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Summary. The use of negative information provides a new tool for exploring the limits
of P systems as computational devices. In this paper we prove that the combination of
antimatter and annihilation rules (based on the annihilation of physical particles and
antiparticles) and membrane creation (based on autopoiesis) provides a P system model
able to solve PSPACE-complete problems. Namely, we provide a uniform family of
P system in such P system model which solves the satisfiability problem for quantified
Boolean formulas (QSAT). In the second part of the paper, we prove that all the decision
problems which can be solved with this P system model belong to the complexity class
PSPACE, so this P system model characterises PSPACE.

1 Introduction

The use of negative information provides a new challenge in the development of
theoretical aspects in Membrane Computing (see [20]). Such negative information
can be considered by extending the definition of a multiset f on a set X from
f : X → N to f : X → Z (i.e., admitting negative multiplicity of the elements
of the multiset [4, 13]) or even considering negative time and the possibility of
travelling in time [7].

One of the most extended uses of negative information in Membrane Comput-
ing is considering anti-spikes in the framework of Spiking Neural P systems. In
such model when one spike and one anti-spike appear in the same neuron, the
annihilation occurs and both, spike and anti-spike, disappear [15, 17, 22, 24]. The
use of antimatter, as an extension of the concept of anti-spikes, is being explored
in other P system models [1, 2, 5].
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Recently, it has been proved that antimatter and annihilation rules are a fron-
tier of tractability in Membrane Computing [5]. The starting point for the study
was a well-known result in the complexity theory of Membrane Computing: P sys-
tems with active membranes without polarizations, without dissolution and with
division of elementary and non-elementary membranes (denoted by AM0

−d,+ne)
can solve exactly problems in the complexity class P (see [8], Th. 2). The main
result in [5] is that AM0

−d,+ne endowed with antimatter and annihilation rules

(denoted by AM0
−d,+ne,+ant) can solve NP-complete problems.

In a certain sense, such results show that if the number of membranes of the
P system can be increased by membrane division, then endowing the model with
dissolution or annihilation rules, then the model is capable to solve NP-complete
problems.

Similar results hold in the case of P systems with membrane creation. In [9] it is
shown that these P systems when dissolution rules are allowed can solve PSPACE-
complete problems (i.e, they can solve all the decision problems which can be solved
by Turing machines, deterministic or non-deterministic, in polynomial space). In
this paper, we show that using annihilation rules instead of dissolution rules, P
systems with membrane creation are not only able to solve NP-complete problems,
but PSPACE-complete problems too. By taking [23] as starting point, in the
second part of the paper, we prove that all the decision problems which can be
solved with this P system model belong to the complexity class PSPACE, so this
P system model characterises PSPACE.

The paper is organized as follows. In the next section, the notion of P systems
with membrane creation and annihilation rules is introduced. Then recognizer P
systems are briefly described. In Section 4 we show that the well known QSAT
problem (i.e., the problem of deciding if a fully quantified Boolean formula is
true or not) can be solved in linear time by P systems with membrane creation,
with annihilation rules and without dissolution rules. In Section 5, we prove that
PSPACE is an upper bound for the set of decision problems which can be solved
with this model. Finally, some conclusions are given in the last section.

2 The P System Model

The basis of the model is two types of rules which are not so common on complexity
studies in Membrane Computing. The first type, rules of membrane creation, is
based on the biological process of autopoiesis [14]. It creates a membrane from a
single object in a similar way to the creation of a vesicle in a cell by a metabolite.
This type of rule was first considered in [12, 16] and it has been proved that
P systems with membrane creation and dissolution rules can solve NP-complete
problems (see [10, 11]) or even PSPACE-complete problems (see [9]).

The idea of using antimatter as a generalization of the anti-spikes used in
Spiking Neural P Systems was firstly proposed in [21]. Based on the physical
inspiration of particles and antiparticles, if an object a and its opposite one a
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appears simultaneously in the same membrane, they are annihilated by application
of the corresponding rule aa→ λ. As pointed above, several authors have started
to explore the possibilities of using antimatter in Membrane Computing [1, 2, 5].

Formally, a P system with membrane creation and annihilation rules is a con-
struct of the form Π = (O,H, µ,w1, . . . , wm, R), where:

1. m ≥ 1 is the initial degree of the system; O is the alphabet of objects and H
is a finite set of labels for membranes;

2. µ is a membrane structure consisting of m membranes labelled (not necessarily
in a one-to-one manner) with elements of H and w1, . . . , wm are strings over
O, describing the multisets of objects placed in the m regions of µ;

3. R is a finite set of rules, of the following forms:
(a) [a→ v]h where h ∈ H, a ∈ O, and v is a string over O describing a multiset

of objects. These are object evolution rules associated with membranes and
depending only on the label of the membrane.

(b) a[ ]h → [b]h where h ∈ H, a, b ∈ O. These are send-in communication rules.
An object is introduced in the membrane possibly modified.

(c) [a]h → [ ]h b where h ∈ H, a, b ∈ O. These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a→ [v]h2 ]h1 where h1, h2 ∈ H, a ∈ O, and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an
initial multiset and a label.

(e) [ aa → λ ]h for h ∈ H, a, a ∈ O. This is an annihilation rule, associated
with a membrane labelled by h: the pair of objects a, a ∈ O belonging
simultaneously to this membrane disappears.

