
An Accurate Prefetching Policy

for
Object Oriented Systems

by

Dong Ho Song

Ph.D. Thesis

December 1990

The University of Newcastle upon Tyne
Computing Laboratdry

I NEWCASTLE UNIVERSITY LIBRARY

i/::3'? (\:! 1 HfZJ ,l,

Abstract
In the latest high-performance computers, there is a growing requirement for

accurate prefetching(AP) methodologies for advanced object management schemes

in virtual memory and migration systems. The major issue for achieving this goal is that

of finding a simple way of accurately predicting the objects that will be referenced in

the near future and to group them so as to allow them to be fetched same time. The

basic notion of AP involves building a relationship for logically grouping related

objects and prefetching them, rather than using their physical grouping and it relies on

demand fetching such as is done in existing restructuring or grouping schemes. By this,

AP tries to overcome some of the shortcomings posed by physical grouping methods.

Prefetching also makes use of the properties of object oriented languages to

build inter and intra object relationships as a means of logical grouping. This thesis

describes how this relationship can be established at compile time and how it can be

used for accurate object prefetching in virtual memory systems. In addition, AP

performs control flow and data dependency analysis to reinforce the relationships and

to find the dependencies of a program. The user program is decomposed into

prefetching blocks which contain all the information needed for block prefetching such

as long branches and function calls at major branch points.

The proposed prefetching scheme is implemented by extending a C++

compiler and evaluated on a virtual memory simulator. The results show a significant

reduction both in the number of page fault and memory pollution. In particular, AP

can suppress many page faults that occur during transition phases which are

unmanageable by other ways of fetching. AP can be applied to a local and distributed

virtual memory system so as to reduce the fault rate by fetching groups of objects at the

same time and consequently lessening operating system overheads.

II

Acknowledgements

Foremostly lowe a debt of gratitude to my supervisor Dr. Lindsay Marshall for

his help and encouragement, and in particular, for suggesting this research area. His

reading and commenting upon the numerous drafts of this thesis have been invaluable

in completing this thesis. His efforts are greatly appreciated and can not be forgotten.

I would also wish to thank several staff members of the Computing Laboratory,

in particular Dr. lsi Mitrani, for their many useful comments on this research. I would

also like to thank Jonathan Spencer for his reading and commenting on parts of this

thesis.

Finally, I would like to thank my sisters and brothers in Korea for the help and

encouragement they have given me during the time I have spent working on this thesis.

Financial support for my scholarship during my studies was provided by grants

from the British Council. Their support is greatly appreciated.

