
SHARING GPUS FOR REAL-TIME AUTONOMOUS-DRIVING SYSTEMS

Ming Yang

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science.

Chapel Hill
2020

Approved by:

James H. Anderson

Parasara Sridhar Duggirala

Jan-Michael Frahm

Shahriar Nirjon

F. Donelson Smith

Shige Wang

©2020
Ming Yang

ALL RIGHTS RESERVED

ii

ABSTRACT

Ming Yang: Sharing GPUs for Real-Time Autonomous-Driving Systems
(Under the direction of James H. Anderson)

Autonomous vehicles at mass-market scales are on the horizon. Cameras are the least expensive among

common sensor types and can preserve features such as color and texture that other sensors cannot. Therefore,

realizing full autonomy in vehicles at a reasonable cost is expected to entail computer-vision techniques. These

computer-vision applications require massive parallelism provided by the underlying shared accelerators,

such as graphics processing units, or GPUs, to function “in real time.” However, when computer-vision

researchers and GPU vendors refer to “real time,” they usually mean “real fast”; in contrast, certifiable

automotive systems must be “real time” in the sense of being predictable.

This dissertation addresses the challenging problem of how GPUs can be shared predictably and efficiently

for real-time autonomous-driving systems. We tackle this challenge in four steps.

First, we investigate NVIDIA GPUs with respect to scheduling, synchronization, and execution. We

conduct an extensive set of experiments to infer NVIDIA GPU scheduling rules, which are unfortunately

undisclosed by NVIDIA and are beyond access owing to their closed-source software stack. We also expose

a list of pitfalls pertaining to CPU-GPU synchronization that can result in unbounded response times of

GPU-using applications. Lastly, we examine a fundamental trade-off for designing real-time tasks under

different execution options. Overall, our investigation provides an essential understanding of NVIDIA GPUs,

allowing us to further model and analyze GPU tasks.

Second, we develop a new model and conduct schedulability analysis for GPU tasks. We extend the

well-studied sporadic task model with additional parameters that characterize the parallel execution of GPU

tasks. We show that NVIDIA scheduling rules are subject to fundamental capacity loss, which implies a

necessary total utilization bound. We derive response-time bounds for GPU task systems that satisfy our

schedulability conditions.

Third, we address an industrial challenge of supplying the throughput performance of computer-vision

frameworks to support adequate coverage and redundancy offered by an array of cameras. We re-think

iii

the design of convolution neural network (CNN) software to better utilize hardware resources and achieve

increased throughput (number of simultaneous camera streams) without any appreciable increase in per-frame

latency (camera to CNN output) or reduction of per-stream accuracy.

Fourth, we apply our analysis to a finer-grained graph scheduling of a computer-vision standard, OpenVX,

which explicitly targets embedded and real-time systems. We evaluate both the analytical and empirical

real-time performance of our approach.

iv

To my sister, Yuan Yang.

v

ACKNOWLEDGEMENTS

It was serendipity that led me to UNC five years ago. As I stand at the end point of this journey now,

with this dissertation being completed, I realize that anything I accomplished would not have been possible

had I not received all the guidance, aid, and support from people I met. I am indebted and thankful to them.

First and foremost, I would like to express my deepest appreciation to my advisor, Jim Anderson,

for his unwavering support, for his patience whenever I was slowly progressing, for his motivation and

encouragement every time I was frustrated, and for his guidance that led me forward. I would also like

to thank my dissertation committee: Parasara Sridhar Duggirala, Jan-Michael Frahm, Shahriar Nirjon, F.

Donelson Smith, and Shige Wang, for their valuable advice.

I would also like to extend my sincere thanks to many colleagues I worked with. In particular, I am

especially thankful to people who helped with the work of this dissertation: Tanya Amert, Joshua Bakita,

Nathan Otterness, Thanh Vu, and Kecheng Yang. This dissertation would not have been possible without

their contributions.

I am also grateful for the internships that General Motors and Aurora Innovation offered so I had the

opportunities to enjoy sitting in the autonomous vehicles and experiencing how they work. I very much

appreciate Shige Wang for his advice regarding and beyond my research and career. I am also thankful to

Glenn Elliott for many inspiring discussions. I thank Joseph D’Ambrosio and Ken Conley for their support.

I am also thankful to my other co-authors: Alex Berg, Pontus Ekberg, Vance Miller, Saujas Nandi,

Catherine Nemitz, Eunbyung Park, Sarah Rust; and other people I worked with in UNC: Shareef Ahmed,

Akash Bapat, Lee Barnett, Micaiah Chisholm, Calvin Deutschbein, Shiwei Fang, Cheng-Yang Fu, Zhishan

Guo, Clara Hobbs, Bashima Islam, Tamzeed Islam, Namhoon Kim, Seulki Lee, Yubo Luo, Mac Mollison,

Sims Osborne, Abhishek Singh, Stephen Tang, Peter Tong, Sergey Voronov, and Bryan Ward.

I gratefully acknowledge the assistance I received from the staff of the UNC Computer Science Depart-

ment. Special thanks to Denise Kenney, Beth Mayo, Jodie Gregoritsch, Adia Ware, and Mellisa Wood for

keeping the graduate school paperwork in order. Many thanks to Murray Anderegg, Bil Hays, David Musick,

Mike Stone, and other staff for their help with various hardware and system issues.

vi

I cannot leave Chapel Hill without mentioning my friends. I owe special thanks to Weiwei Li, for

preventing me from insanely giving up my PhD study. I was also very lucky to meet Shiwei Fang by chance

in the roommate lottery. Thanks to them and my other friends for enriching my PhD life experience.

As I believe everyone needs a supporting system to survive the PhD process, mine is my dearest sister—in

my darkest time or whenever, she was always there for me, persuasive and supportive, and finally, I share this

victorious ending of this journey with her. Lastly, I thank my parents for their unwavering support, and my

wife for her patience and love.

The research in this dissertation was funded by NSF grants CPS 1446631 and CPS 1837337, ARO grant

W911NF-17-1-0294, and support from General Motors.

vii

TABLE OF CONTENTS

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvi

Chapter 1: Introduction . 1

1.1 Computer Vision in Autonomous Driving . 2

1.2 Graphics Processing Units . 4

1.3 Real-Time Systems and GPU Scheduling . 6

1.4 Thesis Statement . 8

1.5 Contributions . 8

1.5.1 A Study of NVIDIA GPUs beyond Official Documentation . 9

1.5.2 A Model of GPU Execution . 10

1.5.3 A Response-Time Bound Analysis for Applications Sharing GPUs 10

1.5.4 A Computer-Vision Framework Providing Improved Throughput 11

1.5.5 A Case Study Evaluating Analytical and Empirical Real-Time Performance 12

1.6 Organization . 13

Chapter 2: Background . 14

2.1 Autonomous Driving . 14

2.1.1 State of the Art . 14

2.1.2 Autonomous-Driving System Architecture . 17

2.1.2.1 Architecture . 17

2.1.2.2 Sensor Hardware . 19

2.1.2.3 Perception . 20

viii

2.1.2.4 Planning and Control . 23

2.1.3 Summary . 24

2.2 Computer Vision for Autonomous Driving. 24

2.2.1 Methods . 25

2.2.1.1 Classic Pipelines. 25

2.2.1.2 Deep Learning Methods. 26

2.2.2 Object-Detection Accuracy Metrics . 29

2.2.2.1 IoU, Precision, and Recall . 29

2.2.2.2 Precision-Recall Curve and Mean Average Precision . 30

2.2.3 Frameworks and Libraries . 31

2.2.4 OpenVX Standard . 33

2.2.5 Challenges of Real-Time Certification Amenable Framework . 35

2.3 GPUs and Accelerators . 36

2.3.1 Accelerators . 36

2.3.2 GPU Hardware Architecture . 39

2.3.2.1 CUDA-Enabled Devices . 41

2.3.3 GPU Programming Model . 42

2.3.4 Prior Work on Non-Real-Time GPUs . 46

2.3.4.1 GPU Reverse Engineering . 47

2.3.4.2 GPU Resource Management . 48

2.3.4.3 GPU Sharing . 49

2.3.4.4 GPU Virtualization . 51

2.3.4.5 GPU Scheduling . 53

2.3.5 Challenges for Real-Time GPUs. 55

2.4 Real-Time Systems . 56

2.4.1 Real-Time Task Model . 57

2.4.2 Scheduling . 58

2.4.3 Response-Time Bounds . 60

ix

2.4.4 Real-Time DAG Scheduling. 61

2.4.5 Real-Time Frameworks . 63

2.4.6 Real-Time GPUs . 64

2.5 Chapter Summary . 67

Chapter 3: Scheduling, Synchronization, and Execution . 68

3.1 Basic GPU Scheduling Rules . 71

3.1.1 Motivating Experiment . 71

3.1.2 Scheduling Rules . 72

3.2 Additional Complexities . 78

3.2.1 The NULL Stream. 78

3.2.2 Stream Priorities . 79

3.2.3 Multiple Processes and Other Complications . 84

3.3 Synchronization and Blocking . 86

3.3.1 Overview of GPU Synchronization . 87

3.3.1.1 Explicit Synchronization . 87

3.3.1.2 Implicit Synchronization . 89

3.3.2 Overcoming Synchronization-Related Pitfalls . 91

3.4 Concurrency and Performance . 92

3.4.1 Multi-Process Service (MPS) . 92

3.4.2 Case Study of Computer-Vision Tasks . 93

3.5 Perils of CUDA Programming for Real-Time Tasks . 97

3.5.1 Synchronous Defaults . 98

3.5.2 Flawed Documentation . 99

3.5.3 Unknown Future . 100

3.6 Chapter Summary . 101

Chapter 4: Task Model and Schedulability Analysis for Tasks Sharing GPUs . 103

4.1 DAG-based Task Model . 103

x

4.2 GPU Response-Time Bound . 106

4.2.1 NVIDIA GPU Details . 107

4.2.2 System Model . 108

4.2.3 Total Utilization Constraint . 110

4.2.4 Response-Time Bound . 114

4.3 Chapter Summary . 118

Chapter 5: Improve CNN Frameworks for Autonomous-Driving Applications . 120

5.1 Background . 123

5.1.1 NVIDIA DRIVE PX2 . 123

5.1.2 YOLO and Darknet . 124

5.2 Related Work . 125

5.3 System Design . 125

5.3.1 Enabling Parallelism . 126

5.3.2 Multi-GPU Execution . 130

5.3.3 Accelerating Multiple Streams with Multi-Camera Composite Images 131

5.3.4 Avoiding Implicit Synchronization . 132

5.4 Evaluation . 132

5.4.1 How Many Cameras can be Supported? . 133

5.4.2 Can Our CNN Implementations Be Better Configured? . 135

5.4.3 Are Multi-Camera Composite Images Effective? . 139

5.5 Chapter Summary . 142

Chapter 6: Case Study . 144

6.1 OpenVX Graph Scheduling . 146

6.1.1 Coarse-Grained OpenVX Graph Scheduling . 146

6.1.2 Fine-Grained OpenVX Graph Scheduling . 146

6.2 Case Study. 151

6.2.1 Experimental Evaluation . 151

xi

6.2.2 Results . 153

6.3 Chapter Summary . 156

Chapter 7: Conclusion . 157

7.1 Summary of Results . 158

7.2 Acknowledgements . 160

7.3 Future Work . 161

7.4 Closing Remarks . 162

BIBLIOGRAPHY . 164

xii

LIST OF TABLES

2.1 Description of functions used in HOG pedestrian detection example. 34

2.2 Comparison between accelerators. 39

2.3 Comparison between NVIDIA GPU architecture generations . 41

2.4 Real-time task model notation. 57

3.1 Details of kernels used in the experiment in Figure 3.1. 73

3.2 Details of kernels used in the NULL-stream scheduling experiment in Figure 3.3. 79

3.3 Details of kernels used in the priority-stream scheduling experiment in Figure 3.4. 81

3.4 Details of kernels used in the priority-stream scheduling experiment in Figure 3.5. 82

3.5 Details of kernels used in the priority-stream scheduling experiment in Figure 3.6. 83

3.6 Abbreviations used for our four experimental scenarios. 94

3.7 Per-frame response time data (in milliseconds) of VisionWorks samples. 95

3.8 Observed vs. documented synchronization sources in CUDA. 100

5.1 Specifications of the PX2 iGPU and dGPU. 124

5.2 CPU and memory usage. 138

5.3 GPU assignment strategies. 139

5.4 mAPs for full-size and composite tests with PASCAL VOC dataset. 141

5.5 mAPs of object classes relevant to autonomous driving. 141

6.1 Analytical and observed response times. 154

xiii

LIST OF FIGURES

1.1 Trends in NVIDIA GPU performance and the number of SMs over generations. 5

2.1 HOG pedestrian detection pipeline. 26

2.2 Traditional camera processing setup and the Tiny YOLOv2 network architecture. 28

2.3 IoU illustrated with an image example from PASCAL VOC dataset (Everingham et al., 2010). 29

2.4 Precision and recall. 30

2.5 Example Precision-Recall curves (Davis and Goadrich, 2006). 31

2.6 OpenVX graph example: pedestrian detection using HOG. 34

2.7 NVIDIA GPU architecture . 40

2.8 Jetson TX2 Architecture (left) and GeForce GTX 1070 Architecture (right) . 42

2.9 Disgram illustrating the relation between CUDA programs, kernels, thread blocks, and warps. 45

3.1 Basic GPU scheduling experiment. 72

3.2 Detailed state information at various time points in Figure 3.1. 74

3.3 NULL stream scheduling experiment. 80

3.4 Experiment showing starvation of a priority-low stream. 81

3.5 Experiment demonstrating two actual priority levels. 82

3.6 Experiment with both priorities and resource blocking. 83

3.7 Timelines contrasting kernels issued from processes (different address spaces) vs.
tasks (shared address space). 85

3.8 CDFs contrasting blocks times from processes vs. tasks. 86

3.9 Explicit synchronization requested before K3, observed on the Jetson TX2. 88

3.10 Implicit synchronization caused by launching kernel K3 in the NULL stream. 90

3.11 Implicit synchronization causing additional CPU blocking due to cudaFree. 91

3.12 Per-frame response time CDFs for Hough. 96

3.13 Per-frame response time KDEs for Hough. 96

3.14 Per-frame response time CDFs for Feature Tracking. 96

3.15 Per-frame response time KDEs for Feature Tracking. 96

xiv

4.1 DAG G1. 104

4.2 Example schedule of the tasks in G1 in Figure 4.1. 106

4.3 GPUscheduling; kernel Kk’s bth block is Kk:b. 108

4.4 A possible schedule corresponding to Figure 4.3. 110

4.5 Unbounded response time using per-task streams. 112

4.6 Unbounded response time using per-job streams.. 113

4.7 A possible schedule for Example 4.4 with m = 2016. 118

4.8 A possible schedule for Example 4.4 with m = 2048. 118

5.1 NVIDIA DRIVE PX2 architecture. 124

5.2 Sharing one CNN for multiple cameras. 127

5.3 Scheduling of SERIAL, PIPELINE, and PARALLEL. 128

5.4 Stage representation for pipelined execution model. 129

5.5 Stage representation for parallel-pipeline execution model. 130

5.6 CNN extended for multi-camera composite images. 131

5.7 Latency of SERIAL, PIPELINE, and PARALLEL YOLO. 134

5.8 PARALLEL YOLO latency with different numbers of cameras. 135

5.9 PARALLEL YOLO latency with different granularities (number of layers per stage). 136

5.10 PARALLEL YOLO latency with different numbers of threads. 137

5.11 Per-layer execution times. 138

5.12 PARALLEL YOLO latency with different GPU assignments. 139

5.13 PIPELINE YOLO latency with different GPU assignments. 140

5.14 PARALLEL YOLO latency with multi-camera-image processing and different numbers of cameras. . . . 142

6.1 (a) Coarse- and (b) fine-grained representations of the same DAG G2. 147

6.2 Example schedules of the tasks corresponding to the DAG-based tasks in G2 in Figure 6.1. 149

6.3 (a) Monolithic/coarse-grained and (b) fine-grained HOG DAGs. 151

6.4 CDFs of response times for varying DAG granularity. 155

xv

LIST OF ABBREVIATIONS

ACC Adaptive Cruise Control

ADAS Advanced Driver Assist System

AI Artificial Intelligence

AP Average Precision

ASICs Application-Specific Integrated Circuits

BAND Bandwidth-Aware Non-preemptive Device

CAN Controller Area Network

CDF Cumulative Distribution Function

CE Copy Engine

C-FL Clustered Fair-Lateness

CKE Concurrent Kernel Execution

CNN Convolutional Neural Network

CPU Central Processing Unit

DAG Directed Acyclic Graph

DARPA Defense Advanced Research Projects Agency

DNN Deep Neural Network

DPM Deformable Part-based Model

DRAM Dynamic Random-Access Memory

DSPLIB DSP LIBrary

DSP Digital Signal Processor

EDF Earliest-Deadline-First

EE Execution Engine

FCW Forward Collision Warning

FFT Fast Fourier Transform

FIFO First-In-First-Out

FP Fixed-Priority

FPGA Field Programmable Gate Arrays

FPPI False Positive Per Image

xvi

FPPW False Positive Per Window

FPS Frames Per Second

G-EDF Global Earliest-Deadline-First

GEL G-EDF-like

G-FIFO Global First-In-First-Out

G-FL Global Fair-Lateness

GPGPU General-Purpose Graphics Processing Unit

GPS Global Positioning System

GPU Graphics Processing Unit

GVA Guest Virtual Address

HDL Hardware Description Language

HOG Histogram of Oriented Gradients

HPC High-Performance Computing

HRT Hard Real-Time

HSA Heterogeneous System Architecture

ILP Integer Linear Program

IMU Inertial Measurement Unit

IPC Inter-Process Communication

ISA Instruction Set Architecture

JLFP Job-Level Fixed-Priority

KDE Kernel Density Estimation

LDW Lane Departure Warning

LITMUSRT LInux Testbed for MUltiprocessor Scheduling in Real-Time systems

LKAS Lane-Keeping Assistance Systems

LKM Loadable Kernel Module

LRU Least Recently Used

MB Mega Bytes

MMIO Memory-Mapped Input/Output

MPA Machine Physical Address

xvii

MPH Miles Per Hour

MPS Multi-Process Service

NHTSA National Highway Traffic Safety Administration

NPP NVIDIA Performance Primitives

OS Operating System

PCA Principal Component Analysis

PCI Peripheral Component Interconnect

PGMRT Processing Graph Methods for Real-Time

PKM Preemptive Kernel Model

PREM PRedictable Execution Model

PR Precision-Recall

PTX Parallel Thread Execution

PT Persistent Threads

RL Reinforcement Learning

RNN Recurrent Neural Network

RPC Remote Procedure Call

RTA Response-Time Analysis

RTOS Real-Time Operating System

SAE Society of Automotive Engineers

SIFT Scale-Invariant Feature Transform

SIMD Single-Instruction Multi-Data

SIMT Single-Instruction Multi-Thread

SLAM Simultaneous Location And Mapping

SM Streaming Multiprocessor

SPT Shadow Page Table

SRT Soft Real-Time

SSD Single-Shot multibox Detector

SVM Support Vector Machine

SWaP Size, Weight, and Power

xviii

TLB Translation Lookaside Buffer

TPN Timed Petri Nets

VOC Visual Object Classes

WCET Worst-Case Execution-Time

xix

CHAPTER 1: INTRODUCTION

After being envisioned for decades, autonomous vehicles seem to be just over the horizon. We expect

this innovation to reduce traffic accidents, save lives, mobilize those with disabilities for driving, protect the

environment, liberate workers from commuting, and ultimately transform how our cities function. More

importantly, we expect these enhancements to be achieved safely because the fundamental goal of saving lives

is rooted in the capabilities of technology. The safety requirements for autonomous vehicles focus around

executing appropriate driving decisions in real time, imposing the requirements of both logical correctness

and temporal correctness. Satisfying such safety requirements is challenging because of the complex software

components and hardware platforms that underpin autonomous-driving systems.

One primary software component in an autonomous-driving system is the perception system that

semantically senses and understands the surrounding environment. A common approach used in the perception

system is vision-based sensing because compared to lidars and radars, cameras are less expensive and uniquely

capable of perceiving colors and textures. With a proliferation of computer-vision research in the literature,

many state-of-the-art features have been applied in today’s autonomous vehicle prototypes.

However, existing computer-vision frameworks often fail to provide enough inference performance, not

to mention that such performance is unpredictable, so the requirement for temporal correctness remains to be

established. Despite the goal of improving performance and ensuring predictability, any induced accuracy

loss must be tolerable. We investigate solutions for providing sufficient and predictable performance in the

use of the underlying hardware accelerator with a focus on graphics processing units (GPUs).

GPUs are commonly used for accelerating computer-vision applications, as they provide the massive

parallelism needed by these types of applications, which process millions of pixels per image streaming from

multiple video sources to provide full coverage of a vehicle’s surroundings. With applications providing

disparate functionalities and advancements of GPUs offering more processing capacity, the incentives to

share GPUs among multiple applications by enabling predictable simultaneous execution have grown. Also,

any unnecessary idleness incurred by CPU-GPU interactions in existing computer-vision frameworks should

be minimized for better performance.

1

Motivated by these challenges, our research considers how GPUs can be shared across multiple applica-

tions to improve throughput with bounded response times and high per-stream accuracy. In the following

section, we provide the details of our application focus on computer vision to enable safe autonomous driving.

1.1 Computer Vision in Autonomous Driving

With the development in autonomous driving ongoing for decades, the latest research that spurred

industrial production of autonomous vehicles came from the series of Grand and Urban challenges sponsored

by the Defense Advanced Research Projects Agency (DARPA) (Buehler et al., 2007, 2009). Today, semi-

autonomous advanced driver assist systems (ADASs) are commonly available in high-end mass-market

vehicles. Although fully autonomous driving is yet to be realized, promising progress has been seen in

many industrial prototypes, such as Waymo’s fleet of cars, which have completed over 20 million test miles

since 2009, achieving an average of 11,017 miles between disengagements1 in 2018 (Waymo, 2020; Crowe,

2019b).

Existing work on autonomous-driving systems can be classified as either a learning-based end-to-end

system, considered a black-box that receives sensory inputs and generates the final control commands,

or a modular system that is comprised of sub-components, which is the choice applied in many systems

participating in the DARPA challenges and industrial prototypes. As the class focused on here, these systems

are modular autonomous-driving platforms consisting of sensors, perception systems, and planning and

control systems. These components capture the environment, distill semantic information, and plan routes

while controlling the vehicle, respectively.

Every component is positioned along a critical path between sensing to control, and is subject to time

constraints that are just as important as producing accurate results. Vehicles currently operating on the road

have been assessed by safety certification authorities, e.g., the National Highway Traffic Safety Administration

(NHTSA), that follow functional safety standards, such as ISO 26262 (ISO, 2011). Although these safety

standards are yet to be adopted for autonomous vehicles, the process for safety certification will be crucial

to making these become trusted modes of transportation for daily use. The urgency in achieving certified

autonomous driving is exemplified by recent interest in “real-time” computer vision.

1While this metric is limited, it remains the only one used for measuring technological progress in autonomous driving. Disengage-
ment occurs when the human driver must retake control of the vehicle during situations that the autonomous system is unable to
handle.

2

Among common sensor types—cameras, lidars, and radars—cameras are the least expensive, and they

preserve features such as color and texture that other sensors cannot. Therefore, realizing full autonomy in

vehicles at a reasonable cost is expected to entail deploying computer-vision algorithms. As a result, there

has been intense recent interest in real-time computer vision. Unfortunately, in interpreting the term “real

time,” a significant disconnect exists between computer-vision researchers and automotive system engineers.

For the former, “real time” suggests real fast processing on a dedicated high-end hardware platform, and for

the latter, it means predictable, notably on more impoverished embedded hardware that must be shared by

many disparate computations. The “predictable” interpretation of real time is based on automobiles being

safety-critical systems. When certifying such a system, showing that certain computations predictably occur

within specified time bounds is more important than “real fast” performance under ideal conditions.

This disconnect between real-fast computer vision and real-time safety has led to unfortunate conse-

quences. Several highly publicized accidents involving semi-autonomous and fully autonomous vehicles

operating on open roads resulted in fatalities. Post-crash analyses of these incidents revealed a critical

trade-off between time and accuracy at the nexus of computer vision and real time. As one analyst con-

cluded, “public authorities should . . . ensure that self-driving cars have the capacity to process all the needed

information to adopt decisions in real time” (emphasis added) (Renda, 2018).

This observation suggests the need for real-time certification, which may result in the real-fast vs.

real-time computer vision disconnect becoming more problematic. Today, computer-vision-based features are

largely provided in settings where the driver is assumed to be able to retake full control of the vehicle. As such,

these features are not yet subject to strict certification requirements. Moving forward, however, increased

autonomy will come to mass-market vehicles, and the line between semi-autonomy and full autonomy will be

crossed eventually, making strict certification critical. A challenge will exist for certifying computer-vision

applications that are merely “real fast,” as these will be difficult to accomplish, if not impossible.

On the other hand, certifiable computer-vision implementations should not diminish throughput perfor-

mance, although sometimes a trade-off must be made. The throughput requirements of an autonomous system

are determined by the necessity of ensuring adequate coverage and redundancy (for safety) that can be offered

by a large quantity and diversity of cameras. A typical configuration in experimental automated-driving

vehicles includes ten or more cameras that cover different fields-of-view, orientations, and near and far

ranges. Each camera generates a stream of images at rates of 10 to 40 frames per second (FPS) depending

on its function (e.g., lower rates for side-facing cameras, higher rates for forward-facing ones). All these

3

image streams must be processed simultaneously by the onboard computer-vision applications, making

sufficient throughput performance essential to support the processing of multiple data streams that fully cover

a vehicle’s surroundings.

To address these challenging problems of enabling real-time computer vision at the application level,

achieving real-time performance and high utilization of the underlying hardware platform is important. Next,

we discuss a key enabler for accelerating computer vision, the graphics processing unit (GPU).

1.2 Graphics Processing Units

GPUs evolved from a fixed-function, special-purpose hardware pipeline for graphics rendering into

a programmable general-purpose hardware platform, as the term general-purpose GPU (GPGPU) was

coined (Owens et al., 2008). GPUs became a key technological enabler that advanced the techniques of deep

learning, which have existed for decades but have started growing in use recently. The massive parallelism

enabled by the architecture and programming model of GPUs reduces the training processing time for deep

neural networks (DNNs) and makes the inference process nearly instantaneous for real-world applications.

Taking NVIDIA GPUs as an example, rendering hardware pipelines are replaced with programmable units

called CUDA (Compute Unified Device Architecture) cores that are organized into streaming multiprocessors

(SMs). Each SM supports a large number of GPU threads on the fly, while a subset of these threads can

be executed simultaneously. These numbers can vary across GPU generations, so are generation-specific

parameters. In contrast, the programming model remains consistent over generations.

Without discussing the programming model in more detail here, which we do in Section 2.3.3, we briefly

describe the basic process of a GPU program. A GPU program is launched from a CPU (or host) process as

follows: (i) allocate memory for the GPU to use, (ii) copy the input data from CPU memory to GPU memory,

(iii) execute a GPU program, called a kernel,2 to process data, (iv) copy the results from GPU memory back

to CPU memory, and (v) free unneeded memory. A GPU kernel is comprised of these GPU threads, which

are organized into a grid of blocks, and also accesses different types of memory, including registers, shared

memory, and global memory. To manage concurrent kernel execution and algorithmic serialization, kernels

are submitted to CUDA streams, and those from the same stream are serialized by submission order, whereas

kernels from different streams can execute concurrently.

2This terminology is not to be confused with an operating system (OS) kernel.

4

2013 2014 2015 2016 2017 2018 2019
Date

0

2

4

6

8

10

12

14

16

18

Th
eo

re
tic

al
 P

ea
k

TF
LO

PS

Kepler
Kepler

Maxwell

Pascal

Volta

TuringTheoretical Peak TFLOPS

0

20

40

60

80

100

120

of

 S
M

s

of SMs

Figure 1.1: Trends in NVIDIA GPU performance and the number of SMs over generations. Each pair of a circle and a
triangle data point that share the same date represent one NVIDIA TITAN GPU, annotated with its architecture code
name; the circle corresponds to the performance metric on the left, and the triangle corresponds to the number of SMs
on the right.

The concurrency between kernel executions becomes more important as GPUs become increasingly

powerful, and the trend of increasing performance in TFLOPS (tera floating point operations per second) is

illustrated in Figure 1.1. In this figure, each data point represents an NVIDIA flagship TITAN GPU product,3

with its launch date, theoretical peak performance on the left, and the number of SMs on the right. These

upward trends indicate the rapidly increasing performance of the GPU and its capacity to support additional

on-the-fly GPU threads. Note that each SM supports 2,048 threads across all GPU architecture generations.

Although from the Volta to Turing architectures, the number of SMs decreased, the performance continued to

climb because the amount of global memory doubled, leading to more opportunities for concurrency among

memory-intensive GPU applications.

Similar trends are followed by product lines of embedded GPUs, which are comparatively impoverished.

Nonetheless, it further emphasizes the necessity of sharing GPUs because processing cycles should not be

wasted, as their use in embedded environments is more sensitive to the size, weight, power, and cost issues.

Even though a GPU kernel utilizes all resources most of the time during execution, it may leave the GPU

partially idle once its threads start exiting.

3Because the model names are similar, we annotate the data points with the architecture code name, and the points with the same
date represent the same products.

5

While sharing GPUs is important, the process incurs challenges for real-time systems. The design

principle of GPUs is throughput-oriented, given their origin of accelerating graphics rendering, only later

being extended to the application of general-purpose computation, such as neural-network training. The

former use case pursues “real-fast” performance, such as generating 30 frames per second for animation

rendering, while the latter bears the throughput of finishing the training process with a large number of images

over hours or even days. Guided by this performance requirement, the design of GPUs often sacrifices real-

time predictability in favor of throughput. For example, GPU kernels from multiple processes are executed in

a multi-programmed manner, resulting in unpredictable performance that depends on other co-scheduled

workloads (Otterness et al., 2017b; Capodieci et al., 2018). Other forms of execution apply different

scheduling rules, such as executing kernels from multiple threads in the same address space simultaneously

when possible. However, these scheduling rules are undisclosed, including the condition of concurrency and

execution order.

Closed-source software stacks and unknown hardware details have hindered research using NVIDIA

GPUs in many aspects. Given their need for high efficiency in utilizing the hardware platform, embedded

systems often require internal and low-level software and hardware information, which must be obtained

through reverse engineering efforts for NVIDIA GPUs. The findings obtained in this way, such as scheduling

rules, are rarely perfectly accurate due to the possible existence of edge cases. Even though they can be

reaffirmed through large-scale experiments, they remain vulnerable to changes from product updates, so they

are limited to short-term applicability. While we encourage openness that eliminates these issues, we perform

reverse engineering to move forward, as this information is essential for sharing GPUs in real-time systems,

as discussed below.

1.3 Real-Time Systems and GPU Scheduling

We mentioned the required temporal correctness and predictable performance of real-time autonomous-

driving systems. To achieve them, we require a solid real-time analysis foundation upon which we can

derive real-time guarantees. Although this has been well-studied for CPUs, little work is available for GPU

scheduling, especially with shared GPUs. In this section, we first review several basic real-time concepts,

which are introduced in greater detail in the Chapter 2. Then, we motivate the necessity of a novel task model

and analysis for shared GPUs.

6

Most real-time applications are embodied in recurrent tasks, such as the repetitive capture of new images.

A classic abstraction for recurrent tasks is the sporadic task model (Mok, 1983), which is applied in this

dissertation. A sporadic task repeatedly releases jobs with a minimum time separation called a period, and

these jobs are subjected to finishing before their deadlines. Each task has a utilization that represents the

fraction of processor capacity sufficient for meeting its timing constraints. With the timing parameters of the

period, deadline, and utilization, a task model can express the timing requirements of a task system (or task

set) that is comprised of a set of tasks.

The sporadic task model is analyzed to validate temporal correctness, i.e., to determine if a task system

is schedulable—if it always satisfies all timing constraints when scheduled by a particular scheduler. These

timing constraints are categorized as hard real time (HRT) or soft real time (SRT), where the former requires

all deadlines to be met, and the latter tolerates deadline misses. Various definitions of SRT exist, and we

focus on one that requires a bounded response time, which is the time difference between the finish time and

release time of a job. The concept of schedulability is a core aspect of real-time analysis, as an important goal

of real-time analysis is to provide schedulability tests that determine if a task system is schedulable. These

types of tests are specific to the scheduling algorithm applied.

For a task system to be schedulable, its total utilization cannot exceed the entire capacity of a platform.

However, a task system with a total utilization less than the capacity of the platform may still not be

schedulable due to capacity loss incurred by non-optimal scheduling algorithms or real-workd overheads.

Algorithmic non-optimality-induced capacity loss, or algorithmic capacity loss, is incurred by all previous

work on schedulability analysis for real-time GPUs. This issue is partly due to the GPU programming model

and the native low-level scheduler available on GPU hardware. We demonstrate this inevitable capacity

loss for the current NVIDIA GPUs in Section 4.2.3, and it is more severe when GPUs are managed as

resources (Elliott et al., 2013) or limited to exclusive access (Capodieci et al., 2018). Specifically, with

resource-based management (Elliott et al., 2013), executing GPU code introduces task suspensions, which

are typically handled with suspension-oblivious analysis (Brandenburg and Anderson, 2010) that analytically

views the suspension time as CPU computation time, resulting in significant processing-capacity loss.

Additionally, these works have to intervene with respect to GPU kernel launches at runtime, at the driver

or hypervisor levels, to enforce customized scheduling policies. In contrast, we tackle the problem of deriving

schedulability analysis differently by aiming for the native NVIDIA GPU scheduling rules, which must first

be revealed through reverse engineering because we can only demonstrate the predictability of a known

7

scheduler, i.e., one that manages GPU kernels that share GPUs. Such predictability then must be proved

through real-time schedulability analysis that is conducted on models, e.g., the sporadic task model, just as

with CPUs. However, the difference from the architecture and programming model of CPUs necessitates a

new task model for GPU tasks. From these goals, we present our thesis statement in the following.

1.4 Thesis Statement

Computer-vision applications in autonomous-driving systems are subjected to real-time requirements and

demand high-throughput performance. Existing computer-vision frameworks that lack real-time concepts and

underutilize the underlying hardware platforms must be reconsidered. We exploit pipelining and parallelism in

GPU-accelerated computer vision for improved throughput with bounded response times and good accuracy.

The real-time community has investigated the benefits of GPUs. However, prior schedulability-analysis

research was subject to algorithmic capacity loss in the scheduling controls through middleware/OS-level

management. We remove this management layer and target the native GPU scheduler. Furthermore, we

enable GPU sharing to improve resource utilization and derive real-time schedulability analysis based upon

the revealed GPU scheduling rules to guarantee predictable performance for tasks that share GPUs.

This usage of shared GPUs is applied to our improved computer-vision framework that supports the

thesis of this dissertation as follows:

Capacity loss in GPU-using real-time task systems can be lessened through sharing GPUs.

Such sharing can be guaranteed with bounded response times. Furthermore, throughput can

be improved without compromising such guarantees by exploiting pipelining and parallelism in

real-time tasks. These real-time guarantees of tasks on shared GPUs are enabled with a new

model for GPU execution and corresponding schedulability analysis.

1.5 Contributions

The contributions of this dissertation are briefly summarized in the following subsetions, which outline

our efforts towards producing a study of NVIDIA GPUs, a model of GPU execution, a response-time bound

analysis, a computer-vision framework, and a case study.

8

1.5.1 A Study of NVIDIA GPUs beyond Official Documentation

To share GPUs and derive a schedulability analysis for GPU tasks managed by the native NVIDIA

GPU scheduler, the first step is to determine the details of the scheduler. In addition to undisclosed

scheduling details, interactions between CPUs and GPUs, such as kernel launches, suffer from problematic

synchronization issues that behave differently with the various ways to execute GPU tasks. We examine these

GPU execution approaches to determine which is appropriate for executing real-time tasks.

As discussed above, the public documents from NVIDIA are incomplete in describing GPU scheduling

details, and the software stack is closed-source. For the goal of sharing GPUs and enabling simultaneous

execution, the GPU scheduling rules must be identified. Specific details to be resolved include the scheduling

order of GPU kernels from multiple CUDA streams, how resources in GPUs are allocated to these GPU

kernels that impact GPU scheduling, and how other special programming features influence the scheduling.

Taking a team effort,4 these questions are answered comprehensively through reverse engineering and are

included in our study results in Chapter 3.

In addition to the scheduling rules, we expose pitfalls pertaining to the synchronization between CPUs

and GPUs. For any task consisting of a combination of CPU and GPU computations, synchronization points

exist (e.g., a CPU program must wait until a GPU produces a result). Synchronization inherently leads to

blocking terms in scheduling analysis, and we realized that synchronization blocking occurring in the GPU

task is not straightforward. Further, some forms of synchronization lead to a significant capacity loss for both

CPUs and GPUs. We constructed experiments that expose these synchronization effects and describe them in

Chapter 3 along with pitfalls the unaware programmer may encounter.

We realized a fundamental trade-off exists for designing real-time tasks that use a GPU. A conventional

choice is to write and execute the task program as an operating system (OS) process in its own non-shared

address space that provides cross-task memory isolation. If this choice is used, however, the NVIDIA GPU

programming environment does not permit concurrent computations on the GPU, even if sufficient resources

are available. Depending on how GPU programs are organized and written, this can lead to capacity loss

on the GPU. An alternate choice is to write and execute a task as a schedulable thread that shares a process

address space with other task threads. While cross-task memory isolation is lost, the GPU programming

4Tanya Amert, Nathan Otterness, and I collaboratively published a series papers investigating NVIDIA GPUs. Our individual
contributions will be stated in Chapter 3.

9

environment provides mechanisms that allow concurrent computations on the GPU. NVIDIA provides a

third option that leverages a middleware environment and is claimed to provide the best approach offering

memory isolation and enabled concurrency. We performed a case study using exemplar computer-vision

tasks in autonomous vehicles to evaluate these trade-off options, with our results and guidelines presented in

Chapter 3.

1.5.2 A Model of GPU Execution

The above contributions provide a foundation for understanding GPUs, allowing us to further establish

an abstract model of GPU execution. As with CPUs, a task model is created by considering the hardware

architecture and programming model that reflect important aspects of GPUs. We extend the existing classic

sporadic task model with additional parameters to describe GPU tasks, as presented in Chapter 4. These

parameters are combined to express information about the parallel execution of tasks on GPUs.

As previously mentioned, NVIDIA GPUs employ scheduling rules that inherently sometimes cause

unnecessary idleness of its processing units, implying a fundamental capacity loss when trying to ensure

response-time bounds for GPU tasks. We express such a loss by providing a total utilization bound that

is tight with a counterexample, a task system that has total utilization matching this bound but unbounded

response times. We also demonstrate that capacity loss can be extreme if intra-task parallelism is forbidden.

These two constraints of the utilization bound and intra-task parallelism establish a schedulability condition,

and any task system satisfying this condition has a bounded response time.

1.5.3 A Response-Time Bound Analysis for Applications Sharing GPUs

Based on the revealed GPU scheduling rules and newly proposed model of GPU execution, we present

the first response-time bounds for tasks that share GPUs. We apply similar analysis techniques proposed

previously (Liu and Anderson, 2010; Devi and Anderson, 2005, 2008; Erickson et al., 2014; Yang and

Anderson, 2014a), including the directed-acyclic-graphs (DAGs) based analysis for heterogeneous platforms

to derive end-to-end response-time bounds for our applications. These applications are decomposed into

nodes of either CPU or GPU execution. For CPU nodes and tasks, we compute response-time bounds using

existing analytical results for two real-time schedulers, the global earliest-deadline-first scheduler (G-EDF)

and the global fair-lateness scheduler (G-FL), and for GPU nodes and tasks, we apply our analysis approach

10

from Chapter 4. The end-to-end response time is then calculated by accumulating the response-time bounds

of the nodes along the critical path of the DAG.

1.5.4 A Computer-Vision Framework Providing Improved Throughput

As stated above, a fundamental challenge is to design a computer-vision framework that supports

independent streams of images from multiple cameras. Because the hardware for embedded systems is

constrained, enabling the effective utilization of every part of the system by computer-vision applications is

essential.

We focus on the demanding computer-vision application needed by autonomous cars of the timely

detection and recognition of objects in the surrounding environment using convolutional neural networks

(CNNs). Many CNN implementations similarly seem to have limited throughput and poor GPU utilization.

As explained further in Chapter 5, the root of the problem lies in viewing processing as a single run-through

of all the processing layers comprising a CNN. However, in processing an image sequence from a single

camera, each layer’s processing of image i is independent of its processing of image i+1. If the intermediate

per-image data created at each layer is buffered and sequenced, there is no reason why successive images

from the same camera cannot be processed in different layers concurrently.

This motivates us to consider the classic pipelining solution to sharing resources for increased through-

put.5 While pipelining offers the potential for greater parallelism, concurrent executions of the same layer

on different images remain precluded. Allowing this may be of limited utility with one camera, but the

potential exists for further increasing throughput substantially when processing streams of images from

multiple independent cameras. This motivates us to extend pipelining by enabling each layer to execute in

parallel on multiple images.

We altered the design of an existing CNN framework, called Darknet (Redmon, 2016), to enable pipelined

execution, with parallel layer execution as an option, in the CNN. We also implemented a technique whereby

different camera image streams are combined into a single image stream by combining separate per-camera

images into a single composite image. This compositing technique can greatly increase throughput at the

expense of some accuracy loss. We also enabled the balancing of GPU work across the platform’s two GPUs,6

5For example, instruction pipelining in processors can fully utilize data-path elements and increase throughput.
6We use the NVIDIA DRIVE PX Parker AutoChauffeur, also called ’DRIVE PX2’ or just ’PX2’.

11

which have differing processing capabilities. The CNN variants arising from these options and various other

implementation details are discussed and evaluated in Chapter 5.

In summary, we provide an effective solution for a challenging problem faced by the autonomous-vehicle

industry by designing CNN systems that provide the throughput, timeliness, and accuracy for computer-vision

applications used in automated driving. By rethinking how the CNN is executed, we show that its throughput

can improve by more than twofold with a minor increase in latency and no change in accuracy. We also

show that throughput can be further improved with proper GPU load balancing. Finally, we show that the

compositing technique can enable high throughputs of up to 250 FPS on the PX2. While this technique

does incur some accuracy loss, we show that such loss can be mitigated by redoing the “training” CNNs

require. We claim these results are sufficiently fundamental to guide CNN construction for similar automotive

computer-vision applications on other frameworks or hardware.

1.5.5 A Case Study Evaluating Analytical and Empirical Real-Time Performance

We conduct a case study to evaluate analytical and empirical real-time performance with real-world

applications by applying our analysis described previously. In particular, we address the limitation of coarse-

grained scheduling from prior works on a computer-vision standard, OpenVX, which specifically targets

computer vision in real-time embedded systems.

In prior work, our research group partially addressed the issues of enabling real-time OpenVX by

proposing a new OpenVX variant in which individual graph nodes are treated as schedulable entities (Elliott

et al., 2015; Yang et al., 2015). This variant allows greater parallelism and enables the computation of end-to-

end graph response-time bounds. However, graph nodes remain high-level computer-vision functions, which

is problematic for two reasons. First, these high-level nodes still execute sequentially, so some parallelism

remains inhibited. Second, such a node will typically involve executing on both a CPU and a GPU. When a

node accesses a GPU, it suspends from its assigned CPU. Suspensions are notoriously difficult to handle in

schedulability analysis without inducing significant capacity loss, as discussed above. We show that these

problems can be addressed through more fine-grained scheduling of OpenVX graphs.

We show how to transform the coarse-grained OpenVX graphs proposed in our group’s prior work (Elliott

et al., 2015; Yang et al., 2015) to fine-grained variants in which each node accesses either a CPU or a GPU,

but not both. Such transformations eliminate the suspension-related analysis difficulties at the expense

of minor overheads caused by the management of data sharing. Additionally, our transformation process

12

exposes opportunities for new potential parallelism at many levels. For example, because we decompose a

coarse-grained OpenVX node into finer-grained schedulable entities, portions of such a node can now execute

in parallel. Also, we allow not only successive invocations of the same graph to execute in parallel but even

successive invocations of the same node.

For our case-study experiments conducted to assess the efficacy of our fine-grained graph-scheduling

approach, we considered six instances of an OpenVX-implemented computer-vision application called HOG

(histogram of oriented gradients), used in pedestrian detection, as scheduled on a multicore and GPU platform.

These instances reflect a scenario where multiple camera feeds must be supported. We compared both

analytical response-time bounds and observed response times for HOG under coarse-grained vs. fine-grained

graph scheduling. We found that bounded response times could be guaranteed for all six camera feeds only

under fine-grained scheduling based on our analysis. In fact, under coarse-grained scheduling, just one camera

could (barely) be supported. We also found that the observed response times were substantially lower under

fine-grained scheduling, and the overhead introduced by converting from coarse-grained to fine-grained had a

modest impact. These results demonstrate the importance of enabling fine-grained scheduling in OpenVX if

real time is really a first-class concern.

1.6 Organization

For the remainder of this dissertation, we first provide a comprehensive background survey in Chapter 2

of autonomous driving research, applications of computer vision, GPU hardware platforms, and real-time

systems research with a focus on real-time GPUs and DAG scheduling. Following this background of relevant

work, we present our investigation of NVIDIA GPUs in Chapter 3 and a new model of GPU execution with

schedulability analysis for real-time tasks that share GPUs in Chapter 4. We next describe our computer-

vision framework design in Chapter 5, along with its experimental evaluation. Finally, we present a case

study that evaluates the analytical and empirical real-time performance using our proposed analysis for GPU

applications in Chapter 6. We conclude and discuss future work in Chapter 7.

13

CHAPTER 2: BACKGROUND

In this chapter, we survey related prior works and provide background information for this dissertation.

We first review the development of autonomous-driving systems with a focus on computer-vision applications

as our research context. We then describe the usage of GPUs versus other accelerators for computer-

vision applications and the necessary fundamentals of GPUs, including the hardware architecture and GPU

programming model. Lastly, we provide the fundamentals of real-time systems, and review the state-of-the-art

literature on modeling and analyzing GPUs in real-time systems.

2.1 Autonomous Driving

In this section, we first review state-of-the-art progress in autonomous-driving systems in both industry

and academia. We then summarize typical system architectures of autonomous driving and explain each

primary component. To motivate our research, we focus on explaining the safety- and timing-critical

certification issues that relate to our work.

2.1.1 State of the Art

Autonomous driving is expected to reduce traffic accidents and roadway fatalities, of which 94% are

caused by human errors, as reported by the National Highway Traffic Safety Administration (NHTSA) in

a recent technical report (National Highway Traffic Safety Administration, 2015). In addition to reducing

vehicle crashes, autonomous driving can improve the mobility of people who have disabilities that relate to

driving, benefit the environment by improving fuel efficiency and reducing emissions during congestion, give

time back to commuters, and even reshape the layouts of our cities. With these benefits, it is projected that

the nationwide adoption of autonomous driving could lead to nearly $800 billion USD in annual social and

economic benefits in America by 2050 (Montgomery et al., 2018).

Although no industry players are even close to achieving fully-autonomous driving (Ackerman, 2017),

semi-autonomous advanced driver assist systems (ADASs) are now commonly available in high-end mass-

market vehicles; examples include Tesla Autopilot, Volvo Pilot Assist, Mercedes-Benz Drive Pilot, and

14

Cadillac Super Cruise (Hughes, 2017). These ADASs include functionalities such as adaptive cruise control

(ACC), forward collision warnings (FCW), lane departure warnings (LDW), lane-keeping assistant systems

(LKAS), and intelligent speed assistance (ISA). Each of these functionalities alone only qualifies as Level 1

automation, driver assistance, as defined in the taxonomy by the Society of Automotive Engineers (SAE) (SAE,

2018). When combined, these ADASs may enable Level 2, partial automation, which allows self-driving

functionality in certain conditions such as on the highway, with the driver monitoring the environment and

being ready to take over at any time as a fallback. With Level 0 denoting no automation, Levels 2 and below

require the driver to monitor the environment at all times.

In contrast, Levels 3 and above encompass the classes of autonomous-vehicle (AV) systems. Level 3,

conditional automation, allows the driver to focus on tasks other than driving, but requires the driver to be

ready to quickly take over upon request. For instance, Audi’s AI Traffic Jam Pilot achieves Level 3, at speeds

below 37 miles per hour (MPH) (Ross, 2017).

Levels 4 and 5 require operating autonomously without relying on the driver as a fallback. Level 4,

high automation, is limited to certain operational design domains such as highways, whereas Level 5, full

automation, must be operational anywhere in any condition. Level 4 and Level 5 autonomous vehicles are

still unavailable in the market as of today, and are being developed by many companies. Notably, one of the

most press-worthy advancements is the fleet of Waymo cars, which have been drive-tested for over 20 million

miles since 2009 (Waymo, 2020); in 2018, this fleet achieved an average of 11,017 miles traveled between

disengagements, where emergency overrides by a human operator were enforced (Crowe, 2019a,b). However,

this metric for distance between disengagements has been criticized by autonomous-driving companies,

including Waymo themselves (Fernandez, 2020), because it is misleading when used for measuring progress

as miles tested in different settings are hardly comparable, e.g., empty highway vs. busy urban areas.

The commercialization and production development of autonomous driving were ignited by a series

of the Defense Research Advance Projects Agency (DARPA) sponsored challenges: the Grand Challenges

in 2004 and 2005, and the Urban Challenge in 2007 (Buehler et al., 2007, 2009). Autonomous vehicles

participating in the Grand Challenges were expected to drive through unrehearsed off-road terrain without

manual intervention. In its first event in 2004, none of the 15 racing teams finished more than 5% of a

142-mile course on the desert within the ten-hour time limit (Thrun et al., 2006). In the second event in

2005, five out of 23 racing teams finished, and “Stanley” (from Stanford University), finishing in under

seven hours, won first place (Thrun et al., 2006), six minutes before the second place of “Sandstorm” and

15

“H1ghlander” (Urmson et al., 2006). These Grand Challenges spurred innovation in the areas of perception,

collision avoidance, vehicle control, and others.

If driving on a desert as required by the DARPA Grand Challenges is not considered relevant enough to

our daily life, the third event—the DARPA Urban Challenge—should be. The Urban Challenge set the goal

to traverse through traffic in urban settings without violating California traffic rules (Buehler et al., 2009;

Urmson et al., 2008). Eleven of the 53 teams passed the National Qualification Event, and competed in the

Urban Challenge Final Event. In the end, six teams finished the challenge, with “Boss” of Carnegie Mellon

University winning first place.

In all of these production and prototype cars, cameras and computer-vision technologies were used

alongside processing techniques for other sensors such as lidars and radars.

The DARPA Challenges revitalized interest in autonomous driving, for which the initial interest can be

traced back to the late 1980s, when Carnegie Mellon University’s Navigation Laboratory (Navlab) presented

a series of Navlab vehicles with basic autonomy (Thorpe et al., 1988, 1991a,b). The basic system architecture

developed by Thorpe et al. (1991b) is common in today’s approaches. In 1988, Thorpe et al. presented a van

equipped with one TV camera and one laser rangefinder to enable road-following and collision detection

and avoidance (Thorpe et al., 1988). Later, Pomerleau (1989, 1992) presented the neural network ALVINN,

which generates navigation direction outputs from camera and laser rangefinder image inputs. At the end

of the Navlab project, an important milestone was achieved as Jochem and Pomerleau (1995) finished “No

hands across America,” a trip from Pittsburgh, PA to San Diego, CA, with the steering direction controlled

based on the image inputs and the throttle and brake handled by human.

During the same period, the Eureka Project PROgraMme for a European Traffic of Highest Efficiency

and Unprecedented Safety (PROMETHEUS), the largest R&D autonomous-driving project at the time, was

carried out and spread broad interest in Europe in active safety systems (Williams, 1988; Ibaez-Guzmn

et al., 2012). Dickmanns and Zapp (1987) first demonstrated the early results of vision-based guidance for

high-speed autonomous driving on a well-structured highway with one-way traffic. In the PROMETHEUS

project’s final demonstration, two vehicles, “VITA II” of Daimler-Benz (Ulmer, 1994) and “VaMoRs-P” of

Bundeswehr University Munich (Dickmanns et al., 1994), demonstrated autonomous driving at a speed up to

130 km per hour in public traffic on highways (Dickmanns et al., 1997).

The development of autonomous driving has been ongoing for some time, and has provided a valuable

reference for autonomous-driving system architectures, which we review next.

16

2.1.2 Autonomous-Driving System Architecture

In this section, we review autonomous-driving system architectures that have been used in state-of-the-art

proof-of-concept research projects, and then focus on modular systems, for which we provide a detailed

review of each sub-component, and the connections and interfaces between them. Of these components, the

perception component is highlighted in our review, given our focus on computer-vision applications.

2.1.2.1 Architecture

Many of the aforementioned autonomous systems (Section 2.1.1) use a modular system architecture, in

which components that provide different functionalities are encapsulated separately and are related as the

nodes in a connected graph, from the sensor input to the vehicle control (Behere and Törngren, 2016). Another

approach is learning-based end-to-end driving systems, which were demonstrated very early on (Pomerleau,

1989) and emerged again recently. These end-to-end driving systems are usually neural networks that receive

sensor inputs through the network to directly generate control commands.1 We briefly review the history and

state of the art of end-to-end driving systems, and then discuss why we instead focus on modular systems.

End-to-end driving systems. The earliest end-to-end driving system was ALVINN, presented by Pomerleau

(1989). ALVINN is a neural network that generates directions for lane-following with inputs from a

camera and a laser rangefinder. It was trained using supervised learning with simulated road images, and

it demonstrates lane-following on real roads under certain conditions. Muller et al. (2006) extended its

autonomous capability to off-road obstacle avoidance using stereo cameras and a convolutional neural

network (CNN). The results were significantly improved in a similar approach by NVIDIA, in which a larger

convolutional network and training dataset were used (Bojarski et al., 2016), as demonstrated on highways

and parking lots. These approaches are categorized as imitation learning, as they accept human input as

part of the training data, and the goal of the system is to drive like a human. However, they fail in situations

where turning guidance is needed at intersections, thus Codevilla et al. (2018) proposed conditional imitation

learning to add training signals about a driver’s intention to solve the ambiguity.