Rules are applied according to the following principles:

• Rules of type (a) - (d) are applied in parallel and in a maximal manner. In
one step, one object of a membrane can be used by only one rule (chosen in
a non–deterministic way), but any object which can evolve by one rule of any
form, must evolve.

• If an object can trigger two or more rules, one of such rules is non-
deterministically chosen, except for annihilation rules (type (e)). Any anni-
hilation rule has priority over all rules of the other types of rules. This fact
has a clear physical inspiration. If a particle and its antiparticle meet, they do
disappear and no other option is possible. This semantics was also used in [5].

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

• Several rules can be applied to different objects in the same membrane simul-
taneously.
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Following the standard notations, the class of these P systems is denoted by
AM0

−d,+mc,+antPri, where −d indicates that dissolution rules are not used, +mc
indicates the use of membrane creation and we add +antPri to denote the use of
antimatter and annihilation rules with priority.

3 Recognizer P Systems

We recall the main notions related to recognizer P systems and complexity in
Membrane Computing. For a detailed description see, e.g., [18, 19].

A decision problem X is a pair (IX , θX) such that IX is a language over a finite
alphabet (whose elements are called instances) and θX is a total Boolean function
over IX . A P system with input is a tuple (Π,Σ, iΠ), where Π is a P system, with
working alphabet Γ , with p membranes labelled by 1, . . . , p, and initial multisets
M1, . . . ,Mp associated with them; Σ is an (input) alphabet strictly contained
in Γ ; the initial multisets are over Γ − Σ; and iΠ is the label of a distinguished
(input) membrane. Let (Π,Σ, iΠ) be a P system with input, Γ be the working
alphabet of Π, µ its membrane structure, andM1, . . . ,Mp the initial multisets of
Π. Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input
m is (µ,M1, . . . ,MiΠ ∪m, . . . ,Mp). In the case of P systems with input and with
external output, the above concepts are introduced in a similar way.

A recognizer P system is a P system with input and with external output such
that:

• The working alphabet contains two distinguished elements yes, no.
• All its computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
external environment associated to the corresponding halting configuration of
C.

A decision problem X can be solved in a polynomially uniform way by a family
Π = {Π(n)}n∈N of P systems of type F if the following holds:

• There is a deterministic Turing machine M such that, for every n ∈ N, starting
M with the unary representation of n on its input tape, it constructs the P
system Π(n) in polynomial time in n.

• There is a deterministic Turing machine N that started with an instance I ∈ IX
with size n on its input tape, it computes a multiset wI (called the encoding
of I) over the input alphabet of Π(n) in polynomial time in n.

• For every instance I ∈ IX with size n, starting Π(n) with wI in its input
membrane, every computation of Π(n) halts and sends out to the environment
yes if and only if I is a positive instance of X.
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We denote by PMCF the set of problems decidable in polynomial time using
a polynomially uniform family of P systems of type F .

4 Solving QSAT

In this section, we show that QSAT can be solved in linear time by a polynomially
uniform family of recognizer P systems of type AM0

−d,+mc,+antPri.
The QSAT problem is the following one. Given a Boolean formula in conjunc-

tive normal form over the propositional variables {x1, . . . , xn}. Then the fully (ex-
istentially) quantified Boolean formula associated to ϕ is ϕ∗ = ∃x1∀x2 . . . Qnxnϕ,
(where Qn is ∃ if n is odd, and it is ∀, otherwise). Now, the task is to decide if
ϕ∗ is true, i.e., to decide if there exists a truth assignment I of the variables
{xi | 1 ≤ i ≤ n, i is odd} such that each extension I∗ of I to the variables
{xi | 1 ≤ i ≤ n, i is even} satisfies ϕ.

Next, we construct a recognizer P system of type AM0
−d,+mc,+antPri to solve

QSAT. The construction is a variant of the one occurring in [9] where it is shown
that QSAT can be solved in linear time using a family of P systems with membrane
creation using dissolution rules. The main difference between the construction in
[9] and the one in this paper is that instead of dissolution rules we use annihilation
rules to control the computations.

Similarly as in [9], the work of our P systems can be divided into three stages:

• Generation and evaluation stage: Using membrane creation we construct a bi-
nary complete tree where the leaves encode all possible truth assignments asso-
ciated with the formula. The values of the formula corresponding to these truth
assignments are obtained in the corresponding leaves. Moreover, the nodes at
even (resp. odd) levels from the root are codified by OR gates (respectively,
AND gates).

• Checking stage: In this stage the membrane structure corresponds to a Boolean
circuit with gates AND and OR. We compute the values of the gates starting
with the truth values computed at the leaves towards the root of the circuit
which is the output gate.

• Output stage: The system sends out to the environment the answer of the
system computed in the previous stages.

The evaluation stage will be the same as in [9], since there no dissolution rules
are applied. In the other two stages we will use annihilation rules instead of using
membrane dissolution.

