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Abstract. This study assesses the connectivity alterations caused by
Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in the magne-
toencephalogram (MEG) background activity. Moreover, a novel methodology to
adaptively extract brain rhythms from the MEG is introduced. This methodology
relies on the ability of an Empirical Mode Decomposition (EMD) to isolate local
signal oscillations and a constrained Blind Source Separation (cBSS) to extract
the activity that jointly represents a subset of channels. Inter-regional MEG
connectivity was analysed for 36 AD, 18 MCI, and 26 control subjects in δ, θ, α,
and β bands over left and right central, anterior, lateral, and posterior regions
with magnitude squared coherence – c(f). For the sake of comparison, c(f) was
calculated from the original MEG channels and from the adaptively extracted
rhythms. The results indicated that AD and MCI cause slight alterations in the
MEG connectivity. c(f) computed from the extracted rhythms distinguished AD
and MCI subjects from controls with 69.4% and 77.3% accuracies, respectively,
in a full leave-one-out cross-validation evaluation. These values were higher than
those obtained without the proposed extraction methodology.
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1. Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder. It causes memory loss
and other cognitive and behavioural symptoms that progressively impair the daily
activities (Blennow et al., 2006; Nestor et al., 2004). AD is the most common
form of dementia in the western world. It accounts for 50% to 60% of all dementia
cases (Blennow et al., 2006). Its prevalence increases almost exponentially with age
(Blennow et al., 2006; Nestor et al., 2004). As a consequence, AD is one of the most
disabling and burdensome health conditions worldwide (Ferri et al., 2006). A definite
diagnosis of AD can only be made by necropsy (Blennow et al., 2006). In clinical
practice, AD is diagnosed based on the criteria set by McKhann et al. (1984). Yet,
the accuracy is limited (Blennow et al., 2006). Hence, it is important to develop
methods to help in AD diagnosis in order to improve the patients’ care and allow
more accurately targeted future therapies.

Mild Cognitive Impairment (MCI) shares some features with AD. The cognitive
deficits of MCI subjects are limited to memory but their activities of daily living
are preserved (Nestor et al., 2004). Thus, this concept could represent a transitional
period before full-blown dementia (Blennow et al., 2006; Nestor et al., 2004). The
rate of conversion to AD is about ten times higher for MCI subjects than that for
the general population. Yet, the narrow definition of MCI might fail to capture the
heterogeneity of clinical AD (Nestor et al., 2004).

Spectral (Abatzoglou et al., 2009; Escudero et al., 2009; Poza et al., 2008; Rossini
et al., 2007) and non-linear analysis techniques (Abásolo et al., 2008; Abatzoglou
et al., 2007; Gómez et al., 2009a; van Cappellen van Walsum et al., 2003) have been
applied to single channels of electroencephalogram (EEG) and magnetoencephalogram
(MEG) recordings from AD patients. The general conclusion of those studies is that
AD causes both a spectral slowdown and alterations in the non-linear dynamics of
the electromagnetic brain activity (Hornero et al., 2009; Jeong, 2004; Stam, 2010).
Additionally, AD can be characterised as a disconnection syndrome (Jeong, 2004;
Stam et al., 2006, 2009). The brain activity has also been studied in MCI subjects
(Babiloni et al., 2006; Fernández et al., 2006; Rossini et al., 2006, 2008). Overall,
differences are more easily found between healthy elderly subjects and AD patients
than for MCI subjects (Jeong, 2004; Stam, 2010). This may be due to the small gap
between the MCI subjects and the other two groups (Fernández et al., 2006; Gómez
et al., 2009b). Given that MCI is considered as an intermediate state between healthy
ageing and full-blown AD, MCI subjects might also show connectivity alterations in
their brain recordings (Gómez et al., 2009b). The connectivity of the electromagnetic
brain activity might help to predict the development of AD in MCI subjects (Rossini
et al., 2006). Moreover, MEG has some desirable properties over the EEG when
studying brain activity. MEG recordings are reference-free and less affected by extra-
cerebral tissues than EEG signals (Rossini et al., 2007; Stam, 2010).

Magnitude Squared Coherence – c(f) – is a widespread connectivity metric, which
provides a measure of the linear dependencies between two signals as a function of
frequency (Dauwels et al., 2010; Pereda et al., 2005). It has been hypothesised that
AD decreases c(f) in α and β but there are no conclusive findings about the δ and θ
bands (Jeong, 2004; Rossini et al., 2007). Furthermore, AD produces opposite changes
in features computed from different spectral bands (Alonso et al., 2011; Stam et al.,
2009; van Cappellen van Walsum et al., 2003). Thus, it is advisable to analyse different
spectral bands separately (Stam, 2010).
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Yet, c(f) has several limitations. Firstly, spurious correlations could appear due to
the volume conduction (Gómez et al., 2009b; Nolte et al., 2004; Stam et al., 2009). This
effect is due to the fact that nearby channels are likely to record activity from identical
currents. This leads to abnormally high correlations in the results that reflect volume
conduction rather than actual connectivity (Gómez et al., 2009b; Nolte et al., 2004;
Stam et al., 2009). Other alternatives, such as the imaginary part of the coherency
(Nolte et al., 2004) or the phase lag index (Stam et al., 2009), have been proposed.
However, their use is much more limited and their interpretation is less straightforward
than for c(f) (Nolte et al., 2004; Stam et al., 2009). Furthermore, these measures are
usually applied in a channel-wise manner, producing a very high number of variables
(Dauwels et al., 2010; Gómez et al., 2009b). A possible option is to try to estimate the
equivalent current dipoles (Hoechstetter et al., 2004; Rossini et al., 2007; Supp et al.,
2007). Once the currents have been estimated, the same connectivity metrics used in
the channel-wise analyses can be applied to them. Moreover, the volume conduction
effect does not affect these dipole-based connectivity assessments (Hoechstetter et al.,
2004; Supp et al., 2007). However, the solution of the inverse problem is not unique
and the choice of the reconstruction algorithm and other a priori assumptions influence
the estimation of the dipoles resulting in potentially misleading results (Nolte et al.,
2004; Stam, 2010; Stam et al., 2006).