An alternative approach is reinforcement learning (RL), the goal of which is to maximize future rewards

under predefined reward policies (Mnih et al., 2015). Sallab et al. (2017) demonstrated deep RL in a simulator

1Often called pixel-to-torque systems.

17

using recurrent neural networks (RNNs) that integrated information and handled partially observable scenarios.

Kendall et al. (2019) then demonstrated real-road lane-following trained with a few episodes2 using RL for

the first time.

Although these learning-based end-to-end driving systems have shown promising progress, without the

necessary understanding of the functions learned inside these neural networks, safety certification for neural

networks is difficult if not impossible. Certification for safety-critical systems (e.g., autonomous-driving

systems) is rigorous, and follows principles to guarantee correct specification and that the implementation

satisfies the specification (Cheng et al., 2018a). Adapting this certification process to neural networks

presents new challenges. The specification for a neural network is implicit in its training data, which results

in difficulties for design-time analysis and reviews, and product acceptance tests. Neural networks are

generally treated as no more than a black box due to their lack of interpretability, thus making it difficult

to trace implementation from requirements to coding. With the common usage of non-linear, piecewise

activation functions for neurons, criteria such as those for decision coverage are intractable, as the conditional

branching options are exponential to the number of neurons (Cheng et al., 2018a). These challenges have

been investigated in prior works (Bedford et al., 1996; Rodvold, 1999; Burton et al., 2017; Doshi-Velez and

Kim, 2017; Salay et al., 2017; Olah et al., 2018; Cheng et al., 2018b; Aravantinos and Diehl, 2018), but

have not been fully addressed yet. Therefore, we focus on modular systems that are less affected by these

certification issues in our work.

Modular systems. Modular systems are structured as a graph of connected modules/components in a

system (Behere and Törngren, 2016; Yurtsever et al., 2019). Such a decomposition of functionalities,

compared with end-to-end systems, provides finer-grained implementation control and better understandability

of the whole system. It provides advantages such as the convenience of transferrable knowledge about each

sub-component, independent problem-solving for developing each sub-component, multiple end-to-end paths

for tasks of different levels of criticality (e.g., a path for emergency handling), and other advantages of a

decoupled modular design. However, these advantages have a price: the disadvantages of modular systems

include communication overhead between components, scheduling and synchronization issues, and the nature

of error propagation in complex systems (McAllister et al., 2017).

2Episodes are independent training processes that maximize the reward, e.g., one driving trip for an autonomous vehicle.

18

We use a functional architecture presented by Behere and Törngren (2016) as a reference to discuss typical

modular autonomous driving systems, as the core functions are common to other systems as well (Thrun et al.,

2006; Urmson et al., 2008; Montemerlo et al., 2008; Guizzo, 2011; Wei et al., 2013; Broggi et al., 2013;

Ziegler et al., 2014; Akai et al., 2017; Maddern et al., 2017; Yurtsever et al., 2019). These include perception

functions such as sensor fusion, semantic understanding, and world modeling; planning and control functions

such as route planning, reactive control, fault management; and vehicle platform operation (steering and

throttling) (Behere and Törngren, 2016). We review sensor hardware, perception, and planning and control

in the following.

2.1.2.2 Sensor Hardware

On autonomous vehicles, multiple sensors provide the necessary understanding and coverage of the

surrounding environment, and safety redundancy on autonomous vehicles. Typical sensors include cameras,

and radar and lidar sensors. Here we summarize the working mechanisms, advantages, and disadvantages of

each.

Cameras. Cameras are widely used in autonomous-driving systems and ADASs. A typical configuration in

a contemporary experimental autonomous vehicle includes ten or more cameras that cover different fields of

view, orientations, and near/far ranges. Each camera generates a stream of images at rates ranging from 10

to 40 frames per second (FPS), depending on its function (e.g., lower rates for side-facing cameras, higher

rates for forward-facing ones). All streams must be processed simultaneously by different computer-vision

applications, such as object detection (cars, people, bicycles, signs), scene segmentation (finding roads,

sidewalks, and buildings), object tracking, etc.

In addition to their advantage of a proliferation of computer-vision algorithms, cameras are more

economical than radars and lidars. 2D image sensing lacks depth information, but this issue is mitigated

by using stereo cameras or vision-based depth algorithms (Saxena et al., 2006; Eigen et al., 2014; Laina

et al., 2016; Cheng et al., 2018c). However, the accuracy of vision-based perception is drastically limited by

weather conditions (e.g., rain or snow) or illumination conditions (e.g., glaring sunlight or night illumination).

The image quality under severe conditions is currently a pressing problem.

Radars. Radar (radio detection and ranging) is used to estimate the distances and relative velocities of

objects. It consists of a transmitter that emits pulsed electromagnetic waves at the speed of light, and a

19

receiver that receives waves reflected by the object. The distance and velocity of objects can be calculated

by measuring the time between the transmission and reflection. Compared with cameras or lidar, radar is

lightweight and less affected by illumination or weather conditions. However, emissions generated by radars

on different vehicles may interfere with each other (Brooker, 2007). Moreover, a large number of radars

is required to adequately cover a range of distances and fields of view: 0.15–30 m, ±80° for short-range,

1–100 m, ±40° for medium-range, and 10–250 m, ±15° for long-range radars (Patole et al., 2017). Although

radar generates less data, implying fewer processing resources required, its detection results are subject to

lower angular accuracy, i.e., it is less capable of resolving two objects at the same distance but at a different

azimuth (Rasshofer and Gresser, 2005; Patole et al., 2017; Kocić et al., 2018).

Lidars. Lidar (light detection and ranging) operates as an optical analog to radar (Warren, 2019). It also

measures the reflection delay of time-of-flight transmission from objects and produces a point cloud of 3D

data points of its surroundings. It is not affected by illumination conditions, as it is operational under both

day and night conditions. Moreover, it achieves higher accuracy (±0.1 m) than radar within a distance of

200 m (Yurtsever et al., 2019) by using infrared light waves (mostly in the 900 nm wavelength range (Kocić

et al., 2018)) instead of radio waves (in the 4–12 mm wavelength range (Shaffer, 2017)). However, this

results in a sensitivity to environmental conditions such as fog, rain, snow, and dust (Rasshofer and Gresser,

2005).

GPS receiver and IMU. Other sensors also provide essential vehicle status information, such as Global

Positioning System (GPS) receivers for obtaining positioning information and inertial measurement units

(IMUs) for monitoring vehicle movement and velocity. These are useful for localization, navigation, and

ego-motion (vehicle’s movement relative to the scene) estimation tasks (Sukkarieh et al., 1999).

2.1.2.3 Perception

Perception refers to the geometric and semantic understanding of the vehicle’s surroundings from the

sensory inputs, which are processed or fused to build a world model that feeds into the rest of the system.

This world model consists of layers of information from the static to the dynamic (Papp et al., 2008): (i)

static objects such as roads and traffic signs, (ii) static objects that contain dynamic information such as

traffic lights, (iii) temporary objects such as construction zones, and (iv) dynamic objects such as vehicles,

pedestrians, bicyclists, etc., which must be tracked for behavior analysis and trajectory prediction (Behere

20

and Törngren, 2016). In addition to building a world model, the perception system is also responsible for

estimating vehicle state and ego-motion and localizing the vehicle relative to a reference map. Localization

can be considered a separate component, but given its reliance on sensory inputs and its goal of positioning

the vehicle in the world model, we conveniently view it as part of the perception system. We briefly describe

these perception tasks.

Localization. Localizing the vehicle is a prerequisite for navigation, and it helps in other perception tasks

such as locating traffic lights. The three standard methods for localization are GPS-IMU fusion, simultaneous

localization and mapping (SLAM), and map-based localization (Yurtsever et al., 2019).

Inertial measurement using IMUs is used for dead reckoning, for which the error accumulates, thus it

must be corrected by absolute positioning information provided by GPS (Zhang et al., 2012). This GPS-IMU

fusion approach is efficient in open areas, but suffers from low accuracy where GPS signals are weak.

SLAM generates a map of an unknown environment through online depth sensing while localizing the

vehicle within the map simultaneously. It does not require a pre-built map, but can be less efficient compared

to GPS-IMU fusion due to the costly process for building the map, especially in outdoor environments (Ran-

ganathan et al., 2013).

Map-based localization is essentially landmark-based matching using sensor data, including point cloud

data (Levinson et al., 2007; Levinson and Thrun, 2010) and images (McManus et al., 2013; Wolcott and

Eustice, 2014). Coarser-grained landmark information is most efficient for matching, for example, road-

marker matching using lidars (Hata and Wolf, 2014) or cameras (Suhr et al., 2016), and traffic-sign matching

using cameras (Qu et al., 2015).

Object detection. Object detection aims to determine the locations and classes of objects in camera images

of the vehicle’s surroundings. It is crucial to be aware of other traffic participants to avoid accidents, and of

signals from traffic lights, signs, and road marks to obey traffic rules. A robust approach to object detection

uses sensor fusion that combines different types of sensor data so that various sensors complement each

other (Enzweiler and Gavrila, 2011; Cho et al., 2014; González et al., 2016; Chen et al., 2017b). Lidar and

radar inherently provide scale information about objects and enable 3D object detection (Zhou and Tuzel,

2018), which, however, remains challenging because of the change in an object’s appearance relative to range

and the sparsity of data points beyond a certain distance (Yurtsever et al., 2019). However, vision-based

object detection has multiple well-established approaches ranging from classical pipelines to end-to-end

21

neural networks. Given our focus on vision-based object detection in this dissertation, we provide a detailed

review in Section 2.2.

Object tracking. In a dynamic environment, an autonomous-driving system must predict the future tra-

jectory of the surrounding objects in order to avoid collision and to make appropriate driving decisions

such as maneuvering. A common object-tracking approach is to associate object detection or extracted

features to object trajectories, called data association (Shi et al., 1994; Wu and Nevatia, 2007; Huang et al.,

2008; Breitenstein et al., 2009). To improve the accuracy of data association, sensor fusion is commonly

used (Mobus and Kolbe, 2004; Cho et al., 2014). Following data association, traditional filtering methods,

such as Kalman filters (Giebel et al., 2004), are applied to perform physical-model-based state estimation

and actual-measurement-based state correction. A recently trending research direction for object tracking

is to apply neural networks to solve the data-association step, or to apply end-to-end learning for object

tracking (Leal-Taixé et al., 2016; Tang et al., 2016; Schulter et al., 2017; Milan et al., 2017). A survey on

object tracking is provided in (Janai et al., 2019).

Semantic segmentation. Semantic segmentation refers to pixel-level labeling to separate regions that are

not well-defined by bounding boxes, and is considered particularly useful for high-level scene understanding.

Semantic segmentation accuracy and efficiency have been significantly improved by using neural networks

that are able to learn appropriate features, which are instead hand-tuned in traditional methods (Garcia-

Garcia et al., 2018). The current state-of-the-art technique is the fully convolutional network (Long et al.,

2015), which modifies classification models by replacing fully connected layers with convolutional ones to

obtain spatial heatmaps, which are passed through a deconvolutional layer for upsampling and pixel-level

labeling (Garcia-Garcia et al., 2018). Garcia-Garcia et al. (2018) surveyed deep learning techniques for

semantic segmentation. For image streams, there are methods that utilize temporal cues in frame sequences

to improve the accuracy and frame-processing throughput (Shelhamer et al., 2016; Tran et al., 2015). Such

methods introduce interesting real-time scheduling problems in the trade-off between accuracy, throughput,

and latency.

Other perception tasks. Other than these core tasks, the perception system also includes other tasks such as

depth estimation, road-shape estimation, vehicle state estimation, ego-motion compensation, etc., for which

detailed descriptions and reviews are provided in (Luettel et al., 2012; Hussain and Zeadally, 2018).

22

2.1.2.4 Planning and Control

With the produced vehicle state estimation and a world model of the environment, the planning and

control system navigates and controls the vehicle accordingly. A planning and control system comprises

several layers: (i) a global planner that computes highest-level routes to reach destinations, (ii) a behavior

planner that follows the route and makes local driving decisions (e.g., lane-following, turning, and stopping),

(iii) a motion planner that continuously finds and selects motion paths to achieve local driving goals, and (iv)

a low-level vehicle controller that actuates the vehicle to follow the selected motion path. We briefly review

these components in this section.

Global planner. The global planner operates at the highest level in the planning system to search for routes

to the destination in the route network. This route network is presented as a directed graph with nodes

corresponding to waypoints, edges corresponding to road segments, and edge weights corresponding to

traveling costs determined by factors such as distance and traffic conditions. With this graph representation,

route planning can be reduced to a minimum-cost path search problem. However, solving this search problem

in a large graph using classical approaches like Dijkstra’s (Dijkstra et al., 1959) or the A* (Hart et al., 1968)

algorithm may be impractical. A survey of other efficient solutions can be found in (Bast et al., 2016).

Behavior planner. A global route cannot be followed precisely, because local conditions must be further

considered. These local conditions include the behaviors or driving conventions of other vehicles, traffic

signals such as stop signs, construction zones, and traffic lights. Typical scenario examples include the

negotiation of unprotected left-turns and intersections. According to the perceived surrounding environment

and the predicted behavior of other dynamic objects, the behavior planner makes tactical driving task decisions

or selects motion goals to follow the global route in general, and may introduce dynamic workloads into the

system. Surveys of state-of-the-art methods can be found in (Paden et al., 2016; Badue et al., 2019).

Motion planner. After the behavior planner issues the motion goal, the motion planner is responsible

for generating motion paths or trajectories to achieve the goal. The generated motion paths need to be

physically possible considering the vehicle’s kinematic and dynamic constraints while avoiding collisions.

The corresponding motion-planning problem has been well-studied in the robotics field using graph-search-

based, sampling-based, interpolating-curve-based, and numerical-optimization-based approaches. A survey

23

on motion-planning methods can be found in (González et al., 2015; Paden et al., 2016; Yurtsever et al.,

2019).

Vehicle controller. In the end, the motion path is executed by the vehicle controller, which sends commands

to the steering wheel, throttle, and brakes of the vehicle to achieve lateral acceleration, longitudinal acceler-

ation, and deceleration, respectively. The controller is also responsible for maintaining the stability of the

vehicle, rejecting infeasible motion-path requests, or correcting motion errors. A survey of vehicle control

techniques can be found in (Yurtsever et al., 2019).

2.1.3 Summary

In summary, we have described the primary components that compose a basic functional architecture of

an autonomous-driving system. Other components such as vehicle-to-vehicle and vehicle-to-infrastructure

communication, diagnosis, and fault management, and human-interface components are beyond the scope of

our discussion. Interested readers can refer to (Behere and Törngren, 2016; Yurtsever et al., 2019).

We conclude this section with the remark that safety certification for autonomous-driving systems

presents the challenge of guaranteeing the system’s timing correctness, which can be complicated with

sophisticated hardware platforms such as GPUs, and complex software such as computer-vision applications,

which we review next.

2.2 Computer Vision for Autonomous Driving

Computer vision plays a significant role in understanding a vehicle’s surroundings using inexpensive

sensor devices and preserved color and texture information. We reviewed the state-of-the-art methods for

various core perception tasks in Section 2.1.2.3, from which we noted a general transition from using classic

computer-vision pipelines to applying neural networks. Both methods are further reviewed herein, with a focus

on object detection and its accuracy metrics. We focus on object detection because it is a well-established

problem in computer vision for autonomous driving and forms the basis for many other perception tasks, such

as object tracking and instance segmentation. We then review commonly used computer-vision frameworks

and their pros and cons for real-time embedded systems. Lastly, we focus on a computer-vision application

standard, OpenVX (Khronos Group, 2019b), that specifically targets real-time embedded systems, and discuss

24

its challenges in supporting real-time analysis, as we will address these challenges in our case-study chapter

(Chapter 6).

2.2.1 Methods

Object detection consists of localization and classification of multiple objects in an image. The local-

ization operation predicts the position and dimensions (in pixel units) of a rectangle (“bounding box”) in

the image that contains an object of interest. The classification operation predicts with a probability what

specific class (car, bicycle, sign, etc.) the object belongs to. Collectively, localization and classification are

here referred to as object detection.

The development of object detection has achieved several milestones across the stages of various classic

detection pipelines and the current state-of-the-art deep-learning neural networks (Zou et al., 2019). We

describe these milestones and their representative algorithms.

2.2.1.1 Classic Pipelines

A classic object-detection pipeline consists of three stages: image preprocessing, region of interest

extraction, and object classification (Janai et al., 2019). Images are preprocessed for color normalization,

scaling, color space transformation (e.g., RGB to grayscale), etc. A region of interest is usually determined

and extracted using a sliding window that searches over an image using all possible positions and scales. An

object is classified by examining if a window contains any target objects.

Milestones. Supervised learning is a machine-learning approach that infers a function that maps an input

to an output through training processes with labeled example data (Mohri et al., 2018). Papageorgiou and

Poggio (2000) presented one of the first sliding-window-based detectors that applied a supervised-learning

model, support vector machine (SVM), for classification and regression analysis. Viola and Jones (2001)

later extended the detector for fast face detection with speed-up techniques: image integrals for faster

computation, AdaBoost for feature selection, and detection cascades to avoid computational overheads

on background regions. In these early works, the Haar wavelet3 feature was commonly used for its low

computing resource requirement. Later, gradient-based features were widely adopted after histogram of

oriented gradients (HOG) (Dalal and Triggs, 2005a)—a landmark detector inspired by scale-invariant feature

3Haar wavelets compute the differences between pixels of two neighboring rectangle areas.

25

Preprocess
input image

Calculate
gradients

Accumulate
per-cell

histograms

Normalize
histograms
over blocks

Form the final
feature

descriptor

Classify
pedestrian
using SVM

Figure 2.1: HOG pedestrian detection pipeline.

transform (SIFT) (Lowe, 2004)—improved detection results by more than one order of magnitude compared

with the Haar wavelet-based detector (Mohan et al., 2001). Therefore, we use HOG as our detection pipeline

exemplar and describe it in detail shortly. HOG was further extended as a deformable part-based model

(DPM) (Felzenszwalb et al., 2009), which breaks a target object into parts, e.g., cars into wheels, windows,

and body (Zou et al., 2019), and achieved peak performance among the classic object detection pipelines.

HOG. HOG was first used for detecting pedestrians in images (Dalal and Triggs, 2005a), and it can be

trained to detect other classes of objects as well. The basic principle of HOG is that the local intensity

gradient distribution can characterize the appearance and shape of objects. As shown in Figure 2.1, it consists

of multiple pipeline stages: it preprocesses the input image, calculates a directional gradient for each pixel,

sorts gradients into histograms, normalizes lighting and contrast, and then performs classification.

The images are first divided into small regions called “cells,” and each cell accumulates a histogram

of orientations. Each pixel contributes a weighted vote, as a function of the gradient magnitude, to the

orientation of the pixel. These histograms of cells are then normalized over a relatively larger region, called

“blocks,” in order to smooth the gradient magnitude differences caused by local variations in illumination and

contrast. In the end, the combined histograms of normalized cells in a sliding detection window form the final

feature descriptor, which an SVM classifier takes as input to determine if a pedestrian exists in a window.

The entire computation is performed at multiple image-scale levels, using successively smaller versions

of the original image, so as to detect objects of different sizes. The computation workload is deterministic

and immune to the number of objects in the image.

2.2.1.2 Deep Learning Methods

At present, most perception tasks use neural-network-based deep-learning methods for better accuracy

and efficiency, rather than classic computer-vision pipelines. In contrast with the hand-crafted features used

in classic pipelines, a deep-learning neural network can “learn” to localize and classify objects in images via

a process called supervised training in which a large number of images labeled with “ground-truth” bounding

26

boxes and class identifications are input to the CNN running in training mode. Training typically results in

computing a large set of parameters (or “weights”) defining how the CNN will respond when given images

not in the training set (e.g., images from cameras mounted on a car). A “trained” neural network can then be

deployed and processes images in inference mode. The weights of the neural network are usually not updated

during inference.4

In addition to the revival of deep learning with AlexNet (Krizhevsky et al., 2012), which is a deep CNN

that dominated the ImageNet challenge (a competition for object classification), we summarize the milestones

of CNN-based object detection.

Milestones. The development of object-detection CNNs has branched into two family trees: (i) the multi-

stage-region-proposal-based CNNs that first generate candidate region proposals where objects potentially ex-

ist, then extract features, and finally classify and localize objects, and (ii) the one-stage regression/classification-

based CNNs that localize and classify objects in one consolidated step (Zhao et al., 2019; Zou et al., 2019).

(i) Multi-stage region proposal-based. As mentioned above, the CNN AlexNet marked the success of

deep learning for a classification task. Following this success, the regions-with-CNN-features (R-CNN)

approach was introduced (Girshick et al., 2014), which naturally employs AlexNet to extract features from

regions proposed by selective search (Uijlings et al., 2013) for object detection. These features are then

classified using linear SVM5 to predict the presence of objects within each region. For positive regions, a

bounding-box regressor finalizes the bounding box for the objects. R-CNN showed better accuracy than

previous detectors, however, it suffered from a speed bottleneck due to the overhead of computing features

repetitively for overlapping regions. To mitigate this issue, SPPNet enables one-time feature computation for

the whole image (He et al., 2015). Both R-CNN and SPPNet use multi-stage pipelines. With this, the process

of consolidating stages began, intended for reducing storage expense and improving processing efficiency.

A novel CNN architecture, Fast R-CNN, enabled simultaneous classification and bounding-box regression

training by introducing multi-task loss (Girshick, 2015). Faster R-CNN then integrated the region proposal

stage with the region proposal network (He et al., 2015), becoming the first end-to-end CNN.

(ii) Single-stage regression/classification-based. Object detection was framed as a regression/classification

problem for the first time when Redmon et al. (2016) introduced YOLO, with which “you only look once”

4Online learning requires such updates, but are beyond our discussion.
5SVM that performs linear classification.

27

Convolution Maxpool Region

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 Private CNN

 C-1 Private CNN

… …

Cameras Detection box results

…

Layers:

Figure 2.2: Traditional camera processing setup and the Tiny YOLOv2 network architecture. Larger boxes indicate
longer execution times. Frame data flows left to right.

at an image to both localize and classify objects. We take YOLO as a representative CNN in our work,

and we provide a detailed description below. Another single-stage CNN, the single-shot multibox detector

(SSD) (Liu et al., 2016), further improved detection accuracy and processing speed by handling objects of

different sizes using multiple feature maps of various resolutions from the layers, and by discretizing the

bounding box output space using a set of default bounding boxes with different aspect ratios.

You only look once: YOLO. Redmon and Farhadi continued improving YOLO in a series of studies for

better accuracy and speed. We take a relatively simple one, Tiny YOLOv2 (simply “YOLO” in the remainder

of this dissertation), as an example to describe the computation workload in each layer.

Tiny YOLOv2 implementation. Tiny YOLOv2 is a lower-accuracy, higher-speed derivative of YOLOv2

by the YOLOv2 authors (Redmon and Farhadi, 2017; Redmon, 2017). This version of YOLO runs roughly

five times faster than the standard version of YOLO (≥ 200 FPS vs. ≥ 40 FPS on a high-end GPU) (Redmon,

2017). The network architecture shown in Figure 2.2 is configured as it would be by default for C cameras

(denoted 0 through C− 1). In this default system, each camera uses a separate “private” instantiation of

the network. Each instantiation contains nine convolution or convolutional layers interleaved with six

maxpool layers and a region layer at the end. All YOLO networks run on the Darknet (Redmon, 2016)

CNN framework. A convolutional layer convolves over the input by computing the dot product between

input and filters to produce an activation map of features. A maxpool layer applies a non-linear transform to

the input by selecting the maximum values from non-overlapping regions. YOLO’s region layer uses the

28

Predicted Area

<latexit sha1_base64="lUXVi7dF3VfO6WbSM3b8VDAHKHE=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKewGQb1FvXiMYB6QrGF2tjcZMvtgZlYJS/7DiwdFvPov3vwbJ8keNLFgoKjqonvKSwRX2ra/rcLK6tr6RnGztLW9s7tX3j9oqTiVDJssFrHseFSh4BE2NdcCO4lEGnoC297oZuq3H1EqHkf3epygG9JBxAPOqDbSQ0Oiz5lGn1yZVL9csav2DGSZODmpQI5Gv/zV82OWhhhpJqhSXcdOtJtRqTkTOCn1UoUJZSM6wK6hEQ1Rudns6gk5MYpPgliaF2kyU38nMhoqNQ49MxlSPVSL3lT8z+umOrhwMx4lqcaIzRcFqSA6JtMKiM8lMi3GhlAmubmVsCGV1PQgVcmU4Cx+eZm0alXnrHp5V6vUr/M6inAEx3AKDpxDHW6hAU1gIOEZXuHNerJerHfrYz5asPLMIfyB9fkDDw2SPQ==</latexit>

Expected Area

<latexit sha1_base64="FwUgzjmo1YXb+y3993QJJ68IZak=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgKewGQb1FRfAYwTwgWcLsbCcZMvtwZjYYlnyHFw+KePVjvPk3TpI9aGLBQFHVxXSXFwuutG1/W7mV1bX1jfxmYWt7Z3evuH/QUFEiGdZZJCLZ8qhCwUOsa64FtmKJNPAENr3hzdRvjlAqHoUPehyjG9B+yHucUW0k9/YpRqbRJ1cm1C2W7LI9A1kmTkZKkKHWLX51/IglAYaaCapU27Fj7aZUas4ETgqdRGFM2ZD2sW1oSANUbjpbekJOjOKTXiTNCzWZqb8TKQ2UGgeemQyoHqhFbyr+57UT3btwUx7GicaQzT/qJYLoiEwbID6X5mYxNoQyyc2uhA2opKYHqQqmBGfx5GXSqJSds/LlfaVUvc7qyMMRHMMpOHAOVbiDGtSBwSM8wyu8WSPrxXq3PuajOSvLHMIfWJ8/UHOR0Q==</latexit>

IoU =
PredictedArea \ ExpectedArea

PredictedArea [ExpectedArea
=

<latexit sha1_base64="SAHJn0rjETDKFkfzMloPKn1SDcA=">AAACOHicbVDLSgMxFM3UV62vUZdugkVwVWZEUBeFqgi6soJ9QKeUTOZOG5p5kGTEMvSz3PgZ7sSNC0Xc+gWm7QjaeiBwOPfcJOe4MWdSWdazkZubX1hcyi8XVlbX1jfMza26jBJBoUYjHommSyRwFkJNMcWhGQsggcuh4fbPR/PGHQjJovBWDWJoB6QbMp9RorTUMa+vohouY8cXhKZVAR6jCrxTfQV2KInxxX0MP8pwxpBMGXC5YxatkjUGniV2RoooQ7VjPjleRJMAQkU5kbJlW7Fqp0QoRjkMC04iISa0T7rQ0jQkAch2Og4+xHta8bAfCX1Chcfq742UBFIOAlc7A6J6cno2Ev+btRLlH7dTFsaJgpBOHvITjlWERy1ijwmdmg80IVQw/VdMe0R3qHTXBV2CPR15ltQPSvZh6eTmsFg5y+rIox20i/aRjY5QBV2iKqohih7QC3pD78aj8Wp8GJ8Ta87IdrbRHxhf30turMA=</latexit>

Figure 2.3: IoU illustrated with an image example from PASCAL VOC dataset (Everingham et al., 2010).

activation maps of the last convolutional layer alongside precalculated “anchor” values to predict the output

locations and bounding boxes of the objects of interest. These anchors characterize the common shapes and

sizes of bounding boxes in the training data and help improve the prediction accuracy. We summarize the

accuracy metrics in the following section.

2.2.2 Object-Detection Accuracy Metrics

For classic pipelines, the metrics of false positive per window (FPPW) and per image (FPPI) were used,

e.g., HOG was evaluated using FPPW and the dataset INRIA (Dalal and Triggs, 2005a). Recently, mean

average precision (mAP) became a new standard. Here we provide an intuitive understanding of mAP. For

a more detailed introduction, we refer the reader to a tutorial by Hui (2018), and for further details on the

precision-recall curve and mAP to Section 4.2 in Everingham et al. (2010).

2.2.2.1 IoU, Precision, and Recall

In order to determine the precision of object detection, we first need to measure the quality of object

detection, which is done using the Intersection over Union (IoU) measure illustrated in Figure 2.3. This is

defined as the proportion of overlapping area between the predicted and expected areas of an object over their

union:

IoU =
PredictedArea∩ExpectedArea
PredictedArea∪ExpectedArea

.

29

True NegativeFalse Negative

All predictions

True Positive False Positive

All test objects

Precision =

Recall =

Figure 2.4: Precision and recall.

If the IoU of a prediction is greater than a chosen threshold (e.g., 0.5, as specified in the PASCAL Visual

Object Classes (VOC) dataset (Everingham et al., 2010)), we consider it to be a “correct” detection, or a true

positive.

Being able to measure correct detections for a given class (e.g., car), enables us to measure the precision

and recall for the class, which are defined as follows.

Precision =
TruePositive

TruePositive+FalsePositive

Recall =
TruePositive

TruePositive+FalseNegative

We illustrate the metrics of precision and recall in Figure 2.4. Precision measures the proportion of

correctly detected objects over all predictions, while recall measures the proportion of correctly detected

objects of all test objects. A good object detector should be able to detect most of the objects in the scene

(high recall/completeness) and to do so accurately (high precision/correctness). Please note, there are typical

trade-offs to be made, e.g., in order to improve precision, usually the recall suffers and vice versa.

2.2.2.2 Precision-Recall Curve and Mean Average Precision

A precision-recall (PR) curve is used to evaluate these trade-offs between precision and recall or false

positives and false negatives. Figure 2.5 plots the PR curves of two algorithms with recall on the x axis and

precision on the y axis. In general, PR curves with higher precision represent more accurate algorithms, but

as illustrated in this example, the two curves cannot be straightforwardly compared. Therefore, a numerical

30

The Relationship Between Precision-Recall and ROC Curves

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
r
u
e

P
o
s
i
t
i
v
e

R
a
t
e

False Positive Rate

Algorithm 1
Algorithm 2

(a) Comparison in ROC space

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
P
r
e
c
i
s
i
o
n

Recall

Algorithm 1
Algorithm 2

(b) Comparison in PR space

Figure 1. The difference between comparing algorithms in ROC vs PR space

tween these two spaces, and whether some of the in-
teresting properties of ROC space also hold for PR
space. We show that for any dataset, and hence a
fixed number of positive and negative examples, the
ROC curve and PR curve for a given algorithm con-
tain the “same points.” Therefore the PR curves for
Algorithm I and Algorithm II in Figure 1(b) are, in a
sense that we formally define, equivalent to the ROC
curves for Algorithm I and Algorithm II, respectively
in Figure 1(a). Based on this equivalence for ROC and
PR curves, we show that a curve dominates in ROC
space if and only if it dominates in PR space. Sec-
ond, we introduce the PR space analog to the convex
hull in ROC space, which we call the achievable PR
curve. We show that due to the equivalence of these
two spaces we can efficiently compute the achievable
PR curve. Third we demonstrate that in PR space
it is insufficient to linearly interpolate between points.
Finally, we show that an algorithm that optimizes the
area under the ROC curve is not guaranteed to opti-
mize the area under the PR curve.

2. Review of ROC and Precision-Recall

In a binary decision problem, a classifier labels ex-
amples as either positive or negative. The decision
made by the classifier can be represented in a struc-
ture known as a confusion matrix or contingency ta-
ble. The confusion matrix has four categories: True
positives (TP) are examples correctly labeled as posi-
tives. False positives (FP) refer to negative examples
incorrectly labeled as positive. True negatives (TN)
correspond to negatives correctly labeled as negative.
Finally, false negatives (FN) refer to positive examples
incorrectly labeled as negative.

A confusion matrix is shown in Figure 2(a). The con-
fusion matrix can be used to construct a point in either
ROC space or PR space. Given the confusion matrix,
we are able to define the metrics used in each space
as in Figure 2(b). In ROC space, one plots the False
Positive Rate (FPR) on the x-axis and the True Pos-
itive Rate (TPR) on the y-axis. The FPR measures
the fraction of negative examples that are misclassi-
fied as positive. The TPR measures the fraction of
positive examples that are correctly labeled. In PR
space, one plots Recall on the x-axis and Precision on
the y-axis. Recall is the same as TPR, whereas Pre-
cision measures that fraction of examples classified as
positive that are truly positive. Figure 2(b) gives the
definitions for each metric. We will treat the metrics
as functions that act on the underlying confusion ma-
trix which defines a point in either ROC space or PR
space. Thus, given a confusion matrix A, RECALL(A)
returns the Recall associated with A.

3. Relationship between ROC Space

and PR Space

ROC and PR curves are typically generated to evalu-
ate the performance of a machine learning algorithm
on a given dataset. Each dataset contains a fixed num-
ber of positive and negative examples. We show here
that there exists a deep relationship between ROC and
PR spaces.

Theorem 3.1. For a given dataset of positive and

negative examples, there exists a one-to-one correspon-

dence between a curve in ROC space and a curve in PR

space, such that the curves contain exactly the same

confusion matrices, if Recall 6= 0.

234

Figure 2.5: Example Precision-Recall curves (Davis and Goadrich, 2006).

value that summarizes the precision-recall curve was proposed, called Average Precision (AP). Specifically, it

is calculated by taking the average precision of 11 equally spaced recall levels {0,0.1, . . . ,1} (Everingham

et al., 2010). Using p(r) to denote the precision with respect to the recall r,

AP =
1

11 ∑
r∈0,0.1,...,1

pinterp(r)

with pinterp(r) = max
r̃>r

p(r̃).

An algorithm with high AP has relatively high precision at all levels of recall, and thus can perform more

accurate detection. AP is a per-object-class value, and mAP is the mean AP over all classes (e.g., car, people,

dog, etc.).

2.2.3 Frameworks and Libraries

While accuracy is determined by the model design and training process, inference speed is determined

by the framework and libraries, which are needed to provide real-time performance for safety-critical

autonomous-driving systems. We review the commonly used inference frameworks and libraries: OpenCV,

Caffe, TensorFlow, and PyTorch. Given our focus on their usage in onboard systems, we describe their design

as inference engines; their design for training is beyond the scope of our discussion.

OpenCV. OpenCV is an open-source computer-vision library launched in 1999 (Kaehler and Bradski, 2016)

that targeted real-fast applications with a design for computational efficiency. In addition to its initial support

31

for classic computer-vision pipelines, it evolved to include an inference engine for neural networks. Recently,

a new OpenCV Graph API (G-API) has been released for dataflow-graph-based programming, which models

applications as graphs of image operations and executes the graph (OpenCV, 2020). It manages the data

dependencies and the data flowing between operations. The execution of a graph is triggered by a single call

in contrast to multiple calls of image functions with a conventional programming paradigm. This G-API

includes basic functions such as graph construction, validation, and execution. The benefits of graph-based

execution are yet to be fully explored, as the current implementation only supports pipelined execution

between different types of computing devices.

Caffe. Caffe is the first widely used open-source deep learning framework. It was developed and is maintained

by the UC Berkeley team (Jia et al., 2014). Its clean separation between model representation and program

implementation enables easy deployment between platforms and convenient model modifications for research

experiments. Such separation is deemed to be declarative programming, which requires users to construct

and express the structure of a program using pre-defined components—what is to be computed. For example,

the neural network model is specified in configuration files in Caffe. In addition, Caffe’s modular design

eases the extension of network layers, loss functions, and data formats.

Apache MXNet. Apache MXNet (or simply MXNet) is maintained as an Apache incubation project (Chen

et al., 2015; The Apache Software Foundation (ASF), 2020). It combines declarative symbolic expressions

and imperative tensor computations to maximize computation and memory efficiency and flexibility. In

contrast to declarative programming, imperative programming describes the control flow—how something is

to be computed. MXNet uses declarative programming for specifying the neural network model to apply

graph optimization such as graph pruning (dead code elimination), kernel fusion, and memory-space reuse,

but for tensor computation, it allows imperative programming to leverage the convenience of using the host

language and to debug the program interactively.

TensorFlow. TensorFlow is an open-source machine-learning system developed by Google (Abadi et al.,

2016). It adopts declarative programming, as does MXNet, using a dataflow-graph-based programming

model to scale on distributed clusters and operate in heterogeneous systems. With this uniform dataflow-

graph-based programming abstraction, users define the program as a symbolic dataflow graph in the first

phase. In the second phase, system-level optimization is applied before the program is executed. Such

optimization can be informed by the structure of the graph, and system information such as the specifications

32

of available computational devices. TensorFlow applies standard optimization techniques such as graph

pruning, common subexpression elimination, constant folding, kernel fusion, etc. In addition to the standard

kernel functions provided, such as matrix multiplication, users can customize their own. To ease the debugging

and prototyping process, TensorFlow later added Eager Execution, which enables imperative programming

to evaluate operations immediately without declaring a whole computational graph (Agrawal et al., 2019).

PyTorch. In contrast, PyTorch (Paszke et al., 2019) only applies imperative programming to provide users

full control and better usability, which is promoted by making careful trade-offs between usability and

performance. Its developers prioritized researchers’ needs for a familiar programming environment in the

Python ecosystem, simple and consistent interfaces, and convenient debugging and plotting tools. Paszke

et al. also argued that for the fast-paced field of artificial intelligence, a simple implementation design that is

more adaptive to changes is better. These principles make PyTorch the best for training, and for deployment

on systems with abundant resources. In their estimation, the performance was within 17% of that of the

fastest framework. Therefore, PyTorch is not ideal for safety-critical real-time embedded systems, where any

waste of system resources should be avoided.

Before summarizing the challenges of implementing a real-time certification-amenable framework, we

review a newly developed computer-vision standard, OpenVX.

2.2.4 OpenVX Standard

OpenVX is an open standard C API published by the Khronos Group for real-time and embedded

computer-vision applications (Khronos Group, 2019b). By specifying a set of computer-vision function

interfaces, which a conformant implementation should support, OpenVX aims for cross-platform acceleration

for computer-vision applications. Although the interfaces are defined in C, the underlying backend can be

implemented in any language, such as OpenCL or CUDA.

OpenVX uses dataflow-graph-based programming, which is widely used in the other computer-vision

frameworks mentioned above (OpenCV, MXNet, and TensorFlow). In an OpenVX graph, each node

represents an image operation, for which the formats of the inputs and outputs are specified. The nodes

of operations are explicitly constructed into graphs. Edges are implicitly defined by sharing data objects

between nodes. Similar to TensorFlow, users are allowed to customize node functions in addition to the ones

the OpenVX implementation provides, as we see in the following OpenVX graph example.

33

Function name Description
vxColorConverNode Converts color spaces of the image (into gray in this case).
myComputeScaleLevelsNode Computes scale levels and resizes the image. (User)
vxHOGCellsNode Computes the gradient orientation histograms of the cells (Sec-

tion 2.2.1.1).
vxHOGFeatureNode Normalizes gradient magnitude of the cells and produces HOG

feature vectors for sliding windows.
myClassifyPedestrianNode Classifies if sliding windows contain pedestrian. (User)
myCollectDetectionLocationsNode Collects locations (bounding boxes) where pedestrian is detected.

(User)

Table 2.1: Description of functions used in HOG pedestrian detection example. Customized node functions are prefixed
with my and indicated with (User).

vxColorConvert
Node

myCompute
ScaleLevels

Node

vxHOGCells
Node

vxHOGFeature
Node

myClassifyPed
estrianNode

myCollectDete
ctionLocations

Node
vxHOGCells

Node
vxHOGFeature

Node

myClassify
Pedestrian

Node

… … …

Figure 2.6: OpenVX graph example: pedestrian detection using HOG.

We illustrate an OpenVX graph for a HOG-based pedestrian-detection application in Figure 2.6, with the

description of nodes in Table 2.1. As we reviewed above, HOG processes multiple scales of the image to

handle objects of different sizes, so the graph branches out after myComputeScaleLevelsNode, with each

branch processing a scale. Each edge has a data object, which is omitted in our illustration for simplicity.

Graph optimization is encouraged, e.g., aggregate function replacement (kernel fusion), inter-process

communication (IPC) aggregation, tiled processing, pipelining, etc. (Rainey et al., 2014). Exercising these

optimization techniques and implementing efficient kernels require an understanding of the deployment targets

in regard to the hardware architecture and the processing and memory efficiency. Therefore, it encourages

hardware vendors, the expected adopters of OpenVX, to provide the best-optimized implementation for

their platforms, such as CPUs, GPUs, and FPGAs. Several major vendors (AMD, Intel, NVIDIA, etc.) have

adopted OpenVX; however, many have discontinued their conformance testing for new standard versions.

Although the wide adoption of OpenVX has yet to happen, it is the state-of-the-art standard where real time

meets computer vision.

For application in a real-time embedded system, the OpenVX standard and aforementioned computer-

vision application present challenges for deriving real-time guarantees, which we summarize next.

34

2.2.5 Challenges of Real-Time Certification Amenable Framework

Certifying that timing requirements are met in autonomous-driving systems will be important as we

progress to seeing mass-market vehicles with greater autonomy, requiring real-time computer-vision frame-

works that are amenable to certification. We next discuss four major challenges of achieving such frameworks.

Lack of real-time concepts. The major research challenge facing all computer-vision frameworks is that

they lack control over timing and scheduling. The lack of timing concepts, such as deadlines and periods,

makes it impossible to express any timing requirements, and no tools for measuring worst-case execution time

are available. Moreover, the priorities of an application cannot be specified, leaving ambiguity for scheduling

ordering and analysis. A full-fledged framework with these real-time concepts is needed.

Coarse-grained scheduling. Frameworks such as OpenVX and Caffe execute neural networks in coarse-

grained schedulable entities. For example, network graphs are executed end-to-end, and details about inter-

or intra-graph parallelization or pipelining are unspecified. A real-time graph scheduler on a heterogeneous

platform requires a finer-grained view, which raises many questions. For example, what should the schedulable

entities be? Do we schedule individual nodes, or even lower-level components? How do we handle multiple

graphs that execute in parallel and share accelerators such as GPUs? To definitively answer these questions,

we need to implement and compare multiple scheduling policies. Although we noticed in TensorFlow and

MXNet that more parallelism is explored at a fine-grained level, the scheduling of applications running

atop these frameworks is handled by best-effort schedulers in the operating system, rather than real-time

schedulers.

Lack of system-level awareness in applications. The performance evaluation of these frameworks is

conducted by running applications in isolation. However, this evaluation setup misrepresents real systems,

resulting in misleading conclusions. In a deployment environment, many applications coexist and share

resources—memory capacity, input-output (I/O) devices, and processors. However, none of these frameworks

provides an awareness of other applications or a communication mechanism between them, leaving critical

system-level optimization elusive if not inaccessible. To achieve system-level optimization, a framework

may extend its control of applications to a middleware-level manager, or expose their timing and scheduling

information to the OS.

35

Gap between computer-vision and real-time researchers. Autonomous-driving development hits a stone

wall when the notion of “real time” is different for computer-vision and real-time researchers. Nonetheless,

instead of burdening computer-vision researchers with acquiring expertise on real-time systems, we need to

bridge this gap through a framework that is amenable to real-time certification, and that maintains usability

for computer-vision developers. This requires declarative programming interfaces that allow computer-vision

application developers to define a program without worrying about running the workload with real-time

guarantees. It also requires configuration and evaluation tools that allow system engineers to protect the

computer-vision system from interference and obtain real-time analysis results, such as response-time bounds,

without worrying about conducting theoretical analysis.

These challenges are further complicated by the underlying hardware accelerators we review next.

2.3 GPUs and Accelerators

Autonomous driving has become more promising with advances in computer vision, which dramatically

took off as deep-learning methods became more efficient with the computational power that accelerators

like GPUs provide. Our research focuses on GPUs for reasons that we explain shortly. Nonetheless, we

deem our research methodology to be applicable to other accelerators as well. We will briefly describe

these accelerators and compare them. Then we focus on NVIDIA GPUs and provide a detailed review of

their programming model, software architecture, and hardware architecture. After presenting these GPU

fundamentals, we review prior work on GPU acceleration and scheduling. Lastly, we discuss the challenges

of achieving real-time processing on GPUs.

2.3.1 Accelerators

Cars are manufactured by integrating components (including computing hardware and software) from a

supply chain of various vendors (“Tier-1” and “Tier-2” suppliers). To meet the computational demands of

computer-vision applications, supplier offerings are usually based on various application-specific integrated

circuits (ASICs), such as field-programmable gate arrays (FPGAs), or on digital signal processors (DSPs) or

GPUs. FPGAs and DSPs have advantages over GPUs in power and density, but require specialized knowledge

to use the hardware and its tool-chain environment. Moreover, integrating computer-vision applications

supplied by different sources using proprietary black-box solutions built on FPGAs or DSPs can increase

36

product cost. Because of these complicating factors, we consider GPUs to be the primary solution for

computer-vision applications. GPUs can be used with familiar development tools and a large number of

open-source software choices, TensorFlow (Abadi et al., 2016) being a notable example.

We describe these accelerators in detail and compare them in terms of processing speed, power consump-

tion, development toolchain and libraries, and development time.

GPUs. A GPU is no longer just a graphics engine as it was originally intended to be, but also a highly parallel

programmable processor for general-purpose (GP) computation—a GPGPU. Among the GPUs produced by

major vendors—NVIDIA, AMD, and Intel—NVIDIA dominates the market, and its GPUs are widely used in

research. NVIDIA GPU families range from server and desktop products to embedded-class ones. We focus

on the embedded platforms, as they fit autonomous vehicles the best, and we survey the speed performance

of NVIDIA embedded GPUs first.

The performance of “integrated” and “discrete” NVIDIA embedded GPUs is significantly different.

Integrated GPUs (iGPUs) and CPUs are integrated at the silicon level on the same chip and share memory,

whereas discrete GPUs (dGPUs) and CPUs are connected through a peripheral component interconnect

(PCI) bus and have separate memory. In the latest NVIDIA Drive AGX series, which has been advertised

for production-level autonomous vehicles, the Xavier platform includes NVIDIA Volta-architecture iGPUs,

which provide a processing speed of 20 tera one-byte-integer operations per second (TOPS (INT8)) or 1.3

tera single-precision-floating-point operations per second (TFLOPS (FP32)). In comparison, the Pegasus

platform includes additional NVIDIA Turing-architecture dGPUs, which provide 130 TOPS (INT8) or 8.1

TFLOPS (FP32)) (NVIDIA, 2020b). The performance difference between the two platforms is more than

six-fold; however, the higher performance of dGPUs comes with the price of power consumption.

Unfortunately, the official power consumption specifications of dGPUs and iGPUs in the NVIDIA Drive

AGX series are unavailable, although the total power consumptions of the Xavier and Pegasus platforms have

been published (Mujtaba, 2018). Xavier is equipped with eight-core “Carmel” CPUs (of ARM v8 instruction

set architecture (ISA)) and other accelerators for deep learning, video, and image processing, in addition to

one 512-core Volta iGPU. In total, Xavier consumes 30 W of power. Pegasus consists of two Xavier boards

and two 3072-core Turing dGPUs. In total, Pegasus consumes 500 W (Mujtaba, 2018). We can estimate the

power consumption of one dGPU to be 220 W, which is more than seven-fold that of one iGPU (less than 30

37

W). These numbers are imprecise, and the actual power consumption varies with the running workload, but

they do give a sense of the power cost for higher performance.

There are various tools and libraries for NVIDIA GPUs. All computer-vision frameworks discussed in

Section 2.2.3 support NVIDIA GPUs, and these accelerators are the only ones supported by some frameworks

(e.g., Caffe). Moreover, NVIDIA provides a collection of acceleration libraries: math libraries such as

cuBLAS and cuFFT, deep-learning libraries such as cuDNN and TensorRT, and image and video processing

libraries like NVIDIA Performance Primitives (NPP). All these frameworks and libraries were built with

CUDA, which includes a full-fledged development toolchain. These tools and libraries ease programming

effort and shorten development time. The advantage of abundant tools and libraries alone could justify GPUs

to be chosen over the other accelerators we discuss next.

FPGAs. Field-programmable gate arrays (FPGAs) are configurable and reprogrammable after manufac-

turing, as the name suggests. Optimizing an algorithm-specific configuration requires an understanding of

hardware design. The configurations of FPGAs are described in hardware description languages (HDLs),

which are complicated and different from high-level languages like C, hence increasing development time.

Moreover, development time for FPGAs is longer than for GPUs owing to the poor availability of tools and

libraries. There are limited ones provided by major FPGA vendors such as Xilinx, e.g., Vivado, a design suite

for configuring Xilinx FPGAs. However, they are neither free nor open-source.

A configurable FPGA’s power consumption largely depends on the workload it is designed to exe-

cute. An application-specific comparison shows that FPGAs are relatively more power efficient than other

accelerators (Nurvitadhi et al., 2016).

DSPs. Digital signal processors (DSPs) are specialized and optimized for processing signals captured by

devices such as cameras and radars, and are considered a low-cost, low-latency, and power-efficient solution

for signal-processing algorithms. These algorithms can be executed on CPUs or other accelerators as well,

but with lower efficiency. As with programs running on CPUs, DSP programs use a high-level programming

language such as C/C++ or assembly language. Using a high-level language shortens development time;

moreover, free libraries are available to ease development effort. For instance, a DSP Library (DSPLIB)

includes processing algorithms such as convolution and fast Fourier transform (FFT) (Texas Instrument,

2018). However, similar to CPUs, DSPs are more suitable for serial tasks than for massively parallel ones.

38

GPUs FPGAs DSPs
Performance ++ ++ +

Tools and libraries ++ − +

Development time ++ − +

Power efficiency + ++ ++

Table 2.2: Comparison between accelerators. The more “+, the better; the more “−, the worse.

We summarize the comparison between GPUs, FPGAs, and DSPs in Table 2.2. Note that no up-to-date

comparison among state-of-the-art accelerators is available in the literature; several dated comparisons are

summarized in (HajiRassouliha et al., 2018). Nonetheless, this rough comparison should be sufficient to

justify the wide usage of GPUs by autonomous-driving companies and our focus on GPUs in this dissertation.

2.3.2 GPU Hardware Architecture

The work presented in this dissertation refers to the Kepler, Maxwell, Pascal, and Volta GPU architectures

by NVIDIA. NVIDIA introduced these four different generations of GPU architectures, in that order, within

a time span of approximately five years (2012–2017)—a pace of change more rapid than normally seen in

CPU generations. Fortunately, across the NVIDIA GPU generations, the core architecture designs remained

the same. We first describe the GPU hardware architecture elements that are common across generations.

Later, we present the concrete architectures of the CUDA-enabled devices we use in detail.

Figure 2.7 shows the NVIDIA GPU architecture, while omitting subtle changes across the aforementioned

generations. It is comprised of copy engines (CEs) for transferring data between GPUs and the host system,

and an execution engine6 (EE) for computing results. Copy engines share the system memory bus with the

GPU global memory, which consists of several banks of dynamic random-access memory (DRAM). We

describe the components of the EE and their interactions in the following.

The GPU workload (the GPU programs to be executed) is scheduled in a hierarchical manner. As shown

at the top of Figure 2.7, a GigaThread engine dispatches the workload to the processing units, called streaming

multiprocessors (SMs). The number of SMs varies between generations, with the newer architectures having

a greater number, as mentioned in the Section 1.2. The hardware is designed to contain more transistors,

allowing more SMs, which enables greater parallelism. Each SM is further organized into multiple partitions

called processing blocks, the number of which varies across generations. As we will discuss in the CUDA

6It is also called the computing engine, but we call it the execution engine to avoid confusion with the copy engine when abbreviated.

39

Streaming Multiprocessor (SM)

Streaming Multiprocessor (SM)

Streaming Multiprocessor (SM)

Processing Block
L0 Instruction Cache

Warp Scheduler
Dispatch Unit(s)

Register File

Cores

Processing Block
L0 Instruction Cache

Warp Scheduler
Dispatch Unit(s)

Register File

Cores

Processing Block
L0 Instruction Cache

Warp Scheduler
Dispatch Unit(s)

Register File

Cores

…

L1 Instruction Cache / Buffer

L1/Texture/Constant Cache,
Shared Memory

Texture Units

…

GigaThread Engine

L2 Cache

M
em

ory
Controller

…

Global/Texture
/Constant
Memory

Copy Engine(s)

M
em

ory
Controller

M
em

ory
Controller

Figure 2.7: NVIDIA GPU architecture

programming model section below (Section 2.3.3), the GPU program is executed by threads, which are

grouped into thread arrays called warps. A warp is the smallest unit that is scheduled for execution in the

processing block by the warp scheduler. In each cycle, the warp scheduler selects a warp to run, for which

each dispatch unit dispatches the next instruction, and these are finally executed by the various cores.

There are different types of cores: execution units for single-precision floating-point operations (FP32),

double-precision float-point operations (FP64), integer operations (INT32), and, in the latest Volta architecture,

new Tensor cores for deep-learning operations (NVIDIA, 2017a). The FP32 cores (the most frequently used

ones) are also referred to as CUDA cores. The number of CUDA cores per SM has decreased with the newer

NVIDIA GPU generations, but the level of resources has been retained, thus increasing the resource quota

for each core and hence each thread. There are also texture units that are dedicated to image sampling and

filtering.

These cores access data from the hierarchical memory. The memory that is nearest and fastest is the

register file. The register file is reserved when the GigaThread engine dispatches a workload to the SMs.

Therefore, the thread register usage limits the number of running threads per SM. In each processing block,

an L0 instruction cache is introduced with the Volta architecture, and it provides higher efficiency than the

instruction buffer that existed in prior architectures. The processing blocks in an SM share the L1 instruction

40

Architecture Generations Kepler Maxwell Pascal Volta
Processing Blocks / SM 1 4 2 4
Warp Schedulers / Processing Block 4 1 2 2
Dispatching Units / Processing Block 8 2 2 1
FP32 Cores / SM 192 128 64 or 128 64
FP64 Cores / SM 64 4 32 32
Tensor Cores / SM N/A N/A N/A 8
Shared Memory Size / SM Configurable

options: 16,
32, or 48 KB

96 KB 64 KB Configurable
up to 96 KB

Table 2.3: Comparison between NVIDIA GPU architecture generations

cache, L1 data cache, texture cache, constant cache, and shared memory. Most importantly, the shared

memory allows data sharing and synchronization between threads running in the SM within a block. Because

the shared memory also needs to be reserved for access, its usage of a GPU program is another limiting factor

for the number of active threads in the SM. All SMs share an L2 cache and have access to the global memory

and the read-only texture and constant memory.