Let ϕ = C1 ∧ · · · ∧ Cm be a Boolean formula in conjunctive normal form over
n variables. Then ϕ can be encoded as a multiset over the alphabet {xi,j , yi,j |
1 ≤ i ≤ m, 1 ≤ j ≤ n}, where xi,j (resp. yi,j) represents the fact that xj (resp.
¬xj) occurs in Ci (notice that since barred objects usually denote antimatters, we
cannot use x̄i,j to represent negated variables). Let us denote the above encoding
of ϕ by cod(ϕ). Let us moreover choose an appropriate pairing function 〈 , 〉 from
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N × N to N. We construct a P system Π(〈n,m〉) processing the fully quantified
formula ϕ∗ associated with ϕ, when cod(ϕ) is supplied in its input membrane. The
family presented here is:

Π = {(Π(〈n,m〉), Σ(〈n,m〉), i(〈n,m〉)) | (n,m) ∈ N2},

where the input alphabet is Σ(〈n,m〉) = {xi,j , yi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, the
input membrane is i(〈n,m〉) =< t,∨ >, and the P system Π(〈n,m〉) = (Γ (〈n,m〉),
H(〈n,m〉), µ, ws, w<t,∨>, R(〈n,m〉)) is defined as follows:

• Working alphabet:

Γ (〈n,m〉) = Σ(〈n,m〉)
∪ {zj,c | j ∈ {0, . . . n}, c ∈ {∧,∨}}
∪ {zj,c,l | j ∈ {0, . . . , n− 1}, c ∈ {∧,∨}, l ∈ {t, f}}
∪ {xi,j , yi,j , xi,j,l, yi,j,l | j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, l ∈ {t, f}}
∪ {ri, ri, ri,t, ri,f | i ∈ {1, . . . ,m}}
∪ {pi, qi, si, ti, ui, vi | i ∈ {1, 2, 3}} ∪ {q2, p3, t2, s3, u2, v3}
∪ {ai | i ∈ {0, . . . , n− 1}} ∪ {bi,l | i ∈ {1, . . . , n− 1}, l ∈ {t, f}}
∪ {ci,j | i ∈ {1, . . . , n− 1}, j ∈ {1, . . . , 5(n− i+ 1)}}
∪ {yes, no, yes∨, no∨, yes∧, no∧, yes∧, no∨}.

• The set of labels: H(〈n,m〉) = {< l, c >| l ∈ {t, f}, c ∈ {∧,∨}} ∪ {s}.
• Initial membrane structure: µ = [ [ ]<t,∨> ]s.
• Initial multiset: ws = ∅, w<t,∨> = {a0 z0,∧,t z0,∧,f}.
• Input membrane: [ ]<t,∨>.
• The set of evolution rules, R(〈n,m〉), consists of the following rules (recall that

λ denotes the empty string and if c is ∧ then c is ∨ and if c is ∨ then c is ∧):

1. [zj,c → zj,c,t zj,c,f ]<l,c>
[zj,c,l → [zj+1,c]<l,c>]<l′,c>

}
for

l, l′ ∈ {t, f}, c ∈ {∨,∧},
j ∈ {0, . . . , n− 1}.

With these rules the P system creates a nested membrane structure with 2n inner-
most cells each of which corresponding to a truth assignment of the variables of the
input formula. At the first step, the object zj,c evolves to two objects, one for the
assignment true (the object zj,c,t), and a second one for the assignment false (the
object zj,c,f ). In the second step these objects create two membranes. The new
membrane with t in its label represents the assignment xj+1 = true; on the other
hand, the new membrane with f in its label represents the assignment xj+1 =false.

2. [xi,j → xi,j,t xi,j,f ]<l,c>
[yi,j → yi,j,t yi,j,f ]<l,c>

[ri → ri,t ri,f ]<l,c>

 for
l ∈ {t, f} i ∈ {1, . . . ,m},
c ∈ {∨,∧} j ∈ {1, . . . , n}.

These rules duplicate the objects representing the formula. One copy corresponds
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to the case when the variable is assigned true, the other copy corresponds to the
case when it is assigned false. The objects ri are also duplicated (ri,t, ri,f ) in
order to keep track of those clauses that evaluate true on the previous assignments
to the variables.

3. xi,1,t[ ]<t,c> → [ri]<t,c>
yi,1,t[ ]<t,c> → [λ]<t,c>

xi,1,f [ ]<f,c> → [λ]<f,c>

yi,1,f [ ]<f,c> → [ri]<f,c>

 for
i ∈ {1, . . . ,m},
c ∈ {∨,∧}.

Using these rules the P system can evaluate which clauses are true under the
possible (true or false) truth assignments of the corresponding variable.

4. xi,j,l[ ]<l,c> → [xi,j−1]<l,c>
yi,j,l[ ]<l,c> → [yi,j−1]<l,c>

ri,l[ ]<l,c> → [ri]<l,c>

 for
l ∈ {t, f}, i ∈ {1, . . . ,m},
c ∈ {∨,∧}, j ∈ {2, . . . , n}.

In order to analyse the next variable the second subscript of the objects xi,j,l
and yi,j,l are decreased when they are sent into the corresponding membrane
labelled with l. Moreover, following the last rule, the objects ri,l get into the new
membranes to keep track of the clauses that evaluate true on the previous truth
assignments.