As an alternative to those two approaches, we apply c(f) to groups of channels
to characterise MEG background activity in AD and MCI. We want to study the
spontaneous MEG in MCI and AD patients in contrast to elderly controls. c(f) is
computed from pairs of channels and the results are grouped attending at the location
of channels over the scalp to estimate inter-regional coherence, likewise Stam et al.
(2006). Our results complement the intra-regional connectivity analysis by Alonso
et al. (2011), who analysed a smaller set of AD and control subjects by computing
c(f) and mutual information between pairs of channels in the same region. Their
results suggested that AD is characterised by both decreases and increases of intra-
regional connectivity in different frequency bands (Alonso et al., 2011). We also
introduce a novel methodology to extract the activity that simultaneously represents a
group of channels. It relies on the adaptiveness of the Empirical Mode Decomposition
(EMD) (Huang et al., 1998) and the ability of a constrained Blind Source Separation
(cBSS) (Lu and Rajapakse, 2005) to extract brain activity. We hypothesise that this
novel procedure could compute an adaptive regional extraction of signals with useful
information about the brain activity. Actually, the EMD and cBSS have already
been combined by Ye-Lin et al. (2010) to denoise electroenterogram recordings. Their
results support the usefulness of combining adaptive signal processing methodologies
like EMD and Blind Source Separation (BSS).

2. Subjects and MEG recordings

MEG signals were acquired from 80 subjects: 36 AD, 18 MCI and 26 control
subjects. Clinical diagnosis was ascertained with exhaustive medical, neurological,
psychiatric, neuroimaging (SPECT and MRI), and neuropsychological examinations.
The Mini-Mental State Examination (MMSE) (Folstein et al., 1975) and the Global
Deterioration Scale/Functional Assessment Staging (GDS/FAST) (Reisberg, 1988)
were used to screen the cognitive and functional status, respectively. All controls
and patients’ caregivers gave informed consent for participation in the study, which
was approved by the local Ethics Committee.
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The 36 AD patients (12 males and 24 females) fulfilled the criteria for probable AD
according to the guidelines of the National Institute of Neurological of Communicative
Disorders and Stroke – AD and Related Disorders Association (NINCDS–ADRDA)
(McKhann et al., 1984). Their mean age was 74.06 ± 6.95 years (mean ± standard
deviation, SD) and the average scores in the cognitive and functional tests were 18.06
± 3.36 for MMSE, and 4.17 ± 0.45 for GDS/FAST (mean ± SD).

The MCI group was formed by 18 subjects (8 males and 10 females; age = 74.89
± 5.57 years, mean ± SD) diagnosed following the Petersen’s criteria (Petersen et al.,
2001). Two of them were categorised as amnesic MCI, while the others were included
in the multiple-domain category. The MCI patients’ MMSE score was 25.67 ± 1.81
(mean ± SD) and all of them scored three in the GDS/FAST test.

Finally, 26 elderly control subjects (9 males and 17 females; age = 71.77 ± 6.38
years, mean ± SD) also participated in this study. The MMSE and GDS/FAST scores
for the control group were 28.88 ± 1.18 and 1.73 ± 0.45 (mean ± SD), respectively.
The difference in the mean age of the groups (both pair-wise and when all three groups
were simultaneously considered) was not statistically significant (in all cases p > 0.10,
Student’s t-test). Patients and control subjects were free of significant neurologic and
psychiatric diseases other than AD or MCI. None of them was taking medication that
could affect the MEG activity.

The MEG recordings were acquired using a 148-channel whole-head magnetome-
ter (MAGNES 2500 WH, 4D Neuroimaging) located in a magnetically shielded room
at the “Centro de Magnetoencefalograf́ıa Dr. Pérez-Modrego,” Spain. The MEGs
were recorded whilst the subjects lay on a hospital bed in a relaxed state, awake, and
with eyes closed. For each subject, five minutes of MEG background activity were
recorded at 678.19 Hz with a 0.1–200 Hz hardware bandpass filter. The MEG equip-
ment decimated each 5-minute dataset by a factor of four as a trade-off between data
length reduction and accurate representation of the δ, θ, α and β bands. This process
consisted of filtering the data to avoid aliasing and downsampling the recordings. This
anti-aliasing filter was a second-order Butterworth IIR filter with cut-off frequency at
76.30 Hz (45% of the final sample rate: 169.55 Hz), which was applied to the signals
in both forward and reverse directions to avoid net phase shift. Per subject, 17.25 ±
6.47 (mean ± SD) epochs of 10 s (1695 samples) with minimal ocular activity were
visually selected for analysis by an expert unaware of the subjects’ clinical situation
with the aid of an amplitude thresholding method (Hornero et al., 2008).

