921 research outputs found

    Data Layout Optimization and Code Transformation for Paged Memory Systems

    Get PDF
    Supercomputers need not only to have fast functional units, but also to have rapid access to massive quantities of data. Virtual memory paging and physically distributed memory systems both attempt to provide this large data space, but performance of a computer system using either memory organization is highly dependent on the page reference pattern and the number of pages available locally. Despite this, surprisingly little work has been done toward using the compiler to optimize memory system performance. In this paper, we introduce compiler techniques which use a combination of data layout and code transformation to improve paging performance for compiled programs. These same techniques can also be applied manually to improve performance using existing compilers

    Communion: a new strategy for memory management in high-performance computer systems

    Get PDF
    Modern computers present a big gap between peak performance and sustained performance. There are many reasons for this situation, but mainly involving an inefficient usage of computational resources. Nowadays the memory system is the most critical component because of its growing inability to keep up with the processor requests. Technological trends have produced a large and growing gap between CPU speeds and DRAM speeds. Much research has focused this memory system problem, including program optimizing techniques, data locality enhancement, hardware and software prefetching, decoupled architectures, mutithreading, speculative loads and execution. These techniques have got a relative success, but they focus only one component in the hardware or software systems. We present here a new strategy for memory management in high-performance computer systems, named COMMUNION. The basic idea behind this strategy is cooperation. We introduce some interaction possibilities among system programs that are responsible to generate and execute application programs. So, we investigate two specific interactions: between the compiler and the operating system, and among the compiling system components. The experimental results show that it’s possible to get improvements of about 10 times in execution time, and about 5 times in memory demand. In the interaction between compiler and operating system, named Compiler-Aided Page Replacement (CAPR), we achieved a reduction of about 10% in space-time product, with an increase of only 0.5% in the total execution time. All these results show that it’s possible to manage main memory with a better efficiency than current systems.Eje: Procesamiento distribuido y paralelo. Tratamiento de señalesRed de Universidades con Carreras en Informática (RedUNCI

    Communion: a new strategy form memory management in high-performance computer

    Get PDF
    Modern computers present a big gap between peak performance and sustained performance. There are many reasons for this situation, but mainly involving an inefficient usage of computational resources. Nowadays the memory system is the most critical component because of its growing inability to keep up with the processor requests. Technological trends have produced a large and growing gap between CPU speeds and DRAM speeds. Much research has focused this memory system problem, including program optimizing techniques, data locality enhancement, hardware and software prefetching, decoupled architectures, multithreading, speculative loads and execution. These techniques have got a relative success, but they focus only one component in the hardware or software systems. We present here a new strategy for memory management in high-performance computer systems, named COMMUNION. The basic idea behind this strategy is "cooperation". We introduce some interaction possibilities among system programs that are responsible to generate and execute application programs. So, we investigate two specific interactions: between the compiler and the operating system, and among the compiling system components. The experimental results show that it's possible to get improvements of about 10 times in execution time, and about 5 times in memory demand, enhancing the interaction between the compiling system components. In the interaction between compiler and operating system, named Compiler-Aided Page Replacement (CAPR), we achieved a reduction of about 10% in space-time product, with an increase of only 0.5% in the total execution time. All these results show that it s possible to manage main memory with a better efficiency than current systems.Facultad de Informátic

    Communion: a new strategy for memory management in high-performance computer systems