5. [zn,c → r1 . . . rm p1 q1]<l,c> for l ∈ {t, f} and c ∈ {∨,∧}.
After the evaluation stage, these rules introduce antimatters zi, i ∈ {1, . . . ,m}, in
the inner membranes. These antimatters will be used to check if there is a clause
that is not satisfied by the corresponding truth assignment.

6. [ri ri → λ]<l,c>
[ri → q2]<l,c>

}
for

l ∈ {t, f}, i ∈ {1, . . . ,m},
c ∈ {∨,∧}

If an antimatter is not annihilated by the first rule, i.e., there is a clause that
is not satisfied by the corresponding truth assignment, then this antimatter
introduces the antimatter q2.

7. [q1 → q2]<l,c>
[p1 → p2]<l,c>

[q2q2 → λ]<l,c>

[p3p3 → λ]<l,c>

[p2 → p3]<l,c>

[p3 → no]<l,c>

[q2 → q3p3]<l,c>

[q3 → yes]<l,c>


for

l ∈ {t, f}
c ∈ {∨,∧}

These rules introduce yes in an innermost cell with label < l, c > if and only
if the antimatter q2 is not present in this cell. On the other hand, if q2 is in
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the cell, then object no is introduced. Since q2 is introduced if and only if the
corresponding truth assignment does not satisfy all the clauses of the formula, the
appearance of yes or no in this cell indicates correctly whether the corresponding
truth assignment satisfies the formula or not.

8. [yes]<l,c> → yesc [ ]<l,c>
[no]<l,c> → noc [ ]<l,c>

}
for

l ∈ {t, f}
c ∈ {∨,∧}

These rules with the rules in groups 9 and 10 below will be used to check whether
an appropriate combination of truth assignments according to the quantifiers ∃
and ∀ are founded or not.

9. [yes∧ yes∧ → λ]<l,∧>
[t1 → t2]<l,∧>

[s1 → s2]<l,∧>

[t2 → t3 s3]<l,∧>

[s2 → s3]<l,∧>

[t3]<l,∧> → yes∨ [ ]<l,∧>

[yes∧ → t2]<l,∧>

[s3]<l,∧> → no∨ [ ]<l,∧>

[t2 t2 → λ]<l,∧>

[s3 s3 → λ]<l,∧>



for l ∈ {t, f}

10. [no∨ no∨ → λ]<l,∨>
[u1 → u2]<l,∨>

[v1 → v2]<l,∨>

[u2 → u3 v3]<l,∨>

[v2 → v3]<l,∨>

[u3]<l,∨> → no∧ [ ]<l,∨>

[no∨ → u2]<l,∨>

[v3]<l,∨> → yes∧ [ ]<l,∨>

[u2 u2 → λ]<l,∨>

[v3 v3 → λ]<l,∨>



for l ∈ {t, f}

11. [ai → bi+1,t bi+1,f ci+1,1]<l,c>
bi+1,l [ ]<l,c> → [ai+1]<l,c>

}
for

l ∈ {t, f}, i ∈ {0, . . . , n− 2},
c ∈ {∨,∧}

These rules with the rules in groups 12-14 below will be used to introduce the
multisets s1t1yes

2
∧ and u1v1no

2
∨ in the appropriate membranes. These multisets

will be used then by rules in groups 9 and 10, respectively. Since these multisets
will be needed at different levels in the membrane structure in different time
steps, we need to employ a counter ci,j for the appropriate timing (see also the
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groups below).

12. [an−1 → cn−1,1]<l,c>
}

for l ∈ {t, f}, c ∈ {∨,∧}

13. [ci,j → ci,j+1]<l,c>
}

for
l ∈ {t, f}, i ∈ {1, . . . , n},
c ∈ {∨,∧}, j ∈ {1, . . . , 5n− 5i+ 4}

14. [cn−k,5k+5 → s1 t1 yes
2
∧]<l,∧>

[cn−k,5k+5 → u1 v1 no
2
∨]<l,∨>

}
for

l ∈ {t, f}
k ∈ {0, . . . , n− 1}

15. [yes∧]s → yes [ ]s
[no∧]s → no [ ]s.

These rules are used to send out the computed answer to the environment.

4.1 A Short Overview of the Computation

The initial configuration only has two membranes, the skin and an elementary
membrane with label < t,∨ >. Labels have two types of information. On the one
hand, the first symbol can be t or f , (true of false) and the second symbol can
be ∧ or ∨ to denote if the corresponding variable is universally or existentially
quantified. Membrane creation rules are applied in parallel in order to obtain a
binary tree like structure of membranes enclosed in the skin. In the 2n-th step
of the computation, 2n elementary membranes are created. One for each possible
truth assignment of the variables. The key set of rules for the evaluation of the
variables is the set 3. According to this set of rules, a symbol rj is produced for
each variable such that its truth value makes true the clause Cj .

Each of the 2n elementary membranes in the configuration after 2n steps can
be seen as one of the possible truth assignments for the variables and the set of
different rj objects inside represent the set of clauses satisfied by the corresponding
truth assignment. In order to check if all the clauses are satisfied, a set with all the
antiparticle rj objects is generated in each elementary membrane. If all of these rj
objects are annihilated, it means that in this elementary membrane there were all
the objects rj (maybe with multiple copies). This means that the truth assignment
associated with the elementary membrane satisfies all the clauses. Otherwise, if
any rj is not consumed after the annihilation process, then we conclude that the
corresponding assignment does not satisfy the corresponding clause.

