomial Complexity Classes in Recognizer P Systems

Let R be a class of recognizer P systems. A decision problem X = (IX , θX) is
solvable in a semi-uniform way and in polynomial time by a family of recognizer P
systems Π = {Π(w)}w∈IX of typeR, denoted byX ∈ PMC?

R, if Π is polynomially
uniform by Turing machines, that is, there exists a deterministic Turing machine

On The Semantics of Annihilation Rules in Membrane Computing 135

working in polynomial time which constructs the system Π(w) from the instance
w ∈ IX , and Π is polynomially bounded, that is, there exists a polynomial function
p(n) such that for each w ∈ IX , all computations of Π(w) halt in at most p(|w|)
steps. It is said that Π is sound with regard to X if for each instance of the problem
w ∈ IX , if there exists an accepting computation of Π(w) then θX(w) is true, and
Π is complete with regard to X if for each instance of the problem w ∈ IX , if
θX(w) is true then every computation of Π(w) is an accepting computation.

Let R be a class of recognizer P systems with a distinguished input membrane,
and let Π = {Π(n)}n∈N be a family of recognizer P systems of type R. A decision
problem X = (IX , θX) is solvable in a uniform way and polynomial time by Π,
denoted by X ∈ PMCR, if Π is polynomially uniform by Turing machines, i.e.,
there exists a polynomial encoding1 (cod, s) such that the family Π is polynomially
bounded with regard to (X, cod, s); that is, there exists a polynomial function p(n)
such that for each u ∈ IX , every computation of Π(s(u)) with input cod(u) –
denoted by Π(s(u)) + cod(u), for short– is halting and, moreover, it performs
at most p(|u|) steps, and the family Π is sound and complete with regard to
(X, cod, s). It is easy to see that the classes PMC?

R and PMCR are closed under
polynomial-time reduction and complement. Moreover, since uniformity can be
considered to be a special case of semi-uniformity, the inclusion PMCR ⊆ PMC?

R
holds.

According to these formal definitions, in [4] it is proved that the complexity
class of decision problems solved by uniform or semi-uniform families of polar-
izationless recognizer P systems with active membranes, without dissolution and
with division of elementary and non-elementary membranes, is exactly P. With
the standard notation, P = PMCAM0

−d,+ne
= PMC?

AM0
−d,+ne

.

2.3 Antimatter

Antimatter and matter/antimatter annihilation rules have been introduced in the
framework of cell-like P systems in [2]. Given two objects a and b from the alphabet
Γ in a membrane labeled by h, an annihilation rule of a and b is written as
[ab → λ]h. The meaning of the rule follows the physical idea of annihilation:
If a and b occur simultaneously in the same region with label h, then both are
consumed (disappear) and nothing is produced (denoted by the empty string λ).
Let us remark that both objects a and b are ordinary elements from Γ and they can
trigger any other rule of type (a0) to (d0) described above, not only annihilation
rules. Nonetheless, in order to improve the readability, if b annihilates the object
a then b will be called the antiparticle of a and we will write a instead of b.

1 See [7, 8] for the details. Informally, given an instance u ∈ IX , s(u) is a natural number
which identifies a P system Π(s(u)) in the family. When fed with the multiset cod(u)
as input, this P system computes the value of predicate θX(u). In uniform families of
P systems, the structure and definition of Π(s(u)) is the same for all instances u ∈ IX
having the same size s(u).

136 Dı́az-Pernil et al.

With respect to the semantics, let us recall that the rule [aa → λ]h, provided
that annihilation rules have priority over all other rules, must be applied as many
times as possible in every membrane labeled by h, according to the maximal paral-
lelism, i.e., if m copies of a and n copies of a occur simultaneously in a membrane
of label h, with m ≥ n (respectively m ≤ n), then the rule is applied n times
(respectively m times), n (respectively m) copies of a and a are consumed and
m− n copies of a (respectively n−m copies of a) are not affected by this rule.