We noted changes in the number of several components. A summary of these changes is provided in

Table 2.3. For each generation, products can be configured with different numbers of SMs, and different L2

cache sizes and global memory sizes. Therefore, these configurations are omitted here.

2.3.2.1 CUDA-Enabled Devices

We consider both dGPUs and iGPUs. An iGPU, such as the NVIDIA Jetson TX2 shown on the left in

Figure 2.8, is part of a system-on-chip (SoC) implementation that is combined with conventional multicore

CPUs. The SoC is packaged along with DRAM and external connectors as a small (approximately 7 inches

square) single-board computer. The iGPU shares hardware resources, such as the memory controller and

DRAM, with the CPU cores. The TX2 runs the Linux OS, with additional support from closed-source binary

drivers provided by NVIDIA. The TX2’s low size, weight, and power (SWaP) requirements and low price

make it a good exemplar of a GPU-enabled platform designed for embedding in autonomous systems.

Figure 2.8 (left) shows the high-level architecture of the TX2. The TX2 contains a six-core heterogeneous

ARMv8 CPUs, 8 GB of DRAM, and an integrated Pascal GPU. The TX2’s GPU consists of two SMs, each

comprised of 128 GPU cores. The SMs together can be logically viewed as an EE. Additionally, there is

41

Memory Controller

DRAM1

Bank 0

DRAM1

Bank 0

DRAM

Bank 1

DRAM

Bank 1 …
DRAM

Bank n

DRAM

Bank n

DRAM

Bank 2

DRAM

Bank 2

DRAM

Bank n-1

DRAM

Bank n-1

A57 CPU 0A57 CPU 0

…
L1-I

48KB

L1-I

48KB

L1-D

32KB

L1-D

32KB

A57 CPU 3A57 CPU 3

L1-I

48KB

L1-I

48KB

L1-D

32KB

L1-D

32KB

A57 CPU shared L2 cache

2 MB

A57 CPU shared L2 cache

2 MB

GPU L2 cache

512 KB

GPU L2 cache

512 KB

Pascal GPU

SM 0SM 0 SM 1SM 1

128 cores 128 cores

Denver CPU 0Denver CPU 0

L1-I

128KB

L1-I

128KB

L1-D

64KB

L1-D

64KB

Denver CPU 1Denver CPU 1

L1-I

128KB

L1-I

128KB

L1-D

64KB

L1-D

64KB

Denver CPU shared L2 cache

2 MB

Denver CPU shared L2 cache

2 MB

Copy Engine
Host Machine

GPU L2 cache

2048 KB

GPU L2 cache

2048 KB

Discrete Pascal GPU

GeForce GTX 1070

SM 0SM 0

128 cores

SM 14SM 14

128 cores
...

Copy Engine 0 Copy Engine 1

…DRAM1

Bank 0

DRAM1

Bank 0

DRAM

Bank

nCPU

DRAM

Bank

nCPU

1DRAM bank count and size depend on device package

…
DRAM1

Bank 0

DRAM1

Bank 0

DRAM

Bank

nGPU

DRAM

Bank

nGPU

DRAM

Bank 1

DRAM

Bank 1

PCI-E Bus

Figure 2.8: Jetson TX2 Architecture (left) and GeForce GTX 1070 Architecture (right)

a hardware CE that can copy data between memory regions allocated for CPU use and regions allocated

for GPU use. The iGPU has fewer GPU cores than is typically found in high-end GPUs used for graphics,

gaming, and high-performance computing (HPC) applications. We are interested in exploiting any potential

for sharing the TX2’s GPU for multiple tasks so that its computing capacity is not unnecessarily wasted.

Shown on the right in Figure 2.8 is the architecture of the GTX 1070, an example of a dGPU. Discrete

GPUs consist only of the SMs and local device memory, typically packaged on an adapter card for mounting

in a PCIe expansion slot on a computer motherboard. Like all dGPUs, the GTX 1070 does not share memory

with the host CPU, instead using the PCIe bus to copy data to and from the host memory. This GPU features

many more SMs than the TX2, increasing the potential benefit attainable if it is shared among multiple tasks.

It also has two CEs, and a larger cache.

2.3.3 GPU Programming Model

Today’s GPUs evolved from a fixed-function special-purpose hardware pipeline for graphics rendering.

Initially, the hardware pipeline was configurable but not programmable (Owens et al., 2008). Each stage in the

pipeline then became more flexible for running user programs when general-purpose programs were adapted

and mapped to the graphics pipelines. However, such hardware pipelines are limited by their performance

bottleneck—the slowest stage of processing. The solution for mitigating this issue was unified processing

units, as in the modern GPU hardware already discussed in Section 2.3.2, so that the mapping process for

graphics APIs was no longer necessary. This change eventually made possible the GPGPU programming

model we describe in this section.

42

Algorithm 1 Vector Addition Pseudocode.
1: kernel VECADD(A ptr to int, B: ptr to int, C: ptr to int)

. Calculate index based on built-in thread and block information
2: i := blockDim.x * blockIdx.x + threadIdx.x
3: C[i] := A[i] + B[i]
4: end kernel

5: procedure MAIN

. (i) Allocate GPU memory for arrays A, B, and C
6: cudaMalloc(d A)
7: . . .

. (ii) Copy data from CPU to GPU memory for arrays A and B
8: cudaMemcpy(d A, h A)
9: . . .

. (iii) Launch the kernel
10: vecAdd<<<numBlocks, threadsPerBlock>>>(d A, d B, d C)

. (iv) Copy results from GPU to CPU array C
11: cudaMemcpy(h C, d C)

. (v) Free GPU memory for arrays A, B, and C
12: cudaFree(d A)
13: . . .
14: end procedure

The GPGPU programming model follows a single-instruction multi-thread (SIMT) programming

paradigm. SIMT on GPUs is equivalent to a single-instruction multi-data (SIMD) programming paradigm, as

each thread usually processes a different data element. Following the SIMT programming paradigm, GPU

threads process data elements on multiple processing units in the GPU, providing data parallelism in GPU

computing space. To enable SIMT, NVIDIA provides CUDA programming interfaces, which we illustrate

with a VECADD program as follows.

With GPUs as co-processors to CPUs, a CUDA program runs as a task (process or thread) on a CPU and

relies on a GPU for some part of its computational requirements.7 The general structure of a CUDA program

when it needs to interact with a GPU is as follows: (i) allocate memory for the GPU to use; (ii) copy input

data from CPU memory to GPU memory; (iii) launch execution of a GPU program called a kernel to process

the data; (iv) copy the results from GPU memory back to CPU memory; (v) free any unneeded memory.

CUDA extends the C/C++ language to allow the definition of GPU functions as kernels. CUDA

kernels are written from the perspective of a single GPU thread. Consider the CUDA program expressed

in pseudocode in Algorithm 1 as an example: it uses the kernel VECADD, which defines that each GPU

thread adds a single pair of elements and stores the sum in a corresponding location in an output array. Each

7Note that both CPU and GPU computations are specified in the same CUDA program.

43

GPU thread is assigned an index, which can be retrieved via special global system-defined variables, as

demonstrated in Line 2. In this example, thread indices are used to locate the array elements.

A kernel runs on a GPU through a set of thread blocks that can be executed in any order. Each thread

block, or simply block, comprises a number of threads. As seen in Line 10 of Algorithm 1, the number of

blocks and threads per block are programmer-specified and can be set at runtime when a kernel is launched.

The CUDA runtime uses these values to launch and organize GPU threads (or simply threads8).

These threads are scheduled on GPUs with block granularity: resources are reserved and released per

block, rather than per thread or kernel. In other words, blocks are the schedulable entities on NVIDIA GPUs.

Threads in a block are launched as a whole when an SM becomes ready with enough resources for the entire

block. All threads in a block are executed on the same SM non-preemptively until their completion. A block

is assigned to the first SM that is ready. However, when multiple SMs are available, it is undocumented which

SM the block will be assigned to—the block-to-SM assignment rules have been partially dissected in a recent

work by (Saudo et al., 2020). Multiple blocks from the same kernel can execute in parallel. A kernel starts

when at least one thread of one block starts; a kernel completes when all threads in all blocks have exited.

However, not all threads in a block execute in parallel, nor is this an efficient way to explore parallelism.

Threads in a block are further grouped into warps. It is within a warp that the same instruction is executed

by all threads; different warps from the same thread block can execute different instructions. In this way,

stalls due to memory accesses and waiting for special units can be hidden by scheduling another ready

warp. Moreover, when the program diverges into different branches within a warp, threads will run in

lock-step. Threads of only one branch are running at a time, and the remaining threads are left inactive,

wasting resources. Such penalties depend on the size of the warp—a smaller warp causes less waste, but

increases the hardware complexity for warp scheduling and management. Throughout all NVIDIA GPU

architectures, the warp size has remainsed 32.

Warp scheduling determines the low-level execution, but unfortunately, its scheduling policy is imple-

mented in the hardware and unknown, and subject to change between architecture generations. For example,

prior to the Volta architecture, the execution of branches was serialized, whereas since the Volta architecture,

the execution of branches can be interleaved. Fortunately, at block granularity there exist higher-level

scheduling and resource management, for which we conduct our real-time analysis.

8We henceforth use the term thread to mean a hardware thread on the GPU, and refer to threads that execute on CPUs explicitly as
CPU threads.

44

CPU

CUDA
Kernel

Thread
Blocks

Warps

Total time

Kernel time

Block time

Warp time

Figure 2.9: Disgram illustrating the relation between CUDA programs, kernels, thread blocks, and warps.

We illustrate the execution of these entities described so far in Figure 2.9. In this figure, we show the

execution timeline of one kernel launch. As mentioned, parallelism is explored between warps and between

blocks. The figure distinguishes time at different granularities: warp time, the time taken to execute one warp,

block time, the time taken to execute a single block (from the start time of its first warp to the end time of its

last warp), kernel time, the time taken to execute a kernel (from the start time of its first block to the end time

to its last block), and total time, the time taken to execute the entire CUDA program (both CPU and GPU

portions).

We refer to kernels and memory-copy operations collectively as GPU operations, which are submitted

to a GPU in CUDA streams. Operations within a stream are executed in FIFO order. By default, the NULL

stream is used, but users can submit operations to multiple user-defined streams.9 Kernels from different

streams can run concurrently if sufficient internal resources are available. Concurrent kernel execution (CKE)

was first introduced in the Fermi architecture and then enhanced with the Hyper-Q features introduced in the

Kepler architecture (NVIDIA, 2009, 2012). Copy operations are handled by the GPU’s CE and can be in

parallel with kernel executions on the EE.

True parallelism is limited to kernels in the same CUDA context, which is usually one per OS process. It

has been shown that kernels from different CUDA contexts are not truly concurrent but execute in a multi-

programmed manner (Otterness et al., 2017b), i.e., blocks from different kernels never overlap. Fortunately,

NVIDIA provides the Multi-Process Service (MPS), which funnels kernels from different OS processes

into a shared CUDA context so they can execute in parallel (NVIDIA, 2019e). MPS was further improved

9CUDA documentation guarantees that operations within a stream are executed in FIFO order, but does not describe how operations
from different streams are ordered.

45

to include quality-of-service features to manage execution resource provisioning on the Volta architecture.

Moreover, since the introduction of Volta, processes using MPS can retain individual CUDA contexts.

As mentioned above, a CUDA program makes CUDA API calls that can be synchronous or asynchronous;

for many calls, a variant of both is available. For example, cudaMemcpy and cudaMemcpyAsync both copy

data between regions of CPU memory and GPU memory, or between two regions of GPU memory, but when

memory is pinned (i.e., page-locked), cudaMemcpyAsync can return control to the calling CPU task before

the copy is completed, whereas cudaMemcpy blocks the CPU task until the memory copy completes.

Kernel launches are always supposed to be asynchronous. The CUDA documentation10 (NVIDIA,

2019c), however, uses a narrow definition of “asynchronous” that can be misleading. According to the

documentation, “concurrent host execution is facilitated through asynchronous library functions that return

control to the host thread before the device completes the requested task.” Notably, this definition does not

imply that asynchronous API calls are nonblocking to the CPU. As noted in Section 3.3, we have found

situations in which kernel launches still cause CPU blocking even if the API call returns before the requested

kernel completes.

In summary, we have reviewed different accelerators and NVIDIA GPU hardware architecture and

programming models thus far, which provide GPU fundamentals for the review of prior work on non-real-

time GPUs.

2.3.4 Prior Work on Non-Real-Time GPUs

As GPUs support general-purpose computation beyond embedded and real-time systems, we dedicate

this section to reviewing prior works on non-real-time GPUs. We first review reverse-engineering works

that reveal details beyond what is included in the official documentation. This revealed information is

important for resource management, which we review next. We then review GPU sharing techniques and

GPU virtualization. Lastly, we review non-real-time GPU scheduling frameworks.

As we will see in our real-time GPU review, many of the techniques for non-real-time systems inspired a

variant usage in real-time ones.

10Section 3.2.5.1 of the Programming Guide for CUDA version 10.2.89.

46

2.3.4.1 GPU Reverse Engineering

GPU program optimization, modeling and analysis, and resource management require a deep understand-

ing of GPU runtime and hardware details: GPU microarchitecture, memory hierarchy, scheduling policies,

etc. However, owing to the limited documentation and closed-source software hardware stack of NVIDIA

GPUs, these details are often either unavailable or confusing.

This has led to a series of microbenchmark-based reverse-engineering studies. An early GPU architecture,

Tesla, was benchmarked by Volkov and Demmel (2008) to achieve fast fine-tuned linear algebra using

measurement of the memory-system structure and performance, kernel launch overheads, and processing-

unit latency. Many related works have continued such reverse-engineering effort for every NVIDIA GPU

architecture generation (Wong et al., 2010; Meltzer et al., 2013; Mei and Chu, 2016; Jia et al., 2018; Jain

et al., 2019). They noted findings that were inconsistent with the official documents, e.g., existence of

translation lookaside buffer (TLB) (Volkov and Demmel, 2008) and specifics regarding texture and constant

caches (Wong et al., 2010). Such inconsistency still persists in other respects, such as asynchronous execution,

which we will discuss. These inconsistencies are problematic as they could result in a burden of debugging

and even damage in safety-critical settings.

These reverse-engineering efforts focused on discovering the structures of memory hierarchies and

measuring the performance of low-level hardware units. Their results were shown to be useful for application

performance optimization (Volkov and Demmel, 2008) and interference reduction via hardware isolation (Jain

et al., 2019).

To enable OS-level management of NVIDIA GPUs, the interactions between black-box library, driver,

and hardware must be understood. By tracing the events between these entities, Menychtas et al. (2013)

demonstrated that an interaction state machine can be automatically inferred. This state machine was then

leveraged to build an interception-based OS-level GPU scheduling management framework (Menychtas et al.,

2014). The open-source NVIDIA driver Nouveau also relies on tracing memory mapped I/O access to reverse

engineer NVIDIA GPU drivers (X.org Foundation, 2014); however, Nouveau does not support CUDA.

These reverse-engineering efforts reveal interactions within the black-box software hardware stack, but

not GPU scheduling policies, which are fundamental for real-time analysis. We will discuss our effort to

understand GPU scheduling rules in this dissertation. After we published these scheduling rules, Saudo

et al. (2020) further investigated the block-to-SM assignment policy and noted the impacts of memory usage

47

(shared memory and registers) on block-to-SM assignments, but as they noted, the complete policy has yet to

be revealed. Nonetheless, because of the principle of balancing blocks to SMs as they also noted, any benefit

to our real-time analysis from considering the block-to-SM assignment would be subtle.

2.3.4.2 GPU Resource Management

We now review GPU resource-management techniques for cache, memory, and computing resources.

GPU cache management. The GPU cache is an efficient but limited resource in reducing memory access

latency. However, massive threads and a bursty memory-access pattern of GPU workloads can cause

cache thrashing and interference. Prior works presented techniques to mitigate cache interference through

cache bypassing and cache isolation. Special cache operators for cache bypassing control are available

in Parallel Thread Execution (PTX) Instruction Set Architecture (ISA) provided by NVIDIA (NVIDIA,

2020). Some prior works have experimented with different cache-bypassing policies (Li et al., 2015a,b,c;

Ausavarungnirun et al., 2015), but they relied on profiling mechanisms they implemented on a GPU simulator,

GPGPU-sim (Bakhoda et al., 2009), leaving their work inapplicable on real hardware unless adopted by

vendors.

Jain et al. (2019) reverse-engineered the hash function that maps physical memory addresses and cache

sets. They first identified all pairs of addresses that are mapped into the same cache set and thus can evict

each other. Then they find the only valid hash function by brute force, under the assumptions that (i) physical

addresses are the input of such hash function, (ii) only bitwise operations are used in the hash function for fast

hardware implementation, and (iii) caches apply Least Recently Used (LRU) as the eviction policy. They had

to modify (the open-source portion of) NVIDIA driver to obtain physical addresses. With their modification

and the reverse-engineered hash function, they implemented page coloring to partition L2 cache allocation.

GPU memory management. In addition to cache isolation, Jain et al. (2019) implemented DRAM parti-

tioning. Using the same approach, they reverse-engineered the hash function that maps physical memory

addresses to DRAM banks. Based on their observation, GPU DRAM and L2 cache sets can be organized

into memory modules. They showed that memory interferences can be mitigated by isolating applications to

different memory modules through page coloring. Other prior work experimented with different memory man-

agement on the simulator GPGPU-sim (Jog et al., 2014; Mao et al., 2016; Jog et al., 2016; Ausavarungnirun

et al., 2017, 2018).

48

GPU computing resource management. Managing computing resources on GPUs via partitioning allows

for spatial multitasking, which has been investigated on GPU simulators (Adriaens et al., 2012; Ubal et al.,

2012; Aguilera et al., 2014a,b; Ukidave et al., 2014; Tanasic et al., 2014).

For real hardware, Wu et al. (2015) presented a software approach that transforms programs to execute

the workloads on the assigned SMs. A transformed program determines the work of each thread based on

the SM ID instead of thread ID used in the traditional CUDA programming model. With such a SM-centric

transformation, a kernel can be partitioned to a subset of SMs, allowing spatial scheduling of concurrent

kernels. This approach was applied by Janzén et al. (2016) to improve the throughput of poorly scaling HPC

tasks, and applied by Jain et al. (2019) along with memory reservations.

We have reviewed prior works on GPU resource management in this section. Some of these techniques

are also useful for GPU sharing, which we review next.

2.3.4.3 GPU Sharing

As GPUs evolve to increase their capacity, it is difficult for applications to scale as well, or for a

single application to continue fully utilizing resources on new GPUs. Moreover, any application may

underutilize GPUs during its exiting stage, where in extreme cases only one SM may be used. Therefore,

GPU sharing is necessary. In the previous section, we reviewed resource-management techniques, many of

which impact GPU sharing efficiency. For example, partitioning computing and memory resources allows

spatial multitasking sharing while reducing resource contention. In this section, we review other techniques

for mitigating interference and other GPU-sharing techniques, including kernel fusion, kernel slicing, and

kernel preemption.

GPU interference and concurrency. A prior body of work examined how to characterize kernels and

predict the interference between their concurrent execution. Many prior works regarding interference analysis

or mitigation use GPU simulators (Kerr et al., 2009; Goswami et al., 2010; Sethia and Mahlke, 2014; Jog

et al., 2015; Wang et al., 2016; Kayıran et al., 2013; Hu et al., 2016; Xu et al., 2016a; Dai et al., 2018).

However, these methods rely on hardware changes or metrics that are unavailable with real hardware. For

example, Jog et al. (2015) focused on memory interference using a misses-per-kilo-instruction metric, which

is unavailable with real hardware-tracing tools (NVIDIA, 2019d). Therefore, we focus on research work

using real hardware.

49

Phull et al. (2012) proposed a performance degradation-analysis model based on the profiling of an

application’s repetitive GPU access and execution pattern—specifically, time gaps between GPU calls and

average GPU execution time. They proposed two interference prediction methods: simulation-based one

and timed Petri nets (TPN) (Ramchandani, 1973), which is a formal model for analyzing execution in

concurrent systems. The predicted interference results are used to inform kernel-to-device assignment in a

cluster environment. Because such prediction relies on a repetitive execution pattern, when it is unavailable,

an online monitoring and response mechanism takes charge to detect excessive interference and reassign

interfering kernels.

Before concurrent kernel execution was introduced in NVIDIA Kepler architecture, kernel fusion is a

common technique that virtually enables concurrency on GPUs by merging multiple kernels into one (Wang

et al., 2010; Ravi et al., 2011; Gregg et al., 2012). Ravi et al. (2011) proposed grading the potential

improvement of consolidating two kernels using the affinity score, which is determined by considering

kernels’ resource requirements: compute resources (number of threads) on SMs and shared-memory usage.

Higher contention due to conflicting resource requirements leads to a lower affinity score, indicating fewer

concurrency benefits. In addition, they proposed a couple of molding policies to change the resource

requirements by varying the number of threads in the kernel, enabling more concurrency opportunities.

However, their experiments were limited to the kernels that could accept any number of threads. Such

limitations were removed in a later work that supported the transformation of any kernel to elastic kernels (Pai

et al., 2013).

Such a transformation is also applied to divide a kernel into smaller slices that comprise fewer threads

and require fewer resources that can create more opportunities for concurrency. To achieve this dynamically,

Zhong and He (2013) proposed the Kenelet runtime, which transforms intermediate-level or assembly-level

code and thus does not require source-code modification. For memory-copy operations, Gdev slices memory

transactions into chunks in order to overlap bidirectional memory transfers (Kato et al., 2012).

Other similar work that estimates the interference or explores the benefits of concurrent kernel execution

include (Ravi et al., 2011; Pai et al., 2013; Ukidave et al., 2016; Chen et al., 2017a; Carvalho et al., 2017;

Wen et al., 2018; Carvalho et al., 2020).

GPU preemption. GPU preemption helps prevent starvation and improves the fairness and responsiveness

of GPU kernels. Compute preemption at the instruction level was introduced with the NVIDIA Pascal

50

architecture (NVIDIA, 2016b). Before that, to enable GPU preemption, Tanasic et al. (2014) proposed SM

draining. During SM draining, each SM is preempted by waiting for the existing thread blocks to complete.

As we will reveal in Section 3.2.2, kernels from streams with higher priorities preempt ones with lower

priorities in a similar way at the boundary of thread-block execution. This preemption mechanism relies on

the GPU execution model: each thread block is executed independently and has its own states. Because the

running thread blocks exit normally and ones that have not commenced yet have no contexts, it is unnecessary

to save the context of the preempted kernel, which prevents context-switching overheads. However, the

preemption latency depends on the thread blocks’ remaining execution time, which can be long or forever

with a persistent kernel.

To reduce preemption latency, Park et al. (2015) experimented on GPGPU-sim with another preemption

technique, SM flushing, which stops thread blocks immediately if they are idempotent (De Kruijf and

Sankaralingam, 2011). A thread block is idempotent if it produces the same results regardless of being

rerun multiple times. Because not all kernels conform to this idempotent condition, SM flushing has limited

applicability. In addition, although SM flushing decreases preemption latency, it forces the rerunning of a

thread block, resulting in overheads that may decrease the overall throughput. To mitigate such overheads,

preemption techniques—SM draining, SM flushing, or the baseline context switching—are dynamically

selected considering the execution progress of the thread block (Park et al., 2015).

Wang et al. (2016) and Lin et al. (2016) also experimented on GPGPU-sim to produce a finer-grained

preemption mechanism.

We have discussed many GPU-sharing techniques from interference mitigation to efficient preemption.

Next, we review an important GPU sharing scenario in cloud environment using GPU virtualization.

2.3.4.4 GPU Virtualization

As a power-efficient and cost-effective accelerator, GPUs are widely used in cloud systems (Microsoft

Azure, 2020; Amazon AWS, 2020; Google Cloud, 2020) where resources are shared among clients, each

of which is often assigned a virtual machine that provides the functionality of a physical computer. The

virtualization of GPUs as a GPU-sharing technique, however, is a new and challenging area for which

we review the implementation techniques: API intercepting and remoting, driver-level virtualization, and

51

hardware-supported virtualization. We focus on the virtualization solutions for GPGPU computing and omit

those for graphics.

API intercepting and remoting. User-space API intercepting and remoting is a more common GPU vir-

tualization technique, because it does not require interaction with the closed-source driver or hardware. A

common approach to API intercepting and remoting is similar to that of remote procedure calls (RPCs). It

takes three steps: first, the GPU calls in the guest OS are intercepted by wrapping the runtime API library;

second, the intercepted calls are sent to and processed remotely by the host OS; and third, the computation

results are returned back to the guest OS. Adapting to library updates is affordable through automatically

generated wrapper library. With the wrapper library dynamically linked, this also avoids any modification

and recompilation to the client applications. Prior works have proposed various performance improvement

methods for this approach (Gupta et al., 2009, 2011; Duato et al., 2010; Giunta et al., 2010; Shi et al., 2011).

Driver-level virtualization. This is possible with open-source GPU device drivers made by vendors like

AMD (AMD, 2016) or third parties involved in reverse-engineering efforts (X.org Foundation, 2020).

Using an open-source Nouveau driver on NVIDIA GPUs, GPUvm creates shadow copies of GPUs

to isolate GPU usage from multiple guest OSs, each of which owns shadow page tables (SPTs) and GPU

command channels (Suzuki et al., 2014). In addition, GPUvm provides fair time-sharing of GPUs using

a bandwidth-aware non-preemptive device (BAND) scheduler, and prioritizes guest OSs considering their

utilization and their periodically replenished budgets (credits). The BAND scheduler is based on the Credit

scheduler in Xen (Bensaou et al., 2001; Barham et al., 2003) with a modification that compensates for credit

(budget) accounting errors due to non-preemptive GPU execution.

Huang et al. (2016) implemented a virtualization solution for the Heterogeneous System Architecture

(HSA) (Kyriazis, 2012). The goal of HSA is to improve the communication efficiency and programmability

of heterogeneous platforms. It reduces memory copies by sharing memory space between the CPU and

GPU, and supports user-mode queuing for dispatching kernels that would otherwise be passed through the

device driver, and uses memory-based instead of interruption-based kernel completion signaling to reduce

the communication latency. Therefore, virtualizing HSA-based GPUs must be memory-based as well. As

page tables are shared between the CPU and GPU, the memory translation from guest virtual address (GVA)

to machine physical address (MPA) can be accomplished by sharing the SPT between CPU and GPU as

well. Given that HSA manages GPU commands in user-space queues, the hypervisor only needs to initialize

52

GVA for these queues to the GPU. This memory-based management in HSA makes virtualization simpler

compared with other GPU system architectures. From the GPU’s perspective, queues from guest OSs are

managed and scheduled similarly to ones from processes in the host OS.

Hardware-supported virtualization. Hardware-supported virtualization for GPUs depends on the features

provided by the vendors. The Intel VT-d (Abramson et al., 2006) and AMD-Vi (AMD, 2016) support a single

guest OS per GPU. The NVIDIA GRID (Herrera, 2014) supports sharing the GPU with multiple guest OSs

by separating the physical address space of the GPU and enabling independent address translation. Such

hardware isolation is important for real-time systems. However, the NVIDIA GRID is limited to graphics.

2.3.4.5 GPU Scheduling

GPU scheduling is managed in the runtime, driver, and hardware stack. We review work devoted to

controlling GPU scheduling through code modification, runtime replacement, or system-level control.

GPU persistent threads. In contrast to traditional GPU programming where thread blocks are completely

scheduled by the hardware, a different programming style that uses persistent threads (PT) enables software

scheduling. It takes fewer threads that are persistent through the kernel’s lifetime to fetch and process all the

workload from the work queues. In PT-style programming, workloads are scheduled into the work queues

bypassing hardware scheduling. Most of the advantageous features summarized by Gupta et al. (2012) have

been natively supported in later CUDA generations, as we discuss next.

Tzeng et al. (2010) applied PT for dynamically generated irregular-parallel workloads, which were

poorly supported in GPUs at the time. In traditional non-PT GPU programming, to handle the generated

workloads, the host must copy the results and then launch new kernels accordingly. In contrast, using PT,

the generated workloads can be appended to the work queues for further processing. Later, dynamically

generated workloads were natively supported by a feature named dynamic parallelism that supports kernel

launches from the GPU (NVIDIA, 2019c).

Early on, synchronization between GPU threads was only supported within each thread block. Global syn-

chronization across thread blocks required dividing kernels at synchronization points, and was accomplished

through extra host-device communication to relaunch kernels for the portion after the synchronization points,

similar to the way generated workloads are handled. Using PT, Stuart and Owens (2009) handled global

synchronization in their implementation for message-passing APIs on GPUs by allowing all thread blocks

53

to be resident. Later in 2017, NVIDIA supported global synchronization with a feature named cooperative

groups (NVIDIA, 2019c).

GPU kernel reordering. Before Hyper-Q was introduced with the Kepler architecture, kernels that were

launched in multiple streams could suffer from false serialization, which happened when kernels from the

same stream were submitted to the single hardware queue and thus had to be serialized. Wende et al. (2012)

proposed a producer-consumer solution, in which a consumer thread pulls kernels from the work-item queues

of multiple producer threads in round-robin fashion, effectively avoiding having kernels from the same stream

in the hardware queue. Kernel ordering is also explored in (Lázaro-Muñoz et al., 2017; Zhou et al., 2018).

GPU as a first-class device. In current system architectures, GPUs are managed as I/O devices by drivers.

However, as GPUs become capable of processing more general-purpose computation, it is expected that

managing GPUs as first-class devices in the OS will benefit from system-level optimization. Meanwhile, it

also enables the usage of the GPU for OS tasks, as demonstrated by the file system encryption tasks supported

in PTask (Rossbach et al., 2011), Gdev (Kato et al., 2012), GPUstore (Sun et al., 2012).

PTask manages GPUs as first-class devices with a set of OS abstractions (Rossbach et al., 2011).

These abstractions provide a dataflow programming model that represents applications as graphs, in which

vertices represent CPU or GPU work. The work and graph are declared by application programmers and

then scheduled by the OS. In this way, the OS can exploit graph scheduling optimization and eliminate

unnecessary data movements with system-wide visibility. For example, PTask scheduling in the data-aware

mode prioritizes scheduling a task to the device where its input data resides, and incorporates OS priority in

the priority mode to improve scheduling fairness.

In a PTask graph, each vertex represents the work of one type of device. The OS tracks GPU vertices

and schedules them like normal CPU processes. However, because proprietary GPU drivers do not provide

kernel-mode interfaces, a GPU vertex still requires user-mode CPU portions, if not a user-mode CPU process

in the PTask implementation.

This requirement is lifted with an open-source driver in another framework Gdev, which also manages

GPUs as first-class devices (Kato et al., 2012). In Gdev, a runtime library support is integrated in a Linux

kernel module alongside a custom GPU device driver, allowing both OS and user-space programs to use

the same API. Gdev manages these API calls directly, rather than using API interception (like the GPU

virtualization work above) or additional programming abstraction (like PTask). By managing GPUs as

54

first-class devices, Gdev implements GPU resource management, such as using shared memory for IPC and

using data swapping to support a virtual address space that exceeds the physical size limit.

Menychtas et al. (2014) also argued for the OS’s responsibility for GPU resource management. As

mentioned above, they built an OS-level scheduling framework that intercepted hardware-software interfaces

revealed in their prior reverse-engineering work (Menychtas et al., 2013). CPUs and GPUs communicate

to send GPU operation requests, and receive completion signals through memory-mapped I/O (MMIO). To

intercept kernel launches, the device control registers are unmapped to enforce page-fault handling, where

GPU scheduling management can be inserted. Meanwhile, GPU kernel completion signals are constantly

polled to monitor execution status. This approach enforces scheduling policies for any GPU application,

whereas API-driven approaches (e.g., PTask and Gdev) require applications to use the modified or wrapper

libraries.

Using this approach, Menychtas et al. (2014) experimented with a disengaged timeslice scheduler using

token-based timeslice control to ensure fairness between GPU applications and a disengaged fair queueing

scheduler that allows CKE to improve efficient GPU utilization. However, it had the drawback of being

unable to differentiate between kernel and copy operations, and thus the GPU had to be managed as a whole,

preventing any exploration of the parallelism between CE and EE.

2.3.5 Challenges for Real-Time GPUs

As a commonly used accelerator for computer-vision applications in safety-critical autonomous-driving

systems, the GPU must provide real-time guarantees. After reviewing GPU hardware architecture, pro-

gramming models, and prior work on non-real-time GPUs, we discuss the challenges of enabling real-time

GPUs.

Understanding GPU scheduling. Existing reverse-engineering work focuses on GPU microarchitecture

and memory hierarchies and structures, leaving the GPU scheduling rules to be revealed. A complete set

of GPU scheduling policies are fundamental for real-time analysis. However, only limited information

pertaining to the possible CKE between streams and the serialization within streams is included in the official

documentation. The exact condition for concurrent execution and the scheduling order of kernels from

multiple streams remains unknown.

55

Synchronization pitfalls. In reviewing prior reverse-engineering works, we noticed an inconsistency be-

tween experimental observations and the documents about the cache on NVIDIA GPUs. Unfortunately, a

similar inconsistency persists in CPU-GPU synchronization issues. Asynchronous APIs can cause unexpected

synchronization behavior, resulting in problematic timing issues.

Performance implication of execution models. GPU tasks execute differently in process-based and thread-

based contexts. In a process-based context, each task is executed as an OS process with its own address

space and memory isolation between tasks. In addition, the aforementioned synchronization pitfalls do

not exist across processes. However, process-based execution does not permit concurrency on the GPU.

In a thread-based context, all tasks running as threads in a shared address space can have kernels running

concurrently on the GPU, but memory isolation is lost. Furthermore, using the MPS tool expands the options

of the execution models, raising the question of how real-time GPU tasks should be executed (process vs

thread vs MPS).

GPU task modeling and real-time analysis. Real-time analysis is conducted using task models. While

there have been extensive studies about CPU task models, prior work on GPU task models is limited. We

have discussed how the programming model and execution paradigm of GPUs are different from those of

CPUs, and therefore a new task model for GPUs with the revealed GPU scheduling rules is required to lay the

groundwork for real-time schedulability analysis. The challenge is not only to analyze GPU tasks themselves,

but to analyze tasks running the CPU-GPU heterogeneous platforms. We provide the fundamentals of

real-time systems and review prior work on real-time GPUs next.

2.4 Real-Time Systems

The central subject of this dissertation is real-time systems using GPUs that are to be shared by computer-

vision applications in autonomous-driving systems. In this section, we provide essential background on

real-time systems. We first describe a commonly used real-time task model and several scheduling algorithms.

In discussing real-time correctness under these algorithms, we describe two key concepts—schedulability and

feasibility—followed by some prior correctness results including some schedulability tests and response-time-

bound analysis. In particular, we focus on reviewing real-time scheduling for directed acyclic graphs (DAGs),

upon which we build an analysis of the heterogeneous CPU-GPU platforms we use. Then we transition from

56

Notation Definition
τ A task system (task set) τ = {τ1,τ2,τ3, . . . ,τn}
τi The ith task of τ

Ti The period of τi

Ci The worst-case execution requirement of τi

Di The relative deadline of τi

ui The utilization of τi ui =Ci/Ti

Usum The total utilization of τ Usum = ∑ui

Ri The response-time bound of τi Ri = max j(Ri, j)

τi, j The jth job of τi

ri, j The release time of τi, j

fi, j The finish time of τi, j

di, j The (absolute) deadline of τi, j di, j = ri, j +Di

Ri, j The response time of τi, j Ri, j = fi, j− ri, j

xi, j The tardiness of τi, j xi, j = max(0, fi, j−di, j)

Table 2.4: Real-time task model notation.

theory to practice, and review several real-time framework implementations that are used in this dissertation.

Lastly, after reviewing all the fundamentals, we thoroughly review prior work on real-time GPUs.

2.4.1 Real-Time Task Model

Real-time autonomous-driving systems encompass many applications that are under temporal con-

straints due to their position on the critical path from capturing the environment to executing vehicle-control

commands. Some are event-driven, such as computer-vision applications processing images that arrive con-

tinuously, and some are time-driven, such as the logging and monitoring components that check system status

periodically. These real-time applications in autonomous-driving and other systems share a characteristic:

they issue new units of work recurrently. Such recurrence is described formally for reasoning about these

applications and validating their temporal correctness. A commonly used formalization, the one we also use,

is the sporadic task model (Mok, 1983), which we describe next with terms and notation that has been widely

adopted by real-time systems community (IEEE TCRTS, 2020), as summarized in Table 2.4.

In the sporadic task model, a real-time task system (or task set) τ consists of n sequential tasks τ =

{τ1,τ2,τ3, . . . ,τn}. Each task τi releases jobs recurrently with a minimum inter-release time separation defined

by its period Ti. A task is periodic if its jobs are separated by exactly its period, or sporadic if its jobs are

57

separated by at least its period, allowing inter-release delays. In the remainder of this dissertation, we focus

on sporadic task systems unless explicitly stated otherwise.

Another parameter of relevance to a task τi is its worst-case execution requirement Ci, which defines

an upper bound of the actual execution requirement per job. For a CPU task, Ci quantifies the worst-case

execution time of τi on a CPU core, whereas we will define it differently for GPU tasks.

Each task has a relative deadline Di, which defines its timing constraint: each of its jobs needs to be

completed within Di time units after the job’s release time (defined below). A task system is categorized to

have implicit deadlines if all the tasks’ relative deadlines are equal to their periods (Di = Ti for all τi ∈ τ),

constrained deadlines if all the tasks’ relative deadlines have upper bounds defined by their periods (Di ≤ Ti

for all τi ∈ τ), or arbitrary deadlines otherwise.

Abstractly, a sporadic task τi can be characterized by a three-tuple (Ti,Ci,Di). These parameters are

known a priori. Informally and simply put, they define how often the jobs are released, how much processing

capacity each job might require, and how soon each job needs to be finished, respectively. The period and

execution requirement together define a task’s need for processing capacity, i.e., its utilization, ui =Ci/Ti,

and the total utilization of a task system is Usum = ∑ui.

Task τi’s jth job, denoted by τi, j, has a release time ri, j, a finish time fi, j, and an (absolute) deadline di, j,

where di, j = ri, j +Di. On many occasions, a more natural timing requirement relates to a job’s response

time Ri, j = fi, j − ri, j or a task’s respons time Ri = max j(Ri, j). A related concept, tardiness, given by

xi, j = max(0, fi, j−di, j), expresses the lateness of a job’s completion.

2.4.2 Scheduling

Scheduling algorithms assign and schedule jobs on processors to produce a schedule, which is a particular

assignment of all jobs in the task system.

Feasibility and schedulability. Feasibility and schedulability are used to describe the temporal correctness

of real-time scheduling. A schedule is feasible if it meets all timing constraints. From a different perspective,

a task set is feasible if a feasible schedule can be produced for it on a particular platform. Moreover, we say

a task set is schedulable by a particular scheduling algorithm if the scheduling algorithm always produces

a feasible schedule for the task set. We say a scheduling algorithm is optimal if all feasible task sets are

schedulable by this scheduling algorithm.

58

To validate the temporal correctness of real-time systems, the goal of real-time analysis is to derive the

procedures that examine if a task set is feasible and if it is schedulable by a given scheduling algorithm; these

procedures are called feasibility tests and schedulability tests, respectively. Specifically, a feasibility test

determines if there exists a scheduling algorithm under which a given task set is schedulable; a schedulability

test determines if a given task set is schedulable under a given scheduling algorithm.

Scheduling algorithms. The modules that implement the scheduling algorithms to generate schedules are

called schedulers, which can be either static or dynamic. Static schedulers produce task-set-specific schedules

offline, and thus are easy to implement and convenient to certify, but are inflexible for handling workload

changes. Dynamic schedulers generate schedules online, and thus can manage dynamic systems and consider

task status changes while making scheduling decisions. In this dissertation, we focus on dynamic schedulers

that are priority-driven.

Priority-driven schedulers assign priorities to jobs, and schedule the jobs with the highest priorities on the

available processors. Fixed-priority (FP) schedulers determine jobs’ priorities at a task level, i.e., they assign

the same priority to all the jobs of a task. For example, the fixed-priority rate-monotonic (RM) scheduler

gives to the jobs of tasks with shorter periods higher priority (Liu and Layland, 1973). Similarly, the fixed-

priority deadline-monotonic (DM) scheduler gives the jobs of tasks with shorter relative deadlines higher

priority (Audsley et al., 1991). As a generalization, job-level fixed-priority (JLFP) schedulers assign per-job

priorities, i.e., the jobs of a task can have different priorities. The simple first-in-first-out (FIFO) scheduler is

a JLFP scheduler that gives jobs with an earlier release time higher priority. The earliest-deadline-first (EDF)

scheduler is a well-studied JLFP scheduler that gives jobs with earlier absolute deadlines higher priority (Liu

and Layland, 1973). We focus on JLFP schedulers in this dissertation. Schedulers that can change jobs’

priorities at runtime are beyond the scope of our discussion.

We are specifically interested in the spectrum of JLFP schedulers that prioritize a job by a time instant

within a bounded time window containing the job’s release time—such a priority is window-constrained (Leon-

tyev and Anderson, 2010). Both FIFO and EDF use window-constrained prioritizations. We discuss these

JLFP schedulers and explain why we are interested in them in the Section 2.4.3.

Another categorization of schedulers is based on how they organize processors. A scheduler that can

schedule any job on any one of m processors is called a global scheduler. Otherwise, a scheduler that assigns

each task to one of a collection of disjoint sets of processors is called either clustered or partitioned scheduler,

59

depending on the size of each set. The size of each set is equal to one under a partitioned scheduler. The

size of each set may be larger than one under a clustered scheduler. Combined with a specific processor

organization, the aforementioned schedulers have variants such as global EDF (or G-EDF), clustered EDF

(or C-EDF), partitioned RM (or P-RM), etc.

2.4.3 Response-Time Bounds

The timing guarantees we derive for real-time tasks sharing GPUs are response-time bounds in soft

real-time (SRT) systems, which have less rigorous validation requirements than hard real-time (HRT) systems.

We define HRT and SRT in the following.

Hard and soft real time. HRT and SRT express different timing requirements. For application-specific

deadlines, HRT imposes the strict requirement that all the deadlines must be met. In contrast, SRT tolerates

deadline misses. Such tolerance of SRT can be defined from various perspectives. We refer readers who are

interested in a comprehensive review on SRT definitions to prior works (Liu, 2000; Brandenburg, 2011). In

the context of this dissertation, SRT requires all tasks’ response times to be bounded. For such response-time

bounds, of course, the shorter the better. Whether the derived response-time bounds are acceptable is

determined by system requirements. For example, for autonomous driving systems, we say the end-to-end

reponse-time bound, the bound of latency from image capture to vehicle-control-command ready time, should

be shorter than an alert driver’s reaction time, which is approximately 700 ms (Green, 2000).

We focus on SRT for autonomous-driving systems for the three reasons. First, most components of

autonomous-driving systems such as deep-learning frameworks only run on general-purpose OSs like Linux,

which is not a hard real-time OS (RTOS) even with patches like PREEMPT RT or an EDF-like scheduler

SCHED DEADLINE. Guaranteeing HRT correctness on a general-purpose OS is difficult to do without

introducing inefficiencies, and it is beyond the scope of this work. Although a small part of an autonomous-

driving system, such as the low-level vehicle execution control, can be contained within an RTOS like

QNX (BlackBerry, 2020) for HRT, this is not the case for the computer-vision components of interest.

Second, both FP and JLFP global schedulers are subject to a utilization bound of (m+ 1)/2 in the HRT

case (Andersson et al., 2001), whereas JLFP global schedulers that use window-constrained prioritization

are free of capacity loss in SRT cases (Leontyev and Anderson, 2010). In other words, these JLFP schedulers

provide bounded response times for task sets that fully utilize multiprocessors (Leontyev and Anderson,

60

2010). Third, current computer-vision algorithms produce non-deterministic results with imperfect accuracy,

which is compensated for by multiple sensory systems (lidar, radar, and camera). In such cases, enforcing

strict HRT correctness is less beneficial than preventing its capacity loss and instead guaranteeing that results

are ready within a bounded time as in SRT.

Prior work. We review a series of studies, in which the analysis techniques used for deriving response-time

bounds are used in this dissertation as well. Devi and Anderson (2005) derived response-time bounds

under preemptive and non-preemptive G-EDF without capacity loss. Leontyev and Anderson (2007) later

established response-time bounds for G-FIFO, and followed up with a generalized analysis of JLFP schedulers

that use window-constrained prioritization, which ensures the important characteristic that each job’s priority

will not be exceeded by that of any future job after a bounded time from the job’s release (Leontyev and

Anderson, 2010). They showed that this characteristic is sufficient for a global scheduler to guarantee

response-time bounds. Erickson and Anderson (2012) then introduced global fair-lateness scheduling (G-FL),

which uses linear programming to generate scheduling parameters (relative deadlines) that minimize the

maximum response-time bounds under window-constrained schedulers.

2.4.4 Real-Time DAG Scheduling

As we reviewed in Section 2.2.3, many frameworks for computer-vision applications apply graph-based

execution, as these applications—either classic pipelines or neural networks—are essentially graphs. In

addition, task systems with precedent constraints between tasks on heterogeneous platforms can be well-

modeled using DAGs. Thus, we review the prior work on real-time DAG scheduling herein, and we provide a

formal DAG task model definition in Section 4.1.

Speedup bounds. The problem of HRT schedulability analysis for DAG tasks was shown to be computa-

tionally intractable by Baruah et al. (2012), so they used the notion of a speedup bound as a metric of the

approximation quality. An algorithm A is said to have a speedup bound b if any task system that is feasible

on m unit-speed processors is schedulable by A on m processors of speed b. A series of works were produced

to tighten the speedup bound (Lakshmanan et al., 2010; Andersson and de Niz, 2012; Nelissen et al., 2012;

Bonifaci et al., 2013; Li et al., 2013; Qamhieh et al., 2013; Saifullah et al., 2013; Baruah, 2014; Saifullah

et al., 2014; Qamhieh et al., 2014; Jiang et al., 2016).

61

Both Bonifaci et al. (2013) and Li et al. (2013) derived the speedup bound of 2−1/m for DAG tasks

under G-EDF. This result was then generalized and improved by Baruah (2014). Meanwhile, Li et al. (2013)

argued that because an optimal scheduler is hypothetical, a speedup bound is insufficient for schedulability

tests, for which they proposed the notion of a capacity augmentation bound. An algorithm A is said to have a

capacity augmentation bound of b if it produces feasible schedules on m processors of speed b for any task

system that has a total utilization of at most m with each task’s critical path length shorter than its relative

deadline on unit-speed processors. Note that the critical path length of a DAG task is its WCET on infinite

number of processors.

A decomposition approach was used in some studies to transform DAG tasks into independent sequential

tasks by reassigning their scheduling parameters (relative deadlines) (Nelissen et al., 2012; Saifullah et al.,

2013, 2014; Qamhieh et al., 2014; Jiang et al., 2016). Some researchers considered synchronous parallel

tasks—a special form of DAG—that were phased into serial and parallel segments with synchronization

points in between (Saifullah et al., 2013; Andersson and de Niz, 2012; Nelissen et al., 2012). Lakshmanan

et al. (2010) studied speedup bounds under P-DM for a fork-join model—a special case of the synchronous

parallel task model—where a join task is added after each parallel segment. Kim et al. (2013) later extended

the fork-join model to support an arbitrary number of threads under G-DM.

Response-time analysis for HRT. Response-time analysis (RTA) explicitly computes a response-time

bound for each task, and determines HRT schedulability by checking if such bounds are within tasks’ relative

deadlines. This is not to be confused with SRT in which the bounds are allowed to exceed the relative

deadlines. RTA has been applied to derive schedulability tests for the fork-join task model (Axer et al., 2013),

synchronous parallel tasks (Chwa et al., 2013; Maia et al., 2014), and DAG tasks (Qamhieh et al., 2013,

2014; Serrano et al., 2016, 2017; Nasri et al., 2019).

Response-time bound analysis for SRT. Similar to the decomposition method, another transformation

approach was proposed for periodic and sporadic DAG tasks in SRT systems (Liu and Anderson, 2010).

These DAG tasks were transformed to ordinary sporadic tasks by guaranteeing precedent constraints with

reassigned release times, which we further illustrate with examples in Section 4.1. Response-time bounds

could then be derived for the resultant sporadic tasks under G-EDF. An early-release technique was used

to retain work-conserving execution by allowing jobs to execute before their release times. They later

applied this approach in a study of the communication cost for distributed systems (Liu and Anderson,

62

2011). This transformation was later applied by Yang et al. (2016b) for DAG tasks on heterogeneous

platforms, who reduced response-time bounds by combining DAGs and optimizing deadline settings using

linear programming. Later, Dong et al. (2017) further reduced response-time bounds by replacing the

transformation approach with a direct analysis using techniques introduced by Devi and Anderson (2005).

Some works examined other characteristics of DAG tasks. A federated scheduling was studied that

differs from partitioned scheduling in that a task is either partitioned to a processor that might be shared with

other tasks, or is assigned to a set of processors with exclusive access (Li et al., 2014; Baruah, 2015a,b,c;

Jiang et al., 2017; Li et al., 2017; Baruah, 2018). A DAG task may have conditional branches that need to

be considered (Baruah, 2015c; Baruah et al., 2015; Fonseca et al., 2015; Melani et al., 2015, 2016; Baruah,

2018). To balance the trade-off between preemptive and non-preemptive execution, a limited preemptive

scheme was considered (Serrano et al., 2016, 2017; Nasri et al., 2019).

2.4.5 Real-Time Frameworks

We describe the real-time frameworks that we use for implementing and evaluating real-world applications

and our real-time analysis.

LITMUSRT. LInux Testbed for MUltiprocessor Scheduling in Real-Time systems (LITMUSRT), an open-

source real-time extension on Linux, was used in our experiments to provide G-EDF and G-FL schedulers

for CPU tasks. LITMUSRT was initiated at UNC by Calandrino et al. (2006) and developed and currently

maintained by Brandenburg (2011) as the LITMUSRT Project (2018). It supports the sporadic task model

and scheduler plugins for clustered, partitioned, and global scheduling. Along with the kernel extension,

Feather-Trace, a tracing tool for obtaining execution-time measurements (Brandenburg and Anderson, 2007),

and liblitmus, a user-space library for implementing real-time tasks, are available. A Linux-based OS

is necessary for our evaluation of computer-vision workloads and GPU execution, as the computer-vision

frameworks and GPU drivers are well supported on Linux.

PGMRT. We use PGMRT (Elliott et al., 2014), a real-time middleware that manages processing graphs,

which is a general form of DAG. Our application uses PGMRT APIs to represent sporadic tasks created with

liblitmus as nodes and enforce precedent constraints with edges. In PGMRT, the readiness of the data

passed on edges is managed in a producer-consumer scheme using tokens, and in our DAG task model, each

job produces one token, but may consume multiple tokens from multiple incoming edges.

63

2.4.6 Real-Time GPUs

We now review prior work related to managing GPUs in real-time systems.

Exclusive GPUs. Limited by the unknown details of GPU scheduling rules, many works have treated GPUs

as non-shared resources. We review these works herein.

TimeGraph is a device-driver level GPU management framework that prioritizes and isolates GPU tasks

in an SRT setting (Kato et al., 2011b). It is implemented on an open-source GPU driver, Nouveau (X.org

Foundation, 2020), to support OpenGL, and has been ported to the PSCNV11 GPU driver to support

CUDA; the latter, however, has been discontinued. TimeGraph provides two scheduling policies: one that

prioritizes tasks to prevent performance interference, and another that reduces scheduling intervention to

favor throughput-oriented tasks at the cost of longer response times and priority inversions. It also provides

budget-control-based performance-isolation mechanisms: one that permits GPU kernel submission as long as

the remaining budget is positive, and imposes punishment for any resulting overrun (into negative budget)

at the next replenishment, and another that profiles and predicts the execution time of GPU tasks to strictly

prevent possible overruns. The execution-time profiling is achieved with a history table that maps methods

and data sizes to execution times, provided that these methods are invoked repeatedly.

RGEM, another work by Kato et al. (2011a), is instead a user-space CUDA runtime library, which

prioritizes GPU requests before sending them to the device driver. Like TimeGraph, RGEM prioritizes

GPU kernels. Rather than treating GPUs as a whole as does TimeGraph, RGEM manages copy and kernel

operations separately, allowing parallelism between CEs and EEs. Additionally, RGEM splits memory-copy

operations into chunks to reduce blocking time.

GPUSync, a GPU management system with rich features, explicitly addresses GPU management as a

synchronization problem (Elliott et al., 2013). Specifically, on the multi-GPU systems that GPUSync targets,

GPU allocation (task-to-GPU assignment) is managed by a k-exclusion locking protocol that arbitrates access

to multiple GPUs. Similar to RGEM, CEs and EEs are managed separately. Task migration between GPUs

is supported with consideration for memory-based affinity and migration costs such as bus interference.

Moreover, to prevent the misbehavior of overutilization, GPUSync applies several budget-enforcement

policies. In contrast to the profiling-based overrun control in TimeGraph, GPUSync recovers from overrun

with three strategies: graceful exit upon overrun signals, early release of overrunning tasks’ future jobs,

11PathScales fork of the Nouveau driver.

64

and budget inheritance. Furthermore, GPUSync handles interrupts with proper priorities by mapping GPU

requests to GPUs; the handlers (worker threads) are prioritized with the highest-priority tasks assigned to the

GPU that raises the interrupt.

Kernel slicing. We mentioned that RGEM splits memory transactions into smaller chunks. Such slicing

techniques, which we reviewed for non-real-time GPUs in Section 2.3.4.3, are commonly used to simulate

preemptive execution for real-time systems as well. In addition to memory copy slicing, a preemptive kernel

model (PKM), implemented by Basaran and Kang (2012), splits kernels into subkernels, each of which

executes a subset of thread blocks. Both RGEM and PKM require source-code modification for kernel

slicing, whereas GPES (Zhou et al., 2015), a framework implemented atop Gdev (Kato et al., 2012), further

enables transparent and automatic kernel-slicing techniques: compile-time source-code transformation and

just-in-time code rewriting. However, kernel slicing is not yet applicable for all applications, such as ones

that require global synchronization between all GPU thread blocks.

