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Abstract
In computing systems, a job may suspend itself (before it finishes its execution) when it has to wait
for certain results from other (usually external) activities. For real-time systems, such self-suspension
behavior has been shown to induce performance degradation. Hence, the researchers in the real-time
systems community have devoted themselves to the design and analysis of scheduling algorithms
that can alleviate the performance penalty due to self-suspension behavior. As self-suspension and
delegation of parts of a job to non-bottleneck resources is pretty natural in many applications,
researchers in the operations research (OR) community have also explored scheduling algorithms for
systems with such suspension behavior, called the master-slave problem in the OR community.

This paper first reviews the results for the master-slave problem in the OR literature and explains
their impact on several long-standing problems for scheduling self-suspending real-time tasks. For
frame-based periodic real-time tasks, in which the periods of all tasks are identical and all jobs related
to one frame are released synchronously, we explore different approximation metrics with respect to
resource augmentation factors under different scenarios for both uniprocessor and multiprocessor
systems, and demonstrate that different approximation metrics can create different levels of difficulty
for the approximation. Our experimental results show that such more carefully designed schedules
can significantly outperform the state-of-the-art.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Self-suspension, master-slave problem, computational complexity, speedup
factors

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.16

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.6

Funding Ruben Hoeksma: Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project Number 146371743 – TRR 89 Invasive Computing.
Nicole Megow: Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Project Number 146371743 – TRR 89 Invasive Computing.

Acknowledgements The authors thank Minming Li from City University of Hong Kong and Guil-
laume Sagnol from TU Berlin, for discussions in an early stage of this research. The authors
also thank the organizing committee of MAPSP 2017 for planning a discussion session during the
workshop, which initialized the study in this paper.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
  Evaluated  *

  E
C

R
T
S
  *

 Artifact  *
  A

E

© Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and
Georg von der Brüggen;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445910?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-8114-9760
mailto:jian-jia.chen@tu-dortmund.de
mailto:tobiash4hn@gmail.com
https://orcid.org/0000-0002-6553-7242
mailto:hoeksma@uni-bremen.de
https://orcid.org/0000-0002-3531-7644
mailto:nicole.megow@uni-bremen.de
https://orcid.org/0000-0002-8137-3612
mailto:georg.von-der-brueggen@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.ECRTS.2019.16
https://dx.doi.org/10.4230/DARTS.5.1.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Scheduling Self-Suspending Tasks: New and Old Results

1 Introduction

Advanced embedded computing and information processing systems heavily interact with the
physical world in which time naturally progresses. Due to this, timeliness of computation is
an essential requirement of correctness. Thus, to ensure safe operations of such embedded
systems, also called real-time embedded systems, worst-case timeliness needs to be verified.

In most real-time embedded systems, control tasks are executed recurrently, i.e., each
task τi releases an infinite number of tasks instances, called jobs, either periodically [32] or
sporadically [35], i.e., with a fixed period Ti or a minimum inter-arrival time Ti between two
jobs. When a job with relative deadline Di arrives at the system at time t, it must finish its
execution no later than its absolute deadline t+Di. If the relative deadline Di of each task
τi in the task set is equal to (no more than, respectively) the period Ti, the task set is called
an implicit-deadline (constrained-deadline, respectively) task set. For real-time systems,
two correlated problems exists: (1) designing scheduling policies to schedule the tasks and
(2) validating whether the deadlines are always met in the resulting schedule. We term the
former as the scheduler design problem and the latter as the schedulability test problem.

Most existing approaches to analyze real-time systems work under the important assump-
tion that a job does not suspend itself, therefore allowing to exploit the widely-adopted
critical instant theorem [32], the busy-window concept [30], etc. This assumption means that
a job that starts executing on the computer either finishes its execution or is preempted
by a higher priority job, i.e., the job currently executing is preempted and the processor is
allocated to the new arriving job. If tasks can suspend themselves, most scheduling analysis
for existing scheduling algorithms cannot be applied without modifications. Nevertheless,
in real-world systems self-suspension behavior may occur for multiple reasons, for instance
when: (1) external devices are used to accelerate computation, so called computation offload-
ing [15,25], (2) resources are shared in multiprocessor systems, i.e., when a job requests a
resource currently held by a different job on another processor and cannot continue before
the resource access is granted [23,47], (3) direct memory access (DMA) is used to hide the
latency of memory accesses [21], etc. In these situations, the execution efficiency of the
system may be improved if a job suspends itself and releases the processor, i.e., allowing a
lower priority job to run instead of spinning on the processor.

To model self-suspension behavior, three self-suspension task models have been explored
in the literature as detailed in recent surveys [10,12]. The dynamic self-suspension model
allows a job of task τi to suspend itself at any moment before it finishes as long as the
worst-case (or maximum) self-suspension time Si is not violated. The segmented self-
suspension model further characterizes the computation segments and suspension intervals
as (Ci,1, Si,1, Ci,2, Si,2, . . . , Si,mi−1, Ci,mi

), an array composed of mi computation segments
separated by mi − 1 suspension intervals. The simplest segmented self-suspension model
allows a task to have at most one self-suspension interval, i.e., mi ≤ 2. The hybrid self-
suspension model [48] introduces some flexibility into the segmented suspension model by
allowing certain combinations of

∑mi

j=1 Ci,j . For instance, when considering two execution
segments, the hybrid model is applicable for scenarios where Ci,1 + Ci,2 is specified but the
detailed information of Ci,1 and Ci,2 is not revealed until the job finishes its execution.

The investigation of the impact of self-suspension on timing predictability in real-time
systems has started since 1988 by Rajkumar et al. [38]. The early research mainly focused on
the schedulability test problem under the classical real-time scheduling algorithms, e.g., [38]
in 1988, [34] in 1994, [27] in 1995, [17] in 1998, [33, p. 164-165] in 2000, [14, Section 4.5] in
2003, [1, 2] in 2004, and [5] in 2005.
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For periodic segmented self-suspension real-time tasks, the first scheduling algorithm to
alleviate the self-suspension behavior, called period enforcer, is due to Rajkumar [37] in 1991.
In 2004, Ridouard et al. [39] showed that the scheduler design problem for the segmented
self-suspension task model is NP-hard in the strong sense. The proof by Ridouard et al. [39]
only needs each segmented self-suspending task to have one suspension interval with two
computation segments. In 2014, Chen and Liu [9] presented the fixed-relative deadline
(FRD) strategy and provided a resource augmentation factor of 3 in uniprocessor systems
for the segmented self-suspension task model with at most one self-suspension interval per
implicit-deadline task. Since then, FRD has been applied in several results [20,36,47–49],
and it has been shown by von der Brüggen et al. [49] that the speedup factor of 3 also holds
for other FRD approaches. Chen and Brandenburg [8] have recently revisited the period
enforcer algorithm and presented its underlying assumptions and limitations. Schönberger
et al. [44] considered fixed-priority scheduling, combining suspension as computation and
restarting inference for each computation interval.

For scheduling periodic dynamic self-suspension real-time tasks, Huang et al. [22] in 2015
provided a priority assignment scheme which achieves a resource augmentation factor of 2,
compared to the optimal fixed-priority scheduling strategy. In 2016, Chen [7] showed that
the speedup factor for any fixed-priority preemptive scheduling, compared to the optimal
schedules, is not bounded by a constant if the suspension time cannot be reduced by speeding up.
An unbounded speedup factor has also been proved for the earliest-deadline-first (EDF), the
least-laxity-first (LLF), and the earliest-deadline-zero-laxity (EDZL) scheduling algorithms.