A set of technical rules produce an object yes or no inside each elementary
membrane. The target of most of these rules is to control that only one object yes
or no is generated, regardless the possible combination of multiple copies of rj in
the membrane.

Once the objects yes and no are generated in the elementary membranes, they
are sent up in the tree-like membrane structure. When two of these objects arrive
to an intermediate membrane, a new object yes or no is sent up, according to the
label of the membrane. Such label encodes the type of quantification (universal or
existential) of the corresponding variable. This stage is controlled by rules from
the sets 9 and 10.
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Finally, an object yes or no arrives to the skin and it is sent out to the envi-
ronment.

Consequently, the family Π solves in linear time the QSAT problem. Since
QSAT is a PSPACE-complete problem, we have the following result:

Theorem 1. PSPACE ⊆ PMCAM0
−d,+mc,+antPri

.

5 PSPACE upper bound

In this section we show that PMC0
AM−d,+mc,+antPri ⊆ PSPACE. The proof is

similar to the corresponding one in [23] where it is shown that PMCAM+d,+ne
⊆

PSPACE (i.e., polynomially uniform families of P systems with active mem-
branes, with polarizations, with dissolution and nonelementary membrane division
rules can solve only problems in PSPACE). Nevertheless, there are substantial
differences between the two proofs due to the different behaviour of these systems.
In [23] it is observed that the multiset content and the polarization (so called, the
state) of a membrane M after n steps of a P system Π can be obtained by recur-
sively calculating the states of M , its parent, and its children after n− 1 steps. To
achieve that always the same computations are calculated by the recursive calls, a
weak determinism on the rules of Π was introduced in [23] (notice that since Π is a
recognizer P system, it is confluent and thus it is enough to simulate only one of its
computations). Moreover, to distinguish between membranes having same labels,
unique indexes were associated to the membranes of a configuration. The index of
a new membrane in a configuration is derived from the index of the corresponding
membrane in the previous configuration.

In our proof, on the one hand, we do not have to deal with the polarizations of
the membranes. On the other hand, we should employ an indexing technique that
is different to that occurring in [23] due to the reason that in P systems with mem-
brane creation new membranes are created from objects and not from membranes.
The rest of this section is devoted to the proof of the following theorem:

Theorem 2. PMCAM0
−d,+mc,+antPri

⊆ PSPACE.

We give an algorithm A with the following properties. Let Π = {Π(n)}n∈N be
a polynomially uniform family of recognizer P systems of type AM−d,+mc,+antPri.
Then, for every n ∈ N and input multiset m of Π(n), A decides using polynomial
space in n if Π(n) produces yes started on input m.

Assume that Π(n) = (Γ,H, µ,W, hi, R). Since Π(n) is a recognizer P system,
all of its computations yield the same answer. Thus, it is enough to simulate one
particular computation of Π(n). To this end, we introduce the following weak
priorities on the rules other than annihilation rules in R (clearly, by definition,
annihilation rules have priority over the rest of the rules). We assume that evolu-
tion rules have the highest priority, followed by send-out communication, send-in
communication, and membrane creation rules. Similar type of rules have priority
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over each other as follows. Assume we have two rules r1 and r2 of the same type.
Then r1 has priority over r2 if and only if one of the following conditions holds:

• r1 = [a → α]i, r2 = [a → β]i and α < β (where < is the usual lexicographical
order on words),

• r1 = a[ ]i → [b]i, r2 = a[ ]j → [c]j and (i < j or (i = j and b < c)),
• r1 = [a]i → b[ ]i, r2 = [a]i → c[ ]i and b < c,
• r1 = [a→ [α]j ]i, r2 = [a→ [β]k]i and (j < k or (j = k and α < β)).

One can see that even with the above priorities, Π(n) can have different com-
putations on the same input. Indeed, assume, for example, that Π(n) has a con-
figuration which contains a membrane structure [[ ]2 [ ]2]1 with an object a in
membrane 1. Assume also that Π(n) has the rule r = a[ ]2 → [b]2. Then when
Π(n) applies r, it nondeterministically chooses a membrane with label 1 and sends
a into this membrane. It also can bee seen that there is no such nondeterminism
concerning the other types of rules. As we will see later, using unique indexes of the
membranes having the same labels, we can avoid of this nondeterminism during
the simulation.

Next we define these unique indexes. First of all, we assume that different
membranes have different labels in the initial configuration. Assume now that
C = C1, . . . , Cl is a computation of Π(n). Let i ∈ {1, . . . , l} and M be a mem-
brane in Ci. Let d(M,Ci) denote the depth of M in the membrane structure in
Ci. More precisely, if M is the skin, then d(M,Ci) = 1; if M is a child of a mem-
brane M ′, then d(M,Ci) := d(M ′, Ci) + 1. Let moreover d(Ci) := max{d(M,Ci) |
M is a membrane in Ci}. We inductively define a function fC that assigns to ev-
ery membrane M in Ci an index from ((H ∪ N)i+1)d(M,Ci) (i.e., the index of M
will be a d(M,Ci)-tuple of words with length i+ 1 containing letters from H ∪N).
The indexes of the membranes in C1 are inductively defined as follows. For the
skin membrane M with label s, let FC(M) := (s1). Now let M be a membrane in
C1 and assume that FC(M) = (w1, . . . , wd(M,C1)). If M ′ is a child membrane of M
with label h, then FC(M ′) := (h1, w1, . . . , wd(M,C1)). An example of this indexing
in the initial configuration can be seen on Fig. 1, where these indexes are written
in the lower-right corner of the membranes. Now assume that fC already assigns

