507 research outputs found

    On the Pitfalls of Resource Augmentation Factors and Utilization Bounds in Real-Time Scheduling

    Get PDF
    In this paper, we take a careful look at speedup factors, utilization bounds, and capacity augmentation bounds. These three metrics have been widely adopted in real-time scheduling research as the de facto standard theoretical tools for assessing scheduling algorithms and schedulability tests. Despite that, it is not always clear how researchers and designers should interpret or use these metrics. In studying this area, we found a number of surprising results, and related to them, ways in which the metrics may be misinterpreted or misunderstood. In this paper, we provide a perspective on the use of these metrics, guiding researchers on their meaning and interpretation, and helping to avoid pitfalls in their use. Finally, we propose and demonstrate the use of parametric augmentation functions as a means of providing nuanced information that may be more relevant in practical settings

    Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems

    Get PDF
    In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP{\cal NP}-complete in the strong sense. Several studies on this problem are based on approximations involving resource augmentation, i.e., speeding up individual processors. This paper studies another type of resource augmentation by allocating additional processors, a topic that has not been explored until recently. We provide polynomial-time algorithms and analysis, in which the approximation factors are dependent upon the input instances. Specifically, the factors are related to the maximum ratio of the period to the relative deadline of a task in the given task set. We also show that these algorithms unfortunately cannot achieve a constant approximation factor for general cases. Furthermore, we prove that the problem does not admit any asymptotic polynomial-time approximation scheme (APTAS) unless P=NP{\cal P}={\cal NP} when the task set has constrained deadlines, i.e., the relative deadline of a task is no more than the period of the task.Comment: Accepted and to appear in ISAAC 2018, Yi-Lan, Taiwa

    Packing sporadic real-time tasks on identical multiprocessor systems

    Get PDF
    In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP-complet

    Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems

    Get PDF
    In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP-complete in the strong sense. Several studies on this problem are based on approximations involving resource augmentation, i.e., speeding up individual processors. This paper studies another type of resource augmentation by allocating additional processors, a topic that has not been explored until recently. We provide polynomial-time algorithms and analysis, in which the approximation factors are dependent upon the input instances. Specifically, the factors are related to the maximum ratio of the period to the relative deadline of a task in the given task set. We also show that these algorithms unfortunately cannot achieve a constant approximation factor for general cases. Furthermore, we prove that the problem does not admit any asymptotic polynomial-time approximation scheme (APTAS) unless P=NP when the task set has constrained deadlines, i.e., the relative deadline of a task is no more than the period of the task

    Exact Speedup Factors and Sub-Optimality for Non-Preemptive Scheduling

    Get PDF
    Fixed priority scheduling is used in many real-time systems; however, both preemptive and non-preemptive variants (FP-P and FP-NP) are known to be sub-optimal when compared to an optimal uniprocessor scheduling algorithm such as preemptive earliest deadline first (EDF-P). In this paper, we investigate the sub-optimality of fixed priority non-preemptive scheduling. Specifically, we derive the exact processor speed-up factor required to guarantee the feasibility under FP-NP (i.e. schedulability assuming an optimal priority assignment) of any task set that is feasible under EDF-P. As a consequence of this work, we also derive a lower bound on the sub-optimality of non-preemptive EDF (EDF-NP). As this lower bound matches a recently published upper bound for the same quantity, it closes the exact sub-optimality for EDF-NP. It is known that neither preemptive, nor non-preemptive fixed priority scheduling dominates the other, in other words, there are task sets that are feasible on a processor of unit speed under FP-P that are not feasible under FP-NP and vice-versa. Hence comparing these two algorithms, there are non-trivial speedup factors in both directions. We derive the exact speed-up factor required to guarantee the FP-NP feasibility of any FP-P feasible task set. Further, we derive the exact speed-up factor required to guarantee FP-P feasibility of any constrained-deadline FP-NP feasible task set