Timing analysis. Timing analysis for GPUs measures or analyzes a task’s worst-case execution-time

(WCET), one of the timing parameters used in schedulability analysis. Such timing analysis for GPU

tasks is challenging because of the complex architecture of GPUs, which is different from that of CPUs.

In particular, GPU execution is based on the SIMT model with massively parallel threads managed by

undisclosed low-level scheduling control.

Berezovskyi et al. (2012) first formed an integer linear program (ILP) to compute the WCET of a

group of threads on a single SM, and later improved the speed of this method with heuristics to produce

an estimate (Berezovskyi et al., 2013). Their follow-up work switched to a measurement-based statistical

approach that extended to multiple SMs (Berezovskyi et al., 2014, 2016). Horga et al. (2018) also proposed

a measurement-based approach that combines symbolic execution and a genetic algorithm. Several works

provided WCET analysis with information provided by a GPU simulator GPGPU-sim (Betts and Donaldson,

2013; Huangfu and Zhang, 2017b,a, 2018). None of these works considered WCET with CKE.

Resource management. Many GPU resource-management studies have been reviewed in Section 2.3.4.2.

We now review ones that specifically target real-time GPUs. The aforementioned real-time GPU management

systems require OS kernel or device-driver modification, which requires the maintenance effort of adapting

the kernel-level implementation to the up-to-date codebase. To mitigate such effort, Suzuki et al. (2016)

65

implemented a loadable kernel module (LKM)-based real-time GPU resource management atop Gdev.

Although it avoids kernel patches, it requires CUDA applications to use the API LKM provides.

In contrast to managing the GPU from the CPU side, a server-based approach for GPU resource

management has been demonstrated: Kim et al. (2017, 2018) proposed creating GPU server tasks to handle

GPU requests, enabling GPU task suspension and providing schedulability analysis.

Compared with GPU management that allows exclusive access only, fewer studies have investigated

GPU sharing. Jain et al. (2019) enabled both computational and memory resource reservation for CKE,

with SM-centric task assignment and page-coloring techniques based on knowledge of memory structures

obtained via reverse engineering. Saha et al. (2019) also applied SM allocation and provided schedulability

analysis with response-time bounds. Another SM partitioning work (Xu et al., 2016b) considered sharing

between real-time and best-effort tasks. Baek et al. (2020) proposed managing CKE through a middleware

that improved the processing frame rate with resource monitoring and scheduling by considering application

characteristics.

Other GPU scheduling. Zhou et al. (2018) studied the problem of real-time scheduling of DNN workloads

with system-level performance considerations. They proposed S3DNN, which applied batching to aggregate

requests via data fusion, deadline-aware scheduling, and reordering kernels with the DNN structure known a

priori to improve GPU utilization. While S3DNN focuses on a single DNN, Xiang and Kim (2019) proposed

a pipeline-based approach to improve the WCET of multiple DNN applications.

Capodieci et al. (2018) explored hardware-enabled preemption support for implementing an EDF sched-

uler with a Constant Bandwidth Server (CBS) (Spuri and Buttazzo, 1994) that provides bandwidth reservation

and isolation between tasks. Although their implementation included techniques that were not revealed due

to NDA restrictions, in-depth information about GPU scheduling for work submitted from multiple CPU

processes was provided. Specifically, they revealed the data structures that manage GPU commands for

multiple processes, and how these commands were organized and scheduled. Their implementation managed

the movement of these data structures at the software level in a virtualized environment provided by NVIDIA,

and changed the NVIDIA-implemented polling mechanism to an event-driven scheduler. They tested EDF

and CBS schedulers that, however, only allowed requests from one application to be submitted at a time.

Cavicchioli et al. (2019) investigated the applicability of the new GPU programming standard Vulkan,

CUDA graphs, and CUDA dynamic parallelism techniques for real-time systems. Specifically, they applied

66

these techniques to reduce CPU-to-GPU interaction overheads, which were shown to be performance

bottlenecks, especially for frequent GPU command submissions.

CPU-GPU memory interference. Interactions between CPU and GPU tasks have been investigated in other

works as well. Forsberg et al. (2017) presented GPUGuard to isolate memory access from CPU and GPU

tasks into phases, inspired by the PRedictable Execution Model (PREM). PREM was also extended to an SoC

device, the NVIDIA Jetson TX1, by modifying MemGuard (Houdek et al., 2017). Similarly, Ali and Yun

(2018) leveraged MemGuard to throttle best-effort CPU tasks to control memory interference. The memory

interference between CPU and GPU tasks was characterized by Cavicchioli et al. (2017), and later addressed

in a server based approach (Capodieci et al., 2017).

2.5 Chapter Summary

This chapter provided our research context for autonomous driving, the computer-vision applications of

our focus, and reviewed the fundamentals and relevant research for GPUs and real-time systems that will be

used in subsequent chapters.

In reviewing the state-of-the-art progress pertaining to autonomous driving, we learned that full autonomy

has yet to be realized, with real-time guarantees being one of the challenges. Our review of the primary

system components provides a context for explaining how the computer-vision applications that we focus on

function in an autonomous-driving system.

We reviewed the milestones of computer vision across the stages of classic pipelines and deep learning,

using the example of object detection. We also described metrics for evaluating object-detection accuracy,

computer-vision frameworks and libraries, and the computer-vision standard OpenVX, which targets embed-

ded and real-time computer vision. We summarized the challenges of supporting computer-vision workloads

in a real-time certification-amenable framework.

We presented fundamental background about GPU hardware architecture and programming models, and

a brief comparison between GPUs and other accelerators (FPGAs and DSPs). We provided a comprehensive

review of studies of GPUs in both real-time and non-real-time settings.

We described the basic concepts of real-time systems and scheduling, including task models, timing

criteria, classic schedulers, and our focus on SRT. We also reviewed prior work on real-time DAG scheduling,

the frameworks we use, and real-time GPUs.

67

CHAPTER 3: SCHEDULING, SYNCHRONIZATION, AND EXECUTION1

In the preceding chapters, we have presented the challenge of sharing GPUs with guaranteed bounded

response times. To address this challenge, the first step we undertake is to investigate NVIDIA GPUs with

respect to its scheduling, synchronization, and execution.

We first present an in-depth study of GPU scheduling on an exemplar of current GPUs targeted towards

autonomous systems. This study was conducted using only black-box experimentation and publicly available

documentation. This is part of our effort to develop a model for describing GPU workloads and how they are

scheduled. Our eventual goal is to develop a model for which real-time schedulability-analysis results can be

derived, as has been done for various CPU workload and scheduling models that have been studied for years.

The exemplar chosen for this study is the NVIDIA TX2 we reviewed in Section 2.3.2.1. The TX2

is part of the Jetson family of embedded computers, which is explicitly marketed for “autonomous ev-

erything” (NVIDIA, 2020a). Moreover, it shares a common GPU architecture with the higher-end Drive

PX2, which is currently available only to automotive companies and suppliers. The TX2 has two important

attributes for embedded use cases: it provides significant computing capacity, and meets reasonable limits

on monetary cost as well as size, weight, and power (SWaP). The TX2 is a very complicated device, so

discerning exactly how it functions is not easy.

We have noted that NVIDIA GPU scheduling differs based on whether work is submitted to a GPU from

a CPU executing (i) OS threads that share an address space or without inter-thread memory protections, or

(ii) OS processes that have different address spaces that provide memory protection. However, to the best of

1Contents of this chapter previously appeared in the following papers:

Otterness, N., Yang, M., Amert, T., Anderson, J., and Smith, F. D. (2017a). Inferring the scheduling policies of an embedded cuda
gpu. In Proceedings of the 13th Annual Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pages
47–52.

Amert, T., Otterness, N., Yang, M., Anderson, J. H., and Smith, F. D. (2017). GPU scheduling on the NVIDIA TX2: Hidden details
revealed. In Proceedings of the 38th IEEE International Real-Time Systems Symposium, pages 104–115.

Yang, M., Otterness, N., Amert, T., Bakita, J., Anderson, J. H., and Smith, F. D. (2018b). Avoiding pitfalls when using NVIDIA
GPUs for real-time tasks in autonomous systems. In Proceedings of the 30th Euromicro Conference on Real-Time Systems, pages
20:1–20:21.

68

our knowledge, the exact manner in which GPU scheduling is done in either case has never been publicly

disclosed.

For Case (i), we present a set of rules (in Section 3.1), based on experimental evidence involving

benchmarking programs, that fully define how the TX2’s GPU schedules work submitted to it, assuming

that certain optional GPU features that introduce additional complexities (see below) are not employed that

introduce additional complexities. These rules take into account these aspects: (i) the ordering within and

among streams of requests for GPU operations, (ii) the means by which various internal queues of requests

are handled, (iii) the ability of the GPU to co-schedule operations so they execute concurrently, (iv) the

selection mechanism used to determine the order in which requests are handled, and (v) the resource limits

that constrain the GPU’s ability to handle new requests. Our rules indicate that the TX2’s GPU employs

a variant of hierarchical FIFO scheduling that is amenable to real-time schedulability analysis, although

scheduling is not fully work-conserving, as GPU computations are subject to various blocking delays.

The optional GPU features that we initially ignore include two features that cause certain request streams

to be treated specially, which further complicates GPU scheduling. These features include the usage of a

special stream called the NULL stream and the usage of stream priorities. The available documentation

regarding both of these features often lacks details necessary for predicting specific runtime behavior. Through

further experiments, we show how each of these features affects our derived scheduling rules (in Section 3.2).

GPU programs are most commonly developed assuming that different GPU computations are requested

by OS processes with different address spaces, so Case (ii) above applies. We investigated GPU scheduling

in this case as well (Section 3.2) and, unfortunately, found it to be less deterministic than in Case (i). In

particular, concurrent GPU computations in this case are multiprogrammed on the GPU using time slicing

in a way that can add significant overhead and execution-time variation. This result calls into question the

common practice today of following a process-oriented approach in developing GPU applications, as reflected

in open-source frameworks such as PyTorch2 and Caffe.3 We also investigated the usage of stream priorities

under Case (ii) and found that they have no effect in this case (Section 3.2).

In addition to revealing NVIDIA GPU scheduling rules, we hope to provide guidance, recommendations,

and warnings about numerous pitfalls to both research and implementation practitioners. We have found

that writing programs for real-time tasks that combine CPU and GPU computations is harder than we first

2http://pytorch.org

3http://caffe.berkeleyvision.org

69

http://pytorch.org
http://caffe.berkeleyvision.org

thought. Based on several years of study, experimentation, and experience with GPU programming, we are

presenting here a compendium of specific issues that are essential background for developing task systems

where real-time design meets GPUs.

NVIDIA GPUs serve as an exemplar of the push for throughput over predictability in GPUs. Recent

developments in the NVIDIA GPU ecosystem are focused on improving ML applications, especially those

for autonomous driving. Most of these improvements center around increasing throughput or reducing

execution latency, but little, if any, attention has been paid to the requirements of the real-time tasks used

in autonomous systems. This lack of attention is evident in the sparse efforts by NVIDIA to improve or

document GPU scheduling behavior or improve the predictability of GPU execution times. For example, for

a task consisting of a combination of CPU and GPU computations, their synchronization is necessary but is

not well-documented, resulting in difficulties in determining why and when synchronization blocking occurs

(Section 3.3), which impacts scheduling analysis.

Besides the aforementioned cases regarding how work is submitted to a GPU from a CPU, a third option

that leverages a middleware environment—CUDA Multi-Process Service (MPS) (NVIDIA, 2019e)—is

claimed to provide the best approach offering both memory isolation and concurrent execution on GPUs.

We performed a case study using exemplar computer-vision tasks in autonomous vehicles to evaluate these

execution options, with our results and guidelines presented in Section 3.4.

Lastly, we present a list of perils one can encounter in programming for NVIDIA GPUs, distilled from our

research experience that has necessarily involved contructing many thousands of lines of GPU programming

for performing experiments. The perils span a spectrum of pain ranging from simple documentation errors to

functions that default in strange ways, to programming “gotchas.” We present a list of perils with descriptions

and examples of the ones most likely to cause problems in Section 3.5.

We believe that our investigation and findings will help bridge the gap between research and implementa-

tion in autonomous systems. For example, real-time researchers may not be familiar with GPU programming

for applications of ML and other forms of AI used in real-time tasks. Likewise, programmers responsible

for implementations are given little guidance about creating GPU-using task systems amenable to real-time

analysis. We provide the necessary understanding required to apply GPUs in real-time tasks while avoiding

numerous hidden pitfalls. We also expose GPU-related issues that must be mitigated for real-time guarantees

to be possible in autonomous systems. We further believe that the fundamental issues presented herein are

70

relevant to any real-time application using computational accelerators, and likely hold for other manufacturers’

GPUs, DSPs, or FPGAs.

3.1 Basic GPU Scheduling Rules

In this section, we present GPU scheduling rules for the TX2 assuming the GPU is accessed only by CPU

tasks4 that share an address space, using only user-specified streams. (We consider the NULL stream later.

Unless stated otherwise, “stream” should henceforth be taken to mean a user-specified stream.) We inferred

the scheduling rules given here by conducting extensive experiments using CUDA 8, 9, and 10. We begin by

discussing one of these experiments in Section 3.1.1. We use this experiment as a continuing example to

explain various nuances of the rules, which are covered in full in Section 3.1.2. Before continuing, we note

that all code, scripts, and visualization tools developed for this chapter are available online.5

3.1.1 Motivating Experiment

The experiment considered here involved running instances of a synthetic benchmark that launches

several kernels. Our synthetic workload allows flexibility in configuring block resource requirements, kernel

durations, and copy operations. We have also experimented with a variety of real-world GPU workloads

involving image-processing functions common in autonomous-driving use cases, and to our knowledge, the

scheduling rules presented in this paper are valid for such workloads as well.

In the experiment considered here, we configured each block of each benchmark kernel to spin for one

second. As detailed in Table 3.1, three kernels, K1, K2, and K3, were launched by a single task to a single

stream, and three additional kernels, K4, K5, and K6, were launched by a second task to two separate streams.

The kernels are numbered by launch time. Copy operations occurred after K2 and K5, before and after K3

and K6, in their respective streams.

Figure 3.1 depicts the GPU timeline produced by this experiment. Each rectangle represents a block: the

jth block of kernel Kk is labeled “Kk: j.” The left and right boundaries of each rectangle correspond to that

block’s start and end times, as measured on the GPU using the globaltimer register. The height of each

rectangle is the number of threads used by the block. The y-position of each rectangle indicates the SM upon

4We use the term task to refer to OS threads that share an address space, and we use the term thread to mean a hardware thread on
GPU as defined ealier in Section 2.3.3.

5https://github.com/yalue/cuda_scheduling_examiner_mirror.

71

https://github.com/yalue/cuda_scheduling_examiner_mirror

K1: 0

K1: 1

K1: 2

K1: 3

K1: 4

K1: 5

K2: 0

K2: 1
K3: 0

K3: 1

K4: 0

K4: 1
K4: 2

K4: 3

K6: 0

K6: 1
K5: 0
K5: 1

Stream 1 (K1 through K3)

Stream 2 (K4 and K6)

Stream 3 (K5)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Time (seconds)

SM 0

SM 1

(a) (b) (c) (d) (e) (f) (g)

Figure 3.1: Basic GPU scheduling experiment.

which it executed. Arrows below the x-axis indicate kernel launch times. Dashed lines correspond to time

points used in the continuing example covered in Section 3.1.2.

3.1.2 Scheduling Rules

With respect to kernels, blocks are the schedulable entities: the basic job of the GPU scheduler is to

determine which thread blocks can be scheduled at any given time. These scheduling decisions are impacted

by the availability of limited GPU resources that blocks utilize such as GPU shared memory, registers, and

threads. Required resources are determined for the entire kernel when it is launched. All blocks in a given

kernel have the same resource requirements.

We say that a block is assigned to an SM when that block has been scheduled for execution on the SM.

A kernel is dispatched when at least one of its blocks is assigned, and is fully dispatched once all of its blocks

have been assigned. Similarly, we say that a copy operation is assigned to a CE once it has been selected to

be performed by the CE.

Example. Figure 3.2 provides additional details regarding the kernel launches in Figure 3.1. In Figure 3.2,

we use additional notation to depict copies: Cki denotes an input copy operation of kernel Kk, and Cko

denotes an output copy operation of kernel Kk. Each inset in Figure 3.2 corresponds to the time point in

Figure 3.1 with the same designation (e.g., inset (a) corresponds to the time point labeled “(a)”). We will

72

Launch Start # Thread Shared Memory
Kernel Info Time (s) # Blocks per Block per Block Copy In Copy Out

K1 CPU 0, Stream S1 0.0 6 768 0 - -
K2 CPU 0, Stream S1 0.0 2 512 0 - 256MB
K3 CPU 0, Stream S1 0.0 2 1,024 0 256MB 256MB
K4 CPU 1, Stream S2 0.2 4 256 32KB - -
K5 CPU 2, Stream S3 0.4 2 256 32KB - 256MB
K6 CPU 1, Stream S2 2.8 2 512 0 256MB 256MB

Table 3.1: Details of kernels used in the experiment in Figure 3.1. (Note that “start times” are defined relative to the
end of benchmark initialization.)

repeatedly revisit Figure 3.2 to illustrate individual scheduling rules as they are stated, and then consider the

entire example in full once all rules have been stated.

General scheduling rules. To our knowledge, the actual data structures used by the TX2 to schedule copy

operations and kernels are undocumented. From our experiments, we hypothesize that several queues are

used: one FIFO EE queue per address space, one FIFO CE waiting queue and one FIFO CE queue that

are used to order copy operations for assignment to the GPU’s CE, and one FIFO queue per CUDA stream

(including the NULL stream, which we consider later). We refer to the latter as stream queues. We begin by

listing general rules that specify how copy operations and kernels are moved between queues:

G1 A copy operation or kernel is enqueued on the stream queue for its stream when the associated CUDA

API function (memory transfer or kernel launch) is invoked.

G2 A kernel is enqueued on the EE queue when it reaches the head of its stream queue.

G3 A kernel at the head of the EE queue is dequeued from that queue once it becomes fully dispatched.

G4 A kernel is dequeued from its stream queue once all of its blocks complete execution.

Example (cont’d). In Figure 3.2, there are two CUDA programs executing as CPU tasks τ0 and τ1 on

CPUs 0 and 1, respectively, that share an address space. τ0 uses a single stream, S1, and τ1 uses two streams,

S2 and S3. The various queues, two SMs, and single CE are depicted in each inset of Figure 3.2. The start

times in Table 3.1 give the time the kernel, or its input copy operation if one exists, was issued. Output copy

operations, when present, immediately followed kernel completions.

In inset (a), τ0 has issued kernels K1, K2, and K3 and copy operations C2o, C3i, and C3o to stream

S1. τ1 has issued kernels K4 and K5 to streams S2 and S3, respectively, and copy operation C5o to stream

S3. The operations in streams S1 and S3 were enqueued in the order the CUDA commands were executed

73

(b) (c)

(e)(d)

(a)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3i
K3

C5o

C3o

C2o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C2o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3o
K3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K3: 0 K3: 1

K6
C6o

GPU
SM 0 SM 1

K1: 0

K1: 2

K1: 1

K1: 3

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K1
EE Queue

K4
K5

CE Queue

CPU 0

Task τ1

CPU 1

Task τ0

GPU
SM 0 SM 1

K1: 4

K1: 5

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K5
EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K4: 0
K4: 2
K4: 0
K4: 2

K4: 1
K4: 3
K4: 1
K4: 3

GPU
SM 0 SM 1CE

K2
Stream S1 Stream S2 Stream S3

C2o
C3i

K5

K3
C3o

C5o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K2: 0

K2: 1

K5:0
K5:1

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C3i
C3o
C5o
C6i
C6o

C6i

CE Waiting Queue
C3o
C5o
C6i
C6o

K6
C6o

C6i
K6
C6o

C6i C5o

(g)(f)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3
C5oC3o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C3o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K6: 0 K6: 1

K6
C6o

CE Waiting Queue

C5o
C6i

C6o

C6i

CE Waiting Queue
C6o

C6o
K6

(b) (c)

(e)(d)

(a)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3i
K3

C5o

C3o

C2o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C2o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3o
K3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K3: 0 K3: 1

K6
C6o

GPU
SM 0 SM 1

K1: 0

K1: 2

K1: 1

K1: 3

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K1
EE Queue

K4
K5

CE Queue

CPU 0

Task τ1

CPU 1

Task τ0

GPU
SM 0 SM 1

K1: 4

K1: 5

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K5
EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K4: 0
K4: 2
K4: 0
K4: 2

K4: 1
K4: 3
K4: 1
K4: 3

GPU
SM 0 SM 1CE

K2
Stream S1 Stream S2 Stream S3

C2o
C3i

K5

K3
C3o

C5o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K2: 0

K2: 1

K5:0
K5:1

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C3i
C3o
C5o
C6i
C6o

C6i

CE Waiting Queue
C3o
C5o
C6i
C6o

K6
C6o

C6i
K6
C6o

C6i C5o

(g)(f)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3
C5oC3o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C3o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K6: 0 K6: 1

K6
C6o

CE Waiting Queue

C5o
C6i

C6o

C6i

CE Waiting Queue
C6o

C6o
K6

(b) (c)

(e)(d)

(a)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3i
K3

C5o

C3o

C2o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C2o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3o
K3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K3: 0 K3: 1

K6
C6o

GPU
SM 0 SM 1

K1: 0

K1: 2

K1: 1

K1: 3

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K1
EE Queue

K4
K5

CE Queue

CPU 0

Task τ1

CPU 1

Task τ0

GPU
SM 0 SM 1

K1: 4

K1: 5

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K5
EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K4: 0
K4: 2
K4: 0
K4: 2

K4: 1
K4: 3
K4: 1
K4: 3

GPU
SM 0 SM 1CE

K2
Stream S1 Stream S2 Stream S3

C2o
C3i

K5

K3
C3o

C5o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K2: 0

K2: 1

K5:0
K5:1

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C3i
C3o
C5o
C6i
C6o

C6i

CE Waiting Queue
C3o
C5o
C6i
C6o

K6
C6o

C6i
K6
C6o

C6i C5o

(g)(f)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3
C5oC3o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C3o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K6: 0 K6: 1

K6
C6o

CE Waiting Queue

C5o
C6i

C6o

C6i

CE Waiting Queue
C6o

C6o
K6

(b) (c)

(e)(d)

(a)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3i
K3

C5o

C3o

C2o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C2o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3o
K3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K3: 0 K3: 1

K6
C6o

GPU
SM 0 SM 1

K1: 0

K1: 2

K1: 1

K1: 3

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K1
EE Queue

K4
K5

CE Queue

CPU 0

Task τ1

CPU 1

Task τ0

GPU
SM 0 SM 1

K1: 4

K1: 5

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K5
EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K4: 0
K4: 2
K4: 0
K4: 2

K4: 1
K4: 3
K4: 1
K4: 3

GPU
SM 0 SM 1CE

K2
Stream S1 Stream S2 Stream S3

C2o
C3i

K5

K3
C3o

C5o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K2: 0

K2: 1

K5:0
K5:1

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C3i
C3o
C5o
C6i
C6o

C6i

CE Waiting Queue
C3o
C5o
C6i
C6o

K6
C6o

C6i
K6
C6o

C6i C5o

(g)(f)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3
C5oC3o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C3o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K6: 0 K6: 1

K6
C6o

CE Waiting Queue

C5o
C6i

C6o

C6i

CE Waiting Queue
C6o

C6o
K6

(b) (c)

(e)(d)

(a)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3i
K3

C5o

C3o

C2o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C2o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

C3o
K3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K3: 0 K3: 1

K6
C6o

GPU
SM 0 SM 1

K1: 0

K1: 2

K1: 1

K1: 3

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K1
EE Queue

K4
K5

CE Queue

CPU 0

Task τ1

CPU 1

Task τ0

GPU
SM 0 SM 1

K1: 4

K1: 5

CE

K1
Stream S1 Stream S2 Stream S3

K2
C2o

K5K4

C3i
K3
C3o

C5o

K5
EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K4: 0
K4: 2
K4: 0
K4: 2

K4: 1
K4: 3
K4: 1
K4: 3

GPU
SM 0 SM 1CE

K2
Stream S1 Stream S2 Stream S3

C2o
C3i

K5

K3
C3o

C5o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K2: 0

K2: 1

K5:0
K5:1

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C2o
C3i
C3o
C5o

CE Waiting Queue
C3i
C3o
C5o
C6i
C6o

C6i

CE Waiting Queue
C3o
C5o
C6i
C6o

K6
C6o

C6i
K6
C6o

C6i C5o

(g)(f)

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3
C5oC3o

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

C3o

GPU
SM 0 SM 1CE

Stream S1 Stream S2 Stream S3

EE QueueCE Queue

CPU 0

Task τ1

CPU 1

Task τ0

K6: 0 K6: 1

K6
C6o

CE Waiting Queue

C5o
C6i

C6o

C6i

CE Waiting Queue
C6o

C6o
K6

Figure 3.2: Detailed state information at various time points in Figure 3.1.

74

(Rule G1). Kernels K1, K4, and K5 are at the heads of their respective stream queues, and have been placed

in the EE queue (Rule G2). K1 is dispatched to the GPU, so it is shaded in its stream queue. Each SM has

two blocks of K1 assigned to it. In inset (b), the remaining blocks of K1 and K4 have been assigned to the

GPU, so both K1 and K4 have been removed from the EE queue (Rule G3), but remain in their respective

stream queues (Rule G4).

Non-preemptive execution. Ignoring complications considered later in Section 3.2, the kernel at the head

of the EE queue will non-preemptively block later-queued kernels:

X1 Only blocks of the kernel at the head of the EE queue are eligible to be assigned.

Example (cont’d). In Figure 3.2 (a), two blocks of K1 have been assigned to each SM. As explained

in detail below, on each SM, there are enough resources available that two blocks from K4 could execute

concurrently with the two blocks from K1. However, K4 is not at the head of the EE queue, so its blocks are

not eligible to be assigned (Rule X1).

Rules governing thread resources. On the TX2, the total thread count of all blocks assigned to an SM is

limited to 2,048 per SM,6 and the total number of threads each block can use is limited to 1,024. These

resource limits can delay the kernel at the head of the EE queue:

R1 A block of the kernel at the head of the EE queue is eligible to be assigned only if its resource

constraints are met.

R2 A block of the kernel at the head of the EE queue is eligible to be assigned only if there are sufficient

thread resources available on some SM.

Example (cont’d). In Figure 3.2 (a), K1 is at the head of the EE queue, so its blocks are eligible to

be assigned (Rule R1). However, only four blocks of K1 have been assigned. This is because, as seen in

Table 3.1, each block of K1 requires 768 threads, and on the TX2, each SM is limited to allocate at most

2,048 threads at once. Thus, only four blocks of K1’s six can be scheduled together, so the remaining two

must wait (Rule R2). In inset (b), these remaining two blocks have been scheduled. K4, next in the EE queue,

requires four blocks of only 256 threads each, so all of its blocks fit on the GPU simultaneously with the

remaining two blocks of K1, and all four blocks of K4 are assigned.

6Recall from Section 2.3.2.1 that on the TX2, each SM has 128 hardware cores available. The (up to) 2,048 threads assigned to
blocks currently executing on that SM are multiprogrammed on those cores.

75

Rules governing shared-memory resources. Another constrained resource is the amount of GPU memory

shared by threads in a block. On the TX2, shared-memory usage is limited to 64KB per SM and 48KB per

block. Similar to threads, a block being considered for assignment will not be assigned until all of the shared

memory it requires is available.

R3 A block of the kernel at the head of the EE queue is eligible to be assigned only if there are sufficient

shared-memory resources available on some SM.

Example (cont’d). Each block of K4 or K5 requires 32KB of shared memory, so at most two of these

blocks can be assigned concurrently on an SM. In Figure 3.2 (b), two blocks of K4 are assigned to each SM.

Even though there are available threads for K5 to be assigned and it is the head of the EE queue at that time,

no block of K5 is assigned until the blocks of K4 complete (Rule R3), as shown in inset (c).

Register resources. Another resource constraint is the size of the register file. On the TX2, each thread

can use up to 255 registers, and a block can use up to 32,768 registers (regardless of its thread count).

Additionally, there is a limit of 65,536 registers in total on each SM. Unfortunately, using synthetic kernels

makes it difficult to demonstrate limits on registers because the NVIDIA compiler optimizes register usage.

However, based upon available documentation (NVIDIA, 2019b), we expect limits on register usage to have

exactly the same impact as the limits on thread and shared-memory resources demonstrated above. Note

also that the number of registers can be limited at compile-time using the maxregcount compiler option.

Decreasing the number of registers used by a kernel makes its blocks easier to schedule at the expense of

potentially greater execution time.

Copy operations. As noted earlier, the TX2 has one CE to process both host-to-device and device-to-host

copies. Such copies are governed by rules similar to those above:

C1 A copy operation is enqueued on the CE waiting queue when the associated CUDA API function is

invoked.

C2 A copy operation is enqueued on the CE queue when it reaches the head of the CE waiting queue and

its stream queue.

C3 A copy operation at the head of the CE queue is eligible to be assigned to the CE.

C4 A copy operation at the head of the CE queue is dequeued from the CE queue once the copy is assigned

to the CE on the GPU.

76

C5 A copy operation at the head of the CE waiting queue is dequeued from the CE waiting queue once it

is enqueued on the CE queue.

C6 A copy operation is dequeued from its stream queue once the CE has completed the copy.

Example (cont’d). As shown in Figure 3.2 (a), once C2o, C3i, C3o, and C5o are issued, they are enqueued

on the CE waiting queue (Rule C1). Upon being issued, C6i and C6o are enqueued on the CE waiting queue

(Rule C1). In inset (d), once K2 and K5 complete execution and are dequeued from S1 and S3, the copies

C2o and C5o become the heads of S1 and S3, repectively. However, only C2o reaches the head of the CE

waiting queue. Thus, C2o is the only copy operation enqueued on the CE queue (Rule C2) and dequeued

from the CE waiting queue (Rule C5). C2o is immediately assigned to the CE (Rule C3), so it is dequeued

from the CE queue (Rule C4).

Example (cont’d). As shown in Figure 3.2 (d), once K2 and K5 complete execution and are dequeued

from S1 and S3, the copies C2o and C5o become the heads of S1 and S3, respectively. C5o and C2o are thus

enqueued on the CE queue (Rule C2). C5o is immediately assigned to the CE (Rule C3), so it is dequeued

from the CE queue (Rule C4). The CE can perform only one copy operation at a time, so C2o remains at the

head of the CE queue until C5o completes.

Full example. Inset (a) of Figure 3.2 corresponds to time t = 1.1s in Figure 3.1. The first five kernels have

been launched, and the kernels at the heads of each stream, K1, K4, and K5, have also been added to the EE

queue, in issue order. K1 remains in the EE queue as it is not yet fully dispatched, so no blocks of K4 are

eligible to be assigned. The copy operations C2o, C3i, C3o, and C5o are launched and enqueued on the CE

waiting queue, in issue order.

Inset (b) corresponds to time t = 2.1s. The first four blocks of K1 have finished executing. Both K1 and

K4 are now fully dispatched, so they have been removed from the EE queue, but remain at the heads of their

stream queues. No blocks of K5 are able to be dispatched because their required shared-memory resources

are not available.

Inset (c) corresponds to time t = 3.0s. Upon completion of K1 and K4, both of K5’s blocks are assigned,

and K2 is added to the EE queue and immediately becomes fully dispatched. C2o remains blocked by K2 in

its stream queue due to FIFO stream ordering. C5o is similarly blocked.

Inset (d) corresponds to time t = 3.4s. K2 and K5 both complete execution, enabling C2o to be enqueued

on the CE queue. C2o is assigned to the CE and removed from the CE queue. Due to FIFO stream ordering,

77

both C3i and K3 are delayed behind C2o. Upon being issued, the copy operations C6i and C6o are enqueued

on the CE waiting queue. Due to FIFO stream ordering, K6 is delayed behind C6i.

Inset (e) corresponds to time t = 4.0s. K3 is fully dispatched. C3o is blocked in its stream queue until

K3 completes. Due to the FIFO CE waiting queue ordering, C5o and C6i are unnecessarily delayed befind

C3o. As a result, the CE and EE queues are empty.

Inset (f) corresponds to time t = 4.43s. K3 completes execution, enabling C3o to be enqueued on the CE

queue. C5o and C6i are both enqueued on the CE queue. C3o is assigned to the CE and removed from CE

qeueue. The CE can perform only one copy operation at a time, so C5o remains at the head of the CE queue

until C3o completes.

Inset (g) corresponds to time t = 5.3s. K6 is fully dispatched. C6o is blocked in its stream queue until

K6 completes.

Summary. The basic scheduling rules above define a variant of hierarchical FIFO scheduling where work

may sometimes be subject to blocking delays. As FIFO CPU scheduling has analyzable response-time bounds

on multiprocessors (Leontyev and Anderson, 2007), the scheduler defined by these rules is also amenable to

real-time schedulability analysis, as we will show in Chapter 4.

3.2 Additional Complexities

Unfortunately, the basic rules in Section 3.1 are not the end of the story. In this section, we consider

additional features available to CUDA programmers that can impact scheduling. These include usage of

the default (NULL) stream, stream priorities, and streams in independent process address spaces. We also

comment on other less commonly used features that can influence scheduling that we do not examine in

detail.

3.2.1 The NULL Stream

Available documentation makes clear that two kernels cannot run concurrently if, between their issuances,

any operations are submitted to the NULL stream (NVIDIA, 2019b). However, this documentation does

not explain how kernel execution order is affected. In an attempt to elucidate this behavior, we conducted

experiments in which interactions between (user-specified) streams and the NULL stream were observed.

78

Launch Start # Thread
Kernel Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 0.0 1.0 6 768
K2 NULL Stream 0.2 1.0 1 1,024
K3 Stream S2 0.2 1.0 4 256
K4 Stream S2 0.4 1.0 4 256
K5 NULL Stream 0.6 1.0 1 1,024
K6 Stream S3 0.8 1.0 2 256

Table 3.2: Details of kernels used in the NULL-stream scheduling experiment in Figure 3.3.

We found that these interactions are governed by the following rules, which reduce to rule G2 if the NULL

stream is not used:

N1 A kernel Kk at the head of the NULL stream queue is enqueued on the EE queue when, for each other

stream queue, either that queue is empty or the kernel at its head was launched after Kk.

N2 A kernel Kk at the head of a non-NULL stream queue cannot be enqueued on the EE queue unless the

NULL stream queue is either empty or the kernel at its head was launched after Kk.

The result of an experiment demonstrating these rules is given in Figure 3.3. The kernels launched in this

experiment are fully specified in Table 3.2. K2 and K5 were submitted to the NULL stream. K2 did not move

to the EE queue until K1 completed (Rule N1); likewise, K5 did not move to the EE queue until both K3

and K4 had completed. No other kernel could move to the EE queue while K2 was at the head of the NULL

stream queue, as all but K1 were launched after K2 (Rule N2). Because of the NULL-stream kernels, K6 was

unnecessarily blocked and could not execute concurrently with K1, K3, or K4, so much capacity was lost.

This result demonstrates that usage of the NULL stream is problematic if real-time predictability and efficient

platform utilization are desired.

3.2.2 Stream Priorities

We now consider how the usage of prioritized streams impacts the rules defined in Section 3.1.2. CUDA

programmers can prioritize some streams over others and can determine the allowable priority settings by the

API call cudaDeviceGetStreamPriorityRange. On the TX2, this call returns only two priority values:

−1 (priority-high) and 0 (priority-low). As we show below, a stream with no priority specified (priority-none)

is treated as priority-low.

79

Figure 3.3: NULL stream scheduling experiment.

Experiments. In the rest of this subsection, we present the results of several experiments we conducted

to evaluate the effects of using stream priorities. These experiments use the same synthetic benchmarking

techniques applied in Section 3.1.2. Relevant kernel properties are given in per-experiment tables. After

discussing these experiments, we postulate new scheduling rules that specify how stream priorities affect

scheduling.

Scheduling of priority-low streams vs. priority-high streams. Given that blocks are schedulable entities,

the handling of prioritized streams as described in the available CUDA documentation (NVIDIA, 2019b)

is exactly as one might expect. In particular, stream priorities are considered each time a block finishes

execution and a new block can be assigned, with blocks from priority-high streams always being favored for

assignment if their resource requirements are met. Note that this assignment behavior can potentially lead to

the starvation of priority-low streams.

We conducted an experiment to illustrate this behavior using the kernels defined in Table 3.3. Figure 3.4

shows the GPU timeline that resulted from this experiment. As seen, K1 was launched first in a priority-low

stream and four of its eight blocks had already been assigned when K2 and K3 were later launched in two

priority-high streams. When the four initially assigned blocks of K1 completed execution, freeing all SM

threads, K2 (launched second) effectively preempted K1, preventing K1’s remaining four blocks from being

assigned. K3 was later dispatched when K2 completed, continuing the “starvation” of K1 until K3 completed.

80

Start # Thread
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 0.5 8 1,024
K2 Stream S2 (high priority) 0.2 0.5 16 1,024
K3 Stream S3 (high priority) 0.5 0.5 16 1,024

Table 3.3: Details of kernels used in the priority-stream scheduling experiment in Figure 3.4.

Figure 3.4: Experiment showing starvation of a priority-low stream.

Scheduling of priority-none streams vs. prioritized streams. The available CUDA documentation lacks

clarity with respect to how scheduling is done when both priority-none and prioritized streams are used.

We experimentally investigated this issue and found that priority-none streams have the same priority as

priority-low streams on the TX2.

Evidence of this can be seen in an experiment we conducted using the kernels defined in Table 3.4.

Figure 3.5 shows the resulting GPU timeline. In this experiment, K2 was launched in a priority-none stream,

K1 and K4 were launched in priority-low streams, and K3 was launched in a priority-high stream. K1 was

launched first and four of its eight blocks were immediately assigned to the GPU. Once these four blocks

completed execution, K3 effectively preempted K1 because K3 was at the head of a priority-high stream.

After K3 executed to completion, K1 resumed execution because K2 and K4 had equal priority and could not

preempt it. When K1 completed, K2 and K4 were dispatched in launch-time order. If priority-none were

higher than priority-low, then K2 would have preempted K1; if priority-none were lower than priority-low,

then K4 would have run before K2, despite being released later.

81

Start # Thread
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 0.5 8 1,024
K2 Stream S2 (unspecified priority) 0.2 0.5 8 1,024
K3 Stream S3 (high priority) 0.3 0.5 8 1,024
K4 Stream S4 (low priority) 1.2 0.5 8 1,024

Table 3.4: Details of kernels used in the priority-stream scheduling experiment in Figure 3.5.

Figure 3.5: Experiment demonstrating two actual priority levels.

The scheduling of prioritized streams when resource blocking can occur. We wondered whether it was

possible for kernels in priority-high streams experiencing resource blocking to be indefinitely delayed by

kernels in priority-low streams that “cut ahead” and consume available resources. Our experimental results

suggest this is not possible.

Evidence of this claim can be seen in an experiment we conducted using the kernels defined in Table 3.5,

which yielded the resulting GPU timeline in Figure 3.6.7 K1–K7 were launched in quick succession to seven

distinct priority-low streams. Once all had been dispatched, 512 threads were available on one SM. Then K8,

with one block of 1,024 threads, was launched to a priority-high stream, followed by K9, with one block

of 512 threads, launched to another priority-low stream. At this time, none of the initial seven kernels had

completed execution, so the priority-high K8 could not be dispatched due to a lack of available threads. When

K1 ultimately completed, 512 threads were then available on each SM, but K8 still could not be dispatched

7This experiment generates different results with CUDA 9 and 10 on TX2. K5–K9 are serialized due to unknown reasons. However,
this issue does not occur with discrete GPUs such as TITAN V.

82

Start # Thread
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 1.0 1 512
K2 Stream S2 (low priority) 0.1 1.0 1 512
K3 Stream S3 (low priority) 0.2 1.0 1 512
K4 Stream S4 (low priority) 0.3 1.0 1 512
K5 Stream S5 (low priority) 0.4 1.0 1 512
K6 Stream S6 (low priority) 0.5 1.0 1 512
K7 Stream S7 (low priority) 0.6 1.0 1 512
K8 Stream S8 (high priority) 0.65 0.5 1 1,024
K9 Stream S9 (low priority) 0.7 1.0 1 512

Table 3.5: Details of kernels used in the priority-stream scheduling experiment in Figure 3.6.

Figure 3.6: Experiment with both priorities and resource blocking.

because a block can run on only one SM. Note that even though K9 required only 512 threads, it could not

be dispatched because K8 was of higher priority. Finally, when K2 completed, K8 was dispatched because

1,024 threads became available on one SM, and K9 was dispatched because 512 other threads were available

and the priority-high K8 no longer blocked it.

Additional scheduling rules. Based on these experiments, we hypothesize that the TX2’s GPU scheduler

includes one additional EE queue, for priority-high kernels. The original EE queue described in Section 3.1.2

is for priority-low (and thus priority-none). These queues are subject to these rules:

A1 A kernel can only be enqueued on the EE queue matching the priority of its stream.

A2 A block of a kernel at the head of any EE queue is eligible to be assigned only if all higher-priority EE

queues (priority-high over priority-low) are empty.

83

3.2.3 Multiple Processes and Other Complications

In this section, we describe a few complications that arise when CUDA programs are invoked by CPU

processes (instead of tasks) that have distinct addresses spaces.

Multiprogramming on the TX2. In previous work involving the NVIDIA TX1, a less-capable predecessor

of the TX2 with a similar basic layout, we found that kernels issued by multiple GPU-using processes were

scheduled on the GPU using multiprogramming (Otterness et al., 2017b). On the TX1, this meant that

the GPU scheduler would switch between processes at the granularity of thread blocks, with kernels from

different processes never actually executing at the same time. While studying the TX2, we observed that

kernels issued by different processes are still multiprogrammed, but multiprogramming is implemented using

GPU preemption features introduced in NVIDIA’s Pascal GPU architecture.

This observation is supported by Figure 3.7, which gives the results of two experiments we ran in which

two instances of a compute-heavy Mandelbrot-Set kernel were run together. In the first experiment, the two

kernel instances were issued by two separate processes, while in the second, they were issued by two separate

tasks. In these experiments, we recorded for each kernel the start and end times of each thread block on the

GPU and then used these times to deduce the total number of threads that appeared to have been assigned to

the kernel through its execution. These thread counts are plotted on the vertical axes of the four timelines in

Figure 3.7. The top two timelines are from the first experiment, where processes were considered, and the

bottom two timelines are from the second experiment, where tasks were considered.

The bottom two timelines indicate that, in the experiment involving tasks, scheduling was in accordance

with the rules discussed in Section 3.1: all blocks from one kernel were fully dispatched before the second

kernel began execution. In contrast, the top two timelines indicate that, in the experiment involving processes,

the GPU scheduler’s behavior is very different: 4,096 threads from each kernel appear to be fairly consistently

running together at the same time. On the surface, this should appear to be impossible because the TX2 is

only capable of running 4,096 threads across both of its SMs at any point in time (recall Footnote 6).

This behavior, however, is easily explained if we assume that CUDA thread blocks can be preempted.

Recall that we used block-time measurements, which are recorded on the GPU itself, to calculate the number

of running threads. Our GPU kernel code cannot detect being preempted itself, so the start and end times for

each block can actually encompass intervals in which the block was preempted.

84

Figure 3.7: Timelines contrasting kernels issued from processes (different address spaces) vs. tasks (shared
address space).

We therefore conclude that benchmarks from separate processes were being multiprogrammed on the

TX2 using preemptions, as this explains the apparent over-provisioning of GPU resources. Additionally, we

provide Figure 3.8 to further support the conclusion that concurrent kernels from different address spaces

preempt one another.

In Figure 3.8, the curves labeled “Process 1” and “Process 2” show the cumulative distribution function

(CDF) of block times for Mandelbrot-Set kernels issued concurrently from separate processes. Likewise,

the “Task 1” and “Task 2” curves show the same data for kernels issued from separate tasks. Consistent with

Figure 3.7, the worst-case block times for the “Process” curves is over twice that of the “Task” curves. This

is in direct contrast to our prior work using the previous-generation TX1, where we found that block times

remained nearly identical regardless of the number of concurrent processes (Otterness et al., 2017b).

Stream priorities in multiple processes. We also experimentally examined the effects of using stream

priorities when processes submit GPU operations instead of tasks. We found that assigning priorities to the

streams of different processes had no effect on how the operations in these streams were scheduled. Thus,

the usage of stream priorities has impact only in the context of task-based computing, not process-based

computing.

We conclude Section 3.2 by noting several less commonly used features that may potentially impact

scheduling. These include: (i) the nvcc compilation option, which enables per-task NULL streams (Harris,

85

Figure 3.8: CDFs contrasting blocks times from processes vs. tasks.

2015); (ii) the CUDA API that enables kernels from user-specified streams to execute concurrently with the

NULL stream (Harris, 2015); (iii) a mechanism introduced with the Pascal GPU architecture that allows an

executing kernel to be preempted at the instruction level (NVIDIA, 2016b); and (iv) a feature called dynamic

parallelism that allows kernels to dynamically submit extra work by calling other kernel functions inside the

GPU (Adinets, 2014). We conjecture that these features are detrimental to use if real-time predictability is a

requirement.

3.3 Synchronization and Blocking

CPU scheduling has been studied and well-understood for decades; in particular, real-time scheduling

analysis of task systems is based on predictable scheduler and task behaviors. Incorporating GPUs into

real-time analysis (as with all coprocessors), requires different models with new sets of issues to be considered.

In this section, we discuss one set of issues that lead to a surprising number of pitfalls when NVIDIA GPUs

are used: synchronization.

In Sections 3.1 and 3.2, we investigated the scheduling rules for kernels and copy operations in CUDA

programs. However, this investigation focused on a limited context where few CUDA operations beyond

kernel launches and memory copies were used. In most real-world CUDA software, programmers will

likely encounter (both intentionally and unintentionally) the need for synchronization between CPU and

GPU operations. The added complexity of synchronization can result in capacity loss, potentially leading

to unbounded response times in task sets with high utilization. In this section, we explore various forms of

CPU-GPU synchronization and the resulting implications for real-time systems. We limit attention for now

86

to CPU tasks that share a single Linux address space and create user-defined streams. As covered in detail in

Section 3.4, this setup allows potential concurrency among operations on the GPU.

3.3.1 Overview of GPU Synchronization

Most developers are familiar with the concepts of synchronization in a CPU-only context where two

or more tasks must communicate or coordinate their actions. Synchronization becomes more complicated

when a CPU task must coordinate with programs executed on the GPU. The common case is that the CPU

task must determine when data in GPU memory is safe to access (e.g., copy back to CPU memory). This

is accomplished using GPU synchronization, where the GPU must complete outstanding work and reach a

synchronization point: a point in time when data access can safely occur. There are also other, less common,

cases when GPU synchronization is necessary.

In CUDA there are multiple ways to achieve GPU synchronization. They fall into two broad categories:

explicit synchronization, which is always programmer-requested, and implicit synchronization, which can

occur as a side effect of CUDA API functions intended for purposes other than synchronization. We

have uncovered in our research some unfortunate pitfalls relating to actual GPU synchronization behavior,

especially with respect to blocking. So, while these may not be pitfalls for non-safety-critical applications,

ignoring the effects of certain specific mechanisms for achieving synchronization would be perilous in a

safety-critical system where blocking must be anticipated and accounted for in analysis.

3.3.1.1 Explicit Synchronization

Explicit synchronization refers to synchronization points that the CUDA programmer explicitly requests

using the CUDA API. Explicit synchronization is typically used after a program has launched one or more

asynchronous CUDA kernels or memory-transfer operations and must wait for computations to complete. In

contrast to implicit synchronization, the sole purpose of explicit-synchronization functions is to block the

calling CPU task until the GPU reaches a synchronization point.

The CUDA documentation8 states that explicit synchronization will block the calling task until “all

preceding commands” have completed. For example, if the API function cudaDeviceSynchronize is

invoked, “preceding commands” may encompass all commands issued to the device from all CPU tasks.

8Section 3.2.5.5.3 of the Programming Guide for CUDA version 10.2.89.

87

CPU Blocking

K1: 0

K1: 1

K2: 0

K2: 1

K3: 0

K3: 1

K4: 0

K4: 1

Stream 1 (K1)

Stream 2 (K2)

Stream 3 (K3)

Stream 4 (K4)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Time (seconds)

SM 0

SM 1

(a) (b) (c) (d)

Figure 3.9: Explicit synchronization requested before K3, observed on the Jetson TX2.

Other explicit-synchronization options, including cudaStreamSynchronize, will only block until preceding

commands from a specified stream have completed.

We carried out experiments using the same framework as in Section 3.1 to investigate the specific behav-

iors of GPU synchronization on the Jetson TX2. Figure 3.9 shows the behavior of explicit synchronization

observed in one such experiment. The CUDA program executed to produce Figure 3.9 consists of four

CPU tasks all sharing a single address space. Each CPU task launched one kernel in a separate user-defined

stream. Kernel launches were separated by a small amount of time. Each kernel consisted of two blocks of

512 threads, and the figure shows that one block from each kernel was scheduled on each SM. Each thread

performed a busy-loop for a set amount of time.

An explicit-synchronization command, cudaDeviceSynchronize, was issued at time (a) by the CPU

task responsible for launching kernel K3. This caused K3’s CPU task to be blocked until the prior commands,

the execution of kernels K1 and K2, had both completed at time (c). This behavior is exactly what one

would expect, given the description of explicit synchronization from official documentation. However, our

experiments also uncovered Pitfall 1 for the unwary:

Pitfall 1. Explicit synchronization does not block future commands issued by other tasks.

The fact that the launch of K4 by its CPU task was not blocked at time (b) is an example of this pitfall.

Implicit synchronization, which we cover next, presents even more serious pitfalls.

88

3.3.1.2 Implicit Synchronization

Implicit synchronization occurs as a side effect of CUDA API calls that are otherwise unrelated to

synchronization. For example, implicit GPU synchronization may occur due to freeing GPU memory or

launching a kernel to the default stream. Presumably, this is because some modifications to GPU device state

can only occur while no kernels are executing. The CUDA documentation about implicit synchronization9

states that “two commands from different streams cannot run concurrently if any one of the following

operations is issued in-between them by the host thread:

1. A page-locked host memory allocation

2. A device memory allocation

3. A device memory set

4. A memory copy between two addresses to the same device memory

5. Any CUDA command to the NULL stream.”

Unlike the relatively straightforward documentation about explicit synchronization, our experiments revealed

that this list includes several operations that do not necessarily cause implicit synchronization, and fails to

include some functions that do. We consider this particularly problematic for real-time systems, where the

ability to accurately model blocking is critical.

Pitfall 2. Documented sources of implicit synchronization may not occur.

Pitfall 2 became apparent to us when, in all of our experiments, we never observed implicit synchro-

nization as a result of a device-memory operation (allocation, set, or copy) or a page-locked host memory

allocation. Our experiments covered the two most recent CUDA versions, 8.0 and 9.0, and the three most

recent NVIDIA GPU architectures, Maxwell, Pascal, and Volta. This, of course, does not prove that implicit

synchronization can never happen under such circumstances, but it does indicate that the documentation’s

statement that “two commands cannot run concurrently” is not a reliable rule. The only case (from this list)

in which we did observe implicit synchronization was launching GPU operations in the NULL stream.

Figure 3.10 shows a similar scenario to the one in Figure 3.9, with one key difference: the CPU task

for K3 did not call cudaDeviceSynchronize before K3 was launched, but instead launched K3 in the

9Section 3.2.5.5.4 of the Programming Guide for CUDA version 10.2.89.

89

K1: 0

K1: 1

K2: 0

K2: 1

K3: 0

K3: 1

K4: 0

K4: 1

Stream 1 (K1)

Stream 2 (K2)

NULL Stream (K3)

Stream 4 (K4)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

Time (seconds)

SM 0

SM 1

Figure 3.10: Implicit synchronization caused by launching kernel K3 in the NULL stream.

NULL stream. The implicit synchronization, and resulting loss of concurrency, is clearly visible in the figure.

Execution of K3 must wait for the first two kernels to complete, and, in contrast to explicit synchronization,

K4 is also prevented from running concurrently. Even though this loss of concurrency may be striking, it is

notably explicitly documented, and can be used (or avoided) in a careful design for a real-time task.

We found, however, a different source of implicit synchronization that is a far more problematic pitfall,

and is not even listed in the documentation on synchronization: freeing device memory.

Pitfall 3. The CUDA documentation neglects to list some functions that cause implicit synchronization.

Pitfall 4. Some CUDA API functions will block future, unrelated, CUDA tasks on the CPU.

Figure 3.11 shows the results of an experiment identical to the one in Figure 3.9, but this time the

call to cudaDeviceSynchronize at time (a) was replaced with a call to cudaFree, which was used to

de-allocate memory on the GPU. Pitfalls 3 and 4 can be observed in this plot. The fact that this blocked the

calling CPU thread until all prior GPU work had completed at time (c) indicates that cudaFree created

implicit synchronization. Similar to the NULL-stream behavior, implicit synchronization also prevented

subsequent kernels from starting to execute until cudaFree completed at time (c). We speculate that

this behavior by cudaFree is necessary because alterations to memory-mapping state require a quiescent

execution environment. However, the most surprising effect was not that K4 was blocked, but that K4’s

task was blocked on the CPU until time (c), even though it issued an “asynchronous” kernel launch. This

90

CPU Blocking

CPU Blocking

K1: 0

K1: 1

K2: 0

K2: 1

K3: 0

K3: 1

K4: 0

K4: 1

Stream 1 (K1)

Stream 2 (K2)

Stream 3 (K3)

Stream 4 (K4)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Time (seconds)

SM 0

SM 1

(a) (b) (c) (d)

Figure 3.11: Implicit synchronization causing additional CPU blocking due to cudaFree.

reveals a pitfall that can harm real-time analysis that does not consider the fact that CPU tasks can experience

blocking from GPU operations that are launched from unrelated tasks.