Finally, in order to avoid biasing the computation of c(f), the cardiac artefact
was removed from the recordings with a cBSS-based procedure since this artefact can
seriously affect the MEGs (Dammers et al., 2008; Escudero et al., 2007, 2011; James
and Gibson, 2003). We used the average of all MEG channels as a reference of the
cardiac activity in each epoch (Escudero et al., 2011). This average of all channels
emphasises the cardiac artefact whereas the MEG background activity tends to cancel
out as the cardiac artefact affects all channels simultaneously (Escudero et al., 2007,
2011). Thus, the cardiac artefact could be enhanced in the average of the MEG
channels (Escudero et al., 2007, 2011). Then, an ECG-like template was derived from
this average to guide a cBSS-based artefact removal (Escudero et al., 2011). For the
interested reader, alternative BSS-based procedures to remove the cardiac activity
are also available elsewhere. For instance, Sander et al. (2007) combined spectral,
topographical, and temporal features to identify the cardiac activity, while Dammers
et al. (2008) relied on amplitude and phase statistics to recognise and remove this
artefact. Some cardiac artefact removal methods have been compared by Escudero
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Figure 1: MEG signals recorded at channel 62, which is located in the right posterior
region, for a control, MCI subject and AD patient. Amplitude and time are given in
picoTesla (pT) and second (s) units, respectively.
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Figure 2: Distribution of the MEG sensors into Left Central (LC), Anterior (LA),
Lateral (LL), and Posterior (LP); and Right Central (RC), Anterior (RA), Lateral
(RL), and Posterior (RP) regions. Mid-line sensors appear empty. Lines depict the
region boundaries.

et al. (2011). The artefact-removed MEG signals were the input for both approaches
used in the inter-regional connectivity assessment. For the sake of illustration, an
MEG epoch recorded in the right posterior scalp region after the removal of the cardiac
artefact is shown in Fig. 1 for a control, MCI and AD subject.

3. Methods

3.1. Overview

MEG recordings are composed of numerous channels and it may be helpful to group
them into regions (Alonso et al., 2011; Poza et al., 2008; Stam et al., 2006). In
this study, the channels are grouped into Left Central (LC), Anterior (LA), Lateral
(LL), and Posterior (LP); and Right Central (RC), Anterior (RA), Lateral (RL), and
Posterior (RP) regions as shown in Fig. 2. This distribution is similar to that by Alonso
et al. (2011) and Poza et al. (2008), but it also considers the difference between left
and right channels. Mid-line sensors are not considered (Stam et al., 2006).

c(f) is computed with two different approaches. The first one consists of
calculating c(f) for all pairs of channels (Stam et al., 2006), resulting in a large number
of pair-wise values. Then, the results are averaged considering the region to which
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Figure 3: Block diagram of the processing steps included in the second approach to
adaptively extract brain activity from each region and compute the c(f) values.

each channel belongs (see Fig. 2) to estimate the inter-regional c(f) in δ (1–4 Hz), θ
(4–8 Hz), α (8–13 Hz), and β (13–30 Hz) bands.

In the second approach, the MEG inter-regional c(f) is assessed by means of a
novel adaptive procedure to characterise each region and band with a single signal.
This approach is illustrated in Fig. 3, where the MEG channels appear on top of
the diagram. An EMD is applied to each single channel to obtain the Intrinsic Mode
Functions (IMFs) (Huang et al., 1998). Afterwards, all IMFs from channels in the same
scalp region are combined into a “pool” of single-channel rhythms. Subsequently, a k-
means clustering (Hartigan and Wong, 1979) is used to automatically select reference
signals representative of the δ, θ, α, and β bands from the pool of IMFs. Then, these
references guide a cBSS (Lu and Rajapakse, 2005) to extract one activity signal that
simultaneously characterises all channels in the region for every band. Finally, c(f) is
calculated between extracted signals of different regions to assess the connectivity.

3.2. Magnitude Squared Coherence – c(f)

c(f) is used to measure brain synchrony (Dauwels et al., 2010; Pereda et al., 2005). It
quantifies linear correlations as a function of frequency. c(f) is bounded between 0 and
1. This measure can detect the linear synchronisation between two signals, but it does
not discriminate the directionality of the coupling (Dauwels et al., 2010; Pereda et al.,
2005; Supp et al., 2007). EEG experiments suggest that c(f) is strongly correlated
with other commonly used synchronisation measures (Dauwels et al., 2010).