Table of Contents

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

Trademarks

1

2

Introduction

1.1 Object Oriented System

1.2 Requirements of Virtual Memory in Central and

Distributed Systems

1.3 Related Mechanisms

1.3.1 Grouping and Restructuring

1.3.2 One Block Lookahead (OBL)

1.4 The Aims of Thesis

1.5 Structure of Thesis

Virtual Memory Issues and Prefetching

2.1 Virtual Memory System Model and Terminology

2.1.1 Memories

2.1.2 Virtual Memory System

2.2 Program Locality

2.3 Hardware Requirements for Virtual Memory

2.4 Paging

2.4.1 Page Replacement Algorithms

2.4.1.1 Fixed Space Replacement Algorithms

2.4.1.2 Variable Space Replacement Algorithms

2.5 Program Restructuring

2.6 Virtual Object Memory in Small talk System

III

II

III

Vll

lX

X

1

2

4

10

10

11

13

18

20

21

21

22

23

25

26

27

28

29

32

35

3

4

2.6.1 LOOM - Large Object Oriented Memory for

Smalltalk-80 System

2.6.2 Static Grouping

2.6.3 Dynamic Grouping

2.7 A Review of Prefetching Based System

2.7.1 One Block Lookahead Prefetching

2.7.2 Variations of OBL

2.7.3 Brent's Cache Memory Line Prefetching

2.8 Conclusions

AP and Object Oriented Programming Languages

3.1 Formulation of AP

3.2 The Influence of the Properties of 00 languages on AP

3.2.1 Data Abstraction and Encapsulation

3.2.2 Inheritance

3.2.3 Dynamic Binding or Virtual Function

3.2.4 Construction and Destruction

3.3 lbyo in Objective-C and Smalltalk-80

3.3 Intra and Inter Object Relationships for AP

3.5 Object Data Prefetching at Compile Time

3.5.1 Separation of Object Data from Code in UNIX

3.5.2 Object Data Prefetching with Data Dependency Analysis

3.5.2.1 Establishing an Intra and Inter Object Relationship

3.5.2.2 Prefetch Objects at Runtime

3.6 Conclusion

Prefetching Block

4.1 Program Decomposition

4.1.1 Basic Block

4.1.2 Three Address Statements

4.1.3 Building a Basic Block

4.2 Control Flow Graph of a Basic Function

lV

35

36

38

39

40

41

43

44

45

46

46

47

49

51

54

56

58

62

62

63

64

66

68

70

71

72

72

73

74

v

4.2.1 Begin Function 75

4.2.2 Return Function 75

4.2.3 Sequential Block 75

4.2.4 Function Call and Object Data 76

4.2.5 Branch 77

4.3 Prefetch Block 78

4.4 Control Flow for Conditional Branches and Loops in C++ 80

4.5 Adding Data to the Prefetch Block 84

4.6 Pre fetch Block and Paging 86

4.7 Comparision with Similar Works 89

4.8.1 SOS 90

4.8.2 Emerald 90

4.8.3 Guide 91

4.8.4 Comparision with AP and Discussion 92

4.9 Conclusion 94

5 Implementation of AP 95

5.1 The AP system model 96

5.2 Simulation of a Virtual Memory System 98

5.2.1 Executor 99

5.2.2 Primary Memory (s_main) 101

5.2.3 Secondary Memory (s_secondary) 103

5.2.4 Prefetch Queue Management 103

5.2.5 Page Fault Manager 106

5.2.6 Page Purging Management 109

5.3 Generating Prefetch Blocks 110

5.3.1 Generate a Prefetching Tree 110

5.3.2 Merging Prefetch Blocks 116

5.3.3 Building Class Hierarchy Trees 118

5.3.4 Relational Table for Object Member Function and its Data 110

5.3.5 Collecting of Object Data and Variables for Functions 122

5.3.6 Combine all the Trees into a Prefetch Tree 125

6

7

5.4 Getting the Address of Objects

5.5 Naming of Prefetch Blocks

5.6 Running the Simulator

5.6.1 Loading a Prefetch Table

5.6.2 Searching for a Prefetch Block at a Fault

5.6.3 Running the Simulator

5.6.4 Object Data Prefetching Using Parameter Passing

5.7 Summary and Discussion

Performance Measurement and Analysis

6.1 Performance Measurement of the C++ Compiler

6.2 Performance Evaluation of AP

6.2.1 Cost Measurement Method for Prefetching Policies

6.2.2 Policies on Performance Measurement for AP

6.2.3 Performance Measurement of AP

6.3 Manageable and Unmanageable Faults by AP

6.4 Discussion

Conclusions and Directions for Future Work

7.1 Conclusions

7.2 Further Study

References

vi

126

128

133

133

135

137

138

140

144

144

146
147

151

151

159

161

165

165

169

173

Vll

List of Figures

Figure 1.1: The model of a distributed computing system 13

Figure 1.2: A working set transition diagram 15

Figure 2.1: A storage reference pattern on UNIX 24

Figure 3.1: The class int_Stack 48

Figure 3.2: The employer class hierarchy 50

Figure 3.3: Single, multiple and repeated inheritance 51

Figure 3.4: Executable file types for 410 and 413 62

Figure 3.4: Object data and codes are stored in different pages 64

Figure 4.1: C+ + grammar for function, conditional, unconditional branch 81

Figure 4.2: Program frame and virtual control blocks 83

Figure 4.3: The dispersion of object codes 88

Figure 5.1: The structure of AP system 97

Figure 5.2: The operation of the executor 100

Figure 5.3: The structure of s_main memory 102

Figure 5.4: The operation of prefetch queue manager 104

Figure 5.5: The extended executor for AP 105

Figure 5.6: Global structure of the compiler 113

Figure 5.7: The structure of G+ + for AP 113

Figure 5.8: A .PB file 114

Figure 5.9: The primitive program skeleton 114

Vlll

Figure 5.10: An optimized program skeleton 117

Figure 5.11: A virtual function table in C+ + 119

Figure 5.12: A class hierarchy tree 120

Figure 5.13: The data structure for the tree in Fig.5.12 120

Figure 5.14: A relational tree for objects 121

Figure 5.15: A general activation record 123

Figure 5.16: A subdivision of run-time memory 123

Figure 5.17: An intermediate prefetchtree for a function 124

Figure 5.18: Building a PBfinalout 128

Figure 5.19: Pseudo labels in a prefetch table 129

Figure 5.20: Naming of Objects in a prefetch tree 132

Figure 5.21: Prefetch tree for Figure 5.20 132

Figure 5.22: A final prefetch table reference by the simulatro 134

Figure 5.23: The procedures in menaging a page fault 137

Figure 5.24: Process of building a prefetch tree 141

Figure 5.25: The final prefetch tree generated by the compiler 142

Figure 5.26: The final prefetch list in the simulator 142

Figure 6.1: Life time and space time curves 148

Figure 6.2: Page fault reduction for LRing 154

Figure 6.3: Number of page fetches for LRing 154

Figure 6.4: Page fault reduction for Myface 157

Figure 6.5: Number of page fetchings for Myface 157

Figure 6.6: An analysis of paging rates for LRing at 12.5k memory size 158

List of Tables