    Get PDF
    Modern computers present a big gap between peak performance and sustained performance. There are many reasons for this situation, but mainly involving an inefficient usage of computational resources. Nowadays the memory system is the most critical component because of its growing inability to keep up with the processor requests. Technological trends have produced a large and growing gap between CPU speeds and DRAM speeds. Much research has focused this memory system problem, including program optimizing techniques, data locality enhancement, hardware and software prefetching, decoupled architectures, mutithreading, speculative loads and execution. These techniques have got a relative success, but they focus only one component in the hardware or software systems. We present here a new strategy for memory management in high-performance computer systems, named COMMUNION. The basic idea behind this strategy is cooperation. We introduce some interaction possibilities among system programs that are responsible to generate and execute application programs. So, we investigate two specific interactions: between the compiler and the operating system, and among the compiling system components. The experimental results show that it’s possible to get improvements of about 10 times in execution time, and about 5 times in memory demand. In the interaction between compiler and operating system, named Compiler-Aided Page Replacement (CAPR), we achieved a reduction of about 10% in space-time product, with an increase of only 0.5% in the total execution time. All these results show that it’s possible to manage main memory with a better efficiency than current systems.Eje: Procesamiento distribuido y paralelo. Tratamiento de señalesRed de Universidades con Carreras en Informática (RedUNCI

    Hybrid semantic-document models

    Get PDF
    This thesis presents the concept of hybrid semantic-document models to aid information management when using standards for complex technical domains such as military data communication. These standards are traditionally text based documents for human interpretation, but prose sections can often be ambiguous and can lead to discrepancies and subsequent implementation problems. Many organisations produce semantic representations of the material to ensure common understanding and to exploit computer aided development. In developing these semantic representations, no relationship is maintained to the original prose. Maintaining relationships between the original prose and the semantic model has key benefits, including assessing conformance at a semantic level, and enabling original content authors to explicitly define their intentions, thus reducing ambiguity and facilitating computer aided functionality. Through the use of a case study method based on the military standard MIL-STD-6016C, a framework of relationships is proposed. These relationships can integrate with common document modelling techniques and provide the necessary functionality to allow semantic content to be mapped into document views. These relationships are then generalised for applicability to a wider context. Additionally, this framework is coupled with a templating approach which, for repeating sections, can improve consistency and further enhance quality. A reflective approach to model driven web rendering is presented and evaluated. This reflective approach uses self-inspection at runtime to read directly from the model, thus eliminating the need for any generative processes which result in data duplication across source used for different purpose

    Dynamic program monitoring and transformation using the OMOS object server

    Get PDF
    technical reportIn traditional monolithic operating systems the con?? straints of working within the kernel have limited the sophistication of the schemes used to manage exe?? cutable program images By implementing an exe?? cutable image loader as a persistent user??space pro?? gram we can extend system program loading capabili?? ties In this paper we present OMOS an Object Meta?? Object Server which provides program loading facili?? ties as a special case of generic object instantiation We discuss the architecture of OMOS the extensible nature of that architecture and its application to the problem of dynamic program monitoring and optimiza?? tion We present several optimization strategies and the results of applying these strategies ?

    VXA: A Virtual Architecture for Durable Compressed Archives

    Full text link
    Data compression algorithms change frequently, and obsolete decoders do not always run on new hardware and operating systems, threatening the long-term usability of content archived using those algorithms. Re-encoding content into new formats is cumbersome, and highly undesirable when lossy compression is involved. Processor architectures, in contrast, have remained comparatively stable over recent decades. VXA, an archival storage system designed around this observation, archives executable decoders along with the encoded content it stores. VXA decoders run in a specialized virtual machine that implements an OS-independent execution environment based on the standard x86 architecture. The VXA virtual machine strictly limits access to host system services, making decoders safe to run even if an archive contains malicious code. VXA's adoption of a "native" processor architecture instead of type-safe language technology allows reuse of existing "hand-optimized" decoders in C and assembly language, and permits decoders access to performance-enhancing architecture features such as vector processing instructions. The performance cost of VXA's virtualization is typically less than 15% compared with the same decoders running natively. The storage cost of archived decoders, typically 30-130KB each, can be amortized across many archived files sharing the same compression method.Comment: 14 pages, 7 figures, 2 table