First of all, two time series of equal length – x (t) and y (t) – are divided into B
equal blocks of 1 s each with 50% overlap. This block length was selected on the basis
of the analyses by Dauwels et al. (2010) to estimate the optimum parameters for a
c(f) computation similar to our first approach. c(f) is calculated as (Alonso et al.,
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2011; Dauwels et al., 2010):

c(f) =
|〈X (f)Y ∗ (f)〉|2

|〈X (f)〉| |〈Y (f)〉|
, (1)

where X (f) and Y (f) are the Fourier transform of x (t) and y (t), respectively, and
∗ is the symbol for complex conjugate. Here, |·| denotes magnitude and 〈·〉 indicates
average over the B blocks (Alonso et al., 2011; Dauwels et al., 2010).

3.3. Adaptive extraction

This subsection describes a novel methodology to adaptively extract the brain activity
from subsets of channels. This procedure is illustrated in Fig. 3 and applied to the
regions depicted in Fig. 2. It relies on data-driven signal processing techniques such
as EMD (Huang et al., 1998), cBSS (Lu and Rajapakse, 2005) and, to a lesser degree,
k-means clustering (Hartigan and Wong, 1979). This techniques are represented in
the second, fifth and fourth rows of the diagram in Fig. 3, respectively.

3.3.1. Empirical Mode Decomposition. The EMD (Huang et al., 1998) is a technique
to adaptively represent non-stationary complex signals as a sum of their oscillations
(i.e., IMFs). The EMD considers the oscillations in signals so that each IMF satisfies
two basic conditions (Huang et al., 1998):

• In each IMF time series, the number of extrema and the number of zero crossings
must be the same or differ, at most, by one.

• At any point, the mean value of the two envelopes defined by the local maxima
and minima is zero.

Hence, the IMFs of a unidimensional signal x (t) are calculated as follows (Flandrin
et al., 2004):

(i) Set gp (t) = x (t), with p the index of the extraction.
(ii) Detect the extrema (both maxima and minima) of gp (t).

(iii) Generate the upper and lower envelopes, eu (t) and el (t) respectively, by
connecting the maxima and minima separately with cubic spline interpolations.

(iv) The local mean, m (t), is determined as: m (t) = [eu (t) + el (t)] /2.
(v) The IMF should have zero local mean. Thus, subtract m (t) from the signal:

gp (t)← [gp (t)−m (t)].
(vi) Decide whether gp (t) is already an IMF by checking the two basic conditions

described above. Otherwise, repeat steps 2 to 6.

When the first IMF is derived (p = 1), set dp (t) = gp (t), which is the smallest
temporal scale (highest frequencies) in x (t) (Flandrin et al., 2004). In order to find
the remaining IMFs, generate the residue rp (t) of the data by subtracting dp (t) from
the signal as: rp (t) = [x (t)− dp (t)] (Flandrin et al., 2004). Then, rp (t) is considered
as the new data and subjected to the same sifting process described above (Flandrin
et al., 2004). The sifting process is continued until the final residue is a constant, a
monotonic function or a function with one maxima and one minima from which no
more IMFs can be derived (Flandrin et al., 2004; Rilling et al., 2003).
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After the EMD, the uni-dimensional signal x (t) is represented as:

x (t) =
M∑

p=1

dp (t) + rM (t) , (2)

where M is the number of IMFs and rM (t) is the final residue (Huang et al., 1998).

3.3.2. Frequency Characterisation of the IMFs. The EMD is applied to each single
channel, as represented on top of Fig. 3, to isolate its oscillations. Then, the spectral
content of each IMF has to be characterised. In order to do so, the instantaneous
frequency of each IMF, ωp (t), is computed as (Huang et al., 1998):

ωp (t) =
dθp (t)
dt

, (3)

where θp (t) denotes the phase of the analytic signal, zp (t) = ap (t) exp [iθp (t)] =
dp (t) + iH [dp (t)], computed from each IMF by means of Hilbert transform,
H [·] (Huang et al., 1998).

Afterwards, a weighted average of the instantaneous frequency, ωp, is computed
from each ωp (t) considering the amplitude:

ωp =
E {ap (t)ωp (t)}
E {ap (t)}

, (4)

where E {·} refers to expectation. ωp contains the typical frequency of each IMF.
Therefore, it characterises its spectral content.

3.3.3. Reference Selection. The IMFs represent oscillations in a single channel but
they do not account for the rhythmic activity of a whole region. Therefore, a cBSS
(Huang and Mi, 2007; Lu and Rajapakse, 2005) is used to extract the brain activity
corresponding to a particular subset of channels for a specific frequency band (δ, θ, α
and β). The cBSS needs a suitable reference (Huang and Mi, 2007; James and Gibson,
2003). This reference was selected with a k-means clustering.

The k-means algorithm is an effective and simple clustering procedure and it is
appealing for its adaptive nature (Hartigan and Wong, 1979). The algorithm divides
a set of features (the ωp values) into k clusters automatically without any supervision
(Hartigan and Wong, 1979). After the initialisation, the k-means clustering assigns
the data values to the closest cluster centre. Then, the geometric centre of each cluster
is recomputed, meaning that the clusters are re-calculated. These steps are repeated
until convergence is reached (Hartigan and Wong, 1979).