3.3.2 Overcoming Synchronization-Related Pitfalls

GPU synchronization has two problematic effects—introducing indeterminate amounts of blocking and

reducing GPU concurrency. This means that programmers who develop real-time systems must understand

the pitfalls inherent in explicit and implicit synchronization. This is especially true if the schedulability of

a real-time task system relies on minimizing blocking or high GPU utilization. Avoiding pitfalls can be

accomplished through careful construction of CUDA programs to, for example, avoid using the NULL stream

or freeing memory outside of certain time intervals. A more robust method would be to adopt middleware

that handles such problems transparently.

Our experiments indicate that GPU synchronization does not extend across GPU-using tasks that are

isolated in separate address spaces. If synchronization is the dominant limiting factor on schedulability, it

may be desirable to place each task in a separate address space (OS process). As explained in the next section,

this organization means that that CUDA kernels from different tasks can no longer execute concurrently, but

it may still be beneficial overall if synchronization-related blocking is a greater limiting factor.

It turns out that NVIDIA may be aware of this issue. Even though it is not currently available for

embedded platforms such as the TX2, NVIDIA does provide useful middleware for discrete GPUs: the

CUDA Multi-Process Service (MPS). MPS allows kernels from multiple processes to execute concurrently on

91

a single GPU, while maintaining the desirable property that GPU synchronization from one process will not

affect other processes. We explore the benefits of MPS further in Section 3.4.

3.4 Concurrency and Performance

In Section 3.1 and Section 3.2, we investigated different GPU scheduling behavior when running GPU-

using real-time task systems in two contexts: (i) each task has its own distinct address space, i.e., it runs as an

OS process, and (ii) all tasks belong to the same address space, i.e., each task runs as a schedulable thread

within a process. We refer to these two contexts as process-based and thread-based tasks, respectively.

While process-based tasks have the advantage of memory protection, they do not actually execute on

the GPU concurrently; instead, GPU operations are multiprogrammed in a way that makes predictable

scheduling of GPU-related resources difficult if not impossible to achieve (Section 3.2). When operations are

multiprogrammed on a GPU, their execution times depend on contention for shared GPU resources, making

it hard to bound a task’s overall execution time. Additionally, concurrency among GPU operations may be

important in order to avoid wasting GPU processing cycles, especially when a single kernel cannot fully

utilize the GPU’s resources. Although this may be avoided by running tasks with user-defined streams in a

shared address space, a shared address space may actually reduce concurrency in task systems where tasks

regularly interfere with each other via implicit synchronization (Section 3.3). Fortunately, NVIDIA provides

a third option: middleware called the Multi-Process Service (MPS) (NVIDIA, 2019e).

3.4.1 Multi-Process Service (MPS)

MPS enables concurrent execution of GPU operations launched by independent CPU address spaces. It

has the potential to combine the advantages of both thread- and process-based tasks. Programs written using

the CUDA API require no changes to use MPS—if MPS is running, CUDA programs transparently issue

requests to MPS rather than directly to a GPU. Official documentation reports that MPS operates as a server

process with its own CUDA context, and that CUDA API requests are redirected from client processes to the

MPS server. Because the server’s CUDA context is effectively shared, GPU operations launched by separate

processes can execute concurrently on a shared GPU, providing the benefits of thread-based tasks. However,

MPS also continues to preserve the advantage of process-based tasks: separate processes will not block each

other with implicit or explicit synchronization.

92

It is not clear from available documentation how MPS actually schedules GPU operations and whether

the GPU scheduling rules revealed in Section 3.1 are followed under MPS. For example, the documentation

for MPS only mentions possible overlap between kernels and copy operations.10 Given the documentation

flaws discussed in Sections 3.3 and 3.5.2, one could be skeptical of the veracity of this claim, so we verified

experimentally that those scheduling rules are also followed under MPS following the experimental methods

in Section 3.1.

Maximizing the utilization of GPU resources using streams in thread-based tasks is suggested by

NVIDIA’s “Best Practices Guide” (NVIDIA, 2019a). However, it would be unwise to simply take this

recommendation at face value when choosing between MPS or a process- or thread-based task organization

in a safety-critical system. Additionally, MPS is not yet supported on embedded ARM platforms like the

Jetson TX2, so the other management systems are still necessary on some systems. Therefore, we conducted

a case study on computer-vision software, demonstrating the performance differences among the available

configurations.

3.4.2 Case Study of Computer-Vision Tasks

Our motivation is primarily autonomous driving, so we chose to study algorithms for computer-vision

tasks that provide functions commonly used for autonomous driving. In evaluating the results from this case

study, we consider that the real-time tasks that use GPUs for autonomous driving may have multiple levels of

criticality. Some may be safety-critical with hard deadlines and be provisioned for worst-case execution plus

a margin for safety. Others may have only bounded tardiness requirements, or even be background work that

can be provisioned for average-case execution.

We focus here on five programs from NVIDIA’s provided sample code for VisionWorks:

• Video Stabilization. Smooths shaky video content. This is often a preprocessing step for a computer-

vision pipeline.

• Feature Tracking. Tracks features between consecutive frames. This algorithm is used to track the

positions of objects in a scene.

10“MPS allows kernel and memory copy operations from different processes to overlap on the GPU, achieving higher utilization and
shorter running times” (NVIDIA, 2019e).

93

Multiple Process-based Tasks Multiple Thread-based Tasks
Without MPS MP MT

With MPS MP(MPS) MT(MPS)

Table 3.6: Abbreviations used for our four experimental scenarios.

• Motion Estimation. Estimates the direction of moving pixels, which is fundamental to calculating

trajectories of moving objects, e.g., pedestrians and other vehicles.

• Hough Transform. (Hough) A feature-extraction algorithm; the provided sample detects circles and

lines in images.

• Stereo Matching. Uses input from two cameras to generate depth information by matching features in

both frames.

Methodology. We adapted NVIDIA’s VisionWorks samples to be compatible with our open-source experi-

mental framework.11 These samples generally only use a single CUDA stream. We ran four instances of the

same sample program in each experiment. We configured each instance to process 1,000 frames from a video

sequence while recording per-frame response times. Our framework allows running each program instance

in a shared address space (multiple thread-based tasks, MT) or in independent address spaces (multiple

process-based tasks, MP), both with and without the MPS server active. This produces experiments for each

algorithm in four different scenarios as summarized in Table 3.6. Experimental results under MT(MPS) were

always similar to MT with slight overheads caused by MPS, so we omit it in all of our results for clarity. We

conducted these experiments on a Maxwell-architecture discrete GPU with CUDA 9.0. We briefly summarize

results on other devices and different CUDA versions later.

Results. We show cumulative distribution function (CDF) and kernel density estimation (KDE)12 plots of

Hough and feature tracker as representatives in Figures 3.12–3.15. The KDE curve was produced using the

Python package scipy.stats.gaussian kde. In both the CDF and KDE plots, each curve represents the

recorded response-time data in an experimental scenario. For example, the curves labeled “x4 MP” in Figures

3.12 and 3.13 represent the per-frame response time distributions where each of four Hough instances is run

in a separate process. Result data for all five algorithms is summarized in Table 3.7, which lists the maximum,

99th-percentile, 90th-percentile, mean, and median frame times for each scenario and algorithm.

Observation 3.1.
11Again, https://github.com/yalue/cuda_scheduling_examiner_mirror.
12KDE is a statistical method for estimating a continuous probability density function (PDF) from a set of discrete sample values.

94

https://github.com/yalue/cuda_scheduling_examiner_mirror

VisionWorks Samples Scenarios Max 99th% 90th% Mean Median

Video Stabilization
MP 17.55 12.88 5.43 3.31 2.69
MP (MPS) 36.73 11.12 5.37 2.81 2.06
MT 17.0 13.87 8.94 4.72 3.63

Feature Tracking
MP 5.64 3.87 1.45 1.08 0.96
MP (MPS) 14.73 6.04 1.51 1.31 1.09
MT 31.11 20.86 11.51 4.68 2.68

Motion Estimation
MP 28.64 21.25 17.33 16.75 17.24
MP (MPS) 33.05 22.66 15.75 14.3 14.89
MT 42.86 26.12 16.53 15.07 15.14

Hough Transform
MP 13.56 11.61 7.28 5.68 5.7
MP (MPS) 18.35 11.66 6.44 3.74 3.18
MT 58.65 22.64 15.82 9.12 8.94

Stereo Matching
MP 75.13 50.54 30.42 24.14 24.77
MP (MPS) 59.73 45.05 26.87 22.59 24.41
MT 125.96 58.82 34.36 20.75 18.95

Table 3.7: Per-frame response time data (in milliseconds) of VisionWorks samples. The fastest scenario for
each time metric is indicated by bold text.

MP(MPS) exhibits good average-case performance.

Observation 3.1 is supported by the data in Table 3.7. 90th-percentile, mean, and median performance

under configuration MP(MPS) were consistently good with the top performance for three of the five algorithms.

For Feature Tracking, MP was best in all metrics, and for Stereo Matching, MT had better mean and median

performance. The results for average-case performance indicate that using MP(MPS) would likely be an

attractive option for soft-real-time systems, e.g., systems that can occasionally drop a video frame without

compromising safety. We conjecture that the average-case performance advantage of MP(MPS) over MP in

most cases is due to improved concurrency and lower GPU context-switching overheads.

Feature Tracking was the most notable exception to Observation 3.1. In this case, MP was only slightly

better than MP(MPS) when comparing the 90th-percentile, mean, and median performance. We conducted

additional experiments using NVIDIA’s CUDA-profiling tool, nvprof, to gain some insight into this behavior.

We found that Feature Tracking’s overall execution time is heavily influenced by a large number of memory

transfers, rather than CUDA kernel executions. This likely means that MPS only provides limited GPU

concurrency benefits to Feature Tracking, which failed to outweigh other MPS-related overheads.

Observation 3.2. Worst-case and 99th-percentile runtimes were typically better under MP.

95

1 12 23 34 45 56
Time (milliseconds)

0

20

40

60

80

100
%

 <
=

X

x4 MP
x4 MP (MPS)
x4 MT

Figure 3.12: Per-frame response time CDFs for Hough.

1 12 23 34 45 56
Time (milliseconds)

0.0000

0.0958

0.1917

0.2875

0.3833

0.4791

De
ns

ity

x4 MP
x4 MP (MPS)
x4 MT

Figure 3.13: Per-frame response time KDEs for Hough.

0 6 12 18 24 30
Time (milliseconds)

0

20

40

60

80

100

%
 <

=
X

x4 MP
x4 MP (MPS)
x4 MT

Figure 3.14: Per-frame response time CDFs for Feature
Tracking.

0 6 12 18 24 30
Time (milliseconds)

0.000

0.274

0.547

0.821

1.095

1.369

De
ns

ity

x4 MP
x4 MP (MPS)
x4 MT

Figure 3.15: Per-frame response time KDEs for Feature
Tracking.

While MP(MPS) largely resulted in average-case improvements, Table 3.7 shows three of our five

applications (Feature Tracking, Motion Estimation, and Hough Transform) showed the smallest worst-case

and 99th-percentile execution times under MP. This indicates that MP may be a better option for certain

task systems where worst-case performance is more important than average-case. Our results illustrate why

the trade-offs between process-based and thread-based designs for tasks must be evaluated for individual

algorithms.

Observation 3.3. MP and MP(MPS) exhibit more predictable execution times than MT.

Observation 3.3 is supported by Figures 3.13 and 3.15, where the KDE shows a tight unimodal distribution

for MP and MP(MPS) but not MT. A unimodal distribution function with little dispersion indicates that the

response times exhibit low variance. MT, in contrast, shows both bimodal (in Figure 3.13) and unimodal (in

96

Figure 3.15) distributions with significant dispersions (indicating high variance). Even if specific “spikes” are

more difficult to observe in the corresponding CDF plots, the difference in response-time ranges are also

apparent from the endpoints of the CDF curves in Figures 3.12 and 3.14.

Observation 3.4. The MT configuration generally performed poorly.

Observation 3.4 is supported by Table 3.7 and the plots. The only metrics where MT outperformed the

other scenarios were the mean and median times for Stereo Matching, and worst-case response time for Video

Stabilization (where MT was only slightly better than MP).

Other results. In addition to the results presented above, we also conducted this case study using CUDA

8.0 on a Maxwell discrete GPU (GTX 860M) and CUDA 9.0 on Pascal discrete GPUs (GTX 1050 and

GTX 1070). Even though we chose to omit tables of results from the other GPUs and CUDA versions, we

made similar observations excepting that the performance of all configurations was better on a Pascal GPU.

Additionally, the experimental results with CUDA 8.0 on the same Maxwell GPU stayed nearly identical to

those using CUDA 9.0.

Pitfall 5. The suggestion from NVIDIA’s documentation to exploit concurrency through user-defined streams

may be of limited use for improving performance in thread-based tasks.

We assumed that enabling concurrent GPU execution was of significant importance for limiting capacity

loss in real-time workloads on embedded systems, and therefore fell victim to Pitfall 5. Instead, our results

show that MT rarely outperforms tasks running as multiple processes, even without MPS. Additionally, any

performance improvement via fine-tuned stream organization for MT can also be achieved with MP(MPS).

That being said, even though enabling concurrency using MP(MPS) is generally beneficial, it unfortunately is

not an option on ARM-based embedded platforms like the Jetson TX2. We would encourage NVIDIA to

consider this shortcoming in hope that one day it may be addressed.

3.5 Perils of CUDA Programming for Real-Time Tasks

In the previous sections we presented several specific pitfalls in correctly designing and running CUDA

programs for real-time tasks. Elements of both CUDA’s design and documentation contribute to this ensemble

of perils to avoid. In this section, we discuss some of the broader categories of pitfalls.

97

3.5.1 Synchronous Defaults

As hinted in Section 3.3, one of the primary pitfalls when designing a real-time task system that uses

a GPU is that all possible blocking must be accounted for in analysis. Therefore, reducing the amount of

blocking on both the CPU and GPU is essential. On the GPU, this requires issuing all CUDA operations to

user-defined (non-NULL) streams, and carefully controlling the use of other API functions, like cudaFree,

that cause blocking via implicit synchronization.

Even though it may seem like an easy task for a programmer to just specify a user-defined stream

as opposed to the NULL stream, we note that simple mistakes in doing so may be easy to miss. This is

particularly true when using the Async versions of CUDA API functions, such as cudaMemsetAsync. For

example, consider the code snippets in Listings 3.1 and 3.2, which present a particular example of Pitfall 6

below.

Listing 3.1: Causes implicit synchronization.

if (! CheckCUDAError(cudaMemsetAsync(

state ->device_block_smids , 0,

data_size))) {

return 0;

}

Listing 3.2: Correctly asynchronous.

if (! CheckCUDAError(cudaMemsetAsync(

state ->device_block_smids , 0,

data_size , state ->stream))) {

return 0;

}

Pitfall 6. Async CUDA functions use the GPU-synchronous NULL stream by default.

Listing 3.1’s call to cudaMemsetAsync is missing a final argument specifying a user-defined stream,

which causes the NULL stream to be used by default. As pointed out in Section 3.3.1.2, NULL-stream usage

causes implicit synchronization and hence blocking. This mistake is corrected in Listing 3.2. This specific

mistake actually led to months of mystifyingly inconsistent results in our own experiments—despite our

relatively deep experience examining the subtleties of CUDA behavior (note that these code snippets are

parts of much larger listings). Would an ML application developer catch such a mistake or appreciate its

impact? Note that NVIDIA’s CUDA compiler does not catch this mistake because the compiler is based on

the C++ programming language, which allows default arguments to functions.

Even though the examples in Listings 3.1 and 3.2 only use cudaMemsetAsync, Pitfall 6 applies to other

CUDA API functions as well, such as cudaMemcpyAsync. The fact that the CUDA documentation indicates

that these functions cause implicit synchronization, as discussed in Section 3.3 and Section 3.5.2, makes

98

potential programmer errors even harder to notice in cases where synchronization is due to NULL-stream

usage rather than memory operations.

To summarize this discussion, CUDA provides a brittle programming environment: difficult-to-spot

mistakes can have profound consequences for real-time tasks.

3.5.2 Flawed Documentation

Another substantial danger stems from the inaccurate official documentation provided by NVIDIA. While

function signatures and data structures seem to receive accurate (but often sparse) official documentation,

scheduling and synchronization remain under-discussed. We have demystified some scheduling rules

(Section 3.1). In our work to demystify implicit synchronization (see definition in Section 3.3.1.2), however,

we came across not only missing documentation, but incorrect documentation.

Pitfall 7. Observed CUDA behavior often diverges from what the documentation states or implies.

Consider Table 3.8. In all but one of the cases we investigated, the documentation claims implicit

synchronization will occur when it does not. While this absence of synchronization may positively benefit

performance, it also may cause incorrect timing analysis. Furthermore, program logic may be broken in

the (albeit unlikely) case that the program relies on a function like cudaMemsetAsync to trigger GPU

synchronization.

Unfortunately, the documentation also contains less-benign flaws. Take cudaFree and cudaFreeHost as

an example. Our experiments in Section 3.3 found these functions to not only cause implicit synchronization,

but block other CPU tasks from proceeding while cudaFree waits on the GPU. Much to our surprise, the

documentation mentions neither of these side effects, leaving the reader to assume that these functions behave

similarly to other CUDA functions and have no side effects.

Our experiments also revealed that cudaMalloc and cudaMallocHost may also cause cross-task CPU

blocking in a similar manner to cudaFree in certain situations, even though these functions do not trigger

implicit synchronization. As we have not yet determined the specific causes for this behavior, this property is

indicated by an entry of ‘?’ in certain cells in Table 3.8. In any case, we failed to find any mention of this

variant of CPU blocking in the CUDA documentation, and investigating these functions remains an open

topic that we plan to explore in future work.

An especially worrying pitfall is the following:

99

Observed Behavior Documented Behavior

Source
Blocks Other
CPU Tasks

Implicit Sync.
(Sec-

tion 3.3.1.2)
Caller Must

Wait for GPU

Implicit Sync.
(Sec-

tion 3.3.1.2)
Caller Must

Wait for GPU
cudaDeviceSynchronize No No Yes No Yes

cudaFree Yes Yes Yes No (undoc.) No (impl.)
cudaFreeHost Yes Yes Yes No (undoc.) No (impl.)
cudaMalloc ? No No Yes No (impl.)

cudaMallocHost ? No No Yes No (impl.)
cudaMemcpyAsync D-D No No No Yes No
cudaMemcpyAsync D-H No No No Yes* No
cudaMemcpyAsync H-D No No No Yes* No
cudaMemset (sync.) No Yes No Yes No
cudaMemsetAsync No No No Yes No

cudaStreamSynchronize No No Yes No Yes

Table 3.8: Observed vs. documented synchronization sources in CUDA. For cudaMemcpyAsync we distin-
guish the direction of copy between device and host: (D-D) internal to GPU memory; (D-H) GPU memory to
CPU memory; (H-D) CPU memory to GPU memory. *The documentation is contradictory for these instances,
but the more detailed option indicates that these functions only cause synchronization if host memory is not
page-locked. We were unable to observe this regardless of whether host memory was page-locked or not.

Pitfall 8. CUDA documentation can be contradictory.

In one case, namely cudaMemcpyAsync, we discovered that the CUDA documentation actively contra-

dicts itself. Section 3.2.5.1 of the CUDA Programming Guide states “The following device operations are

asynchronous with respect to the host: . . . Memory copies performed by functions that are suffixed with

Async,” but Section 2 of the CUDA Runtime API documentation states “For transfers from device memory

to pageable host memory, [cudaMemcpyAsync] will return only once the copy has completed.” This raises

further doubts about the correctness of other parts of the CUDA documentation.

We note that the CUDA API contains 146 non-deprecated or compatibility-related functions, and we

have only tested a small fraction of these in depth. Therefore, it is likely that our findings with Pitfalls 7 and 8

apply to other portions of the documentation that we have yet to observe.

3.5.3 Unknown Future

All of the pitfalls discussed in this section, as well as the need to compare the alternatives considered in

Section 3.4 empirically, can be attributed to a single overarching problem: the black-box nature of current

GPU-enabled platforms means that developers do not have a reliable model of GPU behavior. Much of our

100

group’s prior work has focused on developing such a model. However, this highlights what is perhaps the

most important pitfall:

Pitfall 9. What we learn about current black-box GPUs may not apply in the future.

Despite the fact that we validated our experimental results on several of the most recent CUDA versions

and GPU architectures, there is no guarantee that our results will hold after future GPU-architecture or

CUDA-version updates.

Even though other safety-critical hardware inevitably undergoes changes and updates, future-proof

programs can still be developed against a stable specification. Likewise, the only way to truly mitigate

Pitfall 9 is for GPU manufacturers to release stable, accurate documentation about their GPU platforms,

along, preferably, with giving developers greater control over GPU scheduling and synchronization. Only

then can we have a reliable GPU model upon which to base real-time analysis and certification. We hope that

work such as ours signals to manufacturers like NVIDIA that greater openness is a desirable feature when

marketing in safety-critical domains.

Unfortunately, there is little indication that NVIDIA plans to move towards open hardware or software

in the immediate future. In the meantime, one of our continuing objectives is to produce tools, such as our

experimental framework, that can be quickly adapted to new GPU hardware. So far, our tools have allowed

us to quickly re-validate our prior results every time NVIDIA updates its black-box hardware or software.

3.6 Chapter Summary

We presented an in-depth study of GPU scheduling behavior on the NVIDIA TX2, an exemplar of

platforms marketed today for supporting autonomous systems. We found that the GPU scheduler of the TX2

has predictable FIFO-oriented properties that are amenable to real-time schedulability analysis if all work is

submitted by CPU tasks that share an address space or by CPU processes that are managed by MPS. On the

other hand, GPU scheduling on the TX2 becomes more unpredictable and complex when GPU computations

are launched by CPU processes that have distinct address spaces without using MPS. Unfortunately, this

process-oriented approach is common in GPU program development.

We acknowledge that it is not possible to confirm with certainty the scheduling behavior of any GPU

through only black-box experimentation. However, we counter this drawback by noting that plans are already

underway to use these devices to realize safety-critical autonomous capabilities (NVIDIA, 2017b). If NVIDIA

101

is unwilling to release details about internal GPU scheduling policies, then the only option available to us is to

attempt to discern such policies through experimentation. Moreover, when mass-market vehicles eventually

evolve to become fully autonomous, certification will become a crucial concern. It is simply not possible

to certify with any degree of certainty a safety-critical system built using components that have unknown

behaviors.

In the next chapter, we will derive response-time bounds for the GPU scheduler specified by the rules in

Sections 3.1 and 3.2.

In addition to the revealed GPU scheduling rules, this chapter contributes a list of potential pitfalls when

developing CUDA applications for real-time systems. Reasons for these pitfalls include GPU synchronization,

application performance, and problems with documentation. We uncovered these pitfalls via microbenchmark

experiments, examining the performance of real-world computer-vision applications, and a careful reading

of official GPU documentation. While there is no guarantee of stability in our observations as NVIDIA’s

hardware and software continues to evolve, we hope that our open-source experimental system will at least

make it apparent when changes do occur.

The experimental methodology employed in this chapter is of a general nature and can be applied to

other NVIDIA GPUs.

Acknowledgement. The contents of this chapter previously appeared in a series of papers that Tanya Amert,

Nathan Otterness, and I collaboratively produced. Nathan implemented the CUDA scheduling examiner

framework for the experiments. Tanya implemented the visualization scripts that plot the scheduling timeline

figures (e.g., Figure 3.1). I ported the computer-vision sample code from NVIDIA CUDA samples to the

aforementioned framework for the evaluation presented in Section 3.4.

For revealing GPU scheduling rules, I designed the initial set of experiments in (Otterness et al., 2017a),

which Tanya redesigned in (Amert et al., 2017), writing the current version that I modified to correct the

scheduling rules for copy operations, in Section 3.1. The experiments for additional complexities—NULL

stream (Tanya), process-based GPU access (Nathan), and stream priorities (me), are included in Section 3.2.

Nathan and I conducted the experiments in Section 3.3, and I conducted the experiments in Section 3.4.

Joshua Bakita and Nathan summarized the list of perils in Section 3.5.

102

CHAPTER 4: TASK MODEL AND SCHEDULABILITY ANALYSIS
FOR TASKS SHARING GPUS1

Previous chapters established a fundamental understanding of NVIDIA GPUs, allowing us to conduct

abstract analysis and derive real-time guarantees for systems that share NVIDIA GPUs. In this chapter, we

introduce a task model and a schedulability analysis for GPU tasks. We analyze GPU applications using a

DAG model, in which each node of a DAG contains either CPU or GPU work. We will first review how prior

work of DAG scheduling analysis can be applied in Section 4.1. Then, based on the CUDA programming

model and GPU background provided in Section 2.3, we introduce a task model to describe the GPU tasks.

Using this task model, we abstractly analyze the NVIDIA GPU scheduler specified by the scheduling

rules revealed in Section 3.1. We show that intra-task parallelism is necessary to prevent extreme capacity

loss. Then we demonstrate that NVIDIA GPUs inherently suffer from a fundamental capacity loss (even with

intra-task parallelism), which we express by providing a total utilization bound. We show that this bound

is tight with a counterexample, a task system that has total utilization matching this bound but unbounded

response times. This total utilization bound forms the schedulability condition, under which we present a

response-time bound analysis for GPU tasks that are allowed to execute concurrently on NVIDIA GPUs.

4.1 DAG-based Task Model

In this section, we review prior relevant work on the real-time scheduling of DAGs. We specifically

consider a system G = {G1,G2, . . . ,GN} comprised of N DAGs. The DAG Gi consists of ni nodes, which

correspond to ni sequential tasks τ i
1,τ

i
2, . . . ,τ

i
ni . Each task τ i

v releases a (potentially infinite) sequence of jobs

τ i
v,1,τ i

v,2, The edges in Gi reflect precedence relationships. A particular task τ i
v’s predecessors are those

tasks with outgoing edges directed to τ i
v, and its successors are those with incoming edges directed from τ i

v.

1Contents of this chapter previously appeared in the following papers:

Yang, K., Yang, M., and Anderson, J. (2016a). Reducing response-time bounds for DAG-based task systems on heterogeneous
multicore platforms. In Proceedings of the 24th International Conference on Real-Time Networks and Systems, pages 349–358.

Yang, M., Amert, T., Yang, K., Otterness, N., Anderson, J. H., Smith, F. D., and Wang, S. (2018a). Making OpenVX really “real
time”. In Proceedings of the 39th IEEE International Real-Time Systems Symposium, pages 80–93.

103

4

1

32

1

1 1

1

Figure 4.1: DAG G1.

The jth job of task τ i
v, τ i

v, j, cannot commence execution until the jth jobs of all of its predecessors finish.

Such dependencies only exist for the same invocation of a DAG, not across invocations. That is, while jobs

are sequential, intra-task parallelism (i.e., parallel node invocation) is possible: successive jobs of a task are

allowed to execute in parallel.

Example 4.1. Consider DAG G1 in Figure 4.1. Task τ1
4 ’s predecessors are tasks τ1

2 and τ1
3 , i.e., for any j,

job τ1
4, j waits for jobs τ1

2, j and τ1
3, j to finish. If intra-task parallelism is allowed, then τ1

4, j and τ1
4, j+1 could

execute in parallel. ♦

For simplicity, we assume that each DAG Gi has exactly one source task τ i
1, with only outgoing edges,

and one sink task τ i
ni , with only incoming edges. Multi-source/multi-sink DAGs can be supported with the

addition of singular “virtual” sources and sinks that connect multiple sources and sinks, respectively. Virtual

sources and sinks have a WCET of zero.

Source tasks are released sporadically, i.e., for the DAG Gi, the job releases of τ i
1 have a minimum

separation time, or period, denoted T i. A non-source task τ i
v (v > 1) releases its jth job τ i

v, j after the jth jobs

of all its predecessors in Gi have completed. That is, letting ri
v, j and f i

v, j denote the release and finish times

of τ i
v, j, respectively, ri

v, j ≥max{ f i
w, j | τ i

w is a predecessor of τ i
v}. The response time of job τ i

v, j is defined as

f i
v, j− ri

v, j, and the end-to-end response time of the jth invocation of the DAG Gi as f i
ni, j− ri

1, j.

Deriving response-time bounds. An end-to-end response-time bound, the sum of response-time bounds of

the nodes on the critical path of a DAG, can be computed inductively for a DAG by scheduling its nodes in a

way that allows them to be viewed as sporadic tasks and by then leveraging response-time bounds applicable

to such tasks (Liu and Anderson, 2010). In considering the scheduling of DAGs on a heterogeneous hardware

platform that consists of different types of devices, response-time bounds for nodes running on each type of

104

device can be derived separately. However, for the CPU-GPU platform we consider, while we have mentioned

such analysis for CPU nodes, a new analysis for GPU nodes is needed.

When viewing nodes of a DAG Gi as sporadic tasks, precedence constraints must be respected. This

can be ensured by assigning an offset Φi
v to each task τ i

v based on the response-time bounds applicable to

“up-stream” tasks in Gi, and by requiring the jth job of τ i
v to be released exactly Φi

v time units after the release

time of the jth job of the source task τ i
1, i.e., ri

v, j = ri
1, j +Φi

v, where Φi
1 = 0. With offsets so defined, every

task τ i
v in Gi (not just the source) has a period of Ti. Also, letting Ci

v denote the WCET of τ i
v, its utilization

can be defined as ui
v =Ci

v/T i.

Example 4.1 (cont’d). Figure 4.2 depicts an example schedule for the DAG G1 in Figure 4.1. The first

(respectively, second) job of each task has a lighter (respectively, darker) shading to make them easier to

distinguish. Assume that the tasks have deadlines as shown, and response-time bounds of R1
1 = 9, R1

2 = 5,

R1
3 = 7, and R1

4 = 9, respectively. Based on these bounds, we define corresponding offsets Φ1
1 = 0, Φ1

2 = 9,

Φ1
3 = 9, and Φ1

4 = 16, respectively. With these response-time bounds, the end-to-end response-time bound

that can be guaranteed is determined by R1
1, R1

3, and R1
4 and is given by R1 = 25. The task response-time

bounds used here depend on the scheduler employed. For example, if all tasks are scheduled via the G-EDF

scheduler, then per-task response-time bounds can be determined from tardiness analysis for G-EDF (Devi

and Anderson, 2008; Erickson and Anderson, 2011). In fact, this statement applies to any G-EDF-like

(GEL) scheduler (Erickson et al., 2014).2 Such schedulers will be our focus. Recall that, according to the

DAG-based task model introduced here, successive jobs of the same task might execute in parallel. We see

this with jobs τ1
4,1 and τ1

4,2 in the interval [23,24). Such jobs could even finish out of release-time order due

to execution-time variations. ♦

Early releasing. Using offsets may cause non-work-conserving behavior: a given job may be unable to

execute even though all of its predecessor jobs have completed. Under any GEL scheduler, work-conserving

behavior can be restored in such a case without altering response-time bounds (Devi and Anderson, 2008;

Erickson and Anderson, 2011; Erickson et al., 2014) via a technique called early releasing (Anderson and

Srinivasan, 2000), which allows a job to execute “early,” before its “actual” release time.

2Under such a scheduler, each job has a priority point within a constant distance of its release; an earliest-priority-point-first order is
assumed.

105

Time0

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.)

τ1

1

5 10 15

R1
1

R2

1

R3
1

R4

1

Φ1 = 0
1

Φ2

1

R : the end-to-end response-time bound for G

20 25 30

Job Release Job Deadline Job Completion CPU Execution

end-to-end response time of invocation 1

end-to-end response time of invocation 2

Φ3

1

Φ4

1

τ2

1

τ3

1

τ4

1

1 1

Figure 4.2: Example schedule of the tasks in G1 in Figure 4.1.

Schedulability. For DAGs as considered here, schedulability conditions for ensuring bounded response times

hinge on conditions for ensuring bounded tardiness under GEL scheduling. Assuming a CPU-only platform

with M processors, if intra-task parallelism is forbidden, then the required conditions are ui
v ≤ 1 for each v

and ∑ui
v ≤M (Devi and Anderson, 2008; Erickson et al., 2014). On the other hand, if arbitrary intra-task

parallelism is allowed, then only ∑ui
v ≤M is required and per-task utilizations can exceed 1.0 (Erickson

and Anderson, 2011; Erickson et al., 2014). These conditions remain unaltered if arbitrary early releasing is

allowed.

As noted earlier, response-time bounds for GPU nodes are needed in order to compute end-to-end

response-time bounds. We derive such bounds for NVIDIA GPUs next.

4.2 GPU Response-Time Bound

In this section, we derive a response-time bound for tasks executing on NVIDIA GPUs. We provided a

comprehensive background relating to NVIDIA GPUs in Section 2.3, of which we review the essentials to

facilitate establishing the task model for GPU tasks.

106

4.2.1 NVIDIA GPU Details

The compute units of NVIDIA GPUs are SMs, typically comprised of 64 or 128 physical GPU cores.

The SMs together can be logically viewed as an EE. Execution on these GPUs is constrained by the number

of available GPU threads, which we call G-threads to distinguish from CPU threads; on current NVIDIA

GPUs, there are 2,048 G-threads per SM.

CUDA programs submit work to a GPU as kernels. A kernel is run on the GPU as a series of thread

blocks. These thread blocks, or simply blocks, are each comprised of a number of G-threads. The number of

blocks and G-threads per block (i.e., the block size) are set at runtime when a kernel is launched. The GPU

scheduler uses these values to assign work to the GPU’s SMs. Blocks are the schedulable entities on the GPU.

All G-threads in a block are always scheduled on the same SM, and execute non-preemptively.

In Chapter 3, we documented scheduling rules used by NVIDIA GPUs when either all GPU work is

submitted from the same address space or NVIDIA’s multi-process service (MPS) (NVIDIA, 2019e) is

used, which we assume. For simplicity, we restate here only the rules needed for our purposes. These rules

govern how kernels are enqueued on and dequeued from a FIFO EE queue, as depicted in Figure 4.3. CUDA

also provides a concept called a CUDA stream that adds an additional layer of queueing in the form of

stream queues prior to the EE queue. However, as explained later, we assume streams are used in a way that

effectively obviates these additional queues. (Our statement of Rule G2 has been simplified from the original

to reflect this assumption.) The following terminology is used in the rules below. A block is assigned when it

is scheduled for execution on an SM. A kernel is dispatched when one or more of its blocks are assigned. A

kernel is fully dispatched when its last block is assigned.

G2 A kernel is enqueued on the EE queue when launched.

G3 A kernel at the head of the EE queue is dequeued from that queue once it becomes fully dispatched.

X1 Only blocks of the kernel at the head of the EE queue are eligible to be assigned.

R1 A block of the kernel at the head of the EE queue is eligible to be assigned if its resource constraints are

met.

Constrained resources include shared memory, registers, and (of course) G-threads. We assume that an

NVIDIA-provided CUDA compiler option limiting register usage is applied to obviate blocking for registers.

We consider techniques for handling shared-memory-induced blocking later.

107

K2

EE Queue

GPU

SM 0 SM 1

K1: 0 K1: 1

K2: 1

K2: 3

K2: 1

K2: 3

K2: 0

K2: 2

K2: 0

K2: 2

GPU

SM 0 SM 1

K1: 0 K1: 1

K2: 1

K2: 3

K2: 0

K2: 2

CPU 0

Task 𝜏2

CPU 1

Task 𝜏1

CPU 0

Task 𝜏2

CPU 1

Task 𝜏1

Figure 4.3: GPUscheduling; kernel Kk’s bth block is Kk:b.

Example 4.2. In the simple case depicted in Figure 4.3, the GPU is comprised of two SMs. Two tasks submit

one kernel each, and these are immediately enqueued on the EE queue upon launch (Rule G2). Kernel K1 is

comprised of two blocks of 1,024 G-threads each; K2 is comprised of six blocks of 512 G-threads each. K1

is fully dispatched, so it has been dequeued from the EE queue (Rule G3). The remaining two blocks of K2

do not fit on either SM, and thus are not yet assigned (Rule R1); K2 is not fully dispatched, so it is still at

the head of the EE queue. Any new kernel K3 would be behind K2 in the EE queue, so its blocks would be

ineligible to be assigned until K2 is fully dispatched (Rule X1). ♦

4.2.2 System Model

One of the virtues of having each node restricted to a type of device in a DAG, as we mentioned in

Section 4.1, is that concerns pertaining to CPU and GPU work can be considered separately. Therefore,

GPU kernels are just sporadic tasks that can be analyzed independently from CPU tasks. In deriving a

response-time bound, we therefore restrict our attention to a set τ of n independent sporadic GPU tasks

{τ1,τ2, · · · ,τn}, which are scheduled via the rules in Section 4.2.1 on a single GPU with multiple SMs. Each

task τi has a period Ti, defined as before.

With our focus on GPU-using tasks, additional notation (to be illustrated shortly) is needed to express

execution requirements. Each job of task τi consists of Bi blocks, each of which is executed in parallel by

108

exactly3 Hi G-threads. Hi is called the block size4 of τi, and Hmax = maxi{Hi} denotes the maximum block

size in the system. We denote by Ci the per-block worst-case execution workload of a block of τi, where one

unit of execution workload is defined by the work completed by one G-thread in one time unit. In summary, a

GPU task τi is specified as τi = (Ci,Ti,Bi,Hi).

Note that Ci corresponds to an amount of execution workload instead of execution time. As each block

of task τi requires Hi threads concurrently executing in parallel, the worst-case execution time of a block of τi

is given by Ci/Hi.

Definition 4.1. (block length) For each task τi, its maximum block length is defined as Li = Ci/Hi. The

maximum block length of tasks in τ is defined as Lmax = maxi{Li}.

The utilization of task τi is given by ui =Ci ·Bi/Ti, and the total system utilization by Usum = ∑τi∈τ ui.

Let τi, j denote the jth(j ≥ 1) job of τi. The release time5 of job τi, j is denoted by ri, j, its (absolute)

deadline by di, j = ri, j +Ti, and its completion time by fi, j; its response time is defined as fi, j− ri, j. A task’s

response time is the maximum response time of any its jobs.

SM constraints. We consider a single GPU platform consisting of g identical SMs, each of which consists

of m G-threads (for NVIDIA GPUs, m = 2048). A single block of τi must execute on Hi G-threads that

belong to the same SM. That is, as long as there are fewer than Hi available G-threads on each SM, a block of

τi, j cannot commence execution even if the total number of available G-threads (from multiple SMs) in the

GPU exceeds Hi. On the other hand, different blocks may be assigned to different SMs for execution even if

these blocks are from the same job.

Similar to G-thread limitations, there are per-SM and per-block limits on shared-memory usage on

NVIDIA GPUs. In experimental work involving computer-vision workloads on NVIDIA GPUs spanning

several years, we have never observed blocking due to shared-memory limits on any platform for any workload.

Thus, in deriving our response-time bound in Section 4.2.4, we assume that such blocking does not occur.

3Blocks are executed in units of 32 G-threads called warps. Warp schedulers switch between warps to hide memory latency. This
can create interference effects that must be factored into the timing analysis applied to blocks, which we assume is done in a
measurement-based way. With warp-related interference incorporated into timing analysis, the G-threads in a block can be treated
as executing simultaneously.

4Current NVIDIA GPUs require block sizes to be multiples of 32, and the CUDA runtime rounds up accordingly. Additionally, the
maximum possible block size is 1,024. A task’s block size is determined offline.

5For the time being, we assume that jobs of GPU tasks are not early released, but we will revisit this issue at the end of Section 4.2.4.

109

0 2 4 6
Time

𝐊𝟏,𝟏: 𝟎

L2

𝐊𝟏,𝟏: 𝟏

𝐊𝟐,𝟏: 𝟏

𝐊𝟐,𝟏: 𝟑

𝐊𝟐,𝟏: 𝟎

𝐊𝟐,𝟏: 𝟐

𝐊𝟐,𝟏: 𝟒

𝐊𝟐,𝟏: 𝟓

8

𝐊𝟏,𝟐: 𝟎

𝐊𝟏,𝟐: 𝟏

𝑟1,1 𝑟2,1 𝑟1,2 𝑟2,2

𝐊𝟐,𝟐: 𝟏

𝐊𝟐,𝟐: 𝟑

𝐊𝟐,𝟐: 𝟎

𝐊𝟐,𝟐: 𝟐

𝐊𝟐,𝟐: 𝟒

𝐊𝟐,𝟐: 𝟓 H2
S

M
 1

S
M

 0
H1

L1

Figure 4.4: A possible schedule corresponding to Figure 4.3, where m = 2048, τ1 = (3072,5,2,1024), and τ2 =
(512,8,6,512); rectangle Ki, j:b corresponds to the bth block of job τi, j.

After deriving the bound, we discuss ways in which shared-memory blocking can be addressed if it becomes

an issue.

Example 4.3. Our GPU task model is illustrated in Figure 4.4. There are two SMs, and B1 = 2 and B2 = 6.

The height of a rectangle denoting a block is given by Hi and its length, which denotes its runtime duration,

by Li; the area is bounded by Ci. ♦

Intra-task parallelism. We assume that intra-task parallelism is allowed: consecutive jobs of the same task

can execute in parallel if both are pending and sufficient G-threads are available. This is often the case in

computer-vision processing pipelines where each video frame is processed independently. Additionally,

Theorem 4.1 below shows that severe schedulability-related consequences exist if intra-task parallelism is

forbidden. Practically speaking, intra-task parallelism can be enabled by assuming per-job streams. A stream

is a FIFO queue of operations, so two kernels submitted to a single stream cannot execute concurrently. Thus,

the alternative of using per-task streams would preclude intra-task parallelism. Note that, with each job

issuing one kernel at a time, any actual stream queueing is obviated.

4.2.3 Total Utilization Constraint

According to the rules in Section 4.2.1, idle G-threads can exist while the kernel at the head of the EE

queue has unassigned blocks. In particular, this can happen when the number of idle threads on any one

SM is insufficient for scheduling such a block. Such scenarios imply that some capacity loss is fundamental

110

when seeking to ensure response-time bounds for GPUs. We express such loss by providing a total utilization

bound and proving that any system with Usum at most that bound has bounded response times. The utilization

bound we present relies on the following definition.

Definition 4.2. (unit block size) The unit block size, denoted by h, is defined by the greatest common divisor

(gcd) of all tasks’ block sizes and m, i.e., h = gcd({Hi}n
i=1∪{m}).

The theorem below shows that capacity loss can be extreme if intra-task parallelism is forbidden.

Theorem 4.1. With per-task streams, for any given g, m, Hmax, and h, there exists a task system τ with Usum

greater than but arbitrarily close to h such that the response time of some task may increase without bound in

the worst case.

Proof. For any m and Hmax, m = Z · h for some integer Z ≥ 1 and Hmax = K · h for some integer K ≥ 1,

because h is a common divisor of m and Hmax. Recall that there are g SMs. Consider the following task

system:

τi Ci Ti Bi Hi Li

τ1 h 1 1 h 1

τ2 2ε ·Hmax 1+ ε 1 Hmax 2ε

τ3 2ε ·h 1+ ε g ·Z−K h 2ε

For this task system, u1 = h, u2 =
2Hmax
1+ε

ε , and u3 =
2h·(g·Z−K)

1+ε
ε , so Usum→ h+ as ε → 0+.

Now consider the following job execution pattern, which is illustrated in Figure 4.5 for g = 2: τ1 releases

its first job at time 0, τ2 and τ3 release their first jobs at time 1− ε , all three tasks continue to release jobs as

early as possible, and every block executes for its worst-case execution workload. Assume that, every time

when τ2 and τ3 simultaneously release a job, the job of τ2 is enqueued on the EE queue first. Note that in

Figure 4.5, block boundaries for τ3 are omitted when possible for clarity.

At time 0, τ1,1 is the only job in the EE queue and is therefore scheduled. Then, at time 1− ε , τ2,1 and

(g ·Z−K−1) blocks of τ3,1 are scheduled for the interval [1− ε,1+ ε). As a result, all available G-threads

are then occupied. Therefore, the remaining one block of τ3,1 must wait until time 1 when τ1,1 finishes. Note

that, with per-task streams, a job cannot enter the EE queue until the prior job of the same task completes. τ1,2

enters the EE queue at time 1 after τ3,1, which entered at time 1− ε . Thus, τ1,2 must wait to begin execution

until after the last block of τ3,1 is assigned and once sufficient G-threads become available at time 1+ ε .

111

0 1
1 + 𝜖

2 Time

SM
 1

𝝉𝟑,𝟏

𝝉𝟏,𝟏

3 + 𝜖

SM
 0

1 − 𝜖 2 + 𝜖 2 + 2𝜖 3 + 3𝜖3 + 2𝜖

𝝉𝟐,𝟏

𝝉𝟏,𝟐

𝝉𝟏,𝟑

𝝉𝟐,𝟐

𝝉𝟐,𝟑

𝝉𝟑,𝟑

𝝉𝟑,𝟐

1 + 𝜖1 + 𝜖

𝐾 9 ℎ = 𝐻=>?

ℎ

𝑍 9 ℎ = 𝑚

𝑔 9 𝑍 − 𝐾 ℎ

Figure 4.5: Unbounded response time using per-task streams.

This pattern repeats, with task τ1 releasing a job every time unit but finishing a job every 1+ ε time units.

Thus, its response time increases without bound.

For example, on the test platform considered in Section 6.2, g = 80, m = 2048, and h can be as small as

32. Thus, close to 99.98% of the hardware capacity may be wasted!

In contrast, as we show in Section 4.2.4, if intra-task parallelism is allowed, then any task set with

Usum ≤ g · (m−Hmax +h) has bounded response times. Furthermore, the following theorem shows that this

utilization bound is tight (under our analysis assumptions).

Theorem 4.2. With per-job streams, for any given g, m, Hmax, and h, there exists a task system τ with Usum

greater than but arbitrarily close to g · (m−Hmax +h) such that the response time of some task may increase

without bound in the worst case.

Proof. For any m and Hmax, integers P and Q exist such that m= P ·Hmax+Q, where P≥ 1 and 0≤Q<Hmax.

Furthermore, by the definition of h, Hmax = K · h for some integer K ≥ 1, and m = Z · h for some integer

Z ≥ 1. Thus, m = P ·Hmax +Q = P ·K ·h+Q = Z ·h. Consider the following task set (if Q = 0, then τ2 need

not exist):

τi Ci Ti Bi Hi Li

τ1 ε ·Hmax 1 g ·P Hmax ε

τ2 ε ·Q 1 g Q ε

τ3 h 1 g · (Z−K +1) h 1

For this task system, u1 = (Hmax ·g ·P)ε , u2 = (Q ·g)ε , and u3 = h ·g · (Z−K +1) = g · (m−Hmax +h),

so Usum→ g · (m−Hmax +h)+ as ε → 0+.

112

𝝉𝟑,𝟐
𝝉𝟑,𝟐

𝝉𝟑,𝟐
𝝉𝟑,𝟐

𝝉𝟑,𝟏
𝝉𝟑,𝟏

𝝉𝟑,𝟏
𝝉𝟑,𝟏

0 2 + 2𝜖
Time

SM
 1

𝝉𝟏,𝟏
𝝉𝟑,𝟏

SM
 0

1 + 𝜖 1 + 2𝜖

𝝉𝟐,𝟏

ℎ

𝜖

𝝉𝟏,𝟏

𝝉𝟑,𝟏

𝝉𝟑,𝟏

𝝉𝟑,𝟐
𝝉𝟑,𝟐
𝝉𝟑,𝟐
𝝉𝟑,𝟐

1 + 𝜖1 + 𝜖

𝑍 9 ℎ

𝝉𝟑,𝟏
𝝉𝟑,𝟏
𝝉𝟑,𝟏
𝝉𝟑,𝟏

𝝉𝟑,𝟐
𝝉𝟑,𝟐
𝝉𝟑,𝟐
𝝉𝟑,𝟐

𝑄

𝐻=>? =
			𝐾 9 ℎ

𝑃 9 𝐻=>?

𝐻=>? − ℎ

𝝉𝟑,𝟏

𝝉𝟏,𝟏

𝝉𝟐,𝟏

𝝉𝟏,𝟏

𝝉𝟏,𝟐

𝝉𝟐,𝟐

𝝉𝟏,𝟐

𝝉𝟏,𝟐

𝝉𝟐,𝟐

𝝉𝟏,𝟐

𝝉𝟑,𝟐𝝉𝟑,𝟏

𝝉𝟑,𝟐𝝉𝟑,𝟏

Figure 4.6: Unbounded response time using per-job streams.

Now consider the following job execution pattern, which is illustrated in Figure 4.6 for g = 2: all three

tasks release jobs as soon as possible, i.e., at time instants 0,1,2, . . . , the EE enqueue order is always τ1, τ2,

and then τ3, and every block executes for its worst-case execution workload.

At time 0, the g ·P blocks of τ1 are scheduled first, leaving Q available G-threads in each SM. Next, the

g blocks of τ2 are scheduled using the remaining Q G-threads on each SM. Thus, all G-threads are fully

occupied in the time interval [0,ε). As we often see in experiments, the g · (Z−K + 1) blocks of τ3 are

distributed to the g SMs evenly, and are scheduled for the time interval [ε,1+ ε). Note that, although we

currently do not have sufficient evidence to guarantee this even distribution, it at least represents a potential

worst case.

Notice that there are only m− (Z−K +1) ·h = (Hmax−h) G-threads available on each of the g SMs

during the interval [ε,1+ ε). Therefore, none of the blocks of τ1,2, which has a block size of Hmax, will be

scheduled before time 1+ ε . As a result, no blocks of τ2,2 or τ3,2 will be scheduled before time 1+ ε either,

because they are enqueued after τ1,2 on the FIFO EE queue.

This pattern repeats, with each of the three tasks releasing a job every time unit but finishing a job every

1+ ε time units, so the response time of each task increases without bound.

113

4.2.4 Response-Time Bound

In this section, we derive a response-time bound assuming per-job streams are used (i.e., intra-task

parallelism is allowed) and the following holds.

Usum ≤ g · (m−Hmax +h) (4.1)

Our derivation is based on the following key definition.

Definition 4.3. (busy and non-busy) A time instant is called busy if and only if at most (Hmax−h) G-threads

are idle in each of the g SMs; a time instant is called non-busy if and only if at least Hmax G-threads are idle

in some of the g SMs. A time interval is called busy if and only if every time instant in that interval is busy.

By Definition 4.2, h is the minimum amount by which the number of idle G-threads can change, so

“more than (Hmax−h) G-threads are idle” is equivalent to “at least Hmax G-threads are idle.” Thus, busy and

non-busy time instants are well-defined, i.e., a time instant is either busy or non-busy.

To derive response-time bounds for all tasks in the system, we bound the response time of an arbitrary

job τk, j. The following two lemmas bound the unfinished workload at certain time instants. In the first lemma,

t0 denotes the latest non-busy time instant at or before τk, j’s release time rk, j, i.e., t0 = rk, j or (t0,rk, j] is a

busy interval.

Lemma 4.1. At time t0, the total unfinished workload from jobs released at or before t0, denoted by W (t0),

satisfies W (t0)≤ Lmax · (g ·m−Hmax).

Proof. Suppose there are b blocks, β1,β2, . . . ,βb, that have been released but are unfinished at time t0. For

each block βi, let H(βi) denote its block size and let C(βi) denote its worst-case execution workload. By

definition, t0 is a non-busy time instant, so by Definition 4.3, at least Hmax G-threads are idle in some SM at

time t0. Because this SM has enough available G-threads to schedule any of the b blocks, they all must be

scheduled at time t0. These facts imply

b

∑
i=1

H(βi)≤ g ·m−Hmax. (4.2)

114

Therefore, W (to) =
b

∑
i=1

C(βi)

= {by the definition of Li in Definition 4.1}
b

∑
i=1

(L(βi) ·H(βi))

≤ {by the definition of Lmax in Definition 4.1}
b

∑
i=1

(Lmax ·H(βi))

= {rearranging}

Lmax ·
b

∑
i=1

H(βi)

≤ {by (4.2)}

Lmax · (g ·m−Hmax).

The lemma follows.

Lemma 4.2. At time rk, j, the total unfinished workload from jobs released at or before rk, j, denoted by

W (rk, j), satisfies W (rk, j)< Lmax · (g ·m−Hmax)+∑
n
i=1(Bi ·Ci).

Proof. Let new(t0,rk, j) denote the workload released during the time interval (t0,rk, j], and let done(t0,rk, j)

denote the workload completed during the time interval (t0,rk, j]. Then,

W (rk, j) =W (t0)+new(t0,rk, j)−done(t0,rk, j). (4.3)

As each task τi releases consecutive jobs with a minimum separation of Ti, new(t0,rk, j) can be upper bounded

by

new(t0,rk, j)≤
n

∑
i=1

(⌈
rk, j− t0

Ti

⌉
·Bi ·Ci

)
< {because dae< a+1}

n

∑
i=1

((
rk, j− t0

Ti
+1

)
·Bi ·Ci

)
= {rearranging}

115

(
rk, j− t0

) n

∑
i=1

Bi ·Ci

Ti
+

n

∑
i=1

(Bi ·Ci)

= {by the definitions of ui and Usum}(
rk, j− t0

)
Usum +

n

∑
i=1

(Bi ·Ci). (4.4)

By Definition 4.3, (t0,rk, j] being a busy time interval implies that at most (Hmax−h) G-threads in each of

the g SMs are idle at any time instant in this time interval. That is, at least g · (m−Hmax +h) G-threads are

occupied executing work at any time instant in (t0,rk, j]. Therefore,

done(t0,rk, j)≥ (rk, j− t0) ·g · (m−Hmax +h). (4.5)

By (4.3), (4.4), and (4.5),

W (rk, j)< W (t0)+
(
rk, j− t0

)
Usum +

n

∑
i=1

(Bi ·Ci)

− (rk, j− t0) ·g · (m−Hmax +h)

= {rearranging}

(rk, j− t0) · (Usum−g · (m−Hmax +h))

+W (t0)+
n

∑
i=1

(Bi ·Ci)

≤ {by (4.1) and t0 ≤ rk, j}

W (t0)+
n

∑
i=1

(Bi ·Ci)

≤ {by Lemma 4.1}

Lmax · (g ·m−Hmax)+
n

∑
i=1

(Bi ·Ci).