Nevertheless, most of the theoretical results regarding speedup factors are byproducts of
the construction of scheduling algorithms and a thorough theoretical analysis in this direction
has never been performed. Therefore, we focus ourselves on the fundamental analysis of the
most basic recurrent setting, i.e., frame-based implicit deadline tasks sets, to provide some
theoretical ground work that leads to a deeper understanding of the underlying problem
and algorithms to handle the setting efficiently. For instance, a large number of flaws were
found in the literature [10] and in our opinion fundamental theoretical results will help to
avoid such flaws in the future. Furthermore, we hope that the provided algorithms can be
extended to cover more general settings like periodic tasks, especially when harmonic or
semi-harmonic task sets are considered, for instance in automotive systems [19,28,50].

Our Contribution. In light of the increasing importance of self-suspending behavior in many
applications in real-time systems, we examine the fundamental difficulty of the scheduler
design problem. The contribution of this paper is as follows:

We provide a survey of several results in the operations research (OR) community for the
master-slave problem, which is shown NP-hard in the strong sense by Yu et al. [51] in
2004 even for a very simple setting. This concludes that the computational complexity of
the scheduler design problem is NOT due to the recurrence of real-time jobs, and that
removing the periodicity and non-uniform execution times of the computation segments
does NOT make the problem easier with respect to the computational complexity. Details
can be found in Section 3.
We provide a systematic study to quantify the resource augmentation (speedup) factors
of several heuristic algorithms that can be applied for different self-suspension models.
Motivated by the necessity for a fundamental exploration detailed above and the fact that
Yu et al. [51] showed that the complexity of self-suspension can be observed even in simple
settings, we focus our work on the frame-based task model. Two types of speedup factors
are explored in this paper. The suspension-coherent speedup factor defines the resource
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Table 1 Summary of speedup factors for uni- and multiprocessor systems.

Uniprocessor segmented hybrid dynamic
(one suspension) (one suspension) (multiple suspen.)

coherent speedup 1.5 ( [42] ) 1.5 (Cor. 4.5) 2 (Theorem 4.7)
speedup only the processor 2 (Theorem 4.12) 2 (Theorem 4.13) -

Multiprocessor segmented hybrid dynamic
(one suspension) (one suspension) (multiple suspen.)

coherent speedup 2 ( [42] ) 2 ( [42] & Thm. 5.5) 2 (Theorem 5.5)
speedup only the processors 3− 1/m (Thm. 5.9) 3−1/m (Thm. 5.10) -

augmentation factor by reducing the suspension time and execution time of a job at the
same time. The speedup factor defines the resource augmentation factor by reducing
only the execution time of a job. In addition to providing upper bounds on the speedup
factors in the uniprocessor and the multiprocessor setting, we provide lower bounds that
show that these two types of factors are very different. Constant suspension-coherent
speedup factors can be achieved easily by using work-conserving scheduling algorithms.
However, speedup factors without reducing the suspension time are much more difficult
to achieve. Table 1 summarizes these resource augmentation factors for uniprocessor and
multiprocessor systems from the literature and in Sections 4 and 5, respectively, where a
“-” denotes the cases where the speedup factor is unknown.

2 Model, Terminology, and Assumptions

In this section we explain the basic task models and terminology used in this paper. For a
self-suspending task τi, we consider three different models:

Segmented self-suspension with only one suspension interval: task τi is defined by the
triple (Ci,1, Si, Ci,2), where Ci,1 and Ci,2 are execution times on a processor and Si is the
suspension time, which for the segmented model is also called the length of the suspension
interval.1 A job of task τi suspends itself for Si amount of time after it is executed for
Ci,1 time units, i.e., the execution of the first computation segment is finished. The
second computation segment is released when the job returns from self-suspension. For
notational brevity, we denote Ci = Ci,1 + Ci,2.
Dynamic self-suspension: task τi is defined by (Ci, Si), where a job of task τi can suspend
itself at any moment and several times if needed before it finishes as long as the total
self-suspension time of the job is not more than Si.
Hybrid self-suspension with only one suspension interval: the tuple (Ci, Si) defines task τi,
where a job of τi suspends only once for Si amount of time and the sum of the execution
times of the two computation segments is at most Ci, i.e., the individual segments Ci,1
and Ci,2 are unknown but the sum of their length Ci,1 + Ci,2 = Ci is known.2

In this paper, we will implicitly consider frame-based real-time task systems. The given
tasks release their jobs at the same time, have the same period D, and a uniform relative
deadline D. Let T be the set of the n given tasks. As a result, we do not have to consider

1 In most task models in the literature, the suspension and execution time are both upper bounds. Here,
we consider them to be exact in the segmented self-suspension model to give rigorous worst-case bounds.

2 In general, the hybrid model assumes Ci,1 +Ci,2 ≤ Ci. In this case, some lemmas have to be revised but
the corresponding factors remain the same. Furthermore, in [48] multiple hybrid models are provided
that take advantage of additional information about the tasks if available.
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the periodicity of the tasks while scheduling frame-based real-time task systems. That is,
we assume that each task releases a job at time 0 and the schedule starts always at time 0.
We consider both uniprocessor and homogeneous multiprocessor platforms, i.e., m identical
processors, to schedule the given self-suspending tasks. When considering the multiprocessor
setting, we assume that no intra-task parallelization is possible, i.e., each task can be executed
on at most one processor at any given time.

The two problems that we consider are: (1) the scheduler design problem, where we
design scheduling policies to schedule the tasks, and (2) the schedulability test problem,
where we validate whether the deadlines are always met in the resulting schedule.

A schedule is work-conserving if the processor in a uniprocessor system (or a processor
in a multiprocessor system) never idles whenever a computation segment is available. A
scheduling instance is called feasible or schedulable, if there exists a schedule on a uniprocessor
(multiprocessor, respectively) system of unit speed (on a set of m unit speed processors,
respectively) in which all jobs complete before their deadline.

We say that a computation segment is available if it could be scheduled. To be precise,
the first computation segment of a task is available from the beginning of the frame until it
finishes its execution, and the second computation segment becomes available Si time units
after the first computation segment finishes its execution, i.e., after the suspension interval
of the task is finished.

Speedup Factors. As it is the case for many interesting problems, the problems that we
consider here are NP-hard. Therefore, we cannot hope for exact polynomial time algorithms
unless P = NP . Hence, the metrics of the resource augmentation bound or the speedup factor
are widely used to quantify the imperfectness of the scheduling algorithms [24]. Assume that
the input task set can be feasibly scheduled on a unit-speed processor by a (not necessarily
known) optimal scheduling algorithm. An algorithm A has a speedup factor ρ ≥ 1 when it can
be guaranteed that the schedule derived from algorithm A is always feasible by running the
processor at speed ρ. The speedup factor of a (sufficient) schedulability test can be defined
accordingly. When considering a multiprocessor platform, all m processors are assumed to
be sped up by ρ.

While for non-suspending task sets any computation is assumed to be sped up by ρ,
regarding self-suspension the questions remains weather only the computation segments are
sped up or if the suspension interval is sped up as well. Both possibilities are meaningful,
depending on the analyzed system. If the suspension interval can be coherently reduced by
changing the local execution platform, we talk about a suspension-coherent speedup factor.
For instance, it can be assumed that the suspension interval can be reduced as well when the
self-suspension behavior is due to resource access and multiprocessor synchronization on the
same platform. On the other hand, if the suspension length cannot be coherently reduced by
changing the local execution platform the general term speedup factor is used, e.g., if the
suspension behaviour is due to computation offloading to an external device.

Please note that the speedup factor should only be considered to analyze the worst-case
behavior of an algorithm, since algorithms with similar speedup factors may differ largely
regarding their performance. This fact and how considering speedup factors during the
algorithm design can lead to reduced performance has been recently elaborated by Chen et
al. [11]. To the best of our knowledge, the algorithms presented in this paper do not suffer
from any of the potential pitfalls pointed out in [11].