The key point in the use of the semantics of the annihilation rules in this paper
is related to the priority of this type of rules with respect to the other types. In [3],
according to the non-determinism, if an object a can trigger more than one rule of
types (a0) to (d0), then one rule among the applicable ones is non-deterministically
chosen. Nonetheless, if a and a occur simultaneously in the same membrane h and
the annihilation rule [aa → λ]h is defined, then it is applied, regardless of other
options. In this sense, any annihilation rule had priority over the other types of
rules.

In this paper, we consider the case that the annihilation does not have priority
over the other rules. If an object a can trigger more than one rule, then one rule
among the applicable ones is non-deterministically chosen regardless of its type
(obviously, for annihilation rules object a has also to occur in the same region).

Formally, a polarizationless P system with active membranes, without dis-
solution, with division of elementary and non-elementary membranes and with
annihilation rules is a construct of the form Π = (Γ,H, µ,w1, . . . , wm, R), where:

1. m ≥ 1 is the initial degree of the system;
2. Γ is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure consisting of m membranes labelled in a one-to-one

way with elements of H;
5. w1, . . . , wm are strings over Γ , describing the multisets of objects placed in the
m regions of µ;

6. R is a finite set of rules of the types (a0) to (e0) described in Section 2.1, and
the following type of rules:

(f0) [aa → λ]h for h ∈ H, a, a ∈ Γ (annihilation rules). The pair of objects
a, a ∈ Γ occurring simultaneously inside membrane h disappears.

As stated above, in this paper rules of type (f0) have no priority over the other
types of rules. If at the same time a membrane labelled with h is divided by a
rule of type (d0) or (e0) and there are objects in this membrane which are chosen
to be annihilated by means of rules of type (f0), then we assume that first the
annihilation is performed and then the division is produced. Of course, this process
takes only one step.

By following the standard notation, in [3] the authors denote the class of po-
larizationless recognizer P systems with active membranes without dissolution,
with division of elementary and non-elementary membranes, and with antimatter
and matter/antimatter annihilation rules by AM0

−d,+ne,+ant. They do not include

On The Semantics of Annihilation Rules in Membrane Computing 137

any symbol in the name to specify the priority, because they assume it as being
part of the model definition. In this paper, we will consider a class of P systems
which uses the same model of P systems AM0

−d,+ne,+ant, but without priority for
the application of the annihilation rules; in order to stress this difference, we will
denote this class of P systems by AM0

−d,+ne,+ant NoPri.

3 Removing Priority for Annihilation Rules

The main contribution of this paper is the proof of the following claim.

Theorem 1. PMCAM0
−d,+ne,+ant NoPri

= P

Proof. It is well known (e.g., see [4]) that PMCAM0
−d,+ne

= PMC?
AM0

−d,+ne
= P.

On the other hand, the following inclusion obviously holds:

PMCAM0
−d,+ne

⊆ PMCAM0
−d,+ne,+ant NoPri

,

therefore P ⊆ PMCAM0
−d,+ne,+ant NoPri

. Thus it only remains to prove that also

the converse inclusion holds:

PMCAM0
−d,+ne,+ant NoPri

⊆ P . (1)

Since PMC?
AM0

−d,+ne
= P, in order to prove (1) it suffices to prove that

PMCAM0
−d,+ne,+ant NoPri

⊆ PMC?
AM0

−d,+ne
.

Hence, let X ∈ PMCAM0
−d,+ne,+ant NoPri

be a decision problem. By definition,

there exist a polynomial encoding (cod, s) and a family of P systems {Π(i)}i∈N in
AM0

−d,+ne,+ant NoPri such that for each instance u of the problem X:

• all computations of Π(s(u)) + cod(u) halt;
• in all computations, the system sends out either one copy of the object yes

or one copy of the object no (but not both), and only in the last step of
computation.

Let us first provide an informal idea of the proof. Given an instance u ∈ IX ,
we know that all computations of Π(s(u)) + cod(u) halt, and that they all answer
yes or all answer no. Let C = {C0, . . . , Cn} be one of these halting computations,
and let us assume that the answer is yes (the other case is analogous). Then there
exists an object a1 and a rule r1 ≡ [a1]skin → yes []skin which has been applied
in the last step of the computation. There are two possibilities: either object a1
is in the skin membrane since the beginning of the computation, or there exists a
rule r2 which must have produced it inside or moved it into the skin membrane.
Rule r2 is triggered by the occurrence of an object a2 in a membrane with label
h2. Obviously, r2 cannot be an annihilation rule, since no object is produced by
such rules, then rule r2 must belong to types (a0) to (d0). Going back with the

138 Dı́az-Pernil et al.

reasoning, either a2 appears in the membrane with label h2 since the beginning of
the computation, or it is produced or moved there by the application of a rule r3,
and so on.