The lemma follows.

The following theorem provides our response-time bound.

Theorem 4.3. τk, j finishes the execution of all of its blocks by time rk, j +Rk, where

Rk =
Lmax · (g ·m−Hmax)+∑

n
i=1(Bi·Ci)−Ck

g·(m−Hmax +h)
+Lk. (4.6)

116

Proof. Since the EE queue is FIFO, we omit all jobs released after rk, j in the analysis. Thus, any workload

executed at or after rk, j is from W (rk, j). We also assume each block of τk, j executes for its worst-case

workload Ck (if any of its blocks executes for less, τk, j’s completion is not delayed).6

Let β ∗ denote the last-finished block of τk, j. Then, the workload from other blocks or jobs at rk, j is

W (rk, j)−Ck. Let t∗ denote the time instant at which β ∗ starts execution. Then, [rk, j, t∗) is a busy interval

(else β ∗ would have executed before time t∗). Let done(rk, j, t∗) denote the workload completed during the

time interval [rk, j, t∗). Then, by Definition 4.3,

done(rk, j, t∗)≥ (t∗− rk, j) ·g · (m−Hmax +h). (4.7)

The workload Ck from β ∗ executes beyond time t∗, so done(rk, j, t∗)≤W (rk, j)−Ck. By (4.7), this implies

t∗ ≤ rk, j +
W (rk, j)−Ck

g·(m−Hmax+h) . At time t∗, β ∗ executes continuously for Lk time units. Thus, β ∗ finishes by time

rk, j +
W (rk, j)−Ck

g·(m−Hmax+h) +Lk. By Lemma 4.2, the theorem follows.

Discussion. As noted in Section 4.2.2, the absence of shared-memory-induced blocking is assumed in the

above analysis. This limitation could be eased by introducing blocking terms, but we leave this for future

work. Alternatively, through offline profiling, one could restrict the per-SM G-thread count of m to some

value m′ such that, if only m′ G-threads are used per SM, no shared-memory-induced blocking ever occurs.

The analysis above could then be applied with m replaced by m′. While one might expect this analysis to be

sustainable in the sense that m per-SM G-threads could really be used at runtime, we found a counterexample

(Example 4.4) where increasing m′ to m causes response times to increase. Thus, the restricted G-thread

count of m′ would actually have to be enforced. This could potentially be done by creating a never-ending

kernel per SM that monopolizes m−m′ G-threads.

Example 4.4. A counterexample that shows this analysis is not sustainable with respect to increasing m is il-

lustrated in Figures 4.7 and 4.8, where τ1 = (1216,8,1,608), τ2 = (1920,8,6,480), and τ3 = (1536,8,1,768).

The response time of τ3 increases from 2 to 5 as m increases from 2016 to 2048. ♦

Early releasing (see Sections 4.1 and 6.1.2) must be restricted for GPU tasks. Because the FIFO EE queue

effectively prioritizes work by actual enqueueing times, uncontrolled early releasing can change priorities.

Also, this can lead to a violation of the sporadic task model if consecutive jobs of the same task τi have

6Other jobs’ blocks may or may not execute for their worst case.

117

0 2 4 6 Time

𝐊𝟏,𝟏: 𝟎

𝐊𝟐,𝟏: 𝟏

𝑟!,! 𝑟#,! 𝑟$,!

SM
 1

SM
 0

𝐊𝟐,𝟏: 𝟎

𝐊𝟑,𝟏: 𝟎

𝐊𝟐,𝟏: 𝟐

𝐊𝟐,𝟏: 𝟒

𝐊𝟐,𝟏: 𝟑

𝐊𝟐,𝟏: 𝟓

448

2016

2016

Figure 4.7: A possible schedule for Example 4.4 with m = 2016.

0 2 4 6 Time

𝐊𝟏,𝟏: 𝟎

𝐊𝟐,𝟏: 𝟏

𝑟!,! 𝑟#,! 𝑟$,!

SM
 1

SM
 0

𝐊𝟐,𝟏: 𝟎

𝐊𝟑,𝟏: 𝟎
𝐊𝟐,𝟏: 𝟐

𝐊𝟐,𝟏: 𝟒

𝐊𝟐,𝟏: 𝟑
𝐊𝟐,𝟏: 𝟓

2048

2048

Figure 4.8: A possible schedule for Example 4.4 with m = 2048.

enqueueing times less than Ti time units apart. Thus, the early releasing of GPU tasks must be guarded to

ensure that this minimum separation is maintained.

4.3 Chapter Summary

In this chapter, we presented a task model for GPU tasks. Using this model, we derived the first ever

response-time bounds under the NVIDIA GPU scheduling rules. We explained how GPU-using workloads

can be modeled into DAG tasks and how prior work on DAG scheduling can be leveraged to compute

end-to-end response-time bounds for these DAG tasks.

In Chapter 5, we will transition from theory to practice, by first exploring pipelined and parallel execution

for improving the throughput of CNN applications. In Chapter 6, we will demonstrate a case study that shows

118

both such throughput improvement and bounded response times can be achieved for the OpenVX standard,

and evaluate our analytical end-to-end response time bounds in comparison with prior works.

Acknowledgement. The description of the DAG model in Section 4.1 draws heavily from (Yang et al.,

2016a). I defined the task model, constructed the total utilization constraints, and developed the initial

response-time bound analysis, which Kecheng Yang then reworked into the current version in Section 4.2.4.

119

CHAPTER 5: IMPROVE CNN FRAMEWORKS FOR AUTONOMOUS-DRIVING APPLICATIONS1

In this chapter, we report on the results of an industrial automotive design study focusing on the

application of convolutional neural networks (CNNs) in computer vision for autonomous or automated-

driving cars.

In Chapter 2, we reviewed that CNNs are essential building blocks for computer-vision applications that

process camera images in diverse uses including object detection and recognition (cars, people, bicycles,

signs), scene segmentation (finding roads, sidewalks, buildings), localization (generating and following a

map), etc. Computer-vision applications based on CNN technology are essential because cameras deployed

on cars are much less costly than other sensors such as lidar.

Computer vision in a resource-constrained setting. While cameras are cheap, computer-vision computa-

tional costs are not. Keeping overall monetary cost low is essential for consumer-market cars and requires

effective management of computing hardware. Because state-of-the-art computer-vision approaches have

been shown to take over 94% of the computational capacity in a simulated vehicle (Lin et al., 2018), computer

hardware costs can be significantly reduced by optimized implementations. Existing CNN frameworks have

some amount of optimization with parallelism, but focus largely on processing a single stream of images

in a parallel manner only if a CNN model contains parallel layers. The solutions considered in this study

re-think the way CNN software is implemented so that effective resource management can be applied to

CNN applications. Our study focuses on one of the most demanding computer-vision applications in cars, the

timely detection/recognition of objects in the surrounding environment.

Industrial challenge. The major challenge we seek to address is to resolve the inherent tensions among

requirements for throughput, response time, and accuracy, which are difficult to satisfy simultaneously.

1Contents of this chapter previously appeared in the following paper:

Yang, M., Wang, S., Bakita, J., Vu, T., Smith, F. D., Anderson, J. H., and Frahm, J.-M. (2019). Re-thinking CNN frameworks for
time-sensitive autonomous-driving applications: Addressing an industrial challenge. In Proceedings of the 25th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 305–317.

120

The sheer number and diversity of cameras necessary to provide adequate coverage and redundancy (for

safety) drives throughput requirements. A typical configuration in today’s experimental automated-driving

vehicle includes ten or more cameras that cover different fields of view, orientations, and near/far ranges.

Each camera generates a stream of images at rates ranging from 10 to 40 frames per second (FPS) depending

on its function (e.g., lower rates for side-facing cameras, higher rates for forward-facing ones). All streams

must be processed simultaneously by the object detection/recognition application.

For this application, response time (latency from image capture to recognition completion) is time-

sensitive because of its position on the critical path to control and actuation of the vehicle. Every millisecond

that elapses during object recognition is a millisecond not available for effecting safe operation. Ideally, the

camera-to-recognition latency per frame should not substantially exceed the inter-frame time of the input

images (e.g., 25 milliseconds for a 40 FPS camera).

Accuracy requirements for detection/recognition depend on a number of factors specific to the functions

supported by a given camera. For example, accuracy may be much more important in streams from front-

facing cameras than those from side-facing cameras. For most of the design alternatives we consider, our

modifications have no effect on the accuracy of the computer-vision CNN. However, we do explore one

particular instance of a throughput vs. accuracy trade-off of relevance in systems with many cameras (see

Section 5.4).

To summarize, our challenge is to re-think the design of CNN software to better utilize hardware resources

and achieve increased throughput (number of simultaneous camera streams) without any appreciable increase

in per-frame latency (camera to CNN output) or reduction of per-stream accuracy.

Our hardware and software environment. In this study, we use the NVIDIA DRIVE PX Parker Au-

toChauffeur (previously called the ‘DRIVE PX2’ or just ‘PX2’) (NVIDIA, 2016a). This embedded computing

platform is marketed by NVIDIA as the “first artificial-intelligence (AI) supercomputer for autonomous

and semi-autonomous vehicles.” The PX2 incorporates multicore processors along with multiple GPUs to

accelerate computer-vision applications. With respect to such applications, we focus on a variant of the

open-source CNN framework ‘Darknet’ configured to implement an object detection/recognition program

called ‘Tiny YOLO’ (version 2, ‘YOLO’ for short) (Redmon and Farhadi, 2017; Redmon, 2016, 2017). While

our study targets specific hardware and CNN software, our hardware and software choices are representative

121

of the multi-core/multi-GPU hardware and CNN designs that are used and will continue to be used for

automated driving.

Our design study. As stated earlier, the fundamental challenge we consider is to design an object-detection

application that can support independent streams of images from several cameras. Due to the constraining

nature of our hardware, effective utilization of every part of the system is essential. Our preliminary

measurements (provided in Section 5.4) revealed that GPU execution time dominates the time spent processing

each image in YOLO, yet one of the PX2’s two GPUs2 was left completely idle and the second was utilized

at less than 40%. This result motivated us to explore system-level optimizations of YOLO as a path to higher

throughputs.

Many CNN implementations similarly seem to have limited throughput and poor GPU utilization. As

explained further in Section 5.2, the root of the problem lies in viewing processing as a single run-through of

all the processing layers comprising a CNN. However, in processing an image sequence from one camera,

each layer’s processing of image i is independent of its processing of image i+1. If the intermediate per-

image data created at each layer is buffered and sequenced, there is no reason why successive images from the

same camera cannot be processed in different layers concurrently. This motivates us to consider the classic

pipelining solution to sharing resources for increased throughput.3 While pipelining offers the potential for

greater parallelism, concurrent executions of the same layer on different images are still precluded. While

allowing this may be of limited utility with one camera, it has the potential of further increasing throughput

substantially when processing streams of images from multiple cameras (all of which are also independent).

This motivates us to extend pipelining by enabling each layer to execute in parallel on multiple images.

We altered the design of Darknet to enable pipelined execution, with parallel layer execution as an

option, in the YOLO CNN. We also implemented a technique whereby different camera image streams are

combined into a single image stream by combining separate per-camera images into a single composite

image. This compositing technique can greatly increase throughput at the expense of some accuracy loss.

We also enabled the balancing of GPU work across the PX2’s two GPUs, which have differing processing

capabilities. The YOLO variants arising from these options and various other implementation details are

discussed in Section 5.3. The options themselves are evaluated in Section 5.4.

2Technically, the PX2 provides four GPUs split between two systems on a chip (SoCs). We considered only one of these SoCs in our
evaluation.

3For example, instruction pipelining in processors can fully utilize data-path elements and increase throughput.

122

Contribution. This chapter provides an effective solution for a challenging industry problem: designing

CNN systems that can provide the throughput, timeliness, and accuracy for computer-vision applications in

automated and autonomous driving. Through re-thinking how the YOLO CNN is executed, we show that

its throughput can be improved by more than twofold with only a minor latency increase and no change in

accuracy. We also show that throughput can be further improved with proper GPU load balancing. Finally,

we show that the compositing technique can enable very high throughputs of up to 250 FPS on the PX2.

While this technique does incur some accuracy loss, we show that such loss can be mitigated by redoing the

“training” CNNs require. We claim these results are sufficiently fundamental to guide CNN construction for

similar automotive computer-vision applications on other frameworks or hardware.

In order to understand these contributions in full, an understanding of relevant background information

and related work is required. This we provide in the next two sections.

5.1 Background

In this section, we provide detailed descriptions of our hardware platform, the DRIVE PX2 (NVIDIA,

2016a), and the Darknet CNN framework. The object-detection application (“YOLO”) that runs using this

framework has been reviewed in Section 2.2.

5.1.1 NVIDIA DRIVE PX2

The PX2 is embedded hardware specifically designed to provide high-performance computing resources

for autonomous operation on a platform with small size, weight, and power characteristics.

Architecture. The PX2 contains two identical and independent “Parker” systems on a chip (SoCs), called

Tegra A and B, connected by a 1 Gbps Controller Area Network (CAN) bus. We show one of the identical

halves of the PX2 in Figure 5.1. Each SoC contains six CPUs (four ARMv8 Cortex A57 cores, two ARMv8

Denver 2.0 cores), and an integrated Pascal GPU (iGPU). Each Parker SoC also connects to a discrete Pascal

GPU (dGPU) over its PCIe x4 bus. While the iGPU and CPU cores share main DRAM memory, the dGPU

has its own DRAM memory. Memory transfers between CPU memory and dGPU memory use the PCIe bus.

The remainder of this chapter, including the design descriptions and evaluation experiments, is based on

using only one of the PX2’s two independent systems.

123

 NVIDIA Drive PX 2
Tegra A

CPU

Denver
CPU 0

Denver
CPU 1

A57
CPU 0 Integrated Pascal GPUInternel Bus

8GB LPDDR4 (128bit UMA)

Discrete Pascal GPU

4GB GDDR5PCIe x4

A57
CPU 3…

Figure 5.1: NVIDIA DRIVE PX2 architecture (showing one of the PX2’s two identical and independent systems).

Integrated GPU (iGPU) Discrete GPU (dGPU)
Computing units 256 CUDA Cores 1152 CUDA Cores
Accessible memory 6668 MBytes 3840 MBytes
Memory bandwidth (Sundaram, 2016) ≈50 GBytes/s ≈80 GBytes/s
Shared L2 cache size 512 KBytes 1,024 KBytes

Table 5.1: Specifications of the PX2 iGPU and dGPU.

iGPU vs. dGPU. As previously mentioned, the PX2 has two types of GPUs—the iGPU and the dGPU—

using the same Pascal architecture. While they share an architecture, they share little else. Consider their

specifications as shown in Table 5.1. The dGPU has more cores, faster memory, and a larger L2 cache. The

iGPU lags behind, advantaged only by its access to the larger, albeit shared, main memory DRAM banks.

The exact performance differences between the iGPU and the dGPU depend on the characteristics of

GPU programs used in a specific application. We characterize these differences for YOLO in Section 5.4.

5.1.2 YOLO and Darknet

For most of the experiments in Section 5.4, we used the YOLO CNN as already trained on a widely used

set of relevant training images (VOC 2007+12 (Everingham et al., 2010, 2015)), so we did not modify the

YOLO network architecture or training approach. This means that most of our work applies to any CNN

constructed using Darknet, from YOLOv3 to AlexNet. This is extremely important as noted in (Lin et al.,

2018) because the state of the art rapidly changes for autonomous vehicles. Only one optional enhancement

we consider, namely image compositing, requires retraining.

The Darknet framework is programmed in C and CUDA. All of our modifications and benchmarks are

based on a proprietary fork of Darknet, so frame rates in Section 5.4 are not directly comparable to those from

the open-source version.4 Unfortunately, we are unable to open source our fork due to intellectual property

management issues.

4Specifically, our base version of Darknet pre-loads frames and performs frame resizing in the main thread whereas the open-source
version uses a separate thread.

124

5.2 Related Work

In the area of parallel CNN scheduling, frameworks we reviewed in Section 2.2.3 such as Tensor-

Flow (Abadi et al., 2016) already support intra-model CNN graphs. These graphs serve to enable “parallelism,

distributed execution, compilation, and portability” in their applications (per their website). However, neither

the original paper (Abadi et al., 2016) nor their survey of computer-vision CNNs (Huang et al., 2017) seems

to consider anything besides parallelism inside one execution of a model that contains parallel layers. Their

graphs seem mostly to serve to formalize the implicit dataflow graph present in any CNN. In contrast, our

work deals with synthesizing an extra-model shared CNN by which to collapse multiple CNN instances into

a single shared program. It is worth emphasizing that our efforts are designed to largely work alongside the

vast body of existing CNN optimization and compression efforts such as DeepMon (Huynh et al., 2017).

One other work similar to ours, S3DNN, applied techniques such as kernel-level deadline-aware schedul-

ing and batch processing (data fusion) that require additional middleware (Zhou et al., 2018). We focus on

higher-level parallelism by applying a graph-based architecture.

Some of our work here also considers ways to optimally partition YOLO between GPUs of different

capabilities. The partitioning concept is not new—it was used by Kang et al. (2017) to dynamically balance

CNN layers between a compute-impoverished system and a networked server in the Neurosurgeon system.

We, however, use the technique to optimize solely for performance without the networking constraints that

dominate that work.

5.3 System Design

In this section, we discuss some of our ideas for how to implement this shared CNN. First, we describe

our overarching approach, which involves generalizing the concept of a CNN layer by combining groups of

consecutive layers into “stages,” examining opportunities for parallelism among stages (“pipelining”), and

considering opportunities for parallelism inside each stage (“parallel-pipelining”). Second, our hardware

platform provides the somewhat unique opportunity to examine GPU-work-assignment strategies across

asymmetric GPUs, so we briefly consider that issue. Third, we propose a novel technique for realizing

additional throughput gains in high-camera-count environments. Along the way, we also briefly touch on

several other issues that naturally arise with the concept of a shared CNN. These include data handling,

125

communication issues, and implicit synchronization. Before delving too deeply into the details, however, we

first motivate why we are interested in this shared approach in the first place.

The obvious solution to support multiple cameras is simple: run multiple instances of the application—

one process for each camera—and have them share the GPU(s), as shown in Figure 2.2. We reject this

approach for two reasons. First, the high memory requirements of each network instance heavily limits

the total number of instances (a maximum of six on our hardware platform). Second, running the models

independently does not easily allow for fast synchronization across multiple cameras. Ideally, we would like

each network and camera to process frames at the same rate, prioritizing work for networks that are lagging

behind. However, this proves extremely challenging in practice as it requires modifying GPU scheduling

behavior—a task still not satisfactorily solved by any research that we are aware of.

5.3.1 Enabling Parallelism

As previously noted, CNN layers and models are inherently independent and thus sharable—the only

major complexities for us stem from Darknet’s limited “bookkeeping” side-effects and from the need to

correctly pipe intermediate data between layers. In this section, we explore ways of enabling parallelism in

such a shared computation structure.

Decomposition into stages. As a precursor to introducing parallelism, we decompose a shared CNN into

a succession of computational stages. Each stage is simply a subsequence of layers from the YOLO CNN

shown in Figure 2.2, as illustrated in Figure 5.2. To correctly manage both frame data and the bookkeeping

data required by YOLO, we buffer indices to this data using queues between stages as shown in Figure 5.2.

Note that these queues are not necessarily index-ordered. Conceptually, we can view the data being indexed

as being stored in infinite arrays, but in reality, these arrays are “wrapped” to form ring buffers. The size

of the frame ring buffer is large enough to prevent any blocking when adding another frame to it. However,

memory constraints limit the ring buffer for bookkeeping data to have only ten entries. This implies that only

ten frames can exist concurrently in the shared CNN at any time. Note that Darknet ensures that the original

layers execute correctly without further modification by us when provided with the appropriate bookkeeping

data. Data buffering and synchronization in our pipelined implementation are provided by PGMRT, a library

created as part of prior work at UNC (Elliott et al., 2014).

126

Data for
Frame 3

 0

 C-1

…

Cameras
Stage 0

231

Stage 1 Stage N-1

…
Queue 0

Queue 1 Queue N-1

Detection box results

Layer !
Layer !+"

…

Frames
0
1
2
3

…

Bookkeeping
data

Data for
Frame 2

Data for
Frame 1

Shared CNN

0
1
2
3

Figure 5.2: Sharing one CNN for multiple cameras.

Serialized execution. Before enabling parallelism, we first look at the scheduling of the default serialized

execution of the unmodified YOLO through an example in Figure 5.3 (a). We will explain Figure 5.3 (b)

and (c) shortly. Figure 5.3 (a) shows a single three-stage CNN that processes frames serially. At time t0, the

first stage (Stage 0) starts the initial preparation work on the CPU for frame f . This initial preparation work

(for example, resizing the frame) requires Stage 0 to execute longer on the CPU than the following stages.

Stage 0 launches its kernel, indicated by S0, at time t1 into the single CUDA stream queue belonging to this

CNN instance. Stage 1 launches another kernel, S1, at time t1, and S2 is launched at time t2. These kernels

S0, S1, and S2 are executed in FIFO order and are completed at times t4, t5, and t6 respectively. Since the

intermediate data produced by the first kernels S0 and S1 are not needed for CPU computations, only the last

stage suspends to wait for all kernels to complete (at time t6). The use of intermediate data only by kernels

running on the GPU is common to other CNN implementations. Because the processing of multiple frames is

serialized by the single CNN, the GPU is often left idle when no kernel requests are in the stream queue.

Pipelined execution. We now explore different methods for enabling the parallel processing of stages. The

first method we consider is to enable pipelined execution, i.e., we allow successive stages to execute in

parallel on different frames. We implement pipelined execution by defining a thread per stage,5 which

processes one frame by performing the computational steps illustrated in Figure 5.4 for a stage comprised of

one convolution layer followed by one maxpool layer. Each stage’s thread starts by waiting on the arrival of

5While observation 3.4 indicates that processes with MP(MPS) are superior to threads (MT), MPS is not supported in the NVIDIA
DRIVE products.

127

Frame f Frame fʹ Frame fʹʹ
Stage 0 S1 S2

Frame f

f

Frame fʹ

fʹ

Frame fʹʹ

fʹʹ

 f fʹʹ

Stage 1 Stage 2

Stage 0

 fʹ

Stage 0

Stage 0

S1

S1

S2

S2

Stage 0 S1 S2

S0

S0

Stage 0

Stage 0

S0
S1
S0 S0

Suspension (waiting for kernels’ completion)
S1 Stage 1

CUDA stream queue
Kernel launch
Kernel completion

Time

Stage 1 Stage 2Stage 0

S1
S2

S1
S2

S2

Stage 0 S1 S2

S0
S1
S0 S0

Stage 1 Stage 2Stage 0

S1
S2

S1
S2

S2

Stage 0 S1 S2

S0
S1
S0 S0

Stage 1 Stage 2Stage 0

S1
S2

S1
S2

S2

Stage 0

S0
S1 S1

S2

S1

S0
S1

S1

S0
S2

S2

Stage 1

S0
S1
S2

S2
S2

Stage 2

Stage 0

S0 S0
S1

S1

Stage 1

S0
S1
S2

S2
S2

Stage 2

S0 S0
S1

S0
S1
S2

S0

Stage 0

S0 S0
S1 S1

S2

S0 S0 S0
S1 S1

S2

S1
S2

S1
S2

S1
S2

Stage 1

Stage 1

Stage 1

Stage 2

Stage 2

Stage 2

S2

S2

S2

GPU idle time
GPU busy time

t1t0 t2 t3 t5 t6t4

Concurrent execution
on GPU

Concurrent execution
on GPU

(a) Serialized Execution

(b) Pipelined Execution

(c) Parallel-Pipeline Execution

Stream queue of fʹ:

GPU execution of fʹ:

Single CNN:

Single stream queue:

Stage 0:
Stage 1:
Stage 2:

CPU:
GPU:

CPU:
GPU:

Frame f:
Frame fʹ:
Frame fʹʹ:

Stream queue of f:

CPU:
GPU:

GPU execution of f:

Stream queue of fʹʹ:

GPU execution of fʹʹ:

Stream queue of fʹ:

GPU execution of fʹ:

Stream queue of f:

GPU execution of f:

Stream queue of fʹʹ:

GPU execution of fʹʹ:

GPU execution:

Figure 5.3: Scheduling of SERIAL, PIPELINE, and PARALLEL.

128

Layer !Stage n Layer !+1

Steps:
1. Wait for data on Queue n
2. Execute Layer ! and then !+1
3. Write output to Queue n+1 and notify Stage n+1
4. Loop again from 1

Convolution Maxpool

Figure 5.4: Stage representation for pipelined execution model.

an index from the previous stage to signal that stage’s completion. Once this index becomes available, the

thread starts processing by calling the original CNN layer functions with the appropriate bookkeeping data.

After these layer functions return, the thread notifies the next stage of completion by pushing the index it

just finished into the next queue. It then returns to waiting for input data again. This approach requires no

changes to the original YOLO layer functions.

The resulting parallelism is illustrated in Figure 5.3 (b). For conciseness, we henceforth refer to this

pipelined-execution variant of YOLO as simply “PIPELINE” and refer to the original unmodified YOLO as

“SERIAL.” In PIPELINE, multiple per-frame queues are created and pipeline stages can execute concurrently

on CPU cores. This enables kernels from different frames to be queued and executed concurrently on the

GPU when enough of its resources are available. One example of the concurrent GPU execution of kernels is

noted in Figure 5.3 (b). The threads for stages are scheduled by the Linux scheduler SCHED NORMAL. Threads

may migrate between CPU cores or block when cores are not available. The concurrent executions of threads

on the CPUs and kernels on the GPU should enable PIPELINE to provide higher throughput or lower latency.

We evaluate this in Section 5.4. While the longer first stage causes some overall pipeline imbalance, we

believe this is largely confined to the CPU. We further mitigate the influence of a pipeline imbalance by

enabling thread parallelism within each stage as described next.

Parallel-pipeline execution. As seen in Figure 5.3, PIPELINE enables parallelism across stages but not

within a stage. Given the independence properties previously mentioned, there is no reason why the same

stage cannot be executed on different frames at the same time. To enable this, we consider a second parallel

YOLO variant, called parallel-pipeline execution, or simply “PARALLEL” for brevity, that extends PIPELINE

by allowing parallel executions of the same stage. The PARALLEL YOLO variant is realized by allocating

a configurable number of “worker” threads in each stage, and a “manager” thread that is responsible for

129

Layer !Stage n Layer !+1

Manager thread:
1. Wait for data on Queue n
2. Launch a worker thread
3. Loop again from 1

Convolution Maxpool

Worker threads:
1. Execute Layer ! and then !+1
2. Write output to Queue n+1 and notify Stage n+1
3. Exit

…

Figure 5.5: Stage representation for parallel-pipeline execution model.

dispatching worker threads. The worker threads can process different frames concurrently. This is illustrated

in Figure 5.5 (once again) for a stage comprised of one convolution layer and one maxpool layer. The

difference between PIPELINE and PARALLEL is illustrated in Figure 5.3 (c). In PARALLEL, more parallelism

is enabled on both CPU cores and the GPU through allowing multiple threads of the same stage to execute in

parallel. Recalling the scheduling rules revealed in Section 3.1, kernels are scheduled in order of their arrival

times to the heads of their stream queues. In Figure 5.3 (c), these arrival times are such that kernel executions

from different frames are interleaved, as shown.

With the scheduling shown in Figure 5.3, we can see that PIPELINE and PARALLEL achieve the purpose

of fully utilizing the GPU resources (much less GPU idle time than SERIAL) as well as better utilizing the

multiple CPU cores. We quantify the performance in Section 5.4.

5.3.2 Multi-GPU Execution

Recall from Section 5.1 that the PX2 has an iGPU and a dGPU with different capabilities. As seen

in Figure 5.11, which we cover in detail later, the iGPU tends to execute layers substantially slower than

the dGPU. However, notable exceptions (maxpool layers and the region layer) do exist, so the iGPU is

still a useful computational resource. Given this observation, we enhanced our PIPELINE and PARALLEL

implementations to allow a configurable distribution of stages across GPUs. While utilizing both GPUs may

be beneficial, additional data-transfer and synchronization overheads can cause dual-GPU configurations to

sometimes under-perform single-GPU ones. We analyze this trade-off experimentally in Section 5.4.2.

130

 !-1

Physical
cameras

0 1

2 3

Physical
cameras

0 1

2 3

" virtual cameras

 4"

!-4" physical
cameras

…

…
Shared CNN

Composite images

Full-size images

Detection box results

…

…

…

Figure 5.6: CNN extended for multi-camera composite images.

5.3.3 Accelerating Multiple Streams with Multi-Camera Composite Images

What if we could combine several physical cameras into a single “virtual” one, as illustrated in Figure 5.6,

by combining independent per-camera images into a single composite image as illustrated? Such an approach

could have a tremendous impact on throughput. For example, if all physical cameras were combined in

groups of four, throughput could potentially be increased by fourfold. Whether this is acceptable would

depend on how latency and accuracy are impacted.

To evaluate this approach, we added flexible support for compositing physical cameras to the YOLO

variants already described. Note that these variants themselves are not impacted by this approach: the fact that

the images to be processed are obtained by compositing does not change the processing to be done. Because

of this, it is possible to have both composite and full images supported in the same system, as illustrated in

Figure 5.6.

The compositing approach works by exploiting the flexibility of YOLO’s neural network to process

multiple frames as a single frame. This requires taking k2 frames for some k, tiling them in a grid, and then

passing that combined image through YOLO as a single input, as shown in Figure 5.6. For best accuracy,

this approach requires retraining the YOLO network on a set of suitably tiled images to produce new model

weights.

While compositing should yield a throughput improvement that is linear in the number of images in

the grid, there are several additional factors to consider. First, frame arrival times from different cameras

must be synchronized or the combining process will block waiting for all the images required to fill the grid.

This could increase latency to the time between frames on the camera with the smallest frame rate. Second,

131

this approach will reduce accuracy. Because our configuration of YOLO only accepts frames of 416 by 416

pixels, each frame in the grid must be downscaled by a factor proportional to the grid size. For detecting

objects that are large relative to the frame size (e.g., close vehicles), this compromise may be permissible,

however that will not be true in all cases.

Additionally, we must stress that this approach only works for CNNs that reason locally. Using this

approach in global-classification systems such as those used in scene understanding will yield incorrect

results. While the YOLO authors believe their network learned to use global features, we did not observe this

behavior in our analysis.

5.3.4 Avoiding Implicit Synchronization

The original Darknet framework uses the single default FIFO queue in CUDA for kernel requests.

This works flawlessly for serialized execution by a single-threaded program, but falls apart when we want

concurrent parallel-pipeline instances. Specifically, use of only the default queue causes destructive implicit

synchronization on the GPU, which can significantly degrade performance. As suggested in Section 3.3, our

approach mitigates that by using CUDA functions to create a unique FIFO queue for the kernel executions

and memory transfers of each parallel-pipeline instance.

5.4 Evaluation

Our evaluation experiments were designed to answer a number of questions related to our challenge:

How many cameras of differing frame rates (FPS) can be supported with the PX2 running a shared CNN?

Can acceptable latency be maintained for each camera supported? How can we use the configuration options

in PIPELINE and PARALLEL to increase the number of cameras supported? Are multi-camera composite

images a viable option for supporting significant numbers of cameras?

The evaluation of multi-camera composite images must explicitly consider the effects on object detec-

tion/recognition accuracy. In all other evaluations of PIPELINE and PARALLEL using single-frame images,

we verified that accuracy remained unchanged (as expected, since the CNN layer processing programs were

unchanged).

We next describe aspects of the experimental methodology common to all experiments and then proceed

to answer our questions. We first evaluate the frame rates enabled by the three basic execution models on

132

single and multiple cameras. Then, we explore the effects of configurable options—stage granularity, the

number of threads per stage, and the assignment of stages to GPUs. Finally, we explore the trade-off between

throughput and accuracy with multi-camera composite images.

General experiment set-up. In each experiment, the CNN processes an aggregate of at least 10,000 frames.

Latency is measured as the time difference between the arrival time of a frame at the first CNN layer and

the time when the object-detection result for that image is ready. Because the system runs Linux and all its

services, worst-case latency outliers can occur. Occasionally dropping a small number of frames when their

processing time exceeds a latency threshold is acceptable for our automated-driving platform. Therefore,

latencies are reported only for those in the 95th-percentile of all measured values.

Unless otherwise stated, the default CNN configuration has one CNN layer per pipeline stage for both

PIPELINE and PARALLEL and ten threads per stage for PARALLEL. In these default configurations, only the

PX2’s dGPU is used. The choice of these default configurations is explained as part of our configuration

option evaluation. All the experiments were conducted on the NVIDIA Drive PX 2 with Linux kernel

4.9.38-rt25-tegra with the PREEMPT RT patch, NVIDIA Driver 390.00, and CUDA 9.0, V9.0.225. CPU

threads were scheduled under SCHED NORMAL.

5.4.1 How Many Cameras can be Supported?

To answer this question we first consider processing one stream of images by the shared CNN. Cameras

are characterized by their frame rates (FPS), and we emulate camera inputs to the CNN at rates common

to cameras used in automated driving (10, 15, 30, 40 FPS). We also consider streams with much higher

frame rates (up to 100 FPS) to represent aggregate frame rates from multiple cameras sharing the CNN. Our

emulated camera is a program running on a separate thread that generates input frames to the shared CNN

at a defined inter-frame interval corresponding to a given FPS (e.g., 25 milliseconds for 40 FPS). Because

latency is a critical metric, we present results as a plot of latency for different input camera rates and compare

execution under SERIAL, PIPELINE, and PARALLEL.

PIPELINE supports 63 FPS, PARALLEL may support 71 FPS. Figure 5.7 shows the latency results. Our

main criterion for supporting a frame rate is that latency does not become unbounded at that rate. Using

this criterion, SERIAL (essentially the original YOLO) can support rates up to 28 FPS and PIPELINE can

support up to 63 FPS. PARALLEL can also support 63 FPS with negligible latency reduction and up to 71 FPS

133

10 20 30 40 50 60 70 80 90 100
Camera frame rate (frames per second)

20

40

60

80

100

120

La
te

nc
y

(m
illi

se
co

nd
s)

SERIAL
PIPELINE
PARALLEL
SERIAL x6

Figure 5.7: Latency of SERIAL, PIPELINE, and PARALLEL YOLO.

before latency becomes unbounded. Note that the latency at rates lower than 63 FPS is essentially constant

indicating that 36 milliseconds is the minimum latency for YOLO (as seen on the y-axis of Figure 5.7).

Latency becomes unbounded in any of these scenarios when either the GPU becomes overloaded or the CNN

execution model cannot further utilize the available GPU capacity. The latency increase of PARALLEL at 71

FPS over PIPELINE at 63 FPS is 20 milliseconds. This may be acceptable in scenarios such as maneuvering

in a parking lot. However, running multiple SERIAL instances (at most six due to memory constraints) can

support at most 53 FPS with latency of 114 milliseconds before getting unbounded latency.

We attribute these results to the inter-stage GPU dispatch parallelism of PIPELINE and the additional

intra-stage GPU dispatch parallelism of PARALLEL. These simultaneous dispatches allow us to more fully

utilize the GPU and achieve a higher frame rate. Although some dispatch parallelism can be achieved

by running multiple SERIAL instances, GPU resource usage is still limited because kernels from different

process contexts cannot run concurrently in CUDA. As we mentioned above, concurrent kernel execution

from different processes can be enabled with NVIDIA’s MPS (Multi-Process Service), however, NVIDIA has

not implemented this on the PX2.

These results are perhaps most useful as ways to estimate how many cameras with differing rates can

share the CNN. As long as the aggregate rate from all cameras is less than the supported total rate, latency

should not be compromised. For example, the results show that a single, shared SERIAL YOLO could not

support a single 30 FPS camera on the PX2 hardware while PIPELINE and PARALLEL should easily support

two 30 FPS cameras. Similarly, PIPELINE can support up to four 15 FPS cameras, or two at 15 FPS and one

at 30 FPS, etc.

134

10 20 30 40 50 60 70 80 90 100
Camera frame rate (frames per second)

20

40

60

80

100

120

La
te

nc
y

(m
illi

se
co

nd
s)

1 camera
2 cameras
4 cameras

Figure 5.8: PARALLEL YOLO latency with different numbers of cameras.

Note that all these results are from using only one of the two independent computing systems on the PX2

board. Using both systems to run two independent CNN configurations should double the number of cameras

supported by one PX2.

Multiple cameras are supported for aggregate frame rates. We verified that estimations based on the

FPS of a single image stream are valid for multiple cameras. This experiment investigated whether the

additional competition from multiple input streams to the shared CNN changed latencies. The results are

shown in Figure 5.8 for one, two, and four cameras generating input to PARALLEL YOLO. The supported

total camera frame rate is determined by the hardware capacity and the CNN framework execution model,

thus it is constant with multiple cameras instead of one. That is, this data corroborates the estimate given

above that supporting one 60 FPS camera is the equivalent of supporting two 30 FPS cameras, four 15 FPS

cameras, etc. The increased latencies for two and four cameras seen on the y-axis in Figure 5.8 are an artifact

of the experiment. The input images are processed in sequence, so longer latency measurements will be

incurred when a frame starts being processed after frames that arrive at the same time from other cameras.

These in-phase frame arrivals can be avoided in a real system by setting a different phasing for each camera

(a topic for future work).

5.4.2 Can Our CNN Implementations Be Better Configured?

PIPELINE can be configured with multiple CNN layers aggregated into the pipeline stages, i.e., configur-

ing the granularity of each stage. PARALLEL can be configured in the same way, but also adds the option to

adjust the number of threads assigned per stage, i.e., configure the degree of parallelism within each stage. In

135

10 20 30 40 50 60 70 80 90 100
Camera frame rate (frames per second)

20

40

60

80

100

120

La
te

nc
y

(m
illi

se
co

nd
s)

1 layer per stage
2 layers per stage
4 layers per stage
8 layers per stage
16 layers per stage

Figure 5.9: PARALLEL YOLO latency with different granularities (number of layers per stage).

addition, sequences of stages can be assigned to either the iGPU or the dGPU on the PX2 to avoid wasting

any available GPU capacity. We evaluate these configuration options next.

Granularity of stages improves latency under heavy loads for PARALLEL. In Figure 5.9, we compare

the latency results at frame rates from a single camera stream for PARALLEL with different stage granularities.

We did not observe any impact of granularities on PIPELINE, so those results are not shown here.

Note that pipeline is effectively disabled by configuring a single stage containing all 16 layers. This

approximates multiple instances of SERIAL that are running in one process context, a configuration not

supported in the original framework.

As shown in Figure 5.9, latencies of different granularities up to a frame rate at most 63 FPS (the

maximum load before latencies increase significantly, e.g., the max steady state) are very close. While

all the granularities can support a heavier processing load up to 71 FPS with an increase in latency, the

finer-granularity stages have smaller latencies in this region. Because each stage is implemented by one

manager thread and multiple worker threads, more stages with finer granularity enable more parallelism

among stages on the CPU. Our design for data communication between stages introduces small overheads,

which is reflected in the very small changes in the performance of different granularities when the frame rate

is low. A granularity of one layer per stage is a good configuration choice.

More threads for PARALLEL improves latency under heavy loads. In Figure 5.10, we compare the

latency results at frame rates from a single camera stream for PARALLEL with different numbers of threads.

More parallelism is enabled with more threads per stage, so more frames can be processed in parallel by a

stage. Having only one thread per stage is essentially the same as pipelined execution, so latency becomes

136

10 20 30 40 50 60 70 80 90 100
Camera frame rate (frames per second)

20

40

60

80

100

120

La
te

nc
y

(m
illi

se
co

nd
s)

1 thread per stage
2 threads per stage
4 threads per stage
6 threads per stage
8 threads per stage
10 threads per stage

Figure 5.10: PARALLEL YOLO latency with different numbers of threads.

unbounded at 63 FPS as shown previously. Between 63 FPS and 71 FPS the latencies increase substantially

but higher numbers of threads have somewhat lower latencies and a slower rate of latency increase with load.

A larger number of threads, 10 or so, is a good configuration choice.

Overhead analysis and performance bottleneck. Enabling PIPELINE and PARALLEL certainly causes

additional overheads. We evaluate the computational and spatial overheads with different configurations

by comparing the CPU and main memory usage between SERIAL and PIPELINE or PARALLEL. In each

experiment, process or thread instances share the six active CPU cores on the PX2. The maximum CPU

capacity is 600%. As shown in Table 5.2, a single instance of SERIAL uses 92% of the CPU capacity,

essentially one core’s worth. Six instances of SERIAL use 536%, most of the available CPU resources.

PIPELINE with one thread per stage uses 219% of the CPU capacity and 1,132 MB of memory. Compared to

one SERIAL instance, these figures represent an increase of 127% in CPU capacity and 358 MB with respect

to memory. These increases reflect added overheads for synchronization, scheduling, and data buffering.

Moving to a PARALLEL implementation with ten threads per stage causes only a slight increase in CPU usage,

from 219% to 239%, and a negligible increase in memory usage. We have shown in Section 5.4.1 that a

significant increase in the supported frame rate is achieved with the PARALLEL and PIPELINE configurations

compared to both one and six SERIAL instances. Under SERIAL, the GPU is around 60% utilized, while

under PARALLEL and PIPELINE, it is nearly 100% utilized, shown from CUDA profiling results that are

similar to Figure 5.3. This demonstrates that using more CPU resources in order to fully utilize the scarce

resources of the GPU is a reasonable strategy.

137

CPUs (%) Memory (MB)
SERIAL 92 774
SERIAL x6 536 4,644
PIPELINE (single thread) 219 1,132
PARALLEL (10 threads) 239 1,136

Table 5.2: CPU and memory usage.

con
v 0

maxp
ool

 1
con

v 2

maxp
ool

 3
con

v 4

maxp
ool

 5
con

v 6

maxp
ool

 7
con

v 8

maxp
ool

 9

con
v 1

0

maxp
ool

 11

con
v 1

2

con
v 1

3

con
v 1

4

reg
ion

 15

Layers

0.0

2.5

5.0

7.5

10.0

Ti
m

e
(m

illi
se

co
nd

s) Response time (dGPU)
CPU time (dGPU)
Response time (iGPU)
CPU time (iGPU)

0

1

2

3
Ra

tio
dGPU-iGPU performance ratio

Figure 5.11: Per-layer execution times.

Multi-GPU execution improves latency under heavy loads We evaluate the latency performance of dif-

ferent GPU assignment strategies next to understand the impact of assigning some layers to the iGPU.

Layer performance on both GPUs. We first measured the performance of each layer on both GPUs. We

executed SERIAL using each GPU individually and measured per-layer response times and per-layer CPU

computation times. Results are shown in Figure 5.11, which consists of two parts that use a common

x-axis; the top part depicts per-layer dGPU-iGPU performance ratios (obtained by dividing a layer’s iGPU

response time by its dGPU response time); the bottom part depicts the per-layer data just mentioned. As seen,

convolution layers typically take longer on the iGPU, some two to three times longer. Convolution layers

contain heavy matrix computations that are completed much faster with more CUDA cores. The maxpool

and region layers have lower performance ratios because they have lighter computation loads. These layers

are good choices to be moved to the iGPU.

GPU assignment strategy. To introduce as little latency degradation as possible while using both GPUs,

our strategy is to move layers with low dGPU-iGPU performance ratios to the iGPU. Given the performance

ratios at the top of Figure 5.11, we evaluate the GPU assignment strategies shown in Table 5.3. Each strategy

138

Strategy ID dGPU iGPU
S0 All /0
S1 {0,1, ...,13} {14,15}
S2 {0,1, ...,4,12,13,14,15} {5,6, ...,11}
S3 {0,1, ...,4,12,13} {5,6, ...,11,14,15}
S4 {0,1, ...,7} {8,9, ...,15}

Table 5.3: GPU assignment strategies.

10 20 30 40 50 60 70 80 90 100
Camera frame rate (frames per second)

20

40

60

80

100

120
La

te
nc

y
(m

illi
se

co
nd

s)
[0] no layer on iGPU
[1] 14-15 on iGPU
[2] 5-11 on iGPU
[3] 5-11,14-15 on iGPU
[4] 8-15 on iGPU

Figure 5.12: PARALLEL YOLO latency with different GPU assignments.

is characterized by the sequence of layer numbers assigned to each GPU. For example, strategy S1 assigns

layers 0 to 13 to the dGPU and layers 14 and 15 to the iGPU.

Strategy S1 substantially reduces latency for PARALLEL under heavy loads. Figure 5.12 shows that, for

PARALLEL, moving the last two CNN layers to the iGPU under strategy S1 improves latency. S1 provides

support for a frame rate of 71 FPS with latency only slightly greater than a frame rate of 63 FPS when using

only the dGPU. At a frame rate of 80 FPS, the latency is approximately the same as a frame rate of 71 FPS

using only the dGPU. All other strategies considered either increase latencies or have negligible effect.

Strategies S1 and S3 provide some latency reduction for PIPELINE under heavy loads. In Figure 5.13,

S1 provides support for a frame rate of 71 FPS in PIPELINE with latency only slightly greater than a frame

rate of 63 FPS using only the dGPU. S3 for PIPELINE supports a frame rate of 71 FPS with reduced latency

comparable to that for PARALLEL using only the dGPU. All other strategies considered either increase

latencies or have negligible effect.

5.4.3 Are Multi-Camera Composite Images Effective?

Any combination of the features and execution models above fails to provide enough throughput at

desired latencies for a vehicle equipped with more than four cameras at a frame rate of 30 FPS using both

139

10 20 30 40 50 60 70 80 90 100
Camera frame rate (frames per second)

20

40

60

80

100

120

La
te

nc
y

(m
illi

se
co

nd
s)

[0] no layer on iGPU
[1] 14-15 on iGPU
[2] 5-11 on iGPU
[3] 5-11,14-15 on iGPU
[4] 8-15 on iGPU

Figure 5.13: PIPELINE YOLO latency with different GPU assignments.

systems on the PX2 board. We propose to tackle this by leveraging the technique of compositing frames

from multiple cameras into one image for processing. Although compositing might introduce a small loss of

accuracy as the image resolution will be reduced, this can be acceptable for low-criticality cameras in certain

circumstances. We devote this section to evaluate the effectiveness of the technique.

With a multi-camera composite, the throughput is multiplied by the number of images in the composite

image. However, the frame concatenation introduces overhead. Also, because the frames are down-sampled

as explained in Section 5.3.3, the object detection accuracy could be reduced. We evaluate the throughput,

latency, and accuracy of the multi-camera composite image technique.

Experimental set-up. We focus on comparing YOLO’s performance on full-size images and 2x2 composite

images. The network is evaluated on a standard object-detection dataset called PASCAL VOC (Everingham

et al., 2015), using two types of tests: one of full-size images and one of composite images. For the full-size

test, the original VOC test data is used. For the composite, we generate test images by randomly choosing

four full-size VOC test images and combining them into a composite image with a 2x2 grid. Each VOC test

image is used exactly once as a component of a composite image, hence, the size of the composite test set is

four times smaller than the full-size one. This ensures that the total numbers of objects to be detected are the

same in both tests. At runtime, full-size and composite images are both resized by YOLO to be 416x416

during processing.

Evaluation of detection results. Evaluation of the network’s output is done using mean average precision

(mAP)—a metric commonly used to evaluate object-detection algorithms (Everingham et al., 2010). In loose

terms, mAP characterizes a model’s ability to have high recall and high precision. In other words, higher

140

mAP Full-size Test Composite Test
YOLO 55.63 36.46

Composite YOLO 57.64 48.29

Table 5.4: mAPs for full-size and composite tests with PASCAL VOC dataset.

mAP Full-size Test Composite Test
YOLO 63.66 44.91

Composite YOLO 66.20 56.21

Table 5.5: mAPs of object classes relevant to autonomous driving.6

mAP means more objects are detected and the detections and localizations are more accurate. A detailed

explanation of mAP has been provided in Section 2.2.2.

Similar to other state-of-the-art detection networks, YOLO is designed to be scale-invariant, meaning it

can detect objects at different scales and resolutions. However, when image resolutions decrease significantly

(in our case, by a factor of four), the network’s performance can start to degrade. As seen in Table 5.4, with a

2x2 grid setup, YOLO trained on the original VOC data can only perform at 36.46% mAP when inferring

composite images, an almost 20% accuracy drop.

To mitigate this, we retrained the network on the VOC dataset using the same number of training images

for both full-size and composite data. We refer to this retrained network as Composite YOLO, and the

resulting mAPs are shown in Table 5.4. Moreover, since our primary applications are to autonomous driving,

we also show in Table 5.5 the detection results for relevant object classes.6 Overall, our results consistently

indicate that with YOLO retrained on both composite and full-size data, the detection accuracy of composite

images is improved without reducing that of full-size images. With the retrained composite network, we can

provide a trade-off between a 10% accuracy drop and a fourfold increase of throughput.

Although the mAP decreases with composite images, it is important to remember the following. First,

the focus of our work is on providing the option to trade-off between higher throughput and acceptably

lower accuracy, and not on the magnitude of the accuracy itself. Second, YOLO represents a state-of-the-art

detection network, but we are tackling a very challenging computer-vision problem with strictly limited

resources. Third, real-life autonomous driving systems usually deploy tracking algorithms, which can use

information of multiple frames to improve detection accuracy. Finally, as shown in (Redmon and Farhadi,

6Among 20 object classes, we deem the following eight to be irrelevant to the task of autonomous driving: airplane, boat, bottle,
chair, dining table, potted plant, sofa, and TV monitor.

141

0 50 100 150 200 250 300
Total camera frame rate (frames per second)

20

40

60

80

100

120

La
te

nc
y

(m
illi

se
co

nd
s)

1 camera
4 cameras

Figure 5.14: PARALLEL YOLO latency with multi-camera-image processing and different numbers of cameras.

2017), YOLO tends to perform better for bigger objects than for smaller ones. Thus, we expect the mAPs to

be higher for nearby objects, which are usually prioritized in the case of automated driving.

A four-camera composite image supports 250 FPS (!) and a latency of 48 milliseconds. This is shown

in Figure 5.14. Examining the y-axis Figure 5.14, observe that for lower respective frame rates, latency is

higher in the four-camera scenario than in the one-camera scenario (about 45 vs. 36 milliseconds). This is

due to the additional overhead incurred to combine multiple frames.

5.5 Chapter Summary

In this chapter, we presented the results of an industrial design study that addresses the challenge of

re-designing CNN software to support multiple cameras with better throughput for automated-driving systems.

We showed how to transform a traditional CNN framework to obtain pipelined and parallel-pipelined variants

to better utilize hardware resources. We also examined the impact of properly load balancing GPU work

across the GPUs of a multi-GPU hardware platform. These basic techniques resulted in an improvement in

throughput of over twofold with only minor latency increases and no accuracy loss. In order to accommodate

more cameras that these basic techniques allow, we proposed the technique of compositing multiple image

streams from different cameras into a single stream. We showed that this technique can greatly boost

throughput (up to 250 FPS) at the expense of some accuracy loss. We demonstrated that this accuracy loss

can be partially mitigated through network retraining.

142

In the next chapter, we will apply more fine-grained graph scheduling to a computer-vision standard

OpenVX and apply our schedulability analysis provided in Chapter 4 to derive end-to-end response-time

bounds for GPU-using applications.

Acknowledgement. Most of the study described in this chapter was conducted during my internship with

Shige Wang at General Motors. Thanh Vu conducted the retraining of the YOLO model with assistance from

Cheng-Yang Fu and Akash Bapat.

143

CHAPTER 6: CASE STUDY1

In the preceding chapters, we developed theoretical analysis to derive end-to-end response-time bounds

of GPU-using applications (in Chapter 4) and proposed practical techniques for improving throughput

performance of a CNN-based computer-vision workload (in Chapter 5). In this chapter, we apply our analysis

to a more fine-grained graph scheduling of a computer-vision standard, OpenVX (Khronos Group, 2020),

and evaluate both analytical and empirical real-time performance of a real-world application.

To facilitate the development of computer-vision techniques, the Khronos Group has put forth a ratified

standard called OpenVX. Although initially released only six years ago, OpenVX has quickly emerged as

the computer-vision API of choice for real-time embedded systems, which are the standard’s intended focus.

Under OpenVX, computer-vision computations are represented as directed graphs, in which graph nodes

represent high-level computer-vision functions, and graph edges represent precedence and data dependencies

across functions. OpenVX can be applied across a diversity of hardware platforms. In our work, we

consider its use on platforms where graphics processing units (GPUs) are used to accelerate computer-vision

processing.

Unfortunately, OpenVX’s alleged real-time focus reveals a disconnect between computer-vision re-

searchers and the needs of the real-time applications where their work would be applied. In particular,

OpenVX lacks concepts relevant to real-time analysis, such as priorities and graph invocation rates, so it

is debatable as to whether it really does target real-time systems. More troublingly, OpenVX implicitly

treats entire graphs as monolithic schedulable entities. This inhibits parallelism2 and can result in signif-

icant processing-capacity loss in settings (like autonomous vehicles) where many computations must be

multiplexed onto a common hardware platform.

1Contents of this chapter previously appeared in the following paper:

Yang, M., Amert, T., Yang, K., Otterness, N., Anderson, J. H., Smith, F. D., and Wang, S. (2018a). Making OpenVX really “real
time”. In Proceedings of the 39th IEEE International Real-Time Systems Symposium, pages 80–93.

2As discussed below, a recently proposed extension (Khronos Group, 2019a) enables more parallelism, but this extension is directed
at throughput, not real-time predictability, and is not available in any current OpenVX implementation.

144

In prior work, our research group partially addressed these issues by proposing a new OpenVX variant

in which individual graph nodes are treated as schedulable entities (Elliott et al., 2015; Yang et al., 2015).

This variant allows greater parallelism and enables end-to-end graph response-time bounds to be computed.

However, graph nodes remain as high-level computer-vision functions, which is problematic for (at least)

two reasons. First, these high-level nodes still execute sequentially, so some parallelism is still potentially

inhibited. Second, such a node will typically involve executing on both a CPU and a GPU. When a node

accesses a GPU, it suspends from its assigned CPU. Suspensions are notoriously difficult to handle in

schedulability analysis without inducing significant capacity loss.

In this chapter, we show that these problems can be addressed through more fine-grained scheduling of

OpenVX graphs.