For each region, all IMFs whose ωp value belongs to the broadband of interest
(1–30 Hz) are aggregated into a “pool” (see third row of Fig. 3). Then, these ωp

are fed into a k-means clustering initialised with four centroids in the middle of the
spectral bands. Once convergence has been reached, the IMF corresponding with the
closest ωp to each cluster’s centroid is chosen as the reference for the cBSS applied to
the channels from that region. This process is shown in the fourth row of Fig. 3.

3.3.4. Regional Extraction of Brain Activity With cBSS. A reference per region and
band is selected with k-means for being representative of the spectral location of the
δ, θ, α or β band. Yet, this reference is indeed an IMF, which has been isolated from
a single MEG channel. Hence, it is only representative of that channel. This reference
will guide a cBSS to extract common activity representatitive for the whole region.
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In general, BSS techniques estimate a set of n underlying unknown components
– s (t) = [s1 (t) , . . . , sn (t)]T – and the mixing matrix – A – that generated a set of n
observed recordings – x (t) = [x1 (t) , . . . , xn (t)]T – through:

x (t) = As (t) . (5)

The basic assumption in BSS is that the sources, also known as components, are
statistically independent (Escudero et al., 2009; James and Hesse, 2005). An additive
noise term can be included in the model to account for the lack of fit. The cBSS
methods incorporate additional information into the separations so that the extracted
component bears some relationship to a given reference (James and Hesse, 2005).

Diverse implementations of the cBSS have been proposed (Huang and Mi, 2007;
Lu and Rajapakse, 2005). Usually, the cBSS introduces a regularisation parameter
into a general-purpose BSS algorithm (Huang and Mi, 2007; Lu and Rajapakse, 2005).
In this way, the cBSS obtains the statistically independent component that is closest
to the reference (James and Gibson, 2003). This reference only needs to be similar
enough to drive the cBSS towards the desired component (James and Gibson, 2003).

In this study, the algorithm by Huang and Mi (2007), which improves the method
by Lu and Rajapakse (2005), has been used. The reference for the cBSS is the sign
function of the IMF selected by the clustering (Huang and Mi, 2007; James and Gibson,
2003). The sign function was applied because the reference signal for the cBSS is most
often constructed as a set of on/off pulses that guide the extraction of the components
of interest (Huang and Mi, 2007; James and Gibson, 2003; James and Hesse, 2005; Lu
and Rajapakse, 2005). Finally, once the brain activity is extracted for each band and
region, c(f) is computed. This procedure is illustrated in Fig. 3 by the presentation
to the block that computes c(f) of the activities extracted for two different regions.

4. Results

4.1. Overview

After reducing the cardiac artefact, brain connectivity was computed with two different
approaches. In the first one, c(f) was calculated for all pairs of channels and the results
are averaged accordingly to pairs of regions (Stam et al., 2006). The second approach
relied on the steps shown in Fig. 3. Illustrative examples of the outputs at key stages
of this approach are given in the following lines.

First of all, an EMD is applied to each single MEG channel to estimate its
oscillatory patterns. Fig. 4 depicts the IMFs calculated from the control subject’s
MEG epoch plotted in Fig. 1. It can be seen that spectral content of the rhythms
moves from fast to slow frequencies as more IMFs are computed.

Secondly, each IMF is characterised with its ωp and a pool of IMFs from the
same region is created. Then, k-means is applied to find the IMFs whose ωp values
are the most representative (i.e., central) of the δ, θ, α, and β bands. This process
is exemplified in Fig. 5 for the IMFs of the same subject and region as Fig. 4. Fig. 5
indicates the number of IMFs that have a particular value of ωp in the y axis. The
vertical lines represent the centroid of each cluster.

Finally, once the reference for each region and band has been selected, the
cBSS extracted the dominant activity in the band of interest for the region under
consideration. All MEG channels from a region, together with the reference IMF
selected by k-means, are fed to the cBSS. Then, the cBSS extracts a component that
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Figure 4: IMFs obtained from the control subject’s MEG channel depicted in Fig. 1
plotted following their order of extraction from left to right and top to bottom.
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Figure 5: Reference selection with k-means applied to RP region in the same control
subject’s MEG epoch as in Fig. 1. The four vertical lines indicate the position of the
centroids for δ, θ, α and β.

is statistically independent from the rest of the activity and similar to the reference.
This computation is represented in Fig. 6 for the α band of the same subject and
region as in Fig. 5.

In both approaches, the results were averaged for all MEG epochs so that the value
of c(f) per band, pair of regions, and subject was obtained. It must be noticed that the
c(f) values correspond to inter-regional, probably long-distance, brain connectivity.

