25,076 research outputs found

    On the Phase Coupling of Two Components Mixing in Empirical Mode Decomposition

    Get PDF
    This paper investigates frequency mixing effect of empirical mode decomposition (EMD) and explores whether it can be explained by simple phase coupling between components of the input signal. The input is assumed to be a linear combination of harmonic oscillators. The hypothesis was tested assuming that phases of input signals’ components would couple according to Kuramoto’s model. Using a Kuramoto’s model with as many oscillators as the number of intrinsic mode functions (result of EMD), the model’s parameters were adjusted by a particle swarm optimization (PSO) method. The results show that our hypothesis is plausible, however, a different coupling mechanism than the simple sine-coupling Kuramoto’s model are likely to give better results

    On the Phase Coupling of Two Components Mixing in Empirical Mode Decomposition

    Get PDF
    This paper investigates frequency mixing effect of empirical mode decomposition (EMD) and explores whether it can be explained by simple phase coupling between components of the input signal. The input is assumed to be a linear combination of harmonic oscillators. The hypothesis was tested assuming that phases of input signals’ components would couple according to Kuramoto’s model. Using a Kuramoto’s model with as many oscillators as the number of intrinsic mode functions (result of EMD), the model’s parameters were adjusted by a particle swarm optimization (PSO) method. The results show that our hypothesis is plausible, however, a different coupling mechanism than the simple sine-coupling Kuramoto’s model are likely to give better results

    Investigating properties of the cardiovascular system using innovative analysis algorithms based on ensemble empirical mode decomposition

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited - Copyright @ 2012 Jia-Rong Yeh et al.Cardiovascular system is known to be nonlinear and nonstationary. Traditional linear assessments algorithms of arterial stiffness and systemic resistance of cardiac system accompany the problem of nonstationary or inconvenience in practical applications. In this pilot study, two new assessment methods were developed: the first is ensemble empirical mode decomposition based reflection index (EEMD-RI) while the second is based on the phase shift between ECG and BP on cardiac oscillation. Both methods utilise the EEMD algorithm which is suitable for nonlinear and nonstationary systems. These methods were used to investigate the properties of arterial stiffness and systemic resistance for a pig's cardiovascular system via ECG and blood pressure (BP). This experiment simulated a sequence of continuous changes of blood pressure arising from steady condition to high blood pressure by clamping the artery and an inverse by relaxing the artery. As a hypothesis, the arterial stiffness and systemic resistance should vary with the blood pressure due to clamping and relaxing the artery. The results show statistically significant correlations between BP, EEMD-based RI, and the phase shift between ECG and BP on cardiac oscillation. The two assessments results demonstrate the merits of the EEMD for signal analysis.This work is supported by the National Science Council (NSC) of Taiwan (Grant number NSC 99-2221-E-155-046-MY3), Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan which is sponsored by National Science Council (Grant number: NSC 100–2911-I-008-001) and the Chung-Shan Institute of Science & Technology in Taiwan (Grant numbers: CSIST-095-V101 and CSIST-095-V102)

    Determining the Spectral Signature of Spatial Coherent Structures

    Full text link
    We applied to an open flow a proper orthogonal decomposition (pod) technique, on 2D snapshots of the instantaneous velocity field, to reveal the spatial coherent structures responsible of the self-sustained oscillations observed in the spectral distribution of time series. We applied the technique to 2D planes out of 3D direct numerical simulations on an open cavity flow. The process can easily be implemented on usual personal computers, and might bring deep insights on the relation between spatial events and temporal signature in (both numerical or experimental) open flows.Comment: 4 page

    Dynamic modal analysis of monolithic mode-locked semiconductor lasers

    Get PDF
    We analyze the advantages and applicability limits of the mode-coupling approach to active, passive, hybrid, and harmonic mode-locking in diode lasers. A simple, computationally efficient numerical model is proposed and applied to several traditional and advanced laser constructions and regimes, including high-frequency pulse emission by symmetric and asymmetric colliding pulse mode-locking, and locking properties of hybrid modelocked Fabry–Perot and distributed Bragg reflector lasers

    Muscle Fatigue Analysis With Optimized Complementary Ensemble Empirical Mode Decomposition and Multi-Scale Envelope Spectral Entropy

    Get PDF
    The preprocessing of surface electromyography (sEMG) signals with complementary ensemble empirical mode decomposition (CEEMD) improves frequency identification precision and temporal resolution, and lays a good foundation for feature extraction. However, a mode-mixing problem often occurs when the CEEMD decomposes an sEMG signal that exhibits intermittency and contains components with a near-by spectrum into intrinsic mode functions (IMFs). This paper presents a method called optimized CEEMD (OCEEMD) to solve this problem. The method integrates the least-squares mutual information (LSMI) and the chaotic quantum particle swarm optimization (CQPSO) algorithm in signal decomposition. It uses the LSMI to calculate the correlation between IMFs so as to reduce mode mixing and uses the CQPSO to optimize the standard deviation of Gaussian white noise so as to improve iteration efficiency. Then, useful IMFs are selected and added to reconstruct a de-noised signal. Finally, considering that the IMFs contain abundant frequency and envelope information, this paper extracts the multi-scale envelope spectral entropy (MSESEn) from the reconstructed sEMG signal. Some original sEMG signals, which were collected from experiments, were used to validate the methods. Compared with the CEEMD and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the OCEEMD effectively suppresses mode mixing between IMFs with rapid iteration. Compared with approximate entropy (ApEn) and sample entropy (SampEn), the MSESEn clearly shows a declining tendency with time and is sensitive to muscle fatigue. This suggests a potential use of this approach for sEMG signal preprocessing and the analysis of muscle fatigue

    Regional coherence evaluation in mild cognitive impairment and Alzheimer's disease based on adaptively extracted magnetoencephalogram rhythms

    Get PDF
    This study assesses the connectivity alterations caused by Alzheimer's disease (AD) and mild cognitive impairment (MCI) in magnetoencephalogram (MEG) background activity. Moreover, a novel methodology to adaptively extract brain rhythms from the MEG is introduced. This methodology relies on the ability of empirical mode decomposition to isolate local signal oscillations and constrained blind source separation to extract the activity that jointly represents a subset of channels. Inter-regional MEG connectivity was analysed for 36 AD, 18 MCI and 26 control subjects in δ, θ, α and β bands over left and right central, anterior, lateral and posterior regions with magnitude squared coherence—c(f). For the sake of comparison, c(f) was calculated from the original MEG channels and from the adaptively extracted rhythms. The results indicated that AD and MCI cause slight alterations in the MEG connectivity. Computed from the extracted rhythms, c(f) distinguished AD and MCI subjects from controls with 69.4% and 77.3% accuracies, respectively, in a full leave-one-out cross-validation evaluation. These values were higher than those obtained without the proposed extraction methodology
    corecore