First, we show how to transform the coarse-grained OpenVX graphs proposed in our group’s prior

work (Elliott et al., 2015; Yang et al., 2015) to fine-grained variants in which each node accesses either a

CPU or a GPU (but not both). Such transformations eliminate suspension-related analysis difficulties at the

expense of (minor) overheads caused by the need to manage data sharing. Instead, the analysis in Chapter 4

can apply to our fine-grained OpenVX graphs to determine end-to-end graph response-time bounds.

Moreover, our transformation process exposes new potential parallelism at many levels. For example,

because we decompose a coarse-grained OpenVX node into finer-grained schedulable entities, portions of

such a node can now execute in parallel. Also, we allow not only successive invocations of the same graph to

execute in parallel but even successive invocations of the same (fine-grained) node.

Next, we present the results of case-study experiments conducted to assess the efficacy of our fine-grained

graph-scheduling approach. In these experiments, we considered six instances of an OpenVX-implemented

computer-vision application called HOG (histogram of oriented gradients), which is used in pedestrian

detection, as scheduled on a multicore+GPU platform. These instances reflect a scenario where multiple

camera feeds must be supported. We compared both analytical response-time bounds and observed response

times for HOG under coarse- vs. fine-grained graph scheduling. We found that bounded response times could

be guaranteed for all six camera feeds only under fine-grained scheduling. In fact, under coarse-grained

scheduling, just one camera could (barely) be supported. We also found that observed response times were

substantially lower under fine-grained scheduling. Additionally, we found that the overhead introduced by

converting from a coarse-grained graph to a fine-grained one had modest impact. These results demonstrate

the importance of enabling fine-grained scheduling in OpenVX if real time is really a first-class concern.

145

6.1 OpenVX Graph Scheduling

In this section, we show how to transform coarse-grained OpenVX graphs to fine-grained variants.

6.1.1 Coarse-Grained OpenVX Graph Scheduling

In prior work (Elliott et al., 2015; Yang et al., 2015), the coarse-grained graph scheduling techniques

without intra-task parallelism, are proposed for scheduling acyclic3 OpenVX graphs using G-EDF,4 with

graph nodes implicitly defined by high-level OpenVX computer-vision functions. We call OpenVX graphs so

scheduled coarse-grained graphs.

Given the nature of high-level computer-vision functions, the nodes of a coarse-grained graph will typi-

cally involve executing both CPU code and GPU code. Executing GPU code can introduce task suspensions,

and under G-EDF schedulability analysis, suspensions are typically dealt with using suspension-oblivious

analysis (Brandenburg and Anderson, 2010). This entails analytically viewing suspension time as CPU

computation time and can result in significant processing-capacity loss.

6.1.2 Fine-Grained OpenVX Graph Scheduling

In this section, we propose a fine-grained scheduling approach for OpenVX graphs obtained by applying

four techniques. First, to eliminate suspension-based capacity loss, we treat CPU code and GPU code as

separate graph nodes. Second, to reduce response-time bounds, we allow intra-task parallelism. Third, to

avoid non-work-conserving behavior and enable better observed response times, we allow early releasing.

Finally, we use a scheduler (namely, G-FL—see below) that offers advantages over G-EDF. We elaborate on

these techniques in turn below.

DAG nodes as CPU or GPU nodes. To handle data dependencies, CUDA provides a set of synchronization

functions (Section 3.3), which are configured on a per-device basis to wait via spinning or suspending. In

this dissertation, we consider only waiting by suspending because the kernel executions in the workloads of

interest are too long for spinning to be viable. In our fine-grained scheduling approach, we avoid suspension-

related capacity loss due to kernel executions by more finely decomposing an OpenVX graph so that each of

3As described in these prior works, cycles can be dealt with by relaxing graph constraints or by combining certain nodes into
“super-nodes.” Adapting these techniques to our context is beyond the scope of this dissertation.

4While G-EDF was the focus of (Yang et al., 2015), in experiments presented in (Elliott et al., 2015), real-time work was limited to
execute on one socket of a multi-socket machine and thus was only globally scheduled within a socket.

146

Wx

W1
2

W3
2

W7
2W2

2

(a)

(b)

W4
2 W5

2 W6
2

2 Wy
2

CPU Execution GPU ExecutionCPU+GPU Execution

Figure 6.1: (a) Coarse- and (b) fine-grained representations of the same DAG G2. τ2
x is simple sequential CPU code,

so it is represented by one fine-grained task. τ2
y is more complex and consists of both CPU and GPU parts, some of

which can execute in parallel.

its nodes is either a CPU node or a GPU node that executes a kernel. Additionally, we distinguish between

regular CPU nodes and the necessary CPU work to launch a GPU kernel and await its results. In this chapter,

we assume that copy operations are included in CPU nodes. In the workloads of interest to us, copies are

short, so any resulting suspension-based capacity loss is minor. More lengthy copies could instead be handled

as separate nodes, similarly to how we handle kernels.

In the rest of this section, we use a continuing example to illustrate various nuances of our fine-grained

approach.

Example 6.1. Figure 6.1 (a) depicts a simple coarse-grained graph comprised of two tasks, τ2
x and τ2

y .

Figure 6.1 (b) shows a fine-grained representation of this same graph. Task τ2
x is a simple CPU-only computer-

vision function and is represented by one fine-grained CPU task, τ2
1 . τ2

y is more complex, and its fine-grained

representation consists of six tasks, τ2
2 , · · · ,τ2

7 , where τ2
5 is a GPU task, and τ2

4 and τ2
6 are CPU tasks that

launch the GPU kernel and await its completion, respectively.5 ♦

An end-to-end response-time bound for a fine-grained graph can be obtained from per-node bounds

as discussed in Section 4.1, with the copy operations in CPU nodes dealt with using suspension-oblivious

analysis. For GPU nodes, we provided a new analysis for NVIDIA GPUs in Section 4.2.6 Note that, in work

on the prior coarse-grained approach (Elliott et al., 2015; Yang et al., 2015), locking protocols were used to

preclude concurrent GPU access, obviating the need for such analysis.

5The synchronization call to await results may be launched before the GPU kernel has completed, but this overhead is extremely
short.

6Response times for copies, if handled as separate nodes, are trivial to bound because they are FIFO-scheduled.

147

Example 6.2 (cont’d). Possible schedules for the graphs in Figure 6.1 are depicted in Figure 6.2. As in

Example 4.1, successive jobs of the same task are shaded differently to make them easier to distinguish.

Recall from Section 4.1 that all tasks in a graph share the same period; in these schedules, all periods are

5 time units, shown as the time between successive job release times (up arrows).

Figure 6.2 (a) depicts the graph’s schedule as a single monolithic entity, as implied by the OpenVX

standard. OpenVX lacks any notion of real-time deadlines or phases, so these are excluded here, as is a

response-time bound. The depicted schedule is a bit optimistic because the competing workload does not

prevent the graph from being scheduled continuously. Under monolithic scheduling, the entire graph must

complete before a new invocation can begin. As a result, the second invocation does not finish until just

before time 28.

Figure 6.2 (b) depicts coarse-grained scheduling as proposed in prior work (Elliott et al., 2015; Yang

et al., 2015), where graph nodes correspond to high-level computer-vision functions, as in Figure 6.1 (a).

Nodes can execute in parallel. For example, τ2
y,1 and τ2

x,2 do so in the interval [5,6). However, intra-task

parallelism is not allowed: τ2
y,2 cannot begin until τ2

y,1 completes, even though its predecessor (τ2
x,2) is finished.

Note that, under coarse-grained scheduling, GPU execution time is also analytically viewed is CPU execution

time using suspension-oblivious analysis. This analytical impact is not represented in the figure.

Figure 6.2 (c) depicts a fine-grained schedule for the graph in Figure 6.1 (b), but without intra-task

parallelism. In comparing insets (b) and (c), the difference is that nodes are now more fine-grained, enabling

greater concurrency. As a result, τ2
7,2 completes earlier, at time 25. The detriments of suspension-oblivious

analysis for GPU kernels are also now avoided. ♦

Intra-task parallelism. Our notion of fine-grained graph scheduling allows intra-task parallelism, i.e.,

consecutive jobs of the same task may execute in parallel. Such parallelism can cause successive invocations

of the same graph to complete out of order. This can be rectified via buffering.7

Example 6.2 (cont’d). Lower response times are enabled by intra-task parallelism, as depicted in Fig-

ure 6.2 (d). In this schedule, τ2
3,1 and τ2

7,1 are able to execute in parallel with τ2
3,2 and τ2

7,2, respectively,

reducing the completion time of τ2
7,2 to time 23. Observe that τ2

7,2 completes before τ2
7,1, so some output

buffering would be needed here. ♦

7The buffer size can be determined based on the calculated response-time bounds.

148

τ4

τ1

τ2

τ5

τ6

τ7

2

2

τ3
2

2

Φ4
2

Φ3
2

R1

R2
2

Φ1 = 02

Φ2

2

2

2

2

2

R3
2

R4
2

R5
2

R6
2

Φ7
2

Φ5
2

Φ6
2

R : the end-to-end response-time bound for G

R7
2

0

(Assume depicted jobs are scheduled alongside other jobs, which are not shown.
Also, job deadlines are omitted to avoid clutter.)

5 10 15 20 25 30

Job Release Job Completion CPU Execution

Time35

GPU Execution

τ1
2

2

τ3
2

τ4
2

τ2

Φ4
2

Φ3
2

R1

R2
2

Φ1 = 02

Φ2

2

2

τ5
2

τ6
2

τ7
2

R3
2

R4
2

R5
2

R6
2

Φ7
2

Φ5
2

Φ6
2 R7

2

R : the end-to-end response-time bound for G

Rx

Φx = 02

Φy

2

τx

τy

2

2

2

Ry
2

R : the end-to-end response-time bound for G

(a)
G

(b)

(c)

(d)

Concurrent
CPU and GPU

execution

Intra-task parallelism
(although not depicted,

this enables lower
response-time bounds)

GPU time
modeled as
CPU time

2

2 2

2 2

2 2

Figure 6.2: Example schedules of the tasks corresponding to the DAG-based tasks in G2 in Figure 6.1. (a) Monolithic
scheduling. (b) Coarse-grained scheduling as in prior work. Fine-grained scheduling as proposed here (c) without and
(d) with intra-task parallelism.

149

Allowing intra-task parallelism has an even greater impact on analytically derived response-time

bounds (Erickson and Anderson, 2011), and as noted earlier (in Section 4.1, enables task utilizations

to exceed 1.0.

Early releasing. Although omitted in Figure 6.2 for clarity, early releasing can decrease observed response

times without affecting analytical bounds.

Example 6.2 (cont’d). Allowing τ2
7,1 to be early released once τ2

6,1 completes in Figure 6.2 (d) reduces the

overall graph’s completion time to just under 23 time units. ♦

G-FL scheduling. The approach in Section 4.1 applies to any GEL scheduler. As shown in (Erickson and

Anderson, 2012; Erickson et al., 2014), the global fair-lateness (G-FL) scheduler is the “best” GEL scheduler

with respect to tardiness bounds. We therefore perform CPU scheduling using G-FL instead of G-EDF.8

Periods. An additional benefit of fine-grained scheduling is that it allows for shorter periods.

Example 6.2 (cont’d). The period used in Figure 6.2 seems reasonable in insets (c) and (d): notice that each

job finishes before or close to its task’s next job release. In contrast, in insets (a) and (b), response times

could easily be unbounded. ♦

Recently proposed OpenVX extensions. The Khronos Group recently released the OpenVX Graph Pipelin-

ing, Streaming, and Batch Processing Extension (Khronos Group, 2019a), which enables greater parallelism

in OpenVX graph executions. However, this extension is not available in any current OpenVX implementa-

tion and still lacks concepts necessary for ensuring real-time schedulability. While we have not specifically

targeted this extension, an ancillary contribution of our work is to provide these needed concepts. In particular,

the parallelism enabled by this extension’s pipelining feature is actually subsumed by that allowed in our

fine-grained graphs. Furthermore, the batching feature allows a node to process multiple frames instead of

just one, potentially increasing computation cost; this could increase the node’s utilization, possibly even

exceeding 1.0. Introducing intra-task parallelism as we have done enables such nodes to be supported while

still ensuring schedulability.

8As explained in Section 6.2, we actually consider two variants of G-FL, a “clustered” variant in which G-FL is applied on a
per-socket basis on our test platform, and a fully global variant that is applied across all sockets.

150

Classify

Pedestrians
vxHOGFeaturesNodevxHOGCellsNode

Collect

Pedestrian

Locations

Compute

Scale Levels

Convert

Color to

Grayscale

(a)

(b)

Normalize

Orientation

Histograms

Classify

Pedestrians

Compute

Orientation

Histograms

Compute

Gradients

Resize

Image

Normalize

Orientation

Histograms

Classify

Pedestrians

Compute

Orientation

Histograms

Compute

Gradients

Resize

Image

Normalize

Orientation

Histograms

Classify

Pedestrians

Compute

Orientation

Histograms

Compute

Gradients

Resize

Image

Normalize

Orientation

Histograms

Classify

Pedestrians

Compute

Orientation

Histograms

Compute

Gradients

Resize

Image

Normalize

Orientation

Histograms

Classify

Pedestrians

Compute

Orientation

Histograms

Compute

Gradients

Resize

Image

Normalize

Orientation

Histograms

Classify

Pedestrians

Compute

Orientation

Histograms

Compute

Gradients

Resize

Image

Normalize

Orientation

Histograms

Classify

Pedestrians

Compute

Orientation

Histograms

Compute

Gradients

Resize

Image

Normalize

Orientation

Histograms

Classify

Pedestrians

Compute

Orientation

Histograms

Compute

Gradients

Resize

Image

Convert

Color to

Grayscale

vxHOGFeaturesNode
Classify

Pedestrians

Collect

Pedestrian

Locations

Compute

Scale Levels
vxHOGCellsNodevxHOGCellsNode vxHOGFeaturesNode

Classify

Pedestrians

GPU ExecutionGPU ExecutionCPU ExecutionCPU Execution CPU+GPU Execution GPU ExecutionCPU Execution CPU+GPU Execution

Figure 6.3: (a) Monolithic/coarse-grained and (b) fine-grained HOG DAGs. Our experiments used 13 scale levels;
three are shown here. In (b), there are also two CPU nodes per kernel that launch that kernel and await its results. These
nodes have short execution times and are omitted from much of our discussion for simplicity. However, they were fully
considered in our evaluation.

6.2 Case Study

In this section, we detail the case-study experiments we performed, and compare our fine-grained DAG

scheduling approach to monolithic and coarse-grained DAG scheduling.

6.2.1 Experimental Evaluation

All of our case-study experiments focused on the Histogram of Oriented Gradients (HOG) algorithm, a

well-known CV technique for recognizing pedestrians in input images (Dalal and Triggs, 2005b).

Why HOG? The HOG algorithm is required by the OpenVX 1.2 specification,9 ensuring its relevance in

real-world graph-based CV. HOG is inherently a multi-stage technique: it calculates a directional gradient for

each pixel, sorts gradients into histograms, normalizes lighting and contrast, and then performs classification.

These computations are performed at multiple image-scale levels, using successively smaller versions of the

original image. These steps require both CPU and GPU computations, meaning that HOG fits naturally into a

DAG-based model.

HOG implementation and DAG variations. At the time of writing, no open-source implementations

of version 1.2 of OpenVX exists, so we based our case-study experiments on the HOG implementation

available in the open-source CV library OpenCV.10 OpenCV provides CV functions, but does not structure

computations as DAGs. To create DAGs, we split the OpenCV HOG code into separate functions, and

9https://www.khronos.org/registry/OpenVX/specs/1.2/OpenVX_Specification_1_2.pdf, Sec. 3.53.1.
10https://docs.opencv.org/3.4.1/d5/d33/structcv_1_1HOGDescriptor.html.

151

https://www.khronos.org/registry/OpenVX/specs/1.2/OpenVX_Specification_1_2.pdf
https://docs.opencv.org/3.4.1/d5/d33/structcv_1_1HOGDescriptor.html

designated each function as a DAG node. We compared the response times of successively finer-grained

notions of DAG scheduling, corresponding to monolithic, coarse-grained, and fine-grained HOG DAGs.11

The monolithic version of HOG corresponds to the type of DAG that one might specify using OpenVX,

and consists of a single DAG of six types of nodes (three are replicated per scale level), as shown in Figure 6.3

(a). Implementing this DAG required the fewest changes to OpenCV code, as monolithic execution requires

only a single thread to sequentially execute the six nodes’ functions. Coarse-grained HOG uses the same

DAG as monolithic HOG, but, as discussed in Section 6.1.1, each of the six nodes is a schedulable entity,

with scheduling via G-EDF with early releasing. We also used G-EDF, but without early releasing, as a

monolithic DAG scheduler.

In fine-grained HOG, several of the coarse-grained nodes are refined, as shown in Figure 6.3 (b). This

DAG reflects our new fine-grained approach, where nodes are treated as tasks and the techniques (early

releasing, intra-task parallelism, and G-FL scheduling) in Section 6.1.2 are applied.

Fine-grained DAG implementation. Implementing fine-grained HOG introduced a series of challenges.

For example, intra-task parallelism required multiple instances of each DAG to ensure each node can have

multiple jobs executing in parallel. Other challenges included priority points that varied (for launching GPU

kernels and awaiting results), handling inter-process communication (IPC) between CPU and GPU nodes,

enforcing guards on early releasing for GPU nodes, and computing task offsets from response-time bounds in

order to run the experiments.

As in prior work (Elliott et al., 2015), we used PGMRT (Elliott et al., 2014) to handle IPC in the coarse-

and fine-grained HOG variants. PGMRT introduces producer/consumer buffers and mechanisms that enable

producer nodes to write output data and consumer nodes to suspend until data is available on all inbound

edges.

Test platform. Our evaluation platform was selected to over-approximate current NVIDIA embedded

offerings for automotive systems, such as the Drive PX2. This platform features a single NVIDIA Titan

V GPU, two eight-core Intel CPUs, and 32 GB of DRAM. Each core features a 32-KB L1 data cache, a

32-KB L1 instruction cache, and a 1-MB L2 cache, and all eight cores on a socket share an 11-MB L3

cache. The system was configured to run Ubuntu 16.04 as an OS, using version 2017.1 of the LITMUSRT

kernel (LITMUSRT Project, 2018), with hardware multi-threading disabled.

11Our source code is available online at https://github.com/Yougmark/opencv/tree/rtss18.

152

https://github.com/Yougmark/opencv/tree/rtss18

Overall computational workload. One would expect contention for hardware resources in many real-world

use cases, such as an autonomous vehicle that processes data from multiple camera feeds. We approximated

a “contentious” workload by executing six HOG processes on our hardware platform—the limit based on

our platform’s DRAM, CPU, and GPU capacity. This number of HOG processes makes ensuring bounded

response times difficult without careful consideration of resource allocation. This scenario also reflects the

very real possibility of executing at high platform utilization, as is commonly done in the automotive industry.

To ensure consistency with the GPU scheduling rules in Section 4.2.1, we conducted all of our experiments

using NVIDIA’s MPS.

Video-frame-processing can potentially experience cache-affinity-loss issues under global scheduling.

We therefore considered two variants of both G-EDF and G-FL: a truly global variant where any of the six

DAGs can be scheduled on any of our platform’s 16 CPUs, and a “clustered” variant where the six DAGs are

partitioned between the machine’s two sockets, with scheduling being “global” only within a socket. We

refer to the latter variants as C-EDF and C-FL, respectively, where the “C” prefix stands for “clustered.”

6.2.2 Results

Our experiments were designed to examine analytical response-time bounds and observed response times

under the considered scheduling approaches. We also sought to examine the overhead required to support

fine-grained scheduling.

Analytical bounds. To compute analytical response-time bounds, we first computed CPU WCETs and worst-

case GPU workloads via a measurement process. All worst-case values were calculated as the 99th percentile

of 30,000 samples obtained with all six DAGs executing together to cause contention. For each GPU task

τi, we used NVIDIA’s profiling tool nvprof to measure Bi and Hi, and instrumented the CUDA kernels to

measure Li on the GPU using the globaltimer performance-counter register. For HOG, Hmax = 256 and

h = 64. We measured CPU WCETs using Feather-Trace (Brandenburg and Anderson, 2007). For all DAGs,

Ti = 33ms.

We computed fine-grained response-time bounds by using Theorem 4.3 in Section 4.2.4 for GPU nodes

and Therom 2 from (Yang and Anderson, 2014b) for CPU nodes and by then applying the techniques in

Section 6.1.2 to obtain an overall end-to-end bound. We tried computing analytical bounds for the coarse-

grained (resp., monolithic) C-EDF and G-EDF variants using prior work (Yang et al., 2015) (resp., (Devi and

153

Monolithic Monolithic Coarse-Grained Coarse-Grained Fine-Grained Fine-Grained
G-EDF C-EDF G-EDF C-EDF G-FL C-FL

Analytical Bound (ms) N/A N/A N/A N/A 542.39 477.25
Observed Maximum Response Time (ms) 170091.06 243745.21 427.07 428.50 125.66 131.43
Observed Average Response Time (ms) 84669.47 121748.05 136.57 121.52 65.99 66.06

Table 6.1: Analytical and observed response times. A bound of N/A indicates unschedulability, so no bound could be
computed.

Anderson, 2008)), but found these variants to be unschedulable.12 These results are summarized in the first

row of Table 6.1.

Observation 6.1. With respect to schedulablity, the monolithic and coarse-grained variants could not even

come close to supporting all six cameras (i.e., DAGs).

With respect to schedulability, the monolithic variants could not even support one camera, because the

overall execution time of a single monolithic DAG far exceeds its period. The coarse-grained variants were

only slightly better, being able to support just one camera (in which case the choice of variant, C-EDF vs.

G-EDF, is of little relevance). In this case, adding a second HOG DAG increased GPU responses to the point

of causing a CPU utilization-constraint violation. Note that the increase in CPU utilization is due to using

suspension-oblivious analysis.

Observation 6.2. With respect to schedulability, both fine-grained variants were able to support all six

cameras.

The better schedulability of the fine-grained variants largely resulted from scheduling shorter tasks with

intra-task parallelism, though switching to a fair-lateness-based scheduler also proved beneficial. In particular,

we found that the scheduler change reduced node response times by 0.1–9.9%. While this reduction is modest,

it is still useful. Nonetheless, these reductions suggest that most of the schedulability improvements stemmed

from increasing parallelism between both CPU and GPU tasks.

Observed response times. Figure 6.4 plots DAG response-time distributions, which we computed for all

tested variants from measurement data. Corresponding worst- and average-case times are also reported in

Table 6.1.

12In the original coarse-grained work (Elliott et al., 2015; Yang et al., 2015), locking protocols were used to preclude concurrent
GPU accesses. We instead allowed concurrent accesses and used the analysis in Section 4.2, but the coarse-grained variants were
still unschedulable.

154

0 100 200 300 400 500
Time (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 (

X
 <

=
 x

)

[5,6]

[1]
[2]

[3]

[4]

[1] Fine-grained (C-FL)
[2] Fine-grained (G-FL)
[3] Coarse-grained (C-EDF)
[4] Coarse-grained (G-EDF)
[5] Monolithic (C-EDF)
[6] Monolithic (G-EDF)

Figure 6.4: CDFs of response times for varying DAG granularity.

Observation 6.3. The average (resp., worst-case) observed response time under the fine-grained variants

was around 66 ms (resp., 130 ms), which is substantially lower than the non-fine-grained variants. (For

reference, the response time of an alert driver is reported to be around 700 ms (Green, 2000).)

This observation is supported by Figure 6.4 and Table 6.1. Note that the difference between clustered

and global scheduling was not substantial. This is because the aggregate memory footprint of all frames

concurrently being accessed under both variants tended to far exceed the size of the L3 cache.

Observation 6.4. The analytical fine-grained response-time bounds upper bounded the observed worst-case

times.

This observation is supported by Figure 6.4 and Table 6.1. While the listed bounds of 477.25 ms and

542.39 ms in Table 6.1 may seem high, note that they are based on considering worst-case scenarios that may

be unlikely to occur in practice (and they are still within the limit mentioned in (Green, 2000)). Moreover, the

monolithic and coarse-grained variants were unable to guarantee any bounds when scheduling all six DAGs.

Observation 6.5. Observed response times exhibited lower variation under fine-grained scheduling.

This observation is supported by Figure 6.4. The fine-grained variances in this plot are several orders of

magnitude less than the variances for the other variants.

Observation 6.6. Early releasing improved observed response times.

155

To verify this observation, we conducted additional experiments in which we disabled early releasing for

the fine-grained G-FL variant. In these experiments, we found that early releasing reduced observed response

times by 49%.

Overhead of DAG conversion. We estimated the overhead of converting from a coarse-grained DAG to

a fine-grained one by comparing the computed WCET of every coarse-grained node with the sum of the

computed WCETs of the fine-grained nodes that replace it. The total percentage increase across all nodes

was deemed to be overhead.

Observation 6.7. The additional overhead introduced to support fine-grained scheduling had modest impact.

From our collected data, the total overhead was 14.15%.

6.3 Chapter Summary

In this chapter, we applied our analysis and implementation techniques from Chapters 4 and 5 to a fine-

grained approach of decomposing and scheduling OpenVX graphs. To illustrate the efficacy of our proposed

fine-grained approach, we presented an experimental case study. We saw in this study that our fine-grained

approach enabled response-time bounds to be guaranteed and observed response times to be reduced. A

notable aspect of our fine-grained approach is its crucial reliance on allowing intra-task parallelism, a feature

forbidden in most conventional real-time task models.

156

CHAPTER 7: CONCLUSION

Moving forward, increased autonomy will come to mass-market vehicles, for which computer-vision-

based perception systems are essential. Compared to lidars and radars, cameras are less expensive and

uniquely capable of perceiving colors and textures. In accelerating computer-vision workloads, GPUs are

key enablers that provide massive parallelism. As a number of disparate applications are required to ensure

adequate coverage and redundancy offered by a large quantity and diversity of cameras, it becomes necessary

for these applications to share increasingly powerful GPUs. This is especially important for embedded

autonomous-driving systems, where resources should be fully utilized. Meanwhile, tasks that share GPUs

for better throughput performance should also have guaranteed bounded response times in a safety-critical

autonomous-driving system, and any induced accuracy loss must be tolerable.

This dissertation addresses the challenging issue of how GPUs can be shared between computer-vision

applications to improve throughput performance while bounding response times and ensuring high per-camera-

stream accuracy. We (i) investigated NVIDIA GPUs to reveal GPU scheduling rules and synchronization

pitfalls, (ii) developed a task model of GPU tasks, analyzed response-time bounds for GPU tasks, (iii)

designed and implemented CNN frameworks to exploit pipelined and parallel execution for throughput

improvement, and (iv) conducted a case study of fine-grained graph scheduling for the computer-vision

standard OpenVX, comparing both analytical and empirical results with prior work.

The results we obtained support the following thesis we presented in Chapter 1:

Capacity loss in GPU-using real-time task systems can be lessened through sharing GPUs.

Such sharing can be guaranteed with bounded response times. Furthermore, throughput can

be improved without compromising such guarantees by exploiting pipelining and parallelism in

real-time tasks. These real-time guarantees of tasks on shared GPUs are enabled with a new

model for GPU execution and corresponding schedulability analysis.

In the following sections, we first summarize our results in Section 7.1, acknowledge others’ contributions

to these results in Section 7.2, then discuss future work in Section 7.3, and finally conclude in Section 7.4.

157

7.1 Summary of Results

In this section, we summarize our results that support the thesis above.

Investigation of NVIDIA GPUs. We first investigated NVIDIA GPUs to reveal GPU scheduling rules.

In particular, we focused on the scheduling of kernel and memory-copy operations from multiple CUDA

streams. These operations are allowed to execute concurrently when submitted from the same CUDA context,

but are managed by undocumented scheduling rules. Unfortunately, the software and hardware stacks are

closed-source. Therefore, we inferred the scheduling rules presented in Section 3.1 from conducting extensive

experiments and examining their scheduling results. We defined the basic scheduling rules that specify how

the kernel and memory-copy operations progress through a variant of a hierarchical FIFO structure and how

the scheduling can be impacted by constrained resources, including GPU threads and shared memory. In

addition to the basic scheduling rules, we considered additional features available to CUDA programmers

that can impact scheduling, including the NULL stream, stream priorities, and streams in independent process

address spaces.

In addition to the scheduling rules, we discussed one set of issues that leads to a surprising number

of pitfalls when NVIDIA GPUs are used: synchronization. For example, documented sources of implicit

synchronization may not occur, while some functions that cause implicit synchronization are neglected, and

some functions even block future, unrelated CUDA tasks on the CPU. The resultant blocking can cause

capacity loss, potentially leading to unbounded response times in task sets with high utilization. Ignoring

these synchronization issues would be perilous in a safety-critical system where blocking must be anticipated

and accounted for in analysis. We also noted that running CPU tasks in independent processes managed by

MPS can overcome this issue.

In addition, we examined a fundamental trade-off for designing real-time tasks that use a GPU. Specif-

ically, we evaluated the performance of multiple instances of various computer-vision tasks in different

settings. In each setting, applications were executed either as threads that share the same address space

or as OS processes both with or without MPS. We observed that the execution times of tasks running in

multiple processes with MPS are more predictable. However, despite these benefits of MPS, it is currently

not available for embedded platforms, such as the TX2.

158

These specific issues comprise the essential background for developing task systems where real-time

design meets GPUs. We summarized them to provide guidance, recommendations, and pitfall warnings to

both researchers and implementation practitioners.

Task model of GPU tasks. Based on the fundamental understanding from our investigation of NVIDIA

GPUs, we developed a task model of GPU tasks, which expands on the sporadic task model (Mok, 1983) with

additional parameters that characterize the parallel execution of GPU tasks under the CUDA programming

model. Using this task model, we showed that NVIDIA GPU scheduling can inherently cause unnecessary

idleness of its processing units, implying a fundamental capacity loss. Specifically, we showed that the

capacity loss can be extreme without intra-task parallelism, which allows multiple jobs of a task to execute

in parallel, but is forbidden in most conventional real-time task models. Moreover, GPUs can be left idle

if the number of idle GPU threads on any one SM is insufficient for scheduling the next unassigned block.

This implies that some capacity loss is inevitable when seeking to ensure response-time bounds for GPUs.

We expressed such loss by providing a total utilization bound. We showed that this bound is tight with a

counterexample, a task system that has total utilization slightly exceeding this bound but with unbounded

response times.

Response-time bound analysis for tasks sharing GPUs. Our total utilization bound forms the schedula-

bility condition for bounded response times of task systems where intra-task parallelism is allowed. Under

this schedualbility condition, we derived response-time bounds for tasks sharing NVIDIA GPUs under the

scheduling rules we inferred. By leveraging prior work on DAG scheduling analysis, we modeled GPU-using

applications as DAGs in which each node is either CPU or GPU work. We then showed that an end-to-end

response-time bound can be computed inductively for each DAG by scheduling its nodes such that they can

be viewed as sporadic tasks and by then leveraging response-time bounds applicable to CPU tasks (Devi and

Anderson, 2008; Liu and Anderson, 2011; Erickson and Anderson, 2012) and our response-time bounds for

GPU tasks.

Design and implementation of CNN frameworks for throughput improvement. One of our goals was

to improve the throughput performance of computer-vision frameworks to support adequate coverage and

redundancy offered by an array of cameras. We addressed this challenge in an industrial design study by

re-designing CNN software. We showed how to transform a traditional CNN framework to obtain pipelined

and parallel-pipelined variants to better utilize hardware resources. Through re-thinking how the YOLO

159

CNN is executed, we showed that its throughput can be improved by more than twofold on the PX2 with

only a minor latency increase and no change in accuracy. We also showed that the throughput can be further

improved by properly load balancing work across multiple GPUs. Finally, to accommodate more cameras

than these basic methods allow, we proposed the technique of compositing multiple images from different

camera streams. We showed that this approach can greatly boost throughput (up to 250 FPS) at the expense

of some accuracy loss. We demonstrated that this accuracy loss can be partially mitigated through retraining

the neural network.

Evaluation of end-to-end bounds of OpenVX applications. We applied these implementation techniques

and our response-time bound analysis to a computer-vision standard, OpenVX. Prior work partially addressed

the issues of enabling real-time OpenVX by treating individual graph nodes as schedulable entities (Elliott

et al., 2015; Yang et al., 2015). We proposed a more fine-grained scheduling of OpenVX graphs so that each

node accesses either a CPU or a GPU (but not both). In this way, we were able to explore the parallelism that

was inhibited in the coarse-grained scheduling from prior work. Applying our response-time bound analysis

enables avoiding the capacity loss induced in handling suspensions for accessing GPUs. We conducted a

case study using a HOG application for evaluating both analytical and empirical results in comparison with

prior work. We showed that our fine-grained approach enabled response-time bounds to be guaranteed and

observed response times to be reduced.

7.2 Acknowledgements

These results previously appeared in a series of papers that were produced through team efforts. I have

listed my collaborators’ contributions in detail in the end of each chapter, and also summarize them here.

The experiments that investigate NVIDIA GPUs were conducted using the framework that Nathan

Otterness developed, the plotting scripts that Tanya Amert wrote, and the sample applications that I ported.

Each of us conducted part of the experiments to reveal the scheduling rules and expose the list of pitfalls, also

with Joshua Bakita’s help.

Kecheng Yang reworked the response-time bound analysis into the current version.

The industrial study of improving throughput performance of CNN frameworks was conducted during

my internship with Shige Wang at General Motors. Thanh Vu retrained the YOLO model with assistance

from Cheng-Yang Fu and Akash Bapat.

160

Chapters 3–6 were largely drawn from our papers, which include text drafted and polished by my

co-authors—especially Tanya Amert, Jim Anderson, Nathan Otterness, Don Smith, and Kecheng Yang.

7.3 Future Work

We now discuss future work involving sharing GPUs for real-time autonomous-driving applications.

Mitigate interference between GPU tasks. In this dissertation, we focused on the native scheduler in

NVIDIA GPUs. GPU tasks could interfere while accessing constrained resources concurrently. Mitigating

this interference could lead to better response times. As we reviewed in Section 2.3.4, many techniques have

been applied to reduce interference between tasks running on a GPU, such as the management of cache,

memory, and computing resources. Another technique is to prevent tasks from executing concurrently if their

interference is estimated to be high through runtime profiling or GPU kernel characterization. Future research

can determine whether these interference-mitigation techniques could be incorporated into our analysis when

deriving response-time bounds.

Analyze the impacts of memory usage. We noted that the memory usage of GPU tasks impacts the

scheduling in a way similar to the usage of computing resources. As we noted in Section 4.2.2, we assumed

the absence of shared-memory-induced blocking because we have never observed such blocking on any

platform for any workload in our experiments involving computer-vision workloads on NVIDIA GPUs

spanning several years. In addition, we remarked that register usage can be limited with a compiler option.

Nonetheless, the issue of incorporating the memory usage of GPU tasks into our analysis is an interesting

challenge for the future.

Handle memory-copy operations. In the workloads of interest to us, memory copies are short, so we

assumed that copy operations are included in CPU nodes as any resulting suspension-based capacity loss

is minor. However, it is necessary to handle more lengthy memory copies as separate nodes. In addition,

on platforms that have multiple CEs, memory copies of different transferring directions may need to be

considered separately.

Explore other features in recent NVIDIA GPUs. In our investigation of NVIDIA GPUs, we mentioned

other CUDA features that are rarely used. They include instruction-level preemption, dynamic parallelism,

and CUDA Graphs. The instruction-level preemption could be beneficial for ensuring fairer scheduling that

161

respects task priorities, compared to the default non-preemptive execution on NVIDIA GPUs. However, the

cost of preemption overheads needs to be evaluated. Dynamic parallelism allows the submission of new work

on a GPU, avoiding CPU-GPU communication overheads, but the scheduling behavior of the work launched

from the GPU needs to be investigated when deriving response-time bounds. CUDA Graphs can structure a

sequence of GPU kernels into graphs. Each graph of multiple kernels can be launched with a single CPU

function call and thus launch overheads can be reduced. However, its underlying graph-related optimization

may make it difficult to model the scheduling behavior of individual kernels. Also, the scheduling of multiple

graphs needs to be investigated. While improving the performance of GPU applications, all these features

cause challenging problems for real-time systems.

Extend the investigation of the graph-node granularity. In our case study, we showed the benefits of

fine-grained graph scheduling. However, it may not be possible to decompose all applications into DAGs at

such a fine-grained level, as it may result in overheads that outweigh the performance gain from the explored

parallelism. To determine conditions for fine-grained scheduling to be beneficial, further investigation, such

as an overhead-aware schedulability study, is necessary. We can also consider DAGs with a mix of both

coarse-grained and fine-grained nodes. However, for such DAGs, it would be challenging to perform the

response-time bound analysis. Meanwhile, a computer-vision framework that supports configurable node

granularities is required.

Investigate other GPUs. We focused on NVIDIA GPUs because they dominate the market and are widely

used in research. However, we also noted that their closed-source software and hardware stacks and

incomplete documents have hindered research in many aspects. To generalize our results, we should extend

our analysis and evaluation to other GPUs. For example, AMD GPUs share a similar programming model

and hardware architecture. In addition, AMD provides an open-source software stack, which affords more

opportunities to investigate GPU scheduling and implement additional scheduling and resource-management

options for real-time systems.

7.4 Closing Remarks

In this dissertation, we have shown how GPUs can be shared for real-time autonomous-driving systems.

Such sharing is motivated by the increase in computation requirements of these systems and the performance

advancements of GPUs. Meanwhile, as GPUs are being applied in safety-critical systems, real-time certifica-

162

tion of GPUs becomes important. Such certification will also be applicable to other accelerators. In deriving

real-time guarantees for GPUs, we showed how an accelerator can be investigated, modeled, analyzed, and

evaluated. We hope that our work will contribute to and encourage future research in sharing GPUs or other

accelerators for real-time systems.

163

BIBLIOGRAPHY

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. (2016). Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation, pages 265–283.

Abramson, D., Jackson, J., Muthrasanallur, S., Neiger, G., Regnier, G., Sankaran, R., Schoinas, I., Uhlig, R.,
Vembu, B., and Wiegert, J. (2006). Intel virtualization technology for directed I/O. Intel Technology
Journal, 10(3).

Ackerman, E. (2017). Toyota’s Gill Pratt on self-driving cars and the reality of full autonomy. IEEE
Spectrum. https://spectrum.ieee.org/cars-that-think/transportation/self-driving/
toyota-gill-pratt-on-the-reality-of-full-autonomy.

Adinets, A. (2014). CUDA dynamic parallelism API and principles. https://devblogs.nvidia.com/
cuda-dynamic-parallelism-api-principles/.

Adriaens, J. T., Compton, K., Kim, N. S., and Schulte, M. J. (2012). The case for GPGPU spatial multitasking.
In Proceedings of the 2012 IEEE International Symposium on High-Performance Compute Architecture,
pages 1–12.

Agrawal, A., Modi, A. N., Passos, A., Lavoie, A., Agarwal, A., Shankar, A., Ganichev, I., Levenberg, J.,
Hong, M., Monga, R., et al. (2019). Tensorflow eager: A multi-stage, python-embedded dsl for machine
learning. arXiv preprint arXiv:1903.01855.

Aguilera, P., Morrow, K., and Kim, N. S. (2014a). Fair share: Allocation of GPU resources for both
performance and fairness. In Proceedings of the 32nd IEEE International Conference on Computer
Design, pages 440–447.

Aguilera, P., Morrow, K., and Kim, N. S. (2014b). QoS-aware dynamic resource allocation for spatial-
multitasking GPUs. In Proceedings of the 19th Asia and South Pacific Design Automation Conference,
pages 726–731.

Akai, N., Morales, L. Y., Yamaguchi, T., Takeuchi, E., Yoshihara, Y., Okuda, H., Suzuki, T., and Ninomiya, Y.
(2017). Autonomous driving based on accurate localization using multilayer lidar and dead reckoning.
In Proceedings of the 20th IEEE International Conference on Intelligent Transportation Systems, pages
1–6.

Ali, W. and Yun, H. (2018). Protecting real-time GPU kernels on integrated CPU-GPU SoC platforms. In
Proceedings of the 30th Euromicro Conference on Real-Time Systems, pages 19:1–19:22.

Amazon AWS (2020). AWS and NVIDIA. https://aws.amazon.com/nvidia/.

AMD (2016). AMD I/O virtualization technology (IOMMU) specification. http://developer.amd.com/
wordpress/media/2013/12/48882_IOMMU.pdf.

AMD (2016). ROCm, a new era in open GPU computing. https://rocm.github.io/.

Amert, T., Otterness, N., Yang, M., Anderson, J. H., and Smith, F. D. (2017). GPU scheduling on the
NVIDIA TX2: Hidden details revealed. In Proceedings of the 38th IEEE International Real-Time
Systems Symposium, pages 104–115.

164

https://spectrum.ieee.org/cars-that-think/transportation/self-driving/toyota-gill-pratt-on-the-reality-of-full-autonomy
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/toyota-gill-pratt-on-the-reality-of-full-autonomy
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/
https://aws.amazon.com/nvidia/
http://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
http://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
https://rocm.github.io/

Anderson, J. H. and Srinivasan, A. (2000). Early-release fair scheduling. In Proceedings 12th Euromicro
Conference on Real-Time Systems, pages 35–43.

Andersson, B., Baruah, S., and Jonsson, J. (2001). Static-priority scheduling on multiprocessors. In
Proceedings of the 22nd IEEE International Real-Time Systems Symposium, pages 193–202.

Andersson, B. and de Niz, D. (2012). Analyzing global-EDF for multiprocessor scheduling of parallel
tasks. In Proceedings of the 2012 International Conference On Principles Of Distributed Systems, pages
16–30.

Aravantinos, V. and Diehl, F. (2018). Traceability of deep neural networks. arXiv preprint arXiv:1812.06744.

Audsley, N. C., Burns, A., Richardson, M. F., and Wellings, A. J. (1991). Hard real-time scheduling: The
deadline-monotonic approach. IFAC Proceedings Volumes, 24(2):127–132.

Ausavarungnirun, R., Ghose, S., Kayiran, O., Loh, G. H., Das, C. R., Kandemir, M. T., and Mutlu, O. (2015).
Exploiting inter-warp heterogeneity to improve gpgpu performance. In 2015 International Conference
on Parallel Architecture and Compilation (PACT), pages 25–38.

Ausavarungnirun, R., Landgraf, J., Miller, V., Ghose, S., Gandhi, J., Rossbach, C. J., and Mutlu, O. (2017).
Mosaic: a GPU memory manager with application-transparent support for multiple page sizes. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pages
136–150.

Ausavarungnirun, R., Miller, V., Landgraf, J., Ghose, S., Gandhi, J., Jog, A., Rossbach, C. J., and Mutlu, O.
(2018). Mask: Redesigning the GPU memory hierarchy to support multi-application concurrency. ACM
SIGPLAN Notices, 53(2):503–518.

Axer, P., Quinton, S., Neukirchner, M., Ernst, R., Döbel, B., and Härtig, H. (2013). Response-time analysis of
parallel fork-join workloads with real-time constraints. In Proceedings of the 25th Euromicro Conference
on Real-Time Systems, pages 215–224.

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R.,
Paixão, T., Mutz, F., et al. (2019). Self-driving cars: A survey. arXiv preprint arXiv:1901.04407.

Baek, I., Harding, M., Kanda, A., Choi, R. K., Samii, S., and Rajkumar, R. R. (2020). CARSS: Client-aware
resource sharing and scheduling for heterogeneous applications. In Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 324–335.

Bakhoda, A., Yuan, G. L., Fung, W. W., Wong, H., and Aamodt, T. M. (2009). Analyzing CUDA workloads
using a detailed GPU simulator. In Proceesdings of the 2009 IEEE International Symposium on
Performance Analysis of Systems and Software, pages 163–174.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. ACM SIGOPS operating systems review, 37(5):164–177.

Baruah, S. (2014). Improved multiprocessor global schedulability analysis of sporadic DAG task systems. In
Proceedings of the 26th Euromicro Conference on Real-Time Systems, pages 97–105.

Baruah, S. (2015a). The federated scheduling of constrained-deadline sporadic DAG task systems. In
Proceedings of the 2015 Design, Automation and Test in Europe Conference and Exhibition, pages
1323–1328.

165

Baruah, S. (2015b). Federated scheduling of sporadic DAG task systems. In Proceedings of the 29th IEEE
International Parallel and Distributed Processing Symposium, pages 179–186.

Baruah, S. (2015c). The federated scheduling of systems of conditional sporadic DAG tasks. In Proceedings
of the 2015 IEEE International Conference on Embedded Software, pages 1–10.

Baruah, S. (2018). Resource-efficient execution of conditional parallel real-time tasks. In Proceedings of the
2018 European Conference on Parallel Processing, pages 218–231.

Baruah, S., Bonifaci, V., and Marchetti-Spaccamela, A. (2015). The global EDF scheduling of systems
of conditional sporadic DAG tasks. In Proceedings of the 27th Euromicro Conference on Real-Time
Systems, pages 222–231.

Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., and Wiese, A. (2012). A generalized parallel
task model for recurrent real-time processes. In Proceedings of the 33rd IEEE International Real-Time
Systems Symposium, pages 63–72.

Basaran, C. and Kang, K.-D. (2012). Supporting preemptive task executions and memory copies in GPGPUs.
In Proceedings of the 24th Euromicro Conference on Real-Time Systems, pages 287–296.

Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., and Werneck,
R. F. (2016). Route planning in transportation networks. In Algorithm engineering, pages 19–80.

Bedford, D., Morgan, G., and Austin, J. (1996). Requirements for a standard certifying the use of artificial
neural networks in safety critical applications. In Proceedings of the 1996 International Conference on
Artificial Neural Networks, pages 1–6.

Behere, S. and Törngren, M. (2016). A functional reference architecture for autonomous driving. Information
and Software Technology, 73:136–150.

Bensaou, B., Tsang, D. H., and Chan, K. T. (2001). Credit-based fair queueing (CBFQ): a simple service-
scheduling algorithm for packet-switched networks. IEEE/ACM Transactions on Networking, 9(5):591–
604.

Berezovskyi, K., Bletsas, K., and Andersson, B. (2012). Makespan computation for GPU threads running
on a single streaming multiprocessor. In Proceedings of the 24th Euromicro Conference on Real-Time
Systems, pages 277–286.

Berezovskyi, K., Bletsas, K., and Petters, S. M. (2013). Faster makespan estimation for GPU threads on a
single streaming multiprocessor. In Proceedings of the 18th IEEE Conference on Emerging Technologies
& Factory Automation, pages 1–8.

Berezovskyi, K., Guet, F., Santinelli, L., Bletsas, K., and Tovar, E. (2016). Measurement-based probabilistic
timing analysis for graphics processor units. In Proceedings of the 2016 International Conference on
Architecture of Computing Systems, pages 223–236.

Berezovskyi, K., Santinelli, L., Bletsas, K., and Tovar, E. (2014). WCET measurement-based and extreme
value theory characterisation of CUDA kernels. In Proceedings of the 22nd International Conference on
Real-Time Networks and Systems, pages 279–288.

Betts, A. and Donaldson, A. (2013). Estimating the WCET of GPU-accelerated applications using hybrid
analysis. In Proceedings of the 25th Euromicro Conference on Real-Time Systems, pages 193–202.

166

BlackBerry (2020). QNX neutrino realtime operating system (RTOS). https://blackberry.qnx.com/
en/software-solutions/embedded-software/industrial/qnx-neutrino-rtos.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort,
M., Muller, U., Zhang, J., et al. (2016). End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316.

Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., and Wiese, A. (2013). Feasibility analysis in the sporadic
DAG task model. In Proceedings of the 25th Euromicro Conference on Real-Time Systems, pages
225–233.

Brandenburg, B. (2011). Scheduling and Locking in Multiprocessor Real-Time Operating Systems. PhD
thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Brandenburg, B. and Anderson, J. (2007). Feather-trace: A light-weight event tracing toolkit. In Proceed-
ings of the Third International Workshop on Operating Systems Platforms for Embedded Real-Time
Applications, pages 61–70.

Brandenburg, B. and Anderson, J. (2010). Optimality results for multiprocessor real-time locking. In
Proceedings of the 31st IEEE International Real-Time Systems Symposium, pages 49–60.

Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., and Van Gool, L. (2009). Robust tracking-by-
detection using a detector confidence particle filter. In 2009 IEEE 12th International Conference on
Computer Vision, pages 1515–1522.

Broggi, A., Buzzoni, M., Debattisti, S., Grisleri, P., Laghi, M. C., Medici, P., and Versari, P. (2013). Extensive
tests of autonomous driving technologies. IEEE Transactions on Intelligent Transportation Systems,
14(3):1403–1415.

Brooker, G. M. (2007). Mutual interference of millimeter-wave radar systems. IEEE Transactions on
Electromagnetic Compatibility, 49(1):170–181.

Buehler, M., Iagnemma, K., and Singh, S. (2007). The 2005 DARPA grand challenge: the great robot race,
volume 36. Springer.

Buehler, M., Iagnemma, K., and Singh, S. (2009). The DARPA urban challenge: autonomous vehicles in city
traffic, volume 56. Springer.

Burton, S., Gauerhof, L., and Heinzemann, C. (2017). Making the case for safety of machine learning in
highly automated driving. In Proceedings of the 2017 International Conference on Computer Safety,
Reliability, and Security, pages 5–16.

Calandrino, J. M., Leontyev, H., Block, A., Devi, U. C., and Anderson, J. H. (2006). LITMUSRT: A
testbed for empirically comparing real-time multiprocessor schedulers. In Proceedings of the 27th IEEE
International Real-Time Systems Symposium, pages 111–126.

Capodieci, N., Cavicchioli, R., Bertogna, M., and Paramakuru, A. (2018). Deadline-based scheduling for
GPU with preemption support. In Proceedings of the 39th IEEE International Real-Time Systems
Symposium, pages 119–130.

Capodieci, N., Cavicchioli, R., Valente, P., and Bertogna, M. (2017). Sigamma: Server based integrated GPU
arbitration mechanism for memory accesses. In Proceedings of the 25th International Conference on
Real-Time Networks and Systems, pages 48–57.

167

https://blackberry.qnx.com/en/software-solutions/embedded-software/industrial/qnx-neutrino-rtos
https://blackberry.qnx.com/en/software-solutions/embedded-software/industrial/qnx-neutrino-rtos

Carvalho, P., Cruz, R., Drummond, L. M., Bentes, C., Clua, E., Cataldo, E., and Marzulo, L. A. (2020).
Kernel concurrency opportunities based on GPU benchmarks characterization. Cluster Computing,
23(1):177–188.

Carvalho, P., Drummond, L. M., Bentes, C., Clua, E., Cataldo, E., and Marzulo, L. A. (2017). Analysis
and characterization of GPU benchmarks for kernel concurrency efficiency. In Latin American High
Performance Computing Conference, pages 71–86.

Cavicchioli, R., Capodieci, N., and Bertogna, M. (2017). Memory interference characterization between CPU
cores and integrated GPUs in mixed-criticality platforms. In Proceedings of the 22nd IEEE International
Conference on Emerging Technologies and Factory Automation, pages 1–10.

Cavicchioli, R., Capodieci, N., Solieri, M., and Bertogna, M. (2019). Novel methodologies for predictable
CPU-to-GPU command offloading. In Proceedings of the 31st Euromicro Conference on Real-Time
Systems, pages 22:1–22:22.

Chen, Q., Yang, H., Guo, M., Kannan, R. S., Mars, J., and Tang, L. (2017a). Prophet: Precise QoS prediction
on non-preemptive accelerators to improve utilization in warehouse-scale computers. In Proceedings of
the 22nd International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 17–32.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., and Zhang, Z. (2015).
Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274.

Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., and Urtasun, R. (2017b). 3D object proposals using
stereo imagery for accurate object class detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(5):1259–1272.

Cheng, C.-H., Diehl, F., Hinz, G., Hamza, Y., Nührenberg, G., Rickert, M., Ruess, H., and Truong-Le, M.
(2018a). Neural networks for safety-critical applicationschallenges, experiments and perspectives. In
Proceedings of the 2018 Design, Automation and Test in Europe, pages 1005–1006.

Cheng, C.-H., Huang, C.-H., Ruess, H., Yasuoka, H., et al. (2018b). Towards dependability metrics for neural
networks. In Proceedings of the 16th ACM/IEEE International Conference on Formal Methods and
Models for System Design, pages 1–4.

Cheng, X., Wang, P., and Yang, R. (2018c). Learning depth with convolutional spatial propagation network.
arXiv preprint arXiv:1810.02695.

Cho, H., Seo, Y.-W., Kumar, B. V., and Rajkumar, R. R. (2014). A multi-sensor fusion system for mov-
ing object detection and tracking in urban driving environments. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation, pages 1836–1843.

Chwa, H. S., Lee, J., Phan, K.-M., Easwaran, A., and Shin, I. (2013). Global EDF schedulability analysis for
synchronous parallel tasks on multicore platforms. In Proceedings of the 25th Euromicro Conference on
Real-Time Systems, pages 25–34.

Codevilla, F., Miiller, M., López, A., Koltun, V., and Dosovitskiy, A. (2018). End-to-end driving via
conditional imitation learning. In Proceedings of the 2018 IEEE International Conference on Robotics
and Automation, pages 1–9.

168

Crowe, S. (2019a). California’s self-driving car reports are imperfect, but they’re better than
nothing. https://www.theverge.com/2019/2/13/18223356/california-dmv-self-driving-
car-disengagement-report-2018.

Crowe, S. (2019b). Waymo autonomous vehicles leave apple in the dust. https://

www.therobotreport.com/waymo-autonomous-vehicles-apple/.

Dai, H., Lin, Z., Li, C., Zhao, C., Wang, F., Zheng, N., and Zhou, H. (2018). Accelerate GPU concurrent
kernel execution by mitigating memory pipeline stalls. In Proceedings of the 2018 IEEE International
Symposium on High Performance Computer Architecture, pages 208–220.

Dalal, N. and Triggs, B. (2005a). Histograms of oriented gradients for human detection. In Proceedings of
the 2005 IEEE Conference on Computer Vision and Pattern Recognition, pages 886–893.

Dalal, N. and Triggs, B. (2005b). Histograms of oriented gradients for human detection. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 886–893.