Fig. 1.
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an index to every membrane in Ci (i < l). Let M be a membrane in Ci and assume
that fC(M) = (w1, . . . , wd(M,Ci)). If M ′ is the membrane in Ci+1 that corresponds
to M , then let fC(M ′) = (w11, . . . , wd(M,Ci)1) (notice that since dissolution and
membrane duplication rules are not allowed, every membrane in Ci has a corre-
sponding membrane in Ci+1). Finally, let h ∈ H and assume that a1, . . . , ak are
those objects in M (ordered lexicographically) that create membranes with label
h in the step from Ci to Ci+1. For every j ∈ {1, . . . , k}, let Mj be that membrane
which is created from aj . Then fC(Mj) := (haijj, w11, . . . , wd(M,Ci)1). An example
of this indexing can be seen in Fig. 2, where at the first step a enters to mem-
brane with index (h1, f1) and evolves to b. Then, during the second step, b creates
the membrane with index (gbb1, h111, f111). Notice that from this index we can

Fig. 2.

decode the following information. The label of the membrane is g, its parent has
label h and index (h111, f111), and the membrane was created in the second step
of the computation from an object b. In general, the above defined indexes have
the following properties:

• For a given initial configuration C1 and a computation C = C1, . . . , Cl, the
possible indexes of the membranes in C can be effectively enumerated (notice
that the maximal number of objects in a membrane can be calculated from the
number of objects in C1 and the number of computation steps);

• For a membrane M with index (h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j),
– if k > 1, then the index of the parent membrane of M is

(h2i2,1 . . . i2,j , . . . , hkik,1 . . . ik,j), and
– the possible indexes of the children of M can be effectively enumerated;

• For a membraneM with index (h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j) such that j > 1,
either
– i1,1 = . . . = i1,j = 1 and M occurs already in the initial configuration, or
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– i1,1 = . . . = i1,j−1 = a, for some a ∈ Γ , and M is created from a in the
(j − 1)th step of the computation.

Let C = C1, . . . , Cl be a computation of Π(n) and j ∈ {1, . . . , l}.
We introduce an order on the indexes of membranes occurring in Cj and
satisfying that d(M,Cj) = d(M ′, Cj). Assume that M and M ′ are mem-
branes with these properties and fC(M) = (h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j),
and fC(M ′) = (h′1i

′
1,1 . . . i

′
1,j , . . . , h

′
ki
′
k,1 . . . i

′
k,j), where k = d(M,Cj). Then

(h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j) ≤ (h′1i
′
1,1 . . . i

′
1,j , . . . , h

′
ki
′
k,1 . . . i

′
k,j) if and only if

h1i1,1 . . . i1,j ≤ h′1i
′
1,1 . . . i

′
1,j , where ≤ is the usual lexicographical order on words

assuming that, for every object a ∈ Γ and number n ∈ N, a < n.
Let C = C1, . . . , Cl be a halting computation of Π(n) such that, for every

i ∈ {1, . . . , l}, Ci has the following property. Assume that there is a membrane
M with label h in Ci and there are more than one membranes with label g in
M . Assume also that there is a rule r = a[ ]g → [b]g in R. Then Ci+1 is that
configuration of Π(n) where the objects a in M are sent by the rule r to that
membrane with label g which has a smaller index by the above defined order
on the indexes. We will simulate this particular computation C by recursively
calculating the multiset content of membranes in C. This is done using a function
called Content. Content gets as parameters an index of a membrane M and a
number j and returns with the multiset content of M in Cj (i.e., the content of
M after j−1 computation steps). The basic strategy of the computation, roughly,
is the following. First we try to compute the content of M and the content of its
parent M ′ in Cj−1. If M ′ does not exist in Cj−1, then M also does not exist and
we can return nil showing that the content of M in Cj is undefined. If only M
does not exist in Cj−1, we check whether it was created in the step from Cj−1 to
Cj . If no, then we return nil, otherwise we return the newly created content of M .
If both M and M ′ exist in Cj−1, then we calculate the content of M in Cj using
the contents of M and M ′ in Cj−1 and by calculating the contents of the children
of M in Cj−1.

For the better readability, in the algorithms defined below we will refer to the
annihilation (resp. evolution, send-out communication, send-in communication,
and membrane creation) rules as ann (resp. evo, in com, out com, and cre).