4.2. Descriptive Statistical Analysis

Qualitative statistical analysis was performed to gain insight into the c(f) values of
AD, MCI and control subjects. Firstly, a repeated-measures ANalysis Of VAriance
(ANOVA) was performed with the Greenhouse-Geisser correction for the lack of
sphericity. The group (AD vs. MCI vs. controls) was the inter-subject factor while the
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Figure 6: Illustration of the cBSS procedure for α band in the RP region and for the
same control subject’s MEG epoch as in Fig. 1.

variables ‘Band’ (δ, θ, α and β) and ‘Pair of regions’ were taken as intra-subject factors.
For the first approach, the ANOVA reported significant effects involving the factors
‘Band’, ‘Pair’ and their interaction (p < 0.0001). On the other hand, the inter-subject
factor (‘Diagnosis’) was not significant (p = 0.1015). In the case of the EMD and cBSS
approach, the effects of ‘Band’ (p = 0.0132) ‘Pair’ and ‘Band×Pair’ (p < 0.0001) were
also significant. The effect of ‘Diagnosis’ was not significant (p = 0.7005) when all
bands and pairs were simultaneously considered in the ANOVA.

A repeated-measures ANOVA (Greenhouse-Geisser correction) was applied to
every band with ‘Pair of regions’ as the only intra-subject factor. For both approaches
and all bands, there was a significant effect due to ‘Pair of regions’. The level of c(f)
depended on the distance between the regions – e.g., the overall c(f) level between
regions located over the same hemisphere was usually higher than for pairs of left
and right regions. ‘Diagnosis’ only had a significant effect for the δ band in the first
approach (p = 0.0100).

In order to further explore the results, we inspected the estimated marginal means
for the three subject groups for each band and approach. Fig. 7 depicts these estimated
marginal means, which revealed slight differences in the overall levels of inter-regional
c(f) for each approach. The estimated marginal means suggest that AD increases the
level of c(f) in the δ band while MCI subjects tends to have lower connectivity in θ.
The results in the upper bands are not conclusive, but a slight reduction in α inter-
regional connectivity was found with the second approach. In addition, the estimated
marginal means of c(f) for the extracted brain activity were consistently lower than
those values computed from the MEG channels (first approach).

4.3. Classification Analysis

We also measured the ability of c(f) to distinguish the groups in both approaches.
A stepwise logistic regression with a full leave-one-out cross-validation (loo-cv) was
applied to the c(f) values from every band to classify the subjects into diagnosis pairs
(controls vs. MCI, controls vs. AD, and MCI vs. AD). This procedure used all available
subjects but one to develop a classifier which was tested on the left-out subject. Then,
this process was repeated for the other subjects. At every iteration, a forward step-
wise variable selection was used to decide which variables would be included (if their
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Figure 7: Estimated marginal means, with 95% confidence interval, of c(f) from AD,
MCI and control subjects in each spectral band for both approaches: (a) first approach,
based on MEG channels, and (b) second approach, when EMD and cBSS were used
for activity extraction.

Table 1: Pairwise stepwise logistic regression classification with a full loo-cv for
the c(f) computed from the MEG channels. The number of variables that were
automatically selected in more than half the number of cases is also shown.

C vs. M
Band δ θ α β Comb.

C correctly classified (%) 57.7 46.2 57.7 50.0 57.7
M correctly classified (%) 61.1 44.4 50.0 77.8 61.1

Global rate (%) 59.1 45.5 54.5 61.4 59.1
Commonly selected variables 1 1 3 1 1

C vs. A
Band δ θ α β Comb.

C correctly classified (%) 42.3 69.2 53.8 42.3 46.2
A correctly classified (%) 36.1 55.6 55.6 44.4 55.6

Global rate (%) 38.7 61.3 54.8 43.5 51.6
Commonly selected variables 0 0 3 2 2

M vs. A
Band δ θ α β Comb.

M correctly classified (%) 55.6 66.7 66.7 38.9 55.6
A correctly classified (%) 63.9 44.4 69.4 72.2 63.9

Global rate (%) 61.1 51.9 68.5 61.1 61.1
Commonly selected variables 1 1 2 0 2

C, M, and A refer to controls, MCI, and AD patients, respectively.
‘Comb.’ indicates that a combination of features of all bands was entered.

associated p < 0.05) or removed (if p > 0.10) in the classifier. Table 1 and Table 2
show the classification results based on c(f) from the original MEG channels and
from the extracted activity, respectively, as percentage of subjects correctly classified
in each case (band and diagnoses).
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Table 2: Pairwise stepwise logistic regression classification with a full loo-cv for
the c(f) of the adaptively extracted rhythms. The number of variables that were
automatically selected in more than half the number of cases is also shown.

C vs. M
Band δ θ α β Comb.

C correctly classified (%) 84.6 73.1 69.2 69.2 73.1
M correctly classified (%) 44.4 66.7 44.4 55.6 83.3

Global rate (%) 68.2 70.5 59.1 63.6 77.3
Commonly selected variables 2 1 1 3 4

C vs. A
Band δ θ α β Comb.

C correctly classified (%) 69.2 50.0 53.8 84.6 84.6
A correctly classified (%) 69.4 47.2 75.0 47.2 58.3

Global rate (%) 69.4 48.4 66.1 62.9 69.4
Commonly selected variables 1 0 3 0 2

M vs. A
Band δ θ α β Comb.