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In Proceedings
of the 23rd International Conference on Machine Learning, pages 233–240.

De Kruijf, M. and Sankaralingam, K. (2011). Idempotent processor architecture. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 140–151.

Devi, U. and Anderson, J. (2005). Tardiness bounds for global EDF scheduling on a multiprocessor. In
Proceedings of the 26th IEEE International Real-Time Systems Symposium, pages 330–341.

Devi, U. and Anderson, J. (2008). Tardiness bounds under global EDF scheduling on a multiprocessor.
Real-Time Systems, 38(2):133–189.

Dickmanns, E. D., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., Thomanek, F., and Schiehlen,
J. (1994). The seeing passenger car “VaMoRs-P”. In Proceedings of the 1994 IEEE Intelligent Vehicles
Symposium, pages 68–73.

Dickmanns, E. D. et al. (1997). Vehicles capable of dynamic vision. In Proceedings of 15th International
Joint Conference on Artificial Intelligence, pages 1577–1592.

Dickmanns, E. D. and Zapp, A. (1987). Autonomous high speed road vehicle guidance by computer vision.
IFAC Proceedings Volumes, 20(5):221–226.

Dijkstra, E. W. et al. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271.

Dong, Z., Liu, C., Gatherer, A., McFearin, L., Yan, P., and Anderson, J. (2017). Optimal dataflow scheduling
on a heterogeneous multiprocessor with reduced response time bounds. In Proceedings of the 29th
Euromicro Conference on Real-Time Systems, pages 15:1–15:22.

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608.

Duato, J., Pena, A. J., Silla, F., Mayo, R., and Quintana-Ortı́, E. S. (2010). rCUDA: Reducing the number
of GPU-based accelerators in high performance clusters. In Proceedings of the 2010 International
Conference on High Performance Computing & Simulation, pages 224–231.

169

https://www.theverge.com/2019/2/13/18223356/california-dmv-self-driving-car-disengagement-report-2018
https://www.theverge.com/2019/2/13/18223356/california-dmv-self-driving-car-disengagement-report-2018
https://www.therobotreport.com/waymo-autonomous-vehicles-apple/
https://www.therobotreport.com/waymo-autonomous-vehicles-apple/

Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map prediction from a single image using a multi-scale
deep network. In Advances in Neural Information Processing Systems, pages 2366–2374.

Elliott, G., Kim, N., Erickson, J., Liu, C., and Anderson, J. (2014). Minimizing response times of automotive
dataflows on multicore. In Proceedings of the 20th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 1–10.

Elliott, G., Ward, B., and Anderson, J. (2013). GPUSync: A framework for real-time GPU management. In
Proceedings of the 34th IEEE International Real-Time Systems Symposium, pages 33–44.

Elliott, G., Yang, K., and Anderson, J. (2015). Supporting real-time computer vision workloads using
OpenVX on multicore+GPU platforms. In Proceedings of the 36th IEEE International Real-Time
Systems Symposium, pages 273–284.

Enzweiler, M. and Gavrila, D. M. (2011). A multilevel mixture-of-experts framework for pedestrian
classification. IEEE Transactions on Image Processing, 20(10):2967–2979.

Erickson, J. and Anderson, J. (2011). Response time bounds for G-EDF without intra-task precedence
constraints. In Proceedings of the 15th International Conference On Principles Of Distributed Systems,
pages 128–142.

Erickson, J. and Anderson, J. (2012). Fair lateness scheduling: Reducing maximum lateness in G-EDF-like
scheduling. In Proceedings of the 24th Euromicro Conference on Real-Time Systems, pages 3–11.

Erickson, J., Anderson, J., and Ward, B. (2014). Fair lateness scheduling: Reducing maximum lateness in
G-EDF-like scheduling. Real-Time Systems, 50(1):5–47.

Everingham, M., Eslami, S. A., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2015). The
PASCAL visual object classes challenge: A retrospective. International Journal of Computer Vision,
111(1):98–136.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010). The PASCAL visual
object classes (VOC) challenge. International Journal of Computer Vision, 88(2):303–338.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2009). Object detection with
discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(9):1627–1645.

Fernandez, R. (2020). Self-driving vehicle makers say california is looking at the wrong data to measure
their progress. https://www.bizjournals.com/sanjose/news/2020/02/24/california-self-
driving-car-disengagement-report.amp.html.

Fonseca, J. C., Nélis, V., Raravi, G., and Pinho, L. M. (2015). A multi-DAG model for real-time parallel
applications with conditional execution. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, pages 1925–1932.

Forsberg, B., Marongiu, A., and Benini, L. (2017). GPUguard: Towards supporting a predictable execution
model for heterogeneous SoC. In Proceedings of the 2017 Design, Automation & Test in Europe
Conference & Exhibition, pages 318–321.

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-Gonzalez, P., and Garcia-
Rodriguez, J. (2018). A survey on deep learning techniques for image and video semantic segmentation.
Applied Soft Computing, 70:41–65.

170

https://www.bizjournals.com/sanjose/news/2020/02/24/california-self-driving-car-disengagement-report.amp.html
https://www.bizjournals.com/sanjose/news/2020/02/24/california-self-driving-car-disengagement-report.amp.html

Giebel, J., Gavrila, D. M., and Schnörr, C. (2004). A bayesian framework for multi-cue 3D object tracking.
In Proceedings of the 2004 European Conference on Computer Vision, pages 241–252.

Girshick, R. (2015). Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer
Vision, pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 580–587.

Giunta, G., Montella, R., Agrillo, G., and Coviello, G. (2010). A GPGPU transparent virtualization component
for high performance computing clouds. In Proceedings of the 2010 European Conference on Parallel
Processing, pages 379–391.

González, A., Vázquez, D., López, A. M., and Amores, J. (2016). On-board object detection: Multi-
cue, multimodal, and multiview random forest of local experts. IEEE Transactions on Cybernetics,
47(11):3980–3990.

González, D., Pérez, J., Milanés, V., and Nashashibi, F. (2015). A review of motion planning techniques for
automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4):1135–1145.

Google Cloud (2020). Cloud GPUs. https://cloud.google.com/gpu.

Goswami, N., Shankar, R., Joshi, M., and Li, T. (2010). Exploring GPGPU workloads: Characterization
methodology, analysis and microarchitecture evaluation implications. In Proceedings of the 2010 IEEE
International Symposium on Workload Characterization, pages 1–10.

Green, M. (2000). “How long does it take to stop?” methodological analysis of driver perception-brake times.
Transportation Human Factors, 2(3):195–216.

Gregg, C., Dorn, J., Hazelwood, K., and Skadron, K. (2012). Fine-grained resource sharing for concurrent
GPGPU kernels. In Proceedings of the 4th USENIX Workshop on Hot Topics in Parallelism, pages 1–6.

Guizzo, E. (2011). How google’s self-driving car works. IEEE Spectrum, 18(7):1132–1141.

Gupta, K., Stuart, J. A., and Owens, J. D. (2012). A study of persistent threads style GPU programming for
GPGPU workloads. In Proceedings of the 2012 Innovative Parallel Computing, pages 1–14.

Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., and Ranganathan, P. (2009).
GViM: GPU-accelerated virtual machines. In Proceedings of the 3rd ACM Workshop on System-level
Virtualization for High Performance Computing, pages 17–24.

Gupta, V., Schwan, K., Tolia, N., Talwar, V., and Ranganathan, P. (2011). Pegasus: Coordinated scheduling
for virtualized accelerator-based systems. In Proceedings of the 2011 USENIX Annual Technical
Conference, pages 3–17.

HajiRassouliha, A., Taberner, A. J., Nash, M. P., and Nielsen, P. M. (2018). Suitability of recent hardware
accelerators (DSPs, FPGAs, and GPUs) for computer vision and image processing algorithms. Signal
Processing: Image Communication, 68:101–119.

Harris, M. (2015). GPU pro tip: CUDA 7 streams simplify concurrency. https://devblogs.nvidia.com/
gpu-pro-tip-cuda-7-streams-simplify-concurrency/.

171

https://cloud.google.com/gpu
https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107.

Hata, A. and Wolf, D. (2014). Road marking detection using lidar reflective intensity data and its application
to vehicle localization. In Proceedings of the 17th IEEE International Conference on Intelligent
Transportation Systems, pages 584–589.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for
visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9):1904–1916.

Herrera, A. (2014). NVIDIA GRID: Graphics accelerated VDI with the visual performance of a workstation.
Nvidia Corp, pages 1–18.

Horga, A., Chattopadhyay, S., Eles, P., and Peng, Z. (2018). Measurement based execution time analysis of
GPGPU programs via SE+GA. In Proceedings of the 21st Euromicro Conference on Digital System
Design, pages 30–37.

Houdek, P., Sojka, M., and Hanzálek, Z. (2017). Towards predictable execution model on ARM-based
heterogeneous platforms. In Proceedings of the 26th IEEE International Symposium on Industrial
Electronics, pages 1297–1302.

Hu, Q., Shu, J., Fan, J., and Lu, Y. (2016). Run-time performance estimation and fairness-oriented scheduling
policy for concurrent GPGPU applications. In Proceedings of the 45th International Conference on
Parallel Processing, pages 57–66.

Huang, C., Wu, B., and Nevatia, R. (2008). Robust object tracking by hierarchical association of detection
responses. In European Conference on Computer Vision, pages 788–801.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y.,
Guadarrama, S., et al. (2017). Speed/accuracy trade-offs for modern convolutional object detectors.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages
7310–7311.

Huang, Y.-J., Wu, H.-H., Chung, Y.-C., and Hsu, W.-C. (2016). Building a KVM-based hypervisor for a het-
erogeneous system architecture compliant system. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pages 3–15.

Huangfu, Y. and Zhang, W. (2017a). Static WCET analysis of GPUs with predictable warp scheduling. In
Proceedings of the 20th IEEE International Symposium on Real-Time Distributed Computing, pages
101–108.

Huangfu, Y. and Zhang, W. (2017b). Warp-based load/store reordering to improve GPU time predictability.
Journal of Computing Science and Engineering, 11(2):58–68.

Huangfu, Y. and Zhang, W. (2018). Estimating the worst-case execution time of the shared data cache in
integrated CPU-GPU architectures. Journal of Computing Science and Engineering, 12(4):139–148.

Hughes, J. (2017). Car Autonomy Levels Explained. http://www.thedrive.com/sheetmetal/15724/
what-are-these-levels-of-autonomy-anyway.

Hui, J. (2018). mAP (mean Average Precision) for object detection. https://medium.com/@jonathan_
hui/map-mean-average-precision-for-object-detection-45c121a31173.

172

http://www.thedrive.com/sheetmetal/15724/what-are-these-levels-of-autonomy-anyway
http://www.thedrive.com/sheetmetal/15724/what-are-these-levels-of-autonomy-anyway
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

Hussain, R. and Zeadally, S. (2018). Autonomous cars: Research results, issues, and future challenges. IEEE
Communications Surveys & Tutorials, 21(2):1275–1313.

Huynh, L. N., Lee, Y., and Balan, R. K. (2017). Deepmon: Mobile GPU-based deep learning framework for
continuous vision applications. In Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, pages 82–95.

Ibaez-Guzmn, J., Laugier, C., Yoder, J.-D., and Thrun, S. (2012). Autonomous driving: Context and
state-of-the-art. In Handbook of Intelligent Vehicles, pages 1271–1310.

IEEE TCRTS (2020). Terminology and notation. https://site.ieee.org/tcrts/education/
terminology-and-notation/.

ISO (2011). 26262: Road vehicles-functional safety. International Standard ISO/FDIS, 26262.

Jain, S., Baek, I., Wang, S., and Rajkumar, R. (2019). Fractional GPUs: Software-based compute and memory
bandwidth reservation for GPUs. In Proceedings of the 25th IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 29–41.

Janai, J., Güney, F., Behl, A., and Geiger, A. (2019). Computer vision for autonomous vehicles: Problems,
datasets and state-of-the-art. arXiv preprint arXiv:1704.05519v2.

Janzén, J., Black-Schaffer, D., and Hugo, A. (2016). Partitioning GPUs for improved scalability. In
Proceedings of the 28th International Symposium on Computer Architecture and High Performance
Computing, pages 42–49.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T.
(2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM
International Conference on Multimedia, pages 675–678.

Jia, Z., Maggioni, M., Staiger, B., and Scarpazza, D. P. (2018). Dissecting the NVIDIA Volta GPU architecture
via microbenchmarking. arXiv preprint arXiv:1804.06826.

Jiang, X., Guan, N., Long, X., and Yi, W. (2017). Semi-federated scheduling of parallel real-time tasks on
multiprocessors. In Proceedings of the 38th IEEE International Real-Time Systems Symposium, pages
80–91.

Jiang, X., Long, X., Guan, N., and Wan, H. (2016). On the decomposition-based global EDF scheduling of
parallel real-time tasks. In Proceedings of the 37th IEEE International Real-Time Systems Symposium,
pages 237–246.

Jochem, T. and Pomerleau, D. (1995). No hands across America. https://www.cs.cmu.edu/~tjochem/
nhaa/nhaa_home_page.html.

Jog, A., Bolotin, E., Guz, Z., Parker, M., Keckler, S. W., Kandemir, M. T., and Das, C. R. (2014). Application-
aware memory system for fair and efficient execution of concurrent GPGPU applications. In Proceedings
of the 2014 Workshop on General Purpose Processing Using GPUs, pages 1–8.

Jog, A., Kayiran, O., Kesten, T., Pattnaik, A., Bolotin, E., Chatterjee, N., Keckler, S. W., Kandemir, M. T., and
Das, C. R. (2015). Anatomy of GPU memory system for multi-application execution. In Proceedings of
the 2015 International Symposium on Memory Systems, pages 223–234.

173

https://site.ieee.org/tcrts/education/terminology-and-notation/
https://site.ieee.org/tcrts/education/terminology-and-notation/
https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html
https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html

Jog, A., Kayiran, O., Pattnaik, A., Kandemir, M. T., Mutlu, O., Iyer, R., and Das, C. R. (2016). Exploiting core
criticality for enhanced GPU performance. In Proceedings of the 2016 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Science, pages 351–363.

Kaehler, A. and Bradski, G. (2016). Learning OpenCV 3: computer vision in C++ with the OpenCV library.
O’Reilly Media.

Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., and Tang, L. (2017). Neurosurgeon:
Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Computer Architecture
News, 45(1):615–629.

Kato, S., Lakshmanan, K., Kumar, A., Kelkar, M., Ishikawa, Y., and Rajkumar, R. (2011a). RGEM: a
responsive GPGPU execution model for runtime engines. In Proceedings of the 32nd IEEE International
Real-Time Systems Symposium, pages 57–66.

Kato, S., Lakshmanan, K., Rajkumar, R., and Ishikawa, Y. (2011b). TimeGraph: GPU scheduling for
real-time multi-tasking environments. In Proceedings of the USENIX Annual Technical Conference,
pages 17–30.

Kato, S., McThrow, M., Maltzahn, C., and Brandt, S. (2012). Gdev: First-class GPU resource management
in the operating system. In Proceedings of the 2012 USENIX Annual Technical Conference, pages
401–412.

Kayıran, O., Jog, A., Kandemir, M. T., and Das, C. R. (2013). Neither more nor less: optimizing thread-level
parallelism for GPGPUs. In Proceedings of the 22nd International Conference on Parallel Architectures
and Compilation Techniques, pages 157–166.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam, V.-D., Bewley, A., and Shah, A.
(2019). Learning to drive in a day. In Proceedings of the 2019 IEEE International Conference on
Robotics and Automation, pages 8248–8254.

Kerr, A., Diamos, G., and Yalamanchili, S. (2009). A characterization and analysis of PTX kernels. In
Proceedings of the 2009 IEEE International Symposium on Workload Characterization, pages 3–12.

Khronos Group (2019a). The OpenVX graph pipelining, streaming, and batch processing exten-
sion. https://www.khronos.org/registry/OpenVX/extensions/vx_khr_pipelining/1.1/
html/vx_khr_pipelining_1_1_0.html.

Khronos Group (2019b). The OpenVX specification version 1.3. https://www.khronos.org/registry/
OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html.

Khronos Group (2020). OpenVX: Portable, power efficient vision processing. https://www.khronos.org/
openvx/.

Kim, H., Patel, P., Wang, S., and Rajkumar, R. R. (2017). A server-based approach for predictable GPU
access control. In Proceedings of the 23rd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 1–10.

Kim, H., Patel, P., Wang, S., and Rajkumar, R. R. (2018). A server-based approach for predictable GPU
access with improved analysis. Journal of Systems Architecture, 88:97–109.

Kim, J., Kim, H., Lakshmanan, K., and Rajkumar, R. (2013). Parallel scheduling for cyber-physical systems:
Analysis and case study on a self-driving car. In Proceedings of the 4th ACM/IEEE International
Conference on Cyber-Physical Systems, pages 31–40.

174

https://www.khronos.org/registry/OpenVX/extensions/vx_khr_pipelining/1.1/html/vx_khr_pipelining_1_1_0.html
https://www.khronos.org/registry/OpenVX/extensions/vx_khr_pipelining/1.1/html/vx_khr_pipelining_1_1_0.html
https://www.khronos.org/registry/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html
https://www.khronos.org/registry/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html
https://www.khronos.org/openvx/
https://www.khronos.org/openvx/

Kocić, J., Jovičić, N., and Drndarević, V. (2018). Sensors and sensor fusion in autonomous vehicles. In
Proceedings of the 26th IEEE Telecommunications Forum, pages 420–425.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105.

Kyriazis, G. (2012). Heterogeneous system architecture: A technical review. AMD Fusion Developer Summit,
page 21.

Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., and Navab, N. (2016). Deeper depth prediction with
fully convolutional residual networks. In Proceedings of the 4th International Conference on 3D Vision,
pages 239–248.

Lakshmanan, K., Kato, S., and Rajkumar, R. (2010). Scheduling parallel real-time tasks on multi-core
processors. In Proceedings of the 31st IEEE International Real-Time Systems Symposium, pages
259–268.

Lázaro-Muñoz, A., González-Linares, J. M., Gómez-Luna, J., and Guil, N. (2017). A tasks reordering model
to reduce transfers overhead on GPUs. Journal of Parallel and Distributed Computing, 109:258–271.

Leal-Taixé, L., Canton-Ferrer, C., and Schindler, K. (2016). Learning by tracking: Siamese CNN for robust
target association. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 33–40.

Leontyev, H. and Anderson, J. (2007). Tardiness bounds for FIFO scheduling on multiprocessors. In
Proceedings of the 19th Euromicro Conference on Real-Time Systems, pages 71–80.

Leontyev, H. and Anderson, J. H. (2010). Generalized tardiness bounds for global multiprocessor scheduling.
Real-Time Systems, 44(1-3):26–71.

Levinson, J., Montemerlo, M., and Thrun, S. (2007). Map-based precision vehicle localization in urban
environments. In Robotics: Science and Systems, volume 3, pages 1–8.

Levinson, J. and Thrun, S. (2010). Robust vehicle localization in urban environments using probabilistic
maps. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, pages
4372–4378.

Li, A., van den Braak, G.-J., Kumar, A., and Corporaal, H. (2015a). Adaptive and transparent cache bypassing
for GPUs. In Proceedings of the 2015 International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12.

Li, C., Song, S. L., Dai, H., Sidelnik, A., Hari, S. K. S., and Zhou, H. (2015b). Locality-driven dynamic GPU
cache bypassing. In Proceedings of the 29th ACM on International Conference on Supercomputing,
pages 67–77.

Li, D., Rhu, M., Johnson, D. R., O’Connor, M., Erez, M., Burger, D., Fussell, D. S., and Redder, S. W.
(2015c). Priority-based cache allocation in throughput processors. In Proceedings of the 21st IEEE
International Symposium on High Performance Computer Architecture, pages 89–100.

Li, J., Agrawal, K., Lu, C., and Gill, C. (2013). Analysis of global EDF for parallel tasks. In Proceedings of
the 25th Euromicro Conference on Real-Time Systems, pages 3–13.

Li, J., Ferry, D., Ahuja, S., Agrawal, K., Gill, C., and Lu, C. (2017). Mixed-criticality federated scheduling
for parallel real-time tasks. Real-Time Systems, 53(5):760–811.

175

Li, J., Saifullah, A., Agrawal, K., Gill, C., and Lu, C. (2014). Analysis of federated and global scheduling for
parallel real-time tasks. In Proceedings of the 26th Euromicro Conference on Real-Time Systems, pages
85–96.

Lin, S.-C., Zhang, Y., Hsu, C.-H., Skach, M., Haque, M. E., Tang, L., and Mars, J. (2018). The architectural
implications of autonomous driving: Constraints and acceleration. In Proceedings of the 23rd Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems, pages
751–766.

Lin, Z., Nyland, L., and Zhou, H. (2016). Enabling efficient preemption for simt architectures with lightweight
context switching. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 898–908.

LITMUSRT Project (2018). http://www.litmus-rt.org/.

Liu, C. and Anderson, J. (2010). Supporting soft real-time DAG-based systems on multiprocessors with no
utilization loss. In Proceedings of the 31st IEEE International Real-Time Systems Symposium, pages
3–13.

Liu, C. and Anderson, J. H. (2011). Supporting graph-based real-time applications in distributed systems.
In Proceedings of the 17th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, volume 1, pages 143–152.

Liu, C. and Layland, J. (1973). Scheduling algorithms for multiprogramming in a hard real-time environment.
Journal of the ACM, 30(1):46–61.

Liu, J. W. (2000). Real-Time Systems. Prentice Hall.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). SSD: Single shot
multibox detector. In Proceedings of the 2016 European Conference on Computer Vision, pages 21–37.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, pages
3431–3440.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110.

Luettel, T., Himmelsbach, M., and Wuensche, H.-J. (2012). Autonomous ground vehicles—concepts and a
path to the future. Proceedings of the IEEE, 100(Special Centennial Issue):1831–1839.

Maddern, W., Pascoe, G., Linegar, C., and Newman, P. (2017). 1 year, 1000 km: The Oxford RobotCar
dataset. The International Journal of Robotics Research, 36(1):3–15.

Maia, C., Bertogna, M., Nogueira, L., and Pinho, L. M. (2014). Response-time analysis of synchronous
parallel tasks in multiprocessor systems. In Proceedings of the 22nd International Conference on
Real-Time Networks and Systems, pages 3–12.

Mao, M., Wen, W., Liu, X., Hu, J., Wang, D., Chen, Y., and Li, H. (2016). Temp: thread batch enabled
memory partitioning for GPU. In Proceedings of the 53rd Annual Design Automation Conference, pages
1–6.

176

http://www.litmus-rt.org/

McAllister, R., Gal, Y., Kendall, A., Van Der Wilk, M., Shah, A., Cipolla, R., and Weller, A. (2017). Concrete
problems for autonomous vehicle safety: Advantages of bayesian deep learning. In Proceedings of the
25th International Joint Conferences on Artificial Intelligence, pages 4745–4753.

McManus, C., Churchill, W., Napier, A., Davis, B., and Newman, P. (2013). Distraction suppression for
vision-based pose estimation at city scales. In Proceedings of the 2013 IEEE International Conference
on Robotics and Automation, pages 3762–3769.

Mei, X. and Chu, X. (2016). Dissecting GPU memory hierarchy through microbenchmarking. IEEE
Transactions on Parallel and Distributed Systems, 28(1):72–86.

Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., and Buttazzo, G. (2016). Schedulability
analysis of conditional parallel task graphs in multicore systems. IEEE Transactions on Computers,
66(2):339–353.

Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., and Buttazzo, G. C. (2015). Response-time
analysis of conditional DAG tasks in multiprocessor systems. In Proceedings of the 27th Euromicro
Conference on Real-Time Systems, pages 211–221.

Meltzer, R., Zeng, C., and Cecka, C. (2013). Micro-benchmarking the c2070. In GPU Technology Conference.

Menychtas, K., Shen, K., and Scott, M. L. (2013). Enabling OS research by inferring interactions in
the black-box GPU stack. In Proceedings of the 2013 USENIX Annual Technical Conference, pages
291–296.

Menychtas, K., Shen, K., and Scott, M. L. (2014). Disengaged scheduling for fair, protected access to fast
computational accelerators. ACM SIGARCH Computer Architecture News, 42(1):301–316.

Microsoft Azure (2020). GPU optimized virtual machine sizes. https://docs.microsoft.com/en-us/
azure/virtual-machines/sizes-gpu.

Milan, A., Rezatofighi, S. H., Dick, A., Reid, I., and Schindler, K. (2017). Online multi-target tracking using
recurrent neural networks. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages
4225–4232.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

Mobus, R. and Kolbe, U. (2004). Multi-target multi-object tracking, sensor fusion of radar and infrared. In
Proceedings of the 20014 IEEE Intelligent Vehicles Symposium, pages 732–737.

Mohan, A., Papageorgiou, C., and Poggio, T. (2001). Example-based object detection in images by compo-
nents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(4):349–361.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine learning. MIT press.

Mok, A. K.-L. (1983). Fundamental design problems of distributed systems for the hard-real-time environment.
PhD thesis, Massachusetts Institute of Technology.

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D., Hilden, T.,
Hoffmann, G., Huhnke, B., et al. (2008). Junior: The stanford entry in the urban challenge. Journal of
field Robotics, 25(9):569–597.

177

https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu

Montgomery, W. D., Mudge, R., Groshen, E. L., Helper, S., MacDuffie, J. P., and Carson, C. (2018).
America’s workforce and the self-driving future: Realizing productivity gains and spurring economic
growth. https://trid.trb.org/view/1516782.

Mujtaba, H. (2018). NVIDIA Drive Xavier SoC Detailed. https://wccftech.com/nvidia-drive-
xavier-soc-detailed/.

Muller, U., Ben, J., Cosatto, E., Flepp, B., and Cun, Y. L. (2006). Off-road obstacle avoidance through
end-to-end learning. In Advances in Neural Information Processing Systems, pages 739–746.

Nasri, M., Nelissen, G., and Brandenburg, B. B. (2019). Response-time analysis of limited-preemptive
parallel DAG tasks under global scheduling. In Proceedings of the 31st Euromicro Conference on
Real-Time Systems, pages 21:1–21:23.

National Highway Traffic Safety Administration (2015). Critical reasons for crashes investigated in the na-
tional motor vehicle crash causation survey. Technical report. https://crashstats.nhtsa.dot.gov/
Api/Public/ViewPublication/812115.

Nelissen, G., Berten, V., Goossens, J., and Milojevic, D. (2012). Techniques optimizing the number of
processors to schedule multi-threaded tasks. In Proceedings of the 24th Euromicro Conference on
Real-Time Systems, pages 321–330.

Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krishnan, S., and Marr, D. (2016). Accelerating recurrent
neural networks in analytics servers: Comparison of fpga, cpu, gpu, and asic. In Proceedings of the 26th
International Conference on Field Programmable Logic and Applications, pages 1–4.

NVIDIA (2009). Fermi computer architecture whiltepaper, v1.1.

NVIDIA (2012). Kepler GK110/210 computer architecture whiltepaper, v1.1.

NVIDIA (2016a). Get under the hood of Parker, our newest SoC for autonomous vehicles. https:

//blogs.nvidia.com/blog/2016/08/22/parker-for-self-driving-cars/.

NVIDIA (2016b). GP100 Pascal whitepaper, v1.1.

NVIDIA (2017a). Gv100 gpu hardware architecture in-depth, v1.1.

NVIDIA (2017b). Partner innovation: Accelerating automotive breakthroughs. http://www.nvidia.com/
object/automotive-partner-innovation.html.

NVIDIA (2019a). CUDA C++ best practices guide. https://docs.nvidia.com/cuda/cuda-c-best-
practices-guide/index.html.

NVIDIA (2019b). CUDA C++ programming guide, v10.2.89. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

NVIDIA (2019c). CUDA toolkit documentation v10.2.89. http://docs.nvidia.com/cuda/.

NVIDIA (2019d). CUPTI: The CUDA profiling tools interface. https:docs.nvidia.com/cuda/cupti/
index.html.

NVIDIA (2019e). Multi-process service. https://docs.nvidia.com/deploy/pdf/CUDA_Multi_
Process_Service_Overview.pdf.

178

https://trid.trb.org/view/1516782
https://wccftech.com/nvidia-drive-xavier-soc-detailed/
https://wccftech.com/nvidia-drive-xavier-soc-detailed/
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115
https://blogs.nvidia.com/blog/2016/08/22/parker-for-self-driving-cars/
https://blogs.nvidia.com/blog/2016/08/22/parker-for-self-driving-cars/
http://www.nvidia.com/object/automotive-partner-innovation.html
http://www.nvidia.com/object/automotive-partner-innovation.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/
https:docs.nvidia.com/cuda/cupti/index.html
https:docs.nvidia.com/cuda/cupti/index.html
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

NVIDIA (2020a). Embedded systems for next-generation autonomous machines. https://

www.nvidia.com/en-us/autonomous-machines/embedded-systems/.

NVIDIA (2020b). NVIDIA DRIVE AGX Developer Kit. https://developer.nvidia.com/drive/
drive-agx.

NVIDIA (2020). Parallel thread execution ISA version 7.0. https://docs.nvidia.com/cuda/parallel-
thread-execution/index.html.

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., and Mordvintsev, A. (2018). The
building blocks of interpretability. https://distill.pub/2018/building-blocks/.

OpenCV (2020). OpenCV 4.0. https://opencv.org/opencv-4-0/.

Otterness, N., Yang, M., Amert, T., Anderson, J., and Smith, F. D. (2017a). Inferring the scheduling policies
of an embedded cuda gpu. In Proceedings of the 13th Annual Workshop on Operating Systems Platforms
for Embedded Real-Time Applications, pages 47–52.

Otterness, N., Yang, M., Rust, S., Park, E., Anderson, J. H., Smith, F. D., Berg, A., and Wang, S. (2017b). An
evaluation of the NVIDIA TX1 for supporting real-time computer-vision workloads. In Proceedings of
the 23th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 353–364.

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips, J. C. (2008). GPU computing.
Proceedings of the IEEE, 96(5):879–899.

Paden, B., Čáp, M., Yong, S. Z., Yershov, D., and Frazzoli, E. (2016). A survey of motion planning and control
techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33–55.

Pai, S., Thazhuthaveetil, M. J., and Govindarajan, R. (2013). Improving GPGPU concurrency with elastic
kernels. ACM SIGARCH Computer Architecture News, 41(1):407–418.

Papageorgiou, C. and Poggio, T. (2000). A trainable system for object detection. International Journal of
Computer Vision, 38(1):15–33.

Papp, Z., Brown, C., and Bartels, C. (2008). World modeling for cooperative intelligent vehicles. In
Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, pages 1050–1055.

Park, J. J. K., Park, Y., and Mahlke, S. (2015). Chimera: Collaborative preemption for multitasking on a
shared gpu. ACM SIGARCH Computer Architecture News, 43(1):593–606.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages 8024–8035.

Patole, S. M., Torlak, M., Wang, D., and Ali, M. (2017). Automotive radars: A review of signal processing
techniques. IEEE Signal Processing Magazine, 34(2):22–35.

Phull, R., Li, C.-H., Rao, K., Cadambi, H., and Chakradhar, S. (2012). Interference-driven resource
management for GPU-based heterogeneous clusters. In Proceedings of the 21st International Symposium
on High-Performance Parallel and Distributed Computing, pages 109–120.

Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In Advances in Neural
Information Processing Systems, pages 305–313.

179

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://developer.nvidia.com/drive/drive-agx
https://developer.nvidia.com/drive/drive-agx
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://distill.pub/2018/building-blocks/
https://opencv.org/opencv-4-0/

Pomerleau, D. A. (1992). Neural network perception for mobile robot guidance. PhD thesis, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA.

Qamhieh, M., Fauberteau, F., George, L., and Midonnet, S. (2013). Global EDF scheduling of directed
acyclic graphs on multiprocessor systems. In Proceedings of the 21st International conference on
Real-Time Networks and Systems, pages 287–296.

Qamhieh, M., George, L., and Midonnet, S. (2014). A stretching algorithm for parallel real-time DAG tasks
on multiprocessor systems. In Proceedings of the 22nd International Conference on Real-Time Networks
and Systems, pages 13–22.

Qu, X., Soheilian, B., and Paparoditis, N. (2015). Vehicle localization using mono-camera and geo-referenced
traffic signs. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium, pages 605–610.

Rainey, E., Villarreal, J., Dedeoglu, G., Pulli, K., Lepley, T., and Brill, F. (2014). Addressing system-level
optimization with OpenVX graphs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 658–663.

Ramchandani, C. (1973). Analysis of asynchronous concurrent systems by timed Petri nets. PhD thesis,
Massachusetts Institute of Technology.

Ranganathan, A., Ilstrup, D., and Wu, T. (2013). Light-weight localization for vehicles using road markings.
In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
921–927.

Rasshofer, R. H. and Gresser, K. (2005). Automotive radar and lidar systems for next generation driver
assistance functions. Advances in Radio Science, 3.

Ravi, V. T., Becchi, M., Agrawal, G., and Chakradhar, S. (2011). Supporting GPU sharing in cloud environ-
ments with a transparent runtime consolidation framework. In Proceedings of the 20th International
Symposium on High Performance Distributed Computing, pages 217–228.

Redmon, J. (2013–2016). Darknet: Open source neural networks in C. http://pjreddie.com/darknet/.

Redmon, J. (2017). YOLO: Real-time object detection. https://pjreddie.com/darknet/yolov2/.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object
detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,
pages 779–788.

Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition, pages 7263–7271.

Renda, A. (2018). No need for speed when it comes to autonomous vehicles. https:

//www.forbes.com/sites/washingtonbytes/2018/03/20/no-need-for-speed-when-it-
comes-to-autonomous-vehicles.

Rodvold, D. M. (1999). A software development process model for artificial neural networks in critical
applications. In Proceedings of the 1999 IEEE International Joint Conference on Neural Networks,
volume 5, pages 3317–3322.

Ross, P. E. (2017). The Audi A8: the world’s first production car to achieve level 3 autonomy. IEEE
Spectrum. https://spectrum.ieee.org/cars-that-think/transportation/self-driving/
the-audi-a8-the-worlds-first-production-car-to-achieve-level-3-autonomy.

180

http://pjreddie.com/darknet/
https://pjreddie.com/darknet/yolov2/
https://www.forbes.com/sites/washingtonbytes/2018/03/20/no-need-for-speed-when-it-comes-to-autonomous-vehicles
https://www.forbes.com/sites/washingtonbytes/2018/03/20/no-need-for-speed-when-it-comes-to-autonomous-vehicles
https://www.forbes.com/sites/washingtonbytes/2018/03/20/no-need-for-speed-when-it-comes-to-autonomous-vehicles
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-audi-a8-the-worlds-first-production-car-to-achieve-level-3-autonomy
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-audi-a8-the-worlds-first-production-car-to-achieve-level-3-autonomy

Rossbach, C. J., Currey, J., Silberstein, M., Ray, B., and Witchel, E. (2011). PTask: operating system
abstractions to manage GPUs as compute devices. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, pages 233–248.

SAE (2018). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor
Vehicles. https://doi.org/10.4271/J3016_201806.

Saha, S. K., Xiang, Y., and Kim, H. (2019). STGM: Spatio-temporal GPU management for real-time tasks.
In Proceedings of the 25th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 1–6.

Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., and Gill, C. D. (2014). Parallel real-time scheduling of
DAGs. Proceedings of the 2014 IEEE Transactions on Parallel and Distributed Systems, 25(12):3242–
3252.

Saifullah, A., Li, J., Agrawal, K., Lu, C., and Gill, C. (2013). Multi-core real-time scheduling for generalized
parallel task models. Real-Time Systems, 49(4):404–435.

Salay, R., Queiroz, R., and Czarnecki, K. (2017). An analysis of ISO 26262: Using machine learning safely
in automotive software. arXiv preprint arXiv:1709.02435.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. (2017). Deep reinforcement learning framework for
autonomous driving. Electronic Imaging, 2017(19):70–76.

Saxena, A., Chung, S. H., and Ng, A. Y. (2006). Learning depth from single monocular images. In Advances
in Neural Information Processing Systems, pages 1161–1168.

Saudo, I., Capodieci, N., Luis, J., Garcia, M., Marongiu, A., and Bertogna, M. (2020). Dissecting the CUDA
scheduling hierarchy: a performance and predictability perspective. In Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 213–225.

Schulter, S., Vernaza, P., Choi, W., and Chandraker, M. (2017). Deep network flow for multi-object tracking.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, pages
6951–6960.

Serrano, M. A., Melani, A., Bertogna, M., and Quiñones, E. (2016). Response-time analysis of DAG
tasks under fixed priority scheduling with limited preemptions. In Proceedings of the 2016 Design,
Automation & Test in Europe Conference & Exhibition, pages 1066–1071.

Serrano, M. A., Melani, A., Kehr, S., Bertogna, M., and Quiñones, E. (2017). An analysis of lazy and eager
limited preemption approaches under DAG-based global fixed priority scheduling. In Proceedings of
the 20th IEEE International Symposium on Real-Time Distributed Computing, pages 193–202.

Sethia, A. and Mahlke, S. (2014). Equalizer: Dynamic tuning of GPU resources for efficient execution.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages
647–658.

Shaffer, B. (2017). Why are automotive radar systems moving from 24GHz to 77GHz?
https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2017/10/25/why-are-
automotive-radar-systems-moving-from-24ghz-to-77ghz.

Shelhamer, E., Rakelly, K., Hoffman, J., and Darrell, T. (2016). Clockwork convnets for video semantic
segmentation. In Proceedings of the 2016 European Conference on Computer Vision, pages 852–868.

181

https://doi.org/10.4271/J3016_201806
https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2017/10/25/why-are-automotive-radar-systems-moving-from-24ghz-to-77ghz
https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2017/10/25/why-are-automotive-radar-systems-moving-from-24ghz-to-77ghz

Shi, J. et al. (1994). Good features to track. In Proceedings of the 1994 IEEE Conference on Computer Vision
and Pattern Recognition, pages 593–600.

Shi, L., Chen, H., Sun, J., and Li, K. (2011). vCUDA: GPU-accelerated high-performance computing in
virtual machines. IEEE Transactions on Computers, 61(6):804–816.

Spuri, M. and Buttazzo, G. C. (1994). Efficient aperiodic service under earliest deadline scheduling. In
Proceedings of the 25th IEEE International Real-Time Systems Symposium, pages 2–11.

Stuart, J. A. and Owens, J. D. (2009). Message passing on data-parallel architectures. In Proceedings of the
2009 IEEE International Symposium on Parallel & Distributed Processing, pages 1–12.

Suhr, J. K., Jang, J., Min, D., and Jung, H. G. (2016). Sensor fusion-based low-cost vehicle localization
system for complex urban environments. IEEE Transactions on Intelligent Transportation Systems,
18(5):1078–1086.

Sukkarieh, S., Nebot, E. M., and Durrant-Whyte, H. F. (1999). A high integrity IMU/GPS navigation loop for
autonomous land vehicle applications. IEEE transactions on robotics and automation, 15(3):572–578.

Sun, W., Ricci, R., and Curry, M. L. (2012). GPUstore: harnessing GPU computing for storage systems in
the OS kernel. In Proceedings of the 5th Annual International Systems and Storage Conference, pages
1–12.

Sundaram, S. (2016). DRIVE PX 2: Self driving car computer. https://www.slideshare.net/shri123/
drive-px-2.

Suzuki, Y., Fujii, Y., Azumi, T., Nishio, N., and Kato, S. (2016). Real-time GPU resource management with
loadable kernel modules. IEEE Transactions on Parallel and Distributed Systems, 28(6):1715–1727.

Suzuki, Y., Kato, S., Yamada, H., and Kono, K. (2014). GPUvm: Why not virtualizing GPUs at the
hypervisor? In Proceedings of the 2014 USENIX Annual Technical Conference, pages 109–120.

Tanasic, I., Gelado, I., Cabezas, J., Ramirez, A., Navarro, N., and Valero, M. (2014). Enabling preemptive
multiprogramming on GPUs. ACM SIGARCH Computer Architecture News, 42(3):193–204.

Tang, S., Andres, B., Andriluka, M., and Schiele, B. (2016). Multi-person tracking by multicut and deep
matching. In Proceedings of the 2016 European Conference on Computer Vision, pages 100–111.

Texas Instrument (2018). TMS320C6000 DSP Library (DSPLIB). https://wccftech.com/nvidia-
drive-xavier-soc-detailed/://www.ti.com/tool/SPRC265.

The Apache Software Foundation (ASF) (2020). Apache MXNet: A flexible and efficient library for deep
learning. https://mxnet.apache.org/.

Thorpe, C., Hebert, M. H., Kanade, T., and Shafer, S. A. (1988). Vision and navigation for the carnegie-mellon
navlab. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(3):362–373.

Thorpe, C., Herbert, M., Kanade, T., and Shafer, S. (1991a). Toward autonomous driving: the CMU Navlab.
i. perception. IEEE expert, 6(4):31–42.

Thorpe, C., Herbert, M., Kanade, T., and Shafter, S. (1991b). Toward autonomous driving: the cmu navlab. ii.
architecture and systems. IEEE expert, 6(4):44–52.

182

https://www.slideshare.net/shri123/drive-px-2
https://www.slideshare.net/shri123/drive-px-2
https://wccftech.com/nvidia-drive-xavier-soc-detailed/://www.ti.com/tool/SPRC265
https://wccftech.com/nvidia-drive-xavier-soc-detailed/://www.ti.com/tool/SPRC265
https://mxnet.apache.org/

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M.,
Hoffmann, G., et al. (2006). Stanley: The robot that won the darpa grand challenge. Journal of field
Robotics, 23(9):661–692.

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the 2015 IEEE International Conference on Computer
Vision, pages 4489–4497.

Tzeng, S., Patney, A., and Owens, J. D. (2010). Task management for irregular-parallel workloads on the
GPU. page 2937.

Ubal, R., Jang, B., Mistry, P., Schaa, D., and Kaeli, D. (2012). Multi2sim: a simulation framework for
CPU-GPU computing. In Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, pages 335–344.

Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeulders, A. W. (2013). Selective search for object
recognition. International Journal of Computer Vision, 104(2):154–171.

Ukidave, Y., Kalra, C., Kaeli, D., Mistry, P., and Schaa, D. (2014). Runtime support for adaptive spatial
partitioning and inter-kernel communication on GPUs. In Proceedings of the 26th IEEE International
Symposium on Computer Architecture and High Performance Computing, pages 168–175.

Ukidave, Y., Li, X., and Kaeli, D. (2016). Mystic: Predictive scheduling for gpu based cloud servers using
machine learning. In Proceedings of the 2016 IEEE International Parallel and Distributed Processing
Symposium, pages 353–362.

Ulmer, B. (1994). VITA II—active collision avoidance in real traffic. In Proceedings of the 1994 IEEE
Intelligent Vehicles Symposium, pages 1–6.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., Galatali, T.,
Geyer, C., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge.
Journal of Field Robotics, 25(8):425–466.

Urmson, C., Ragusa, C., Ray, D., Anhalt, J., Bartz, D., Galatali, T., Gutierrez, A., Johnston, J., Harbaugh, S.,
“Yu” Kato, H., et al. (2006). A robust approach to high-speed navigation for unrehearsed desert terrain.
Journal of Field Robotics, 23(8):467–508.

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In
Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition, pages 511–518.

Volkov, V. and Demmel, J. W. (2008). Benchmarking GPUs to tune dense linear algebra. In Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing, pages 1–11.

Wang, G., Lin, Y., and Yi, W. (2010). Kernel fusion: An effective method for better power efficiency
on multithreaded GPU. In Proceedings of the 2010 IEEE/ACM International Conference on Green
Computing and Communications & International Conference on Cyber, Physical and Social Computing,
pages 344–350.

Wang, Z., Yang, J., Melhem, R., Childers, B., Zhang, Y., and Guo, M. (2016). Simultaneous multikernel
gpu: Multi-tasking throughput processors via fine-grained sharing. In Proceedings of the 2016 IEEE
International Symposium on High Performance Computer Architecture, pages 358–369.

183

Warren, M. E. (2019). Automotive lidar technology. In Proceedings of the 2019 IEEE Symposium on VLSI
Circuits, pages C254–C255.

Waymo (2020). Waymo safety report – on the road to fully self-driving. https://waymo.com/safety/.

Wei, J., Snider, J. M., Kim, J., Dolan, J. M., Rajkumar, R., and Litkouhi, B. (2013). Towards a viable
autonomous driving research platform. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium,
pages 763–770.

Wen, Y., O’Boyle, M. F., and Fensch, C. (2018). MaxPair: enhance OpenCL concurrent kernel execution by
weighted maximum matching. In Proceedings of the 11th Workshop on General Purpose GPUs, pages
40–49.

Wende, F., Cordes, F., and Steinke, T. (2012). On improving the performance of multi-threaded CUDA appli-
cations with concurrent kernel execution by kernel reordering. In Proceedings of the 2012 Symposium
on Application Accelerators in High Performance Computing, pages 74–83.

Williams, M. (1988). PROMETHEUS—the european research programme for optimising the road transport
system in europe. In IEE Colloquium on Driver Information, pages 1/1–1/9.

Wolcott, R. W. and Eustice, R. M. (2014). Visual localization within lidar maps for automated urban driving.
In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
176–183.

Wong, H., Papadopoulou, M.-M., Sadooghi-Alvandi, M., and Moshovos, A. (2010). Demystifying GPU mi-
croarchitecture through microbenchmarking. In Proceedings of the 2010 IEEE International Symposium
on Performance Analysis of Systems & Software, pages 235–246.

Wu, B., Chen, G., Li, D., Shen, X., and Vetter, J. (2015). Enabling and exploiting flexible task assignment on
GPU through SM-centric program transformations. In Proceedings of the 29th ACM on International
Conference on Supercomputing, pages 119–130.

Wu, B. and Nevatia, R. (2007). Detection and tracking of multiple, partially occluded humans by bayesian
combination of edgelet based part detectors. International Journal of Computer Vision, 75(2):247–266.

Xiang, Y. and Kim, H. (2019). Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time
inference. In Proceedings of the 40th IEEE International Real-Time Systems Symposium, pages 392–
405.

X.org Foundation (2014). Memory mapped I/O trace. https://nouveau.freedesktop.org://
nouveau.freedesktop.org/wiki/MmioTrace/.

X.org Foundation (2020). Nouveau: Accelerated open source driver for nVidia cards. https://

nouveau.freedesktop.org/.

Xu, Q., Jeon, H., Kim, K., Ro, W. W., and Annavaram, M. (2016a). Warped-slicer: efficient intra-SM
slicing through dynamic resource partitioning for GPU multiprogramming. In Proceedings of the 43rd
ACM/IEEE Annual International Symposium on Computer Architecture, pages 230–242.

Xu, Y., Wang, R., Li, T., Song, M., Gao, L., Luan, Z., and Qian, D. (2016b). Scheduling tasks with
mixed timing constraints in GPU-powered real-time systems. In Proceedings of the 2016 International
Conference on Supercomputing, pages 1–13.

184

https://waymo.com/safety/
https://nouveau.freedesktop.org://nouveau.freedesktop.org/wiki/MmioTrace/
https://nouveau.freedesktop.org://nouveau.freedesktop.org/wiki/MmioTrace/
https://nouveau.freedesktop.org/
https://nouveau.freedesktop.org/

Yang, K. and Anderson, J. (2014a). Optimal GEDF-based schedulers that allow intra-task parallelism on
heterogeneous multiprocessors. In Proceedings of the 12th IEEE Symposium on Embedded Systems for
Real-Time Multimedia, pages 30–39.

Yang, K. and Anderson, J. H. (2014b). Optimal GEDF-based schedulers that allow intra-task parallelism on
heterogeneous multiprocessors. In Proceedings of the 12th IEEE Symposium on Embedded Systems for
Real-time Multimedia, pages 30–39.

Yang, K., Elliott, G., and Anderson, J. (2015). Analysis for supporting real-time computer vision workloads
using OpenVX on multicore+GPU platforms. In Proceedings of the 23rd International Conference on
Real-Time Networks and Systems, pages 77–86.

Yang, K., Yang, M., and Anderson, J. (2016a). Reducing response-time bounds for DAG-based task systems
on heterogeneous multicore platforms. In Proceedings of the 24th International Conference on Real-Time
Networks and Systems, pages 349–358.

Yang, K., Yang, M., and Anderson, J. H. (2016b). Reducing response-time bounds for DAG-based task
systems on heterogeneous multicore platforms. In Proceedings of the 24th International Conference on
Real-Time Networks and Systems, pages 349–358.

Yang, M., Amert, T., Yang, K., Otterness, N., Anderson, J. H., Smith, F. D., and Wang, S. (2018a).
Making OpenVX really “real time”. In Proceedings of the 39th IEEE International Real-Time Systems
Symposium, pages 80–93.

Yang, M., Otterness, N., Amert, T., Bakita, J., Anderson, J. H., and Smith, F. D. (2018b). Avoiding pitfalls
when using NVIDIA GPUs for real-time tasks in autonomous systems. In Proceedings of the 30th
Euromicro Conference on Real-Time Systems, pages 20:1–20:21.

Yang, M., Wang, S., Bakita, J., Vu, T., Smith, F. D., Anderson, J. H., and Frahm, J.-M. (2019). Re-
thinking CNN frameworks for time-sensitive autonomous-driving applications: Addressing an industrial
challenge. In Proceedings of the 25th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 305–317.

Yurtsever, E., Lambert, J., Carballo, A., and Takeda, K. (2019). A survey of autonomous driving: common
practices and emerging technologies. arXiv preprint arXiv:1906.05113.

Zhang, F., Stähle, H., Chen, G., Simon, C. C. C., Buckl, C., and Knoll, A. (2012). A sensor fusion approach
for localization with cumulative error elimination. In Proceedings of the 2012 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages 1–6.

Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Object detection with deep learning: A review. IEEE
Transactions on Neural Networks and Learning Systems, 30(11):3212–3232.

Zhong, J. and He, B. (2013). Kernelet: High-throughput GPU kernel executions with dynamic slicing and
scheduling. IEEE Transactions on Parallel and Distributed Systems, 25(6):1522–1532.

Zhou, H., Bateni, S., and Liu, C. (2018). S3DNN: Supervised streaming and scheduling for GPU-accelerated
real-time DNN workloads. In Proceedings of the 24th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 190–201.

Zhou, H., Tong, G., and Liu, C. (2015). GPES: A preemptive execution system for GPGPU computing. In
Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications Symposium, pages
87–97.

185

Zhou, Y. and Tuzel, O. (2018). Voxelnet: End-to-end learning for point cloud based 3d object detection.
In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, pages
4490–4499.

Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T., Franke, U., Appenrodt,
N., Keller, C. G., et al. (2014). Making bertha drivean autonomous journey on a historic route. IEEE
Intelligent Transportation Systems Magazine, 6(2):8–20.

Zou, Z., Shi, Z., Guo, Y., and Ye, J. (2019). Object detection in 20 years: A survey. arXiv preprint
arXiv:1905.05055.

186

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Computer Vision in Autonomous Driving
	Graphics Processing Units
	Real-Time Systems and GPU Scheduling
	Thesis Statement
	Contributions
	A Study of NVIDIA GPUs beyond Official Documentation
	A Model of GPU Execution
	A Response-Time Bound Analysis for Applications Sharing GPUs
	A Computer-Vision Framework Providing Improved Throughput
	A Case Study Evaluating Analytical and Empirical Real-Time Performance

	Organization

	Background
	Autonomous Driving
	State of the Art
	Autonomous-Driving System Architecture
	Architecture
	Sensor Hardware
	Perception
	Planning and Control

	Summary

	Computer Vision for Autonomous Driving
	Methods
	Classic Pipelines
	Deep Learning Methods

	Object-Detection Accuracy Metrics
	IoU, Precision, and Recall
	Precision-Recall Curve and Mean Average Precision

	Frameworks and Libraries
	OpenVX Standard
	Challenges of Real-Time Certification Amenable Framework

	GPUs and Accelerators
	Accelerators
	GPU Hardware Architecture
	CUDA-Enabled Devices

	GPU Programming Model
	Prior Work on Non-Real-Time GPUs
	GPU Reverse Engineering
	GPU Resource Management
	GPU Sharing
	GPU Virtualization
	GPU Scheduling

	Challenges for Real-Time GPUs

	Real-Time Systems
	Real-Time Task Model
	Scheduling
	Response-Time Bounds
	Real-Time DAG Scheduling
	Real-Time Frameworks
	Real-Time GPUs

	Chapter Summary

	Scheduling, Synchronization, and Execution
	Basic GPU Scheduling Rules
	Motivating Experiment
	Scheduling Rules

	Additional Complexities
	The NULL Stream
	Stream Priorities
	Multiple Processes and Other Complications

	Synchronization and Blocking
	Overview of GPU Synchronization
	Explicit Synchronization
	Implicit Synchronization

	Overcoming Synchronization-Related Pitfalls

	Concurrency and Performance
	Multi-Process Service (MPS)
	Case Study of Computer-Vision Tasks

	Perils of CUDA Programming for Real-Time Tasks
	Synchronous Defaults
	Flawed Documentation
	Unknown Future

	Chapter Summary

	Task Model and Schedulability Analysis for Tasks Sharing GPUs
	DAG-based Task Model
	GPU Response-Time Bound
	NVIDIA GPU Details
	System Model
	Total Utilization Constraint
	Response-Time Bound

	Chapter Summary

	Improve CNN Frameworks for Autonomous-Driving Applications
	Background
	NVIDIA DRIVE PX2
	YOLO and Darknet

	Related Work
	System Design
	Enabling Parallelism
	Multi-GPU Execution
	Accelerating Multiple Streams with Multi-Camera Composite Images
	Avoiding Implicit Synchronization

	Evaluation
	How Many Cameras can be Supported?
	Can Our CNN Implementations Be Better Configured?
	Are Multi-Camera Composite Images Effective?

	Chapter Summary

	Case Study
	OpenVX Graph Scheduling
	Coarse-Grained OpenVX Graph Scheduling
	Fine-Grained OpenVX Graph Scheduling

	Case Study
	Experimental Evaluation
	Results

	Chapter Summary

	Conclusion
	Summary of Results
	Acknowledgements
	Future Work
	Closing Remarks

	BIBLIOGRAPHY