1. function Content((h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j), j)
// We calculate the multiset content of a membrane M with index

(h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j) in Cj ;
2. if j = 1 then
3. if i1,1 = 1, . . . , ik,1 = 1 AND there is a membrane structure µ =

[ [ [ ]h1
. . . ]hk−1

]hk in C1 then
4. return the multiset content of the inner membrane in µ
5. else return nil
6. end if ;
7. exit
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8. end if ;
// If j = 1 and the index corresponds to a membrane in C1, then return the content
of this membrane, and return nil, otherwise;

9. S ← Content((h1i1,1 . . . i1,j−1, . . . , hkik,1 . . . ik,j−1), j − 1);
// If j > 1, then we recursively calculate the content of M in Cj−1;

10. Sp ← ∅; S′ ← ∅; Sc ← ∅; X ′ ← ∅;
11. if h1 is not the label of the skin membrane then
12. Sp ← Content((h2i2,1 . . . i2,j−1, . . . , hkik,1 . . . ik,j−1), j − 1);

// If M is not the skin, then we calculate the content of the parent M ′ of M in
Cj−1;

13. if Sp = nil then return nil; exit
// If the parent M ′ of M does not exist in Cj−1, then M cannot exist in Cj ;

14. else
15. TryRules(h2, ann, Sp, X

′, X ′);
16. TryRules(h2, evo, Sp, X

′, X ′);
17. TryRules(h2, out com, Sp, X

′, X ′);
// We remove from Sp those objects that do not contribute to the content of M
in Cj by applying rules ann, evo, and out com to the content of M ′ in Cj−1;

18. for all possible index (h′1i
′
1,1 . . . i

′
1,j−1, . . . , hkik,1 . . . ik,j−1) such

that (h′1i
′
1,1 . . . i

′
1,j−1, . . . , hkik,1 . . . ik,j−1) < (h1i1,1 . . . i1,j−1, . . . ,

hkik,1 . . . ik,j−1)
19. Sc ← Content((h′1i

′
1,1 . . . i

′
1,j−1, . . . , hkik,1 . . . ik,j−1), j − 1);

20. if Sc 6= nil then
21. TryRules(h′1, in com,X

′, X ′, Sp)
22. end if
23. end for

// We remove those objects from the content of M ′ that are sent to child mem-

branes other than M ;
24. end if
25. end if
26. if S 6= nil then
27. TryRules(h1, ann, S,X

′, X ′);
28. TryRules(h1, evo, S, S

′, X ′);
29. TryRules(h1, out com, S,X

′, X ′);
//We apply rules ann, evo, and out com to the content S of M in Cj−1;

30. TryRules(h1, in com, Sp, S
′, X ′)

// We send objects from the parent M ′ to the children M by applying in com

rules;
31. CommWithChildren((h1i1,1 . . . i1,j−1, . . . , hkik,1 . . . ik,j−1), j − 1, S, S′);

//We calculate the interactions between M and its children in Cj−1;

32. S′ ← S ∪ S′;
// We calculate the content of M in Cj ; here S contains those objects that
were not involved by any rule; S′ contains the results of the applicable rules;

33. return S′; exit
34. end if
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35. if S = nil then
36. CommWithChildren((h2i2,1 . . . i2,j−1, . . . , hkik,1 . . . ik,j−1), j − 1, Sp, X

′);
// If M does not exists in Cj−1, then we examine if it can be created in M ′ in the

step from Cj−1 to Cj ; first we remove those objects from the content of M ′ that

are sent to its children during the step form Cj−1 to Cj ;
37. if a1 . . . at ⊆ Sp (a1 ≤ . . . ≤ at) such that i1,1 = . . . = i1,j−1 = at AND

i1,j = t AND [at → [ v ]h1 ]h2 ∈ R then
38. S′ ← v;

// If a1, . . . , at occur in Sp and M can be created in M ′ by the rule [at →
[ v ]h1 ]h2 , then the content of M in Cj is v;

39. return S′

40. else
41. return nil
42. end if
43. end if

Next we define the procedure TryRules which have five parameters. The first
one is a label of the membrane, the next one is a type of rules, and the last three
parameters are those sets of objects that are involved by the application of the
corresponding type of rules.

1. procedure TryRules(g, type,X, Y, Z)
2. case type of
3. ann: for each rule [ aa→ λ ]g do
4. remove every pair a, a from X
5. end for
6. evo: for each rule [ a→ α ]g do
7. remove every occurrence of a from X;
8. add to Y the same number of multiset represented by α
9. end for

10. in com: for each rule a[ ]g → [ b ]g do
11. remove every occurrence of a from Z;
12. add to Y the same number of objects b
13. end for
14. out com: for each rule [ a ]g → b[ ]g do
15. remove every occurrence of a from X;
16. add to Z the same number of objects b
17. end for
18. cre: for each rule [ a→ [ ]h ]g do
19. remove every occurrence of a from X
20. end for
21. end case

Now, we define the procedure CommWithChildren which calculates the com-
munications between a membrane and its children. This procedure has four pa-
rameters. The second parameter is a number j which determines which step of
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the computation is considered. The first parameter is an index of a membrane in
Cj . The last two parameters are those sets of objects that are involved by the
communications between this membrane and its children in the step from Cj to
Cj+1.