M correctly classified (%) 11.1 55.6 22.2 83.3 72.2
A correctly classified (%) 72.2 47.2 58.3 55.6 63.9

Global rate (%) 51.9 50.0 46.3 64.8 66.7
Commonly selected variables 2 1 0 2 2

C, M, and A refer to controls, MCI, and AD patients, respectively.
‘Comb.’ indicates that a combination of features of all bands was entered.

Table 1 and Table 2 also display the number of variables that were included
in the logistic regression in more than 50% of the iterations for every case. These
consistently selected variables of individual bands were combined and the classification
process repeated to check whether diverse spectral bands could have complementary
information for the detection of MCI and AD. These results appear under the ‘Comb.’
headers in Table 1 and Table 2.

5. Discussion and Conclusions

MEG background activity from 36 AD, 18 MCI and 26 control subjects was analysed to
assess the MEG inter-regional connectivity with c(f). Furthermore, a novel procedure
to adaptively extract brain rhythmic activity from sets of channels was proposed.
Hence, the aim of this study was twofold: to inspect the alterations that AD and MCI
cause in the electromagnetic brain activity and to introduce a methodology based on
EMD and cBSS to extract brain activity in δ, θ, α and β bands. The statistical analysis
suggested that AD and MCI might affect the inter-regional connectivity, although the
results were not statistically significant. However, a logistic regression with full loo-cv
indicated that our methodology had higher accuracy in the classification of MCI and
AD than computing c(f) from the raw MEGs.

The cardiac contamination was reduced using a cBSS-based scheme (Escudero
et al., 2011; James and Gibson, 2003). This ensured that the QRS complexes did not
affect the IMFs that could serve as references to extract the rhythmic oscillations.
Otherwise, the cardiac activity might have been present in some of the IMFs (Blanco-
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Velasco et al., 2008), thus biasing the results. The same cardiac activity was estimated
using the cBSS and removed from all MEG channels in order to avoid differences in
the way the channels were preprocessed. This artefact removal was applied before
any connectivity-related computation. Hence, the differences in the results between
both approaches cannot be due to that. Additionally, it is important to note that the
MEG may suffer from baseline drifts or high-frequency noise. However, our analysis
in the second approach is robust to the presence of these kinds of noise. Firstly, only
frequencies between 1–30 Hz were considered in the calculation of c(f). This spectral
range includes the δ, θ, α and β bands while discarding the very low-frequency baseline
drifts, whose spectrum is located below 1 Hz, and any high-frequency contamination
over 30 Hz. Furthermore, the EMD isolates the high-frequency noise and the baseline
drift in the first and last extracted IMFs, respectively. Since only the IMFs whose
ωps are between 1–30 Hz are fed to the clustering process, the IMFs that account for
baseline drift or high-frequency noise cannot be selected as references for the cBSS.
Actually, the ability of the EMD to isolate baseline wanders and noise has been used
to denoise biomedical recordings (Blanco-Velasco et al., 2008).

Suitable references were selected among all IMFs from a region for each band.
This procedure was carried out using a k-means clustering of the ωp values. Then,
a cBSS was applied to simultaneously extract the activities from all channels in a
region. This allowed us to consider the activity at the regional level, which is in
contrast with processing single channels – ‘channel domain’, (Alonso et al., 2011;
Gómez et al., 2009b) – or localising equivalent dipoles – ‘dipole domain’, (Hoechstetter
et al., 2004; Rossini et al., 2007; Supp et al., 2007). Our approach is slightly similar to
that adopted by Stam et al. (2006), who carried out a channel-wise analysis and then
grouped and averaged the results. Alternatively, we took a ‘regional domain’ approach
and tested it on the classification of MCI and AD subjects. AD causes a slowdown
and abnormalities in the non-linear dynamics of the electromagnetic brain activity
(Hornero et al., 2009; Jeong, 2004; Rossini et al., 2007; Stam, 2010). Although AD
has been related to neo-cortical disconnection (Jeong, 2004), this effect is not always
easily detectable (Dauwels et al., 2010). There is some consensus that AD decreases the
synchronisation level in high-frequency bands. Contradictory results have been found
for low frequencies (Jeong, 2004; Rossini et al., 2007), but animal models suggest
that acetylcholine loss decreases high-frequency EEG connectivity while increasing
low-frequency coupling (Rossini et al., 2007).

Although c(f) only captures linear signal interactions (Gómez et al., 2009b;
Pereda et al., 2005), it is not clear whether the alternative non-linear connectivity
measures are superior to c(f) (Gómez et al., 2009b). Moreover, the outcomes of c(f)
and other connectivity measurements seem to be correlated (Dauwels et al., 2010).
Diverse EEG studies have applied c(f) to study MCI patients (Babiloni et al., 2006;
Dauwels et al., 2010; Jeong, 2004; Rossini et al., 2006, 2007). It has been suggested
that c(f) might help to estimate the progression from MCI to AD (Rossini et al., 2006).
Yet, there are some divergences among studies, which might be due to differences in
the analysed populations and the heterogeneity of MCI (Gómez et al., 2009b).