ECRTS 2019
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Clairvoyant Schedules. In the hybrid and dynamic self-suspension models, the scheduling
algorithm is supposed to be unaware of the exact moment when a job suspends itself.
Therefore, the scheduling algorithm works in the on-line fashion. However, according to the
self-suspension models, there are upper bounds of the suspension time and the execution
time of a job. To analyze the speedup factors and suspension-coherent speedup factors for
the hybrid and dynamic self-suspension models, we have to essentially compare to clairvoyant
schedules that know exactly when a job suspends and plan the best possible schedules.

Approximation guarantee. A polynomial-time algorithm is called ρ-approximation al-
gorithm if it guarantees to derive a feasible solution with an objective value that is within a
factor ρ of the optimal objective value for every input instance. The factor ρ is also called
approximation factor or guarantee.

3 Master-Slave Problem and Complexity

As self-suspension is pretty natural in many applications, researchers in the operations research
(OR) community have also explored scheduling algorithms for systems with such suspension
behavior. In 1991, Kern and Nawijn [26] introduced the scheduling of multi-operation jobs
with time lags on a single machine. Their problem definition is:

“There are jobs to be processed on a single machine. Each job requires two operations
to be processed in a given order. The time between the start of the second operation
and the completion of the first operation cannot be less than a pre-specified time
constant, i.e., there is a minimal time lag between the two operations of a job. Our
aim is to minimize the makespan, i.e., the completion time of the second operation of
the last job in the schedule.”

The two operations defined by Kern and Nawijn [26] are identical to the two computation
segments in our segmented suspension model and the lag is identical to the self-suspension
time. Therefore, the problem studied by Kern and Nawijn [26] is in fact identical to the
scheduler design problem for frame-based segmented self-suspending real-time task systems
with a single suspension interval per job in uniprocessor platforms. They proved that the
decision version of the problem, i.e., whether there exists a schedule to meet the uniform
deadline D, is NP-complete in the weak sense (by reduction from the 2-Partition problem).

Kern and Nawijn [26] also explored some special cases that can be solved in polynomial
time. Specifically, they concluded that there are polynomial-time scheduling algorithms to
derive optimal schedules for a single suspension on a uniprocessor for the following two cases:

All jobs have the same lag, i.e., uniform suspension time.
All jobs have only the first operation, i.e., Ci,2 = 0.

As a third special case, they analyzed the case where Ci,1 = Ci,2 = 1 for all the tasks (jobs),
but the computational complexity was left as an open problem [26].

In 1995, Sahni [40,41] termed the above problem as the master-slave scheduling model.
It assumes a given number of master devices and a sufficiently large number of slave devices.
A job is associated with three activities: preprocessing on the master device (i.e., first
computation segment), slave work (i.e., self-suspension interval), and postprocessing on the
master device (i.e., second computation segment). It is assumed that the number of slaves is
sufficient, i.e., there is always a slave device available if needed, and that the slave device
starts working without any delay. Hence, if there is only one master, this problem is identical
to the scheduler design problem for the segmented self-suspension task model in uniprocessor
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systems, and if there are multiple masters, this problem is identical to the scheduler design
problem for the segmented self-suspension task model in multiprocessor systems. Sahni [40]
proved that the makespan problem for only one master is also NP-hard in the weak sense
for the scheduling algorithms that have certain limited capabilities, e.g., the order of the jobs
in the preprocessing must be identical to the order in the postprocessing.

In 1996, Sahni and Vairaktarakis [42] proposed several heuristic algorithms to minimize
the makespan, i.e., the completion time of the last job, for the master-slave scheduling model
under single-master and multiple-master systems. Specifically, an approximation algorithm
with an approximation ratio of 3/2 was given for single-master systems and an approximation
algorithm with an approximation ratio of 2 was given for multiple-master systems. In 1997,
Vairaktarakis [46] further considered variants when there are m1 masters for preprocessing
andm2 masters for postprocessing. He gave approximation algorithms with an approximation
ratio of 2− 1/max{m1,m2} for such scenarios. Different configurations for multiple masters
in the master-slave scheduling model, including preemptive and non-preemptive constraints
and job migration constrains, were further studied by Leung and Zhao [31]. A survey article
on the master-slave scheduling model can be found in [43].

The master-slave scheduling model can be viewed as a special case of the two-stage
flowshop problem with transfer lags. The two-stage flow shop problem is defined as follows:
There are two machine stages each of which has one machine. Each job has to be first
processed on the first machine stage and then on the second stage, in which the operation
time on each stage is specified as the input. A job cannot be processed on the second stage
unless it has finished on the first stage. In classical scheduling theory, scheduling problems
are typically described shortly in the three-field notion α|β|γ [16], where

α characterizes the processor environment,

β the job/task parameters, and

γ gives the objective function.
In this compact notation, the makespan minimization for the two-stage flowshop problem
is termed as F2||Cmax. The transfer lag of a job is defined as the minimum separation
time between the start of its operation on the second machine stage and the completion
of its operation on the first stage. This problem is termed as F2|lj |Cmax. If the transfer
lags are long enough such that all of the operations on the first machine stage finish before
the second-stage machine starts any operation, then those special cases of F2|lj |Cmax are
equivalent to the master-slave scheduling model for one master.

In 1996, Dell’Amico [13] showed that the problem F2|lj |Cmax is NP-hard in the strong
sense for both preemptive and non-preemptive settings. In 2004, Yu et al. [51] further
proved that the problem F2|lj , pij = 1|Cmax is NP-hard in the strong sense, where the
condition pij = 1 implies that all jobs only need unit time operations in both machines.
Specifically, Yu et al. [51, Theorem 24] concluded that the open problem left by Kern and
Nawijn [26] mentioned above, i.e., the master-slave scheduling model for a single master with
Ci,1 = Ci,2 = 1 for all the tasks (jobs), is NP-hard in the strong sense.

Therefore, the computational complexity of the master-slave scheduling model as well
as the scheduler design problem of segmented self-suspension task systems is in fact mainly
due to the non-uniform self-suspension time. Removing the periodicity and non-uniform
execution times of the computation segments does not make the problem easier with respect
to the computational complexity. This result regarding the computational complexity of
the scheduler design problem for self-suspending real-time tasks is in fact stronger than the
NP-hardness by Ridouard et al. [39] for periodic real-time task systems in 2004.

ECRTS 2019
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The above research line has unfortunately been ignored in the real-time systems community
while exploring self-suspension task models. The recent survey papers by Chen et al. [10, 12]
also did not refer to these results. Although most of these results cannot be applied to
generic periodic or sporadic real-time task systems, they have provided solid fundamental
results regarding computational complexity and approximation algorithms for the scheduler
design problem for self-suspension task models.

4 Speedup Factors: Uniprocessor

This section presents new and old algorithms that have bounded speedup factors on a
uniprocessor for scheduling recurrent frame-based task sets, where the given tasks release
their jobs at the same time, have the same period D, and a uniform relative deadline D. We
will first discuss the suspension-coherent speedup factors and then the speedup factors for
the case that the suspension time is not reduced, summarized in Table 1. We provide lower
and upper bounds that clearly separate both models in terms of achievable speedup factors.

4.1 Suspension-Coherent Speedup Factors

Let J be the set of the jobs released by the task set T at time 0. As mentioned in Section 3,
Sahni and Vairaktarakis [42] developed a 3/2-approximation algorithm for the single-master
master-slave scheduling model. The algorithm is detailed in Algorithm 1.