Thble 6.1 : The parse time of extended GNU C++ compiler

Thble 6.2 : The link time of extended GNU C++ compiler

Table 6.3 : Page fault reduction and prefetching ratio for LRing

Thble 6.4 : Page fault reduction and prefetching ratio for Myface

Thble 6.4 : The effect of object data prefetching for LRing

IX

145

145

153

156

160

x

lrademarks

UNIX ™ is a trademark of AT&T in USA and other countries.

GNU ™ is a trademark of Free Software Foundation in USA and other countries.

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

Smalltalk-80 TM is a trademark of ParkPlace Systems.

Introduction

Chapter 1
Introduction

1

Over the last two decades advances in semiconductor technology have allowed the

development of small, low cost, powerful microprocessors and massive main memory

computer systems. Changing technology has also greatly affected the design of future

communications mechanisms. These new technologies suggest that basic assumptions

that have held in the past may no longer hold in the future. For example, massive memory

systems or randomly accessible secondary memory in local and remote systems make

current memory access strategies significantly different from older methodologies. By

combining the feasible hardware with advanced interconnection media, distributed

systems are fast breaking out of their bounds and proceeding into larger technical and

scientific communities. Besides the increase in computing power, flexibility can be

achieved by using a distributed system: extra nodes may be added to the network as the

demands on the system increase. Distributed systems also provide users with parallelism,

load balancing and sharing, better utilization of specialized hardware, exploitation of

resource locality, easier user mobility, fault tolerance and system maintenance.

In the distributed network environment, many processors interact to perform

roughly equivalent tasks at less cost than in a centralized single processor computing

environment. Remote execution[Popek 85, Bergland 86, Caceres 84, Ezzat 86] and

process migration[Popek 85, Zayas 87, Finkel 86, Barak 85, Theimer 85] are typical

computational methods used to achieve this goal. The execution of an operation on a

resource in the network is also a computation that in turn may consist of a series of further

operations on remote resources. In a real environment, the processor overhead of using

any distributed system becomes less significant as the performance of the system is

dominated by network latency. This is because microprocessors get faster but network

Introduction 2

latency remains roughly constant in spite of the development of new high-throughput

networks. The performance of a distributed system can therefore be improved by

preventing unnecessary network communication rather than by cutting the cost of basic

network operations[Chase 90].

Computers today are configured with larger memories, but contention for

memory usage remains an issue, especially on time-sharing systems. Users add more jobs

to a machine until it runs out of some resources; often this bottleneck is memory

[Breecher 89]. So, systems from personal computers to supercomputers with advanced

memory management systems still require larger logical memory space than physical

memory, as well as protection and sharing. This complex memory management is termed

a virtual memory system.

A virtual memory system is vital to a distributed system because several of its

nodes can support a global, uniform address space for network wide computations. This

requires moving process images from one node to the other. When a virtual memory

system performs memory management on local and remote systems, it is called a

distributed virtual memory system. In these multiprocessor and distributed computing

systems, the memory accessing policies become complicated and involve communication

management. They therefore need different memory management strategies from

conventional virtual memory systems. A variety of memory schemes are described in

section 1.2.

1.1 Object Oriented Systems

Over the last few years there has been an increasing interest in object oriented

programming languages and systems. Central to object oriented languages are facilities

for data hiding, protection, extensibility and code sharing through inheritance and

flexibility by the runtime binding of operations to objects. Object oriented languages

provide flexible and efficient facilities for user defined types. A program can be

Introduction 3

partitioned into a set of objects that closely match the concepts of the real world problem.

This technique for program construction is often called data abstraction. In an abstract

data type, the details of object implementation are hidden - data hiding. So, the state of

an object can only be accessed or changed by invoking one of the operations which form

the public interface to the object. A class is defined in terms of a user-defined abstract

data type. An instance of such a class is called an object. Objects of a user defined type

contain information which consists of a data structure and a set of operations. Such an

object encapsulates the data and operations of the object and defines an interface to

other objects. A user program or client can create one or more instances of a class. An

object consists of some data or member variables and a set of operations or member

functions that can be applied to the object's data. Both the member variables and

functions are defined by the object's class. A program cannot read or modify the member

variables of an object directly because they are wrapped up by an interface. If the only way

to modify or access the state contained within an instance of a class is to invoke one of the

public operations, public member functions, then the data abstraction provided by the

language supports encapsulation. When a new class is defined in terms of (and uses) the

data and operations of an existing class, this is called inheritance. Programs that make use

of encapsulation, inheritance and dynamic binding are called object oriented. The use of

objects to structure programs enables modularity and software reuse[Stroustrup 86,

Goldberg 83, Dixon 88, Parrington 88].