    Scheduling Self-Suspending Tasks: New and Old Results

    Get PDF
    In computing systems, a job may suspend itself (before it finishes its execution) when it has to wait for certain results from other (usually external) activities. For real-time systems, such self-suspension behavior has been shown to induce performance degradation. Hence, the researchers in the real-time systems community have devoted themselves to the design and analysis of scheduling algorithms that can alleviate the performance penalty due to self-suspension behavior. As self-suspension and delegation of parts of a job to non-bottleneck resources is pretty natural in many applications, researchers in the operations research (OR) community have also explored scheduling algorithms for systems with such suspension behavior, called the master-slave problem in the OR community. This paper first reviews the results for the master-slave problem in the OR literature and explains their impact on several long-standing problems for scheduling self-suspending real-time tasks. For frame-based periodic real-time tasks, in which the periods of all tasks are identical and all jobs related to one frame are released synchronously, we explore different approximation metrics with respect to resource augmentation factors under different scenarios for both uniprocessor and multiprocessor systems, and demonstrate that different approximation metrics can create different levels of difficulty for the approximation. Our experimental results show that such more carefully designed schedules can significantly outperform the state-of-the-art

    Complex scheduling models and analyses for property-based real-time embedded systems

    Get PDF
    Modern multi core architectures and parallel applications pose a significant challenge to the worst-case centric real-time system verification and design efforts. The involved model and parameter uncertainty contest the fidelity of formal real-time analyses, which are mostly based on exact model assumptions. In this dissertation, various approaches that can accept parameter and model uncertainty are presented. In an attempt to improve predictability in worst-case centric analyses, the exploration of timing predictable protocols are examined for parallel task scheduling on multiprocessors and network-on-chip arbitration. A novel scheduling algorithm, called stationary rigid gang scheduling, for gang tasks on multiprocessors is proposed. In regard to fixed-priority wormhole-switched network-on-chips, a more restrictive family of transmission protocols called simultaneous progression switching protocols is proposed with predictability enhancing properties. Moreover, hierarchical scheduling for parallel DAG tasks under parameter uncertainty is studied to achieve temporal- and spatial isolation. Fault-tolerance as a supplementary reliability aspect of real-time systems is examined, in spite of dynamic external causes of fault. Using various job variants, which trade off increased execution time demand with increased error protection, a state-based policy selection strategy is proposed, which provably assures an acceptable quality-of-service (QoS). Lastly, the temporal misalignment of sensor data in sensor fusion applications in cyber-physical systems is examined. A modular analysis based on minimal properties to obtain an upper-bound for the maximal sensor data time-stamp difference is proposed

    Sharing GPUs for Real-Time Autonomous-Driving Systems

    Get PDF
    Autonomous vehicles at mass-market scales are on the horizon. Cameras are the least expensive among common sensor types and can preserve features such as color and texture that other sensors cannot. Therefore, realizing full autonomy in vehicles at a reasonable cost is expected to entail computer-vision techniques. These computer-vision applications require massive parallelism provided by the underlying shared accelerators, such as graphics processing units, or GPUs, to function “in real time.” However, when computer-vision researchers and GPU vendors refer to “real time,” they usually mean “real fast”; in contrast, certifiable automotive systems must be “real time” in the sense of being predictable. This dissertation addresses the challenging problem of how GPUs can be shared predictably and efficiently for real-time autonomous-driving systems. We tackle this challenge in four steps. First, we investigate NVIDIA GPUs with respect to scheduling, synchronization, and execution. We conduct an extensive set of experiments to infer NVIDIA GPU scheduling rules, which are unfortunately undisclosed by NVIDIA and are beyond access owing to their closed-source software stack. We also expose a list of pitfalls pertaining to CPU-GPU synchronization that can result in unbounded response times of GPU-using applications. Lastly, we examine a fundamental trade-off for designing real-time tasks under different execution options. Overall, our investigation provides an essential understanding of NVIDIA GPUs, allowing us to further model and analyze GPU tasks. Second, we develop a new model and conduct schedulability analysis for GPU tasks. We extend the well-studied sporadic task model with additional parameters that characterize the parallel execution of GPU tasks. We show that NVIDIA scheduling rules are subject to fundamental capacity loss, which implies a necessary total utilization bound. We derive response-time bounds for GPU task systems that satisfy our schedulability conditions. Third, we address an industrial challenge of supplying the throughput performance of computer-vision frameworks to support adequate coverage and redundancy offered by an array of cameras. We re-think the design of convolution neural network (CNN) software to better utilize hardware resources and achieve increased throughput (number of simultaneous camera streams) without any appreciable increase in per-frame latency (camera to CNN output) or reduction of per-stream accuracy. Fourth, we apply our analysis to a finer-grained graph scheduling of a computer-vision standard, OpenVX, which explicitly targets embedded and real-time systems. We evaluate both the analytical and empirical real-time performance of our approach.Doctor of Philosoph
    • …
    corecore