Algorithm 1 Sahni-Vairaktarakis’ Algorithm (SV).
Input: J on one processor;
1: Classify the jobs generated by T into two sets: J1 and J2, where

J1 = {Ji | Ci,1 ≤ Ci,2, τi ∈ T} and J2 = {Ji | Ci,1 > Ci,2, τi ∈ T}.
2: Order the jobs in J1 according to a non-decreasing order of Si, i.e., shortest suspension first.
3: Order the jobs in J2 according to a non-increasing order of Si, i.e. longest suspension first.
4: Schedule the jobs in J1 first and then in J2 according to the above orders, and always prioritize

the first computation segments of the jobs.

Note that the schedule is work-conserving, i.e., the uniprocessor always executes a
computation segment whenever a computation segment is available.

I Theorem 4.1 ([42]). SV is a 3/2-approximation algorithm for the single-master master-
slave problem.

While SV is a simple algorithm, Hahn [18] shows that the even simpler Longest-suspension
time first algorithm (LSF) displayed in Algorithm 2 also is a 3/2-approximation algorithm.

Algorithm 2 Longest-suspension first (LSF).
Input: J on one processor; jobs are indexed in non-increasing order of Sj ;
1: Schedule the first computation segments of the jobs in increasing order of index;
2: Then schedule the second computation segments of the jobs as early as possible (when they

become available) in a work-conserving manner (i.e., first-come-first serve (FCFS));

I Theorem 4.2 ([18]). LSF is a 3/2-approximation algorithm for the single-master master-
slave problem.
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For completeness, we provide another proof for Theorem 4.2. Yet, before we do, we give
the following straightforward bound on the makespan of any feasible schedule that directly
follows from the definition. Hence, the proof is omitted.

I Lemma 4.3. The makespan of any uniprocessor schedule for a given task set T is at least
max

{
maxτi∈T {Si} ,

∑
τi∈T Ci

}
. This lower bound holds for all the segmented, hybrid, and

dynamic self-suspension models.

Now, we prove Theorem 4.2.

Proof of Theorem 4.2. Let the jobs be indexed in non-increasing order of Sj . Consider
the schedule produced by LSF and denote by ∆ the time between the time at which LSF
finishes the last first segment, i.e.,

∑n
j=1 Cj,1, and the time at which the last suspension time

finishes, i.e., maxJj∈J
∑j
k=1 Ck,1 + Sj . Moreover, let C2 be the processing volume that is

processed after the last suspension time finishes. Then, the following three lower bounds on
the makespan of the optimal solution, denoted Opt, hold.

Opt ≥
n∑
j=1

Cj (1)

Opt ≥ ∆ +
n∑
j=1

Cj,1 (2)

Opt ≥ ∆ + C2 (3)

Note that if (1)–(3) hold, then the makespan of LSF is at most

n∑
j=1

Cj,1 + ∆ + C2 ≤
1
2

 n∑
j=1

Cj,1 +
n∑
j=1

Cj,2 + ∆ +
n∑
j=1

Cj,1 + ∆ + C2

 ≤ 3
2Opt .

Thus, it is sufficient to show that (1)–(3) hold.
From Lemma 4.3 we have that (1) holds. To see why (2) holds, consider the relaxation

of the instance where for all Jj ∈ J, we have Cj,2 = 0. Then, the makespan is given by the
latest finished suspension. For LSF this is equal to the right hand side of (2). LSF minimizes
the makespan in this relaxation, as can be seen by the following simple interchange argument.
Consider a non-LSF schedule σ and two jobs Jj and Jk, such that j < k and Cj,1 is scheduled
after Ck,1. Then, the suspension of Jj finishes after the suspension of Jk. Now, consider the
schedule σ′ where we reschedule Ck,1 directly after Cj,1 and shift all jobs originally scheduled
after Ck,1 forward by that amount, such that there is no idle time. In σ′, the time at which
Ck,1 finishes is equal to the time at which Cj,1 finishes in σ, and Cj,1 finished earlier in σ′
than in σ. This can be repeated until no jobs are scheduled in non-LSF order. Therefore,
LSF minimizes the makespan for this relaxation and the right hand side of (2) is a lower
bound on the makespan in the optimal schedule.

Now, to see why (3) holds, we consider a similar relaxation, where for all Jj ∈ J, we
have Cj,1 = 0. Then, for this relaxation, any work-conserving schedule is optimal, since it
minimizes idle time. Compare an optimal solution for the relaxation to the LSF schedule
starting from time

∑n
j=1 Cj,1. This LSF schedule schedules exactly the same computation

segments that the relaxation needs to schedule. Moreover, it is work-conserving by definition,
and, since no first segment finishes later than

∑n
j=1 Cj,1, no segment is available later than

in the relaxation. Thus, the makespan of this LSF schedule, ∆ + C2, is at most the makespan
of an optimal schedule for the relaxation and therefore also at most Opt. J
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An approximation guarantee ρ for an algorithm for the master-slave problem translates
directly to a suspension-coherent speedup factor of ρ for the scheduler design problem for the
frame-based segmented self-suspension task model. Let Opt denote the optimal makespan
for an input instance I of the master-slave scheduling problem, and let Alg denote the
makespan of the ρ-approximation algorithm. By definition Alg ≤ ρ ·Opt. Consider a task
set in the frame-based segmented self-suspension task model that consists of the same set
of jobs as in I with an additional deadline D. If the task set is feasible then the makespan
Opt satisfies Opt ≤ D. If we speedup the computation and suspension with a factor of ρ,
then the makespan obtained by the algorithm is ρ ·Opt/ρ ≤ D, and thus, the algorithm is
guaranteed to find a feasible schedule for a feasible task set.

I Corollary 4.4. Both SV and LSF have a suspension-coherent speedup factor of 3/2 for
the scheduler design problem for the frame-based segmented self-suspension task model in
uniprocessor systems.

While SV crucially uses information about the length of Cj,1 and Cj,2 to classify job Jj ,
LSF does not need this information. Hence LSF is directly applicable to the hybrid model.

I Corollary 4.5. LSF has a suspension-coherent speedup factor of 3/2 for the scheduler
design problem for the frame-based hybrid self-suspension task model in uniprocessor systems.

In addition to SV, Sahni and Vairaktarakis [42] also showed that any canonical schedule (that
starts from the first computation segments followed by the second computation segments)
has an approximation ratio of 2 for minimizing the makespan. By the above argumentation,
this translates to a suspension-coherent speedup factor of 2 for the hybrid suspension model.
Here, we present a slightly stronger result. The suspension-coherent speedup factors for
the hybrid and dynamic suspension models can be obtained by considering any arbitrary
work-conserving schedule. Before presenting the suspension-coherent speedup factors, we
first demonstrate the upper bound of the makespan of a work-conserving schedule.

I Lemma 4.6. The makespan of a work-conserving schedule for all the segmented, hybrid,
and dynamic self-suspension models is at most maxτi∈T {Si}+

∑
τi∈T Ci.

Proof. Suppose that job Jj is the last job finished in the work-conserving schedule. Let f be
the makespan of the work-conserving schedule. Since the schedule is work-conserving, from
time 0 to f , the processor either idles or executes a job. If the processor idles at time t, since
the schedule is work-conserving, job Jj must be suspended at time t; otherwise it should be
executed. Therefore, from 0 to f , the maximum idle time is at most the suspension time Sj
of job Jj . Since the amount of execution time is

∑
τi∈T Ci, we know that

f ≤ Sj +
∑
τi∈T

Ci ≤ max
τi∈T

{Si}+
∑
τi∈T

Ci . J

I Theorem 4.7. On a uniprocessor, the suspension-coherent speedup factor of any work-
conserving scheduling algorithm is 2 for scheduling a frame-based task set T under both the
hybrid self-suspension model and the dynamic self-suspension model. This factor is tight.