The statistical analysis showed clear dependences of c(f) on the spectral band
and pair of regions. The estimated marginal means supported the idea that AD
decreases the connectivity of brain signals in α (Jeong, 2004; Rossini et al., 2007;
Stam, 2010). Moreover, they seemed to suggest that AD causes a rise in δ c(f) levels.
However, there were no significant differences between the groups. The fact that not all
frequencies are equally affected by the changes in c(f) indicates that the alterations
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are not simply due to a loss of cortical neurons (Dauwels et al., 2010). Moreover,
previous studies have reported opposite changes in different spectral bands in relation
to AD (Alonso et al., 2011; Stam et al., 2009; van Cappellen van Walsum et al., 2003).
Actually, our results complement the intra-regional connectivity analysis by Alonso
et al. (2011), who reported an intra-regional increase in connectivity in low frequencies
and a decrease in fast rhythms in a smaller sample of AD patients. The alterations
in connectivity might be due to anatomical disconnections among cortical regions or
reduced cholinergic coupling between cortical neurons (Dauwels et al., 2010).

A stepwise procedure automatically selected the most appropriate features from
each single spectral band to classify the subjects at every single iteration of the loo-
cv. This ensured that the development of the classifier (i.e., variable selection and
training of the logistic regression) was not influenced at all by the testing data. We
also evaluated the possible complementarity of features from diverse bands to diagnose
the subjects. In these cases, only variables that had been frequently selected in single
bands were presented to the classifier development. The aim was to avoid the over-
fitting that would have appeared if all features from all bands (112 variables in total)
had been used to classify a few dozens of subjects. The loo-cv reduces the accuracy
levels but it avoids over-estimation of the true classification rates and increases the
reproducibility of the results (Dauwels et al., 2010). It must be noted that the number
of variables selected by the stepwise procedure (with a maximum of 4) was small in
comparison with the total number of features available for classification. Moreover,
the combination of features from several bands tended to improve the performance of
the classifier based on the c(f) calculated with the proposed methodology.

Reported MEG-based classification rates of AD patients versus healthy elderly
subjects usually are about 80% (Escudero et al., 2009; Gómez et al., 2009a; Hornero
et al., 2009; Poza et al., 2008; Stam, 2010). Our highest accuracies are relatively lower
than those, but comparable to those found by Alonso et al. (2011) in a smaller dataset.
However, cross-validation techniques were not always applied in other papers. In this
study, the accuracy reached 69.4% when variables of all bands were combined in the
second approach to separate AD patients from controls.

The use of c(f) features allowed us to classify MCI and control subjects with an
accuracy of 77.3%. This value is lower than the accuracy obtained in an EEG study
with neural networks (93.5%) (Rossini et al., 2008) but close to that recently reported
after an exhaustive EEG connectivity analysis (83%) (Dauwels et al., 2010). However,
care should be taken when comparing these results as different types of signals were
studied. A difference of more than 12 years in the mean age of MCI and controls
existed in the work by Rossini et al. (2008) while the groups were matched in age
in our study. Furthermore, our result compares favourably with a previous study
that classified a similar dataset of MCI and controls with accuracy of 69.8% without
cross-validation (Gómez et al., 2009b).

Rather than trying to estimate the equivalent current dipoles or computing c(f)
for pairs of channels, the activity was extracted at a regional level. It is important to
note that the cBSS does not estimate equivalent current dipoles. Instead, it extracts a
signal component that is independent from the rest of the brain activity and close to
a reference (Huang and Mi, 2007; James and Gibson, 2003; Lu and Rajapakse, 2005).
This procedure allowed us to obtain the activity that jointly represents a set of channels
(Lu and Rajapakse, 2005). Thus, the extracted component accounts for the dominant
activity in each of the bands of interest for every region. This novel approach led to
two noticeable results. Firstly, the estimated marginal means tended to be lower when
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c(f) was computed with the proposed methodology than when calculated from the raw
MEG channels. Secondly, the adaptive extraction of activity used to provide higher
classification accuracies than the MEG channels. A potential explanation for these two
results might be that the extraction helped to reduce the impact of the contamination
from other activities into the inter-regional connectivity. This might alleviate the
volume conduction effect, which is stronger at nearby channels, and its associated
bias in c(f) (Nolte et al., 2004; Stam et al., 2009). Nevertheless, we do acknowledge
that additional tests are needed to corroborate or refute this hypothetical explanation.
Other limitations of this study also merit consideration. Firstly, the sample size is
small to prove the usefulness of our approach as a diagnostic tool. Thus, a larger
database is needed to confirm the results. Secondly, and similarly to other studies
(Dauwels et al., 2010), we mainly tried to help in the discrimination of subject groups.
We did not aim at identifying the biophysical mechanisms that cause the alterations
of AD and MCI in the MEGs. Finally, the subjects did not perform any specific task.
Hence, the classification performance might be improved by analysing signals acquired
during specific tasks (Dauwels et al., 2010; Stam, 2010).

To sum up, we have introduced a novel methodology to extract the activity from
MEG scalp regions. We have also assessed the connectivity alterations caused by
AD and MCI in the electromagnetic brain activity. Our results suggest that the
proposed methodology could provide information about the connectivity pattern in
MEG. Furthermore, they prove the usefulness of this procedure in the classification of
AD and MCI patients versus healthy elderly subjects.
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