Finally we have a chain

(yes, env)
r1←− (a1, skin)

r2←− (a2, h2)
r3←− · · · rk←− (ak, hk)

where k ≤ n and ak appears in a membrane with label hk in the initial configura-
tion (possibly as part of the input multiset). The key idea here is two-folded. On
the one hand, annihilation rules do not produce any object; the objects that trigger
an annihilation rule disappear and nothing is produced. On the other hand, for any
halting configuration there must exist a finite sequence of rules (rk, rk−1, . . . , r2, r1)
where rk is triggered by an object from the initial configuration, r1 produces yes
and each ri produces an object that triggers ri−1. Therefore, none of rules r1, . . . , rk
is an annihilation rule.

To formally prove the result we have to check that the amount of resources for
finding the sequence of rules is polynomially bounded. With this aim, we will start
by considering the dependency graph associated with Π(s(u)) , but considering
only evolution, communication and division rules2 (i.e., only rules which can pro-
duce new occurrences of objects). Namely, if R is the set of rules associated with
Π(s(u)), we will consider the corresponding directed graph G = (V,E) defined as
follows, where the function f : H → H returns the label of the parent membrane:

V = V L ∪ V R,

V L = {(a, h) ∈ Γ ×H : ∃u ∈ Γ ∗ ([a→ u]h ∈ R) ∨
∃b ∈ Γ ([a]h → []hb ∈ R) ∨
∃b ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ a[]h′ → [b]h′ ∈ R) ∨
∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

V R = {(b, h) ∈ Γ ×H : ∃a ∈ Γ ∃u ∈ Γ ∗ ([a→ u]h ∈ R ∧ b ∈ u) ∨
∃a ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ [a]h′ → []h′b ∈ R) ∨
∃a ∈ Γ (a[]h → [b]h ∈ R) ∨
∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

E = {((a, h), (b, h′)) : ∃u ∈ Γ ∗ ([a→ u]h ∈ R ∧ b ∈ u ∧ h = h′) ∨
([a]h → []hb ∈ R ∧ h′ = f(h)) ∨
(a[]h′ → [b]h′ ∈ R ∧ h = f(h′)) ∨
∃c ∈ Γ ([a]h → [b]h[c]h ∈ R ∧ h = h′)}.

Such a dependency graph can be constructed by a Turing machine working in
polynomial time with respect to the instance size. Finally, let us consider the set

2 See [4] for the details about polynomial resources.

On The Semantics of Annihilation Rules in Membrane Computing 139

∆Π = {(a, h) ∈ Γ ×H : there exists a path (within the dependency graph)
from (a, h) to (yes, env)} .

It has also been proved that there exists a Turing machine that constructs ∆Π

in polynomial time; the proof uses the Reachability Problem in order to prove the
polynomially bounded construction.

From this construction we directly obtain that the set of rules used in the chain

(yes, env)
r1←− (a1, skin)

r2←− (a2, h2)
r3←− · · · rk←− (ak, hk)

described above can be found in polynomial time.
Finally, for the instance u ∈ IX , let us consider the P system Π(u′) with only

one membrane with label s and only one object (ak, hk) in the initial configuration.
The set of rules is

• [(ai, hi)→ (ai−1, hi−1)]s for each i ∈ {3, . . . , k − 1}
• [(a2, h2)→ (a1, skin)]s
• [(a1, skin)]s → yes []s

The system Π(u′) can be built in polynomial time by a deterministic Turing
machine. A direct inspection of the rules shows that Π(u′) ∈ AM0

−d,+ne. The
behavior of the system is deterministic, and it computes the correct answer for the
instance u ∈ IX , sending out the object yes to the environment in the last step of
computation.