Proof. By Lemma 4.3, if the input task set is feasible (i.e., there exists a feasible schedule),
then both maxτi∈T {Si} ≤ D and

∑
τi∈T Ci ≤ D hold. By Lemma 4.6, under a suspension-

coherent speedup factor of 2, we know that the makespan is at most

maxτi∈T {Si}+
∑
τi∈T Ci

2 ≤ D .
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The analysis is tight as the following example shows. Consider two jobs: job J1 with
(C1, S1) = (1, ε) and job J2 with (C2, S2) = (2ε, 1), for an infinitesimal ε > 0. A work-
conserving algorithm may schedule J1 from 0 to 1 − ε and J2 from 1 − ε to 1, while J1
suspends at time 1 − ε for ε time units and J2 suspends at time 1 for 1 time units. The
makespan of the above schedule is 2 + ε, while scheduling the jobs in the reverse order
provides a schedule with a makespan of 1 + 2ε.

Since Lemma 4.6 holds for the dynamic suspension model, the proof of the dynamic case
is identical to the hybrid case. The tightness example can be applied as well. J

4.2 Speedup Factors
In this section, we assume that only the processor speed can be changed. We firstly give a
necessary condition that any feasible task set must satisfy. Then we consider a preemptive
variant of LSF, called pmt-LSF, which may interrupt the processing of a job at any time
and continues processing it at any time later. We show that pmt-LSF requires at most a
speed of 2. Then we show that a preemptive schedule produced by our algorithm can be
transformed into a non-preemptive schedule without increasing the makespan. Based on this,
we can argue that also LSF requires a speedup factor of at most 2 – in both, the segmented
and the hybrid suspension model.

I Lemma 4.8. Let the jobs in J be indexed in non-increasing order of Sj. Any feasible
instance with one suspension satisfies for any job Jj:

max
{

j∑
k=1

Ck,1,

j∑
k=1

Ck,2

}
≤ D − Sj . (4)

Proof. Consider a feasible instance with a feasible schedule. Suppose there is at least one
job which does not satisfy (4). We distinguish two cases.
(a) Let Jj be the job with the smallest index and

∑j
k=1 Ck,1 > D−Sj . In a feasible schedule,

Jj completes its first computation segment by D − Sj . Since not all jobs in {J1, . . . , Jj}
can finish by D−Sj , there is a job Jk′ ∈ {J1, . . . , Jj−1} that finishes its first computation
segment after D − Sj . The completion time of this first computation segment is later
than D−Sj ≥ D−Sk′ since Sj ≤ Sk′ , and thus, job Jk′ fails to meet the deadline. This
contradicts the assumption that we have a feasible schedule. Hence, there cannot be a
job Jj with

∑j
k=1 Ck,1 > D − Sj .

(b) Similarly, let Jj be the smallest-index job with
∑j
k=1 Ck,2 > D − Sj . In a feasible

schedule, Jj does not start its second computation segment earlier than Sj . Since not all
jobs in {J1, . . . , Jj} can start their second computation segments at Sj or later, there
must be some job Jk′ 6= Jj , which starts its second computation segment earlier. This
start time is strictly less than Sj ≤ Sk′ which is infeasible and gives a contradiction. J

I Lemma 4.9. Let jobs be indexed in non-increasing order of Sj. Any feasible instance for
the hybrid suspension model (in which a job suspends at most once) satisfies for any job Jj∑j

k=1 Ck
2 ≤ D − Sj .

Proof. Recall that the hybrid suspension model assumes to know Ck = Ck,1 + Ck,2 but is
unaware of the actual distribution of Ck,1 and Ck,2 before the first computation segment
finishes. However, for a concrete distribution of Ck,1 and Ck,2 of the given jobs Jk’s in J,
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this set of jobs can be scheduled under the segmented self-suspension model. Therefore, we
can directly apply the result in Lemma 4.8 for each given distribution of Ck,1 and Ck,2 for
the jobs Jk’s in J. By the pigeon hole principle, we have∑j

k=1 Ck
2 ≤ max

{
j∑

k=1
Ck,1,

j∑
k=1

Ck,2

}
.

Therefore, by the above inequality and Lemma 4.8, we reach the conclusion. J

For the analysis of LSF (Algorithm 2) in terms of speedup factors, we first consider the
preemptive version (see Algorithm 3).

Algorithm 3 Preemptive longest-suspension first (pmt-LSF).
Input: J on one processor; jobs are indexed in non-increasing order of Sj ;
1: At any time schedule the available computation segment with smallest job index. Preempt a

running job if another lower-index (second) segment becomes available.;

I Theorem 4.10. For any instance that satisfies Condition (4) and Cj + Sj ≤ D, for any
job Jj, pmt-LSF finds a feasible schedule on a processor with speed 2.

Proof. Consider an instance with jobs indexed in non-increasing order of Sj that satisfy (4).
Let α ≥ 2 denote the speedup of the machine.

Consider some job Jk ∈ J and the time interval between time 0 and the completion time
of the second computation segment of Jk. Whenever Jk is not being executed, then either
some other, higher priority, job Jj ∈ J with j < k is being executed or Jk is suspended. Thus,
the completion time of Jk is bounded by the total computation volume of higher priority
jobs in J processed at speed α and the suspension time Sk, that is, the completion time of
job Jk is at most

k∑
j=1

Cj
α

+ Sk =
k∑
j=1

Cj,1
α

+
k∑
j=1

Cj,2
α

+ Sk ≤
2
α
·max


k∑
j=1

Cj,1,

k∑
j=1

Cj,2

+ Sk

≤ 2
α

(D − Sk) + Sk ≤ D ,

where the last inequality holds by Lemma 4.9 and since α ≥ 2. Thus, we conclude that all
jobs finish before the deadline D and therefore the schedule is feasible. J

Now we first show that there exists a non-preemptive schedule that has makespan equal
to the makespan of the schedule produced by pmt-LSF.

I Theorem 4.11. Any preemptive schedule produced by pmt-LSF can be transformed into a
non-preemptive schedule without increasing the makespan.

Proof. Let σ be the schedule produced by pmt-LSF and let Cj,i be the first computation
segment that is preempted. Let C be the set of computation segments that preempt
Cj,i. First note that a preemption can only happen if the preempting segment became
available after the preempted computation segment started to be processed. Thus, since first
computation segments are available from time 0, all computation segments in C must be
second computation segments. Then note that the completion time of a second computation
segment does not influence the availability of any other computation segment. Lastly,
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between the start and completion of the processing of Cj,i there cannot be idle time, since
Cj,i remains available. Therefore, the machine only processes Cj,i and C, between the start
and completion of the processing of Cj,i.

Now, consider the schedule σ′ that is constructed by finished the processing of Cj,i before
starting the processing of C, where the latter is otherwise processed exactly as in σ. The new
schedule is feasible, since none of the computation segments start their processing before the
time that they start processing in σ. Clearly, in σ′, segment Cj,i finishes not later than in σ.
Moreover, in σ′, the segments in C finish processing exactly at the time that Cj,i finishes
processing in σ. Thus the makespan of σ′ is not greater that the makespan of σ.

We repeat this process until there are no preempted segments left. J

Now we are ready to prove that LSF has a speedup factor of 2 as well.

I Theorem 4.12. The speedup factor of LSF is 2 for scheduling a frame-based task set T
under the segmented-suspension model on a single processor. This factor is tight.