1. procedure CommWithChildren((h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j), j,X, Y )
2. for each gl1,1 . . . l1,j , where g ∈ H, l1,1, . . . , l1,j ∈ H ∪ N do
3. Sc ← Content((gl1,1 . . . l1,j , h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j), j);
4. if Sc 6= nil then
5. Y ′ ← ∅;
6. TryRules(g, ann, Sc, Y

′, Y ′);
7. TryRules(g, evo, Sc, Y

′, Y ′);
8. TryRules(g, out com, Sc, Y

′, Y );
9. TryRules(g, in com, Y ′, Y ′, X);

// We apply rules of type ann and evo to keep the computation deterministic;

membrane creation rules are skipped as they do not contribute to the content

of the parent membrane stored in X; in-communication rules involve only the

content of the parent membrane;
10. end if
11. end for

Finally, we present the procedure A to decide if Π(n) sends out to the envi-
ronment yes on a given input multiset m. We assume without loss of generality
that those rules that send out to the environment yes (resp. no) have the form
[ yes ]s → yes (resp. [ yes ]s → yes), where s is the label of the skin membrane.

1. procedure A(Π(n))
// Π(n) = (Γ,H, µ,W, hi, R) is a recognizer P systems of type AM−d,+mc,+antPri

with input multiset m
2. s← the label of the skin in µ;
3. S ← ∅;
4. for each j = 1, 2, . . . do
5. S ← Content((si1 . . . ij), j) where i1 = 1, . . . , ij = 1;
6. if yes ∈ S and there is a rule [ yes ]s → yes then output: yes; exit
7. end if
8. if no ∈ S and there is a rule [no ]s → no then output: no; exit
9. end if

10. end for

First we show that A halts on Π(n) and m. Since Content recursively calls
itself with a decreasing second parameter and Content with second parameter
1 exits after finite steps, we can conclude that Content always exits after finite
steps. Moreover, since Π(n) is a recognizer P system, it halts in l steps, for an
appropriate number l. Thus the multiset content of the skin of Π should contain
yes or no after at most l − 1 steps. Therefore, l + 1 is the highest number that
occurs as a second parameter in the calls of Content in A. This means that A
stops after a finite number of steps.
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Next we discuss the space complexity of A. Let Π = {Π(n)}n∈N be a poly-
nomially uniform family of P systems of type AM−d,+mc,+antPri. By definition,
there is a polynomial p(n) such that the size of the initial configuration of Π(n)
containing an encoding of a formula in its input membrane is upper bounded by
p(n). Moreover, there is a polynomial t(n) such that the running time of Π(n) is
upper bounded by t(n).

Let C = C1, . . . , Cl be a halting computation of Π(n), for some l ≤ t(n), and
M be a membrane in Ci (i ∈ {1, . . . , l}). Then the index w = fC(M) contains
at most k + i − 1 components, where k = d(C1). Clearly, k is upper bounded by
p(n). Moreover, every component of w is a word with length at most t(n) + 2. It
follows then that w contains at most (p(n)+t(n)−1) ·(t(n)+2) letters. Clearly, for
every i ∈ {1, . . . , l}, the size of Ci is at most p(n)O(t(n)) (the size of a configuration
is the sum of the number of objects and membranes in the configuration). Thus,
every letter in w that is contained in N is at most p(n)k·t(n), for some appropriate
constant k. Therefore, storing a letter of a word in w needs at most log(p(n)k·t(n)) =
O(nt(n)) bits (notice that the first letters of the words in w are labels and the
number of different labels is bounded by p(n)). This implies that the index w can
be stored using at most O((p(n) + t(n)) · t(n) · nt(n)) bits, i.e., the number of
necessary bits is polynomial in n. Therefore, on every level of the recursion in the
function Content, the number of bits that is used to store the parameters is upper
bounded by an appropriate polynomial. Moreover, the depth of the recursion in
Content is bounded by the poynomial t(n). It follows, that the space complexity
of A is bounded by a polinomial too.

6 Conclusions and Future Work

In this paper, we have proved that the family of P systems with membrane creation
and annihilation rules characterizes the complexity class PSPACE. In [5] it has
been proved that P systems with active membranes without polarizations, with-
out dissolution and with division of elementary and non-elementary membranes
endowed with antimatter and annihilation rules can solve NP-complete problems.
It is an interesting research topic to explore the exact computational power of these
systems. It seems that these systems can only solve problems in PSPACE. On
the other hand, solving a PSPACE-complete problem with these systems seems
to be a challenging task.
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and Transductions - Festschrift in Honor of Gabriel Thierrin. pp. 239–253. World Sci-
entific (2001)

13. Loeb, D.: Sets with a negative number of elements. Advances in Mathematics 91,
64–74 (1992)

14. Luisi, P.: The chemical implementation of autopoiesis. In: Fleischaker, G., Colonna,
S., Luisi, P. (eds.) Self-Production of Supramolecular Structures, NATO ASI Series,
vol. 446, pp. 179–197. Springer Netherlands (1994)

15. Metta, V.P., Krithivasan, K., Garg, D.: Computability of spiking nueral P systems
with anti-spikes. New Mathematics and Natural Computation (NMNC) 08(03), 283–
295 (2012)

16. Mutyam, M., Krithivasan, K.: P systems with membrane creation: Universality and
efficiency. In: Margenstern, M., Rogozhin, Y. (eds.) MCU. Lecture Notes in Computer
Science, vol. 2055, pp. 276–287. Springer (2001)



A Characterization of PSPACE with Antimatter 177
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18. Pérez-Jiménez, M.J.: An approach to computational complexity in membrane com-
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