We finally observe that a similar construction can be carried out for the answer
no. Hence, we conclude that X ∈ PMC?

AM0
−d,+ne

= P. ut

Remark 1. Let us finally explain the idea how to even get a uniform family of
recognizer P systems from the family constructed in the preceding proof by making
some preprocessing: For any input of length n, we include all possible input symbols
in the dependency graph. If there is a path from some symbol to yes and from
another symbol to no, then by the definition of confluence, an input containing
both of these symbols simultaneously cannot be a valid input. So, once we get
an input of length n, we first check if it has symbols deriving yes and symbols
deriving no. This certainly is possible within polynomial time.

4 Conclusions

We have proved that by removing priority in polarizationless recognizer P systems
with antimatter and annihilation rules, without dissolution, and with division of
elementary and non-elementary membranes, we obtain a new characterization of
the standard complexity class P. Since it was previously known that the same
model of P systems can solve the NP-complete problem Subset Sum when the
priority of annihilation rules is used [3], we have shown that this priority plays an
important role in the computational power of these P systems.

140 Dı́az-Pernil et al.

Indeed, the most interesting aspect of our result is the fact that if the rules
of these P systems are applied in different ways, a different computational power
is obtained. We have thus proved that the semantics of a model can be a useful
tool for studying problems of tractability. To the best of our knowledge, this is the
first time where it is proved that two models of P systems syntactically identical
correspond to two (presumably) different complexity classes simply because they
use different semantics.

This opens a new research area in the study of tractability in membrane com-
puting. Not only new ingredients or new models must be studied in order to find
new frontiers: classical results can also be revisited in order to explore the conse-
quences of considering alternative semantics.

Acknowledgements

Miguel A. Gutiérrez-Naranjo acknowledges the support of the project TIN2012-
37434 of the Ministerio de Economı́a y Competitividad of Spain. The authors
are very grateful to Artiom Alhazov for carefully reading the paper and for also
pointing out Remark 1.

References

1. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M.,
Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing -
15th International Conference, CMC 2014, Prague, Czech Republic, August 20-22,
2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8961, pp.
66–85. Springer (2014)

2. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter in membrane
systems. In: DCFS 2014. Lecture Notes in Computer Science, vol. 8614, pp. 65–76.
Springer (2014)

3. Dı́az-Pernil, D., Peña-Cantillana, F., Alhazov, A., Freund, R., Gutiérrez-Naranjo,
M.A.: Antimatter as a frontier of tractability in membrane computing. Fundamenta
Informaticae 134, 83–96 (2014)

4. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero,
F.J.: On the power of dissolution in P systems with active membranes. In: Freund,
R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Com-
puting. Lecture Notes in Computer Science, vol. 3850, pp. 224–240. Springer, Berlin
Heidelberg (2005)

5. Metta, V.P., Krithivasan, K., Garg, D.: Computability of spiking neural P systems
with anti-spikes. New Mathematics and Natural Computation (NMNC) 08(03), 283–
295 (2012)

6. Pan, L., Păun, Gh.: Spiking neural P systems with anti-spikes. International Journal
of Computers, Communications & Control IV(3), 273–282 (2009)

7. Pérez-Jiménez, M.J.: An approach to computational complexity in membrane com-
puting. In: Mauri, G., Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A.

On The Semantics of Annihilation Rules in Membrane Computing 141

(eds.) Workshop on Membrane Computing. Lecture Notes in Computer Science, vol.
3365, pp. 85–109. Springer (2004)

8. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complexity
- membrane division, membrane creation. In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 302 – 336. Oxford
University Press, Oxford, England (2010)

9. Păun, Gh.: Some quick research topics., In these proceedings.
10. Song, T., Jiang, Y., Shi, X., Zeng, X.: Small universal spiking neural P systems with

anti-spikes. Journal of Computational and Theoretical Nanoscience 10(4), 999–1006
(2013)

11. Tan, G., Song, T., Chen, Z., Zeng, X.: Spiking neural P systems with anti-spikes
and without annihilating priority working in a ’flip-flop’ way. International Journal
of Computing Science and Mathematics 4(2), 152–162 (2013)