Proof. Note that, in the proof of Theorem 4.11, the computation segments in C are all
second computation segments. Moreover, in the non-preemptive schedule, all these segments
are processed consecutively without idle time between them, since all processing of the
preempted job is shifted to the front. Thus, we can process the jobs in C in any order, that
does not introduce idle time, without changing the makespan. Therefore, LSF computes one
particular non-preemptive schedule that has a makespan equal to at most the makespan of
the preemptive schedule produced by pmt-LSF.

The analysis for LSF is tight as the following example shows. Consider two jobs: job
J1 with (C1,1, S1, C1,2) = (0, 1, 1) and job J2 with (C2,1, S2, C2,2) = (1, 1 + ε, 0) for an
infinitesimal ε > 0. LSF schedules in a decreasing order of Sj and achieves a makespan of
2 only when given speed 2. The opposite order of scheduling gives an optimal solution of
makespan 2 on a unit-speed processor. J

LSF only prioritizes the first computation segments of the jobs in J according to their
suspension times. Therefore, they can be applied for the hybrid and dynamic suspension
models as well. Interestingly, the knowledge of the exact values of Cj,1 and Cj,2 does not
improve the speedup factors in such a case.

I Theorem 4.13. The speedup factor of LSF is 2 for scheduling a frame-based task set T
under the hybrid self-suspension model on a uniprocessor. This factor is tight.

Proof. LSF does not require the knowledge of Cj,i. It relies only on the relative order of
suspension times Sj and on observing when a segment is completed. Thus, the algorithm
and its analysis apply to the hybrid model and the result follows from Theorem 4.12. J

In fact, LSF is speedup optimal for the hybrid self-suspension model, i.e., it has the best
possible speedup factor, as the following lower bound proves.

I Theorem 4.14. There is no deterministic algorithm which can achieve a speedup factor
of 2− ε for an infinitesimal ε > 0 for scheduling a frame-based task set T under the hybrid
self-suspension model on a processor. This means that LSF is best possible algorithm with
respect to speedup factors.

Proof. Consider two jobs similar to the example in the proof of Theorem 4.12: job J1
with (C1,1, S1, C1,2) = (0, 1, 1) and job J2 with (C2,1, S2, C2,2) = (1, 1, 0). In the hybrid
self-suspension model, an algorithm knows Cj = Cj,1 + Cj,2 but not the individual values
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Cj,i. Hence, in our example, jobs J1 and J2 are indistinguishable. W.l.o.g. we may assume
that an algorithm schedules job J2 before J1 and achieves a makespan of 2 only when given
speed 2. The opposite order, that is, jobs J1 before J2, gives an optimal solution of makespan
2 on a unit-speed processor. J

It is somewhat surprising that LSF is powerful for both the segmented and the hybrid
model. It remains open, if another algorithm can improve on LSF in the segmented model by
exploiting the exact values Cj,1 and Cj,2 for jobs j. However, we rule out that the previously
known algorithm SV can improve on LSF.

I Lemma 4.15. The speedup factor of SV is at least 2.

Proof. Consider three jobs: J1 and J2 with (Cj,1, Sj , Cj,2) = (1, 1, 1) for j ∈ {1, 2} and J3
with (C3,1, S3, C3,2) = (1 + ε, 4, 1− ε) for an infinitesimal ε > 0. SV classifies J1 = {J1, J2}
and J2 = {J3} and achieves a makespan of 6 only when given speed 2. The opposite order of
scheduling gives an optimal solution of makespan 6 on a unit-speed processor. J

4.3 Makespan and Schedulability Tests
As already mentioned in Section 1, the schedulability test problem is also important for
real-time systems. After deriving the scheduling algorithms, we should also explore the
schedulability conditions. In our model, it is rather straightforward. We simply need to check
whether the resulting makespan is at most D. The time complexity of such a schedulability
test is the same as the time complexity of the scheduling algorithm. However, for LSF, we
can derive the following schedulability test.

I Theorem 4.16. Let the jobs in J be indexed in non-increasing order of Sj. Let set Aj be

Aj =
{
J` | J` ∈ J and S` +

∑̀
k=1

Ck,1 ≥ Sj +
j∑

k=1
Ck,1

}
.

If
∑
Jk∈J Ck,1 + Ck,2 ≤ D and every job Jj satisfies

j∑
k=1

Ck,1 +
∑
Jk∈Aj

Ck,2 ≤ D − Sj

then LSF derives a feasible schedule for J under the segmented self-suspension model.

Proof. Suppose this is not the case and there is a job Jj that finishes its second computation
segment after the deadline D. Then, there is some job j∗ such that its second computation
segment starts at time

rj∗ =
j∗∑
k=1

Ck,1 + Sj∗

and there is no idle time between rj∗ and the time that Jj finishes. Now, note that Aj∗

exactly describes the jobs of which the second computation segment becomes available later
than rj∗ . Therefore, the time at which j finishes is not later than

j∗∑
k=1

Ck,1 + Sj∗ +
∑

Jk∈Aj∗

Ck,2 ≤ D . J
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The schedulability condition in Theorem 4.16 can be further extended to a schedulability
test of LSF for the hybrid self-suspension model.

I Theorem 4.17. Let the jobs in J be indexed in non-increasing order of Sj. If
1.
∑
Jk∈J Ck ≤ D, and

2. for every combination of Ck,1 and Ck,2 such that Ck,1 + Ck,2 = Ck for jobs Jk in J, we
have that for each job Jj,

j∑
k=1

Ck,1 +
∑
Jk∈Aj

Ck,2 ≤ D − Sj

then LSF derives a feasible schedule for J under the hybrid self-suspension model, where

Aj =
{
J` | J` ∈ J and S` +

∑̀
k=1

Ck,1 ≥ Sj +
j∑

k=1
Ck,1

}
.

Proof. This is identical to the proof of Theorem 4.16. J

The schedulability test provided in Theorem 4.17 requires to consider all combinations of
Ck,1 + Ck,2 = Ck for every job Jk in J. Tools like Satisfiability Modulo Theories (SMT) can
be used to evaluate whether the condition holds (or is violated for unschedulability).

5 Speedup Factors: Multiprocessor Systems

This section presents new and known algorithms with bounded speedup factors for scheduling
frame-based task sets in a homogeneous multiprocessor setting. Regarding suspension-
coherent speedup factors, we show that a known algorithm from the master-slave scheduling
literature has a speedup factor of 2. Then we provide a speedup factor of 3− 1/m for the
case that the suspension time is not reduced (see Table 1).

5.1 Suspension-Coherent Speedup Factors
For multiprocessor systems, Sahni and Vairaktarakis [42] developed a 2-approximation
algorithm. The algorithm is described by Algorithm 4.

Algorithm 4 Sahni-Vairaktarakis’ Algorithm for multiprocessor systems (Multi-SV).
Input: J on m processors; jobs are indexed in decreasing order of Cj ;
1: Schedule the first computation segments of the jobs in order of indices, scheduling each job on

the first free processor and each of them directly followed by the suspension segment on the
external source.

2: Then, when no first computation segments are left to schedule, schedule the second computation
segments of the jobs as early as possible (after they are released) in a work-conserving manner
on any free processor (i.e., first-come-first serve (FCFS)).

I Theorem 5.1 ([42]). Multi-SV is a 2-approximation algorithm for the multi-master master-
slave problem.

By the same argument as in the uniprocessor case, the theorem implies the following result.

I Corollary 5.2. Multi-SV has a suspension-coherent speedup factor of 2 for the scheduler
design problem for the frame-based segmented and hybrid self-suspension task models in
multiprocessor systems.
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I Lemma 5.3. The makespan of a work-conserving schedule, which means that at least
one of the m uniprocessors always executes a computation segment whenever a computation
segment is available, is at most maxτi∈T {Si + Ci}+

∑
τi∈T Ci/m. This upper bound holds

for all the segmented, hybrid, and dynamic self-suspension models.