    An accurate prefetching policy for object oriented systems

    Get PDF
    PhD ThesisIn the latest high-performance computers, there is a growing requirement for accurate prefetching(AP) methodologies for advanced object management schemes in virtual memory and migration systems. The major issue for achieving this goal is that of finding a simple way of accurately predicting the objects that will be referenced in the near future and to group them so as to allow them to be fetched same time. The basic notion of AP involves building a relationship for logically grouping related objects and prefetching them, rather than using their physical grouping and it relies on demand fetching such as is done in existing restructuring or grouping schemes. By this, AP tries to overcome some of the shortcomings posed by physical grouping methods. Prefetching also makes use of the properties of object oriented languages to build inter and intra object relationships as a means of logical grouping. This thesis describes how this relationship can be established at compile time and how it can be used for accurate object prefetching in virtual memory systems. In addition, AP performs control flow and data dependency analysis to reinforce the relationships and to find the dependencies of a program. The user program is decomposed into prefetching blocks which contain all the information needed for block prefetching such as long branches and function calls at major branch points. The proposed prefetching scheme is implemented by extending a C++ compiler and evaluated on a virtual memory simulator. The results show a significant reduction both in the number of page fault and memory pollution. In particular, AP can suppress many page faults that occur during transition phases which are unmanageable by other ways of fetching. AP can be applied to a local and distributed virtual memory system so as to reduce the fault rate by fetching groups of objects at the same time and consequently lessening operating system overheads.British Counci

    Communion: a new strategy form memory management in high-performance computer

    Get PDF
    Modern computers present a big gap between peak performance and sustained performance. There are many reasons for this situation, but mainly involving an inefficient usage of computational resources. Nowadays the memory system is the most critical component because of its growing inability to keep up with the processor requests. Technological trends have produced a large and growing gap between CPU speeds and DRAM speeds. Much research has focused this memory system problem, including program optimizing techniques, data locality enhancement, hardware and software prefetching, decoupled architectures, multithreading, speculative loads and execution. These techniques have got a relative success, but they focus only one component in the hardware or software systems. We present here a new strategy for memory management in high-performance computer systems, named COMMUNION. The basic idea behind this strategy is "cooperation". We introduce some interaction possibilities among system programs that are responsible to generate and execute application programs. So, we investigate two specific interactions: between the compiler and the operating system, and among the compiling system components. The experimental results show that it's possible to get improvements of about 10 times in execution time, and about 5 times in memory demand, enhancing the interaction between the compiling system components. In the interaction between compiler and operating system, named Compiler-Aided Page Replacement (CAPR), we achieved a reduction of about 10% in space-time product, with an increase of only 0.5% in the total execution time. All these results show that it s possible to manage main memory with a better efficiency than current systems.Facultad de Informátic

    Communion: a new strategy for memory management in high-performance computer systems

    Get PDF
    Modern computers present a big gap between peak performance and sustained performance. There are many reasons for this situation, but mainly involving an inefficient usage of computational resources. Nowadays the memory system is the most critical component because of its growing inability to keep up with the processor requests. Technological trends have produced a large and growing gap between CPU speeds and DRAM speeds. Much research has focused this memory system problem, including program optimizing techniques, data locality enhancement, hardware and software prefetching, decoupled architectures, mutithreading, speculative loads and execution. These techniques have got a relative success, but they focus only one component in the hardware or software systems. We present here a new strategy for memory management in high-performance computer systems, named COMMUNION. The basic idea behind this strategy is cooperation. We introduce some interaction possibilities among system programs that are responsible to generate and execute application programs. So, we investigate two specific interactions: between the compiler and the operating system, and among the compiling system components. The experimental results show that it’s possible to get improvements of about 10 times in execution time, and about 5 times in memory demand. In the interaction between compiler and operating system, named Compiler-Aided Page Replacement (CAPR), we achieved a reduction of about 10% in space-time product, with an increase of only 0.5% in the total execution time. All these results show that it’s possible to manage main memory with a better efficiency than current systems.Eje: Procesamiento distribuido y paralelo. Tratamiento de señalesRed de Universidades con Carreras en Informática (RedUNCI
    corecore