Proof. Suppose that the last job finished in the work-conserving schedule is due to job Jj .
Let f be the makespan of the work-conserving schedule. Since the schedule is work-conserving,
from time 0 to f , either all of the m processors idle or one (or more) of them executes a job.

If all the m processors idle at time t, since the schedule is work-conserving, job Jj must
be suspended at time t. Therefore, from 0 to f , the maximum idle time is at most the
suspension time Sj of job Jj .
Otherwise, job Jj should be executed or all them processors are executing jobs. Therefore,
from 0 to f , the amount of time that at least one processor is executing a job under
work-conserving schedules is at most Cj +

((∑
τi∈T Ci

)
− Cj

)
/m.

Hence,

f ≤ Sj + Cj +
(∑

τi∈T Ci
)
− Cj

m
≤ max

τi∈T

{
Si + Ci −

Ci
m

}
+
∑
τi∈T Ci

m
. J

I Lemma 5.4. The makespan of any schedule for a given task set T on m homogeneous
multiprocessors is at least max

{
maxτi∈T {Si + Ci} ,

∑
τi∈T Ci/m

}
. This lower bound holds

for all the segmented, hybrid, and dynamic self-suspension models.

Proof. This follows directly from the definition. J

I Theorem 5.5. On m identical processors, the suspension-coherent speedup factor of any
work-conserving scheduling algorithm is 2 for scheduling a frame-based task set T under the
hybrid self-suspension model and the dynamic suspension model. The factor is tight.

Proof. By Lemma 5.4, if the input task set is feasible (i.e., there exists a feasible schedule),
then both maxτi∈T {Si + Ci} ≤ D and

∑
τi∈T Ci/m ≤ D hold. By Lemma 5.3, under a

suspension-coherent speedup factor of 2, we know that the makespan is at most D.
The analysis is tight as a special case whenm = 1 is tight in Theorem 4.7. Since Lemma 5.3

can be applied also for the dynamic self-suspension model, the proof of this theorem is identical
to the proof of Theorem 5.5. The tightness example can be applied as well. J

5.2 Speedup Factors
In this section, we present an algorithm with speedup factor 3−1/m. After giving a necessary
condition that any feasible task set must satisfy, we consider again first a preemptive scheduling
algorithm (pmtn-Multi-LSF, Algorithm 5) which is a list scheduling algorithm prioritizing
tasks in decreasing order of suspension times. We show a speedup factor of 3−1/m. Then, we
can apply the uniprocessor results (Theorem 4.11) and we argue that any preemptive schedule
produced by pmt-Multi-LSF can be transformed into a non-preemptive schedule without
increasing the makespan. This gives a non-preemptive algorithm (Multi-LSF, detailed in
Algorithm 6) with speedup factor 3− 1/m.

We first generalize the necessary condition in Lemma 4.8 to multiprocessors.

I Lemma 5.6. Let jobs be indexed in non-increasing order of Sj. Any feasible instance for
the multiprocessor model with one suspension satisfies for any job Jj that

max
{

j∑
k=1

Ck,1,

j∑
k=1

Ck,2

}
≤ m (D − Sj) . (5)
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Algorithm 5 Multi-processor preemptive longest-suspension first (pmt-Multi-LSF).
Input: J on m processors; jobs are indexed in non-increasing order of Sj

1: Assign jobs to machines as follows: consider jobs in order of indices and assign a job to the
machine that has currently the least total computation time (first and second segments) assigned.

2: On each machine, consider only the jobs assigned to it and at any time schedule the available
computation segment with the smallest index. Preempt a running job if another lower-index
(second) segment becomes available.

Proof. Consider a feasible instance with a feasible schedule. Suppose there is at least one
job which does not satisfy (5). The proof is similar to the one for the uniprocessor case.
Again, we distinguish two cases.
(a) Let Jj be the job with the smallest index and

∑j
k=1 Ck,1 > m · (D − Sj). In a feasible

schedule, Jj completes its first computation segment by D − Sj . By time D − Sj , the m
processors process at most a total load of m · (D−Sj). Thus, not all jobs in {J1, . . . , Jj}
can finish by time D − Sj , so there is a job Jk′ ∈ {J1, . . . , Jj−1} that finishes its first
computation segment after time D − Sj . The completion time of this first computation
segment is later than D−Sj ≥ D−Sk′ since Sj ≤ Sk′ , and thus, Jk′ misses the deadline.
This contradicts the assumption that we have a feasible schedule. Hence, there cannot
be a job Jj with

∑j
k=1 Ck,1 > m · (D − Sj).

(b) Similarly, let Jj be the smallest-index job with
∑j
k=1 Ck,2 > m · (D − Sj). Between

time Sj and D, them processors process at mostm·(D−Sj) total load. Thus, not all jobs
in {J1, . . . , Jj} can start their second computation segments at Sj or later. In a feasible
schedule, Jj does not start its second computation segment earlier than Sj . Since not all
jobs in {J1, . . . , Jj} can start their second computation segments at Sj or later, there
must be some Jk′ 6= Jj among them, which starts its second computation segment earlier.
This start time is smaller than Sj ≤ Sk′ which is infeasible and gives a contradiction. J

Now we can analyze Algorithm 5, a preemptive list scheduling algorithm that prioritizes
tasks in decreasing order of suspension time, Multi-processor preemptive longest-suspension
first (pmt-Multi-LSF).

I Theorem 5.7. For any instance that satisfies (5) and Cj + Sj ≤ D, for any job Jj,
pmt-Multi-LSF finds a feasible schedule on m processors of speed 3− 1/m.

Proof. Consider an instance with jobs indexed in decreasing order of Sj that satisfy (5). Let
α ≥ 3 − 1/m denote the speedup of the machines. Consider some processor i and let Ai
denote the set of jobs assigned to i. Notice that for any job Jj ∈ Ai, the total computation
volume of higher priority jobs in Ai is at most

∑k−1
j=1 Cj/m due to the greedy assignment in

Step 1 of the algorithm.
Now, consider some job Jk ∈ Ai and the time interval between time 0 and the completion

time of the second computation segment of Jk. Whenever Jk is not being executed on
processor i, then either some other, higher priority, job Jj ∈ Ai with j < k is being executed
or Jk is suspended. Thus, the completion time of Jk is bounded by the total computation
volume of higher priority jobs in Ai processed at speed α and the suspension time Sk, that
is, the completion time is at most

k−1∑
j=1

Cj
αm

+ 1
α
Ck + Sk =

k∑
j=1

Cj
αm

+ 1
α

(
1− 1

m

)
Ck + Sk .

ECRTS 2019



16:18 Scheduling Self-Suspending Tasks: New and Old Results

Algorithm 6 Multi-processor longest-suspension first (Multi-LSF).
Input: J on m processors; jobs are indexed in non-increasing order of Sj

1: Assign jobs to machines as follows: consider jobs in order of indices and assign a job to the
machine that has currently the least total computation time (first and second segments) assigned.

2: On each machine, consider only the jobs assigned to it and at any time schedule non-preemptively
the available computation segment with the smallest index.

Notice that we can bound the first time using (5) as follows

k−1∑
j=1

Cj
m
≤ 2 ·max


k−1∑
j=1

Cj,1
m

,

k−1∑
j=1

Cj,2
m

 ≤ 2(D − Sk) .

Thus, the completion time of Jk is at most

2
α

(D − Sk) + 1
α

(
1− 1

m

)
Ck + Sk = 2

α
D + 1

α

(
1− 1

m

)
Ck +

(
1− 2

α

)
Sk

≤ 2
α
D +

(
1− 2

α

)
(Ck + Sk) ≤ D .

In the first inequality, we use that α ≥ 3− 1/m, which implies that 1
α (1− 1

m ) ≤ 1− 2
α . In

the last inequality, we use that in any feasible instance holds Ck + Sk ≤ D. We conclude
that any job completes before the deadline when α = 3− 1/m. J

Our findings in the uniprocessor case, imply the following result.

I Theorem 5.8. Any preemptive schedule produced by pmt-Multi-LSF can be transformed
into a non-preemptive schedule without increasing the makespan.

Proof. Notice that pmt-Multi-LSF runs on each uniprocessor the Algorithm pmt-LSF
(Algorithm 3). Thus, we can directly apply Theorem 4.11 on each processor separately
which concludes the proof. J

Now, consider the non-preemptive algorithm in Algorithm 6.

I Theorem 5.9. The speedup factor of Multi-LSF is 3− 1/m for scheduling a frame-based
task set T under the segmented self-suspension model on m processors.

Proof. The same argumentation of the proof for Theorem 4.12 holds for each machine,
separately. Thus, we conclude that Multi-LSF computes a non-preemptive schedule that
has makespan equal to at most the makespan of the preemptive schedule produced by
pmt-Multi-LSF. J

Notice that also Multi-LSF prioritizes jobs in J according to their suspension times.
When assigning jobs to processors, only total execution times Cj play a role. Therefore, this
algorithm can be applied again for both, the hybrid and dynamic self-suspension model.

I Theorem 5.10. The speedup factor of Multi-LSF is 3− 1/m for scheduling a frame-based
task set T under the hybrid self-suspension model on m processors.
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6 Evaluation

We analyzed the performance in a uniprocessor frame-based setting for the algorithms
considered in this paper by evaluating how the algorithm by Sahni & Vairaktarakis (SV)
and the Largest Suspension First (LSF) Algorithm perform compared to SEIFDA [49], the
state-of-the-art for scheduling period segmented self-suspending tasks with one suspension
interval. SEIFDA [49] (short for Shortest Execution Interval First Deadline Assignment)
considers the tasks in increasing order of their execution interval, i.e., Ti − Si, which for a
frame-based setting is identical to the LSF order. For each task, a virtual deadline is set for
both computation segments and after such a deadline is set for all segments of all tasks the
segments are scheduled using EDF. The metric to compare the performance is the acceptance
ratio, i.e., percentage of accepted task sets, with respect to the task set utilization. 100
synthetic task sets were randomly generated for each setting and utilization level, ranging
from 0% to 100% system utilization with steps of 1%.

In our evaluations we focused on the impact that the number of tasks and the length
of the suspension interval has on the acceptance ratio, considering 3 different values for
the cardinality of the task set, i.e., 10, 20, and 50 tasks. For a given cardinality, first a set
of utilization values with the same size was generated adopting the UUniFast method [4],
ensuring that the total utilization was identical to the currently considered system utilization.
The total execution time of the tasks was set accordingly to Ci = T · Ui where T is the
length of the frame, set to 1000ms in all experiments, since Ui = Ci/T . We generated Ci,1
as a percentage of Ci, chosen based on a uniform distribution from [0.1, 0.9], and set Ci,2
accordingly. The suspension length was determined as a random fraction of T − Ci, based
on a factor x uniformly drawn from an interval of possible values. We considered 3 settings
for this interval:

short suspension: x ∈ [0.01, 0.1]
moderate suspension: x ∈ [0.1, 0.3]
long suspension: x ∈ [0.3, 0.6]

Since the evaluations showed similar behaviour independent from the cardinality, in
Figure 1 we only display the results for 20 tasks due to space limitations. SEIFDA is clearly
outperformed by SV and LSF and the gap enlarges if the suspension interval gets longer.
Since SEIFDA is designed for periodic tasks, it considers all possible release patterns of
segments. Specifically, it also considers the case that the second computation segment of an
already evaluated task is released together with the first segment of the current task and
the other way around. This introduces some pessimism, since in the frame-based setting
the first segments are always released at the same time, which increases if the suspension
intervals get longer. SV always performs better than LSF and here the gap increases as
well with the length of the suspension interval. The reason is that, if the tasks with larger
suspension intervals are scheduled first, it is likely that at some point after all first segments
are executed the processor will idle for some time since all tasks are in their suspension
phase at the same time. Since SEIFDA [49] can handle periodic and sporadic task sets and
therefore is applicable to a wider range of problems, a performance gain of SV and LSF
compared to SEIFDA was expected. Hence, the large performance gain of SV and LSF on
the one hand shows that these algorithms perform well for the considered problem and on
the other hand shows that an extension of SV and LSF to periodic settings may potentially
lead to good results.

However, when analyzing SV it is clear that tasks with a long suspension interval that
are in J2 could jeopardize the schedulability, since they are executed late and therefore could
lead to a case where the second segment is released too late to be finished before the deadline.

ECRTS 2019
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Figure 1 Comparison of Longest Suspension First (LSF) with the algorithm by Sahni & Vairak-
tarakis (SV) and SEIFDA (20 tasks per Set).
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Figure 2 Displaying the case where Longest Suspension First (LSF) performs better than the
algorithm by Sahni & Vairaktarakis (SV).

Therefore, this scenario should favor LSF. We conducted evaluations to enforce this case
which are displayed in Figure 2. During the task generation process, the suspension intervals
are randomly drawn from [0.1, 0.8]. Afterwards, the task with the longest suspension interval
is placed in J2 while all other tasks are placed in J1 by exchanging the computation segments
if necessary. Since the suspension intervals are still drawn randomly, the number of tasks
plays a big factor to ensure that the suspension interval of the task in J2 is sufficiently large
to create worse cases for SV as shown in Figure 2.

Since LSF and SV do not dominate each other and both have a low runtime complexity,
we suggest to run both algorithms and take the better schedule. Furthermore, note that LSF
can be used when considering the hybrid self-suspension model while SV is not applicable.

7 Conclusion and Discussions

We have demonstrated algorithms and analyses for different approximation metrics of different
self-suspension models for uniprocessor and multiprocessor systems, as shown in Table 1.

In terms of possible speedup factors, we clearly separate the coherent speedup model,
in which suspension and processing can be speeded up, from the model in which only the
processor changed the speed. In contrast and somewhat surprising, we obtain the same
speedup factors for the segmented and hybrid self-suspension models. This means that we
have powerful LSF-based algorithms for general frame-based task scheduling, but we do not
know how to exploit additional knowledge about the exact execution times of the first and
second segment to obtain improved speedup factors in that case.

The dynamic self-suspension model is the most abstract and general self-suspension model.
But, it also imposes great challenges to the scheduler design. We are not able to provide any
upper bound and lower bound on the speedup factor, even for frame-based real-time task
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systems. A major difficulty lies in the fact that the speedup factor is defined to compare
with a clairvoyant schedule, which knows the exact suspension and execution pattern. It
should be mentioned that the analysis of preemptive LSF can be generalized for both, the
uni- and the multiprocessor setting. It remains open if we can, and if so how to, convert a
preemptive schedule into a non-preemptive one.

An important next step is to extend the results from frame-based real-time tasks to
harmonic or nearly-harmonic real-time task systems. A task set is harmonic if the periods
are integer multiples of each other. It has been formally proven in uniprocessor environments
that scheduling tasks with (nearly-)harmonic periods is significantly better tractable than
those with arbitrary periods [3,6,29,50]. Such task systems are important in many industrial
applications, e.g., avionic systems [45] and automotive systems [28]. We hope to reach
better scheduling algorithms that can handle the studied self-suspension models well for
(nearly-)harmonic task systems.
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