The memory management mechanism for the implementation of a pure object

oriented architecture is different from that for imperative language systems. Two factors

in object-oriented memory design greatly differ from conventional systems - the size of

objects and the number of objects. For instance, Smalltalk objects are too small and too

numerous to be managed individually[Kaehler 83, Kaehler 86, Kaiser 88]. Moreover, the

representation of information in an object-oriented memory is completely different to

Introduction 4

that in conventional systems. Memory management must provide an interface at which

logical entities, the objects, are presented while the actual hardware structure of the

physical memory remains hidden. Also, objects are referenced by logical names rather

than by physical addresses. An additional feature is the protection of objects from

arbitrary accesses by introducing an access control mechanism. This feature is especially

important when multiple processes share objects. Kaehler's LOOM, Kaiser's

MUTABOR, Clouds[Dasgupta 90] and the Guide[Balter 90] system have implemented

pure object handling storage management in local or distributed systems. As stated

earlier, because of dealing with many small objects, 110 efficiency is rather low in these

schemes, therefore, dedicated special hardware system may be required. Some

systems[Campbell 88, Shapiro 89] implement their system software and application

packages in object oriented languages. For performance reasons, these systems

implement page based virtual memory in central or distributed systems rather than pure

object managing storage management.

1.2 Requirements of a Virtual Memory in Central and Distributed Systems

Kaiser[Kaiser 88] has defined virtual memory management as having two major

aspects, address space management and storage management. Address space

management means the separation of logical address space from their physical address

and the management of logical storage objects independent of their physical resource

allocation. It includes the issues of protection and sharing of objects. The goal is to

achieve convenient and secure object sharing between processes. For example, the start

address of a UNIX user process is fixed irrespective of its physical image location in main

memory. Also, some UNIX executable files keep process text and data in separate

regions of running processes to permit protection and sharing.

Storage management deals with the allocation and deallocation of physical

memory space. From the storage management point of view, a virtual memory

Introduction 5

conceptually separates logical memory from physical memory enabling the logical

memory to be larger than physical memory. There are three principle methods for

storage management; segmentation, individual object management and paging. In

segmented memory schemes, information is structured into individual modules, termed

memory segments. Each of these has a linear, contiguous, variable length of address

space and contains data that logically belong together. One of the advantages of

segmented memory schemes is their performance. It is more efficient to load a program

all at once than to load it in small sections on demand. However, pure segmentation

causes some serious difficulties for storage management. One drawback is that a segment

must be entirely in main memory when in use. Although only small objects are

referenced, an entire process image would be swapped in or out of memory.

Another challenge for pure segmentation is the handling of many small but

persistent objects[Kaehler 86, Kaiser 88, Harland 87, Dasgupta 90] which is discribed in

Section 1.1. This situation is an ideal candidate for object management in terms of

memory utilization, protection, sharing and even object migration. Moreover, a new

approach taken in object oriented virtual memory management is that objects (usually,

persistent objects) are units of fetching and purging in local secondary memory

management as well as in the distributed shared memory system. Clouds[Dasgupta 90]

even implemented a concept of persistent objects in a page based virtual memory

management. However, because every object is independently swapped between a real

memory and a disk or other storage medium, input and output efficiency may be rather

low. Also, a number of index tables are required to manage the small individual objects

either stored in a main memory or on a disk. So some systems[Harland 87] combined the

pure object fetching into a conventional paging system with hardware support in order to

compensate for the performance degradation of pure object management. A notable

Introduction 6

point in managing individual objects in virtual memory systems is that object fetching

mostly relys on on-demand fetching in spite of the large number but small size of objects.

For efficient storage management, we find demand paging to be the most

commonly accepted strategy[Leffler 89, Kaiser 88, Hwang 84] in conventional

computing systems. Paged memory offers a single linear address space. As a program

runs, additional sections of its program and data spaces are paged in on demand.

However, paging is not a panacea for object-oriented memory management. The fixed

size of pages does not meet the individual requirements of objects because a unit of page

is dependent upon the hardware rather than the granularity of object oriented programs.

As a testbed to implement object-oriented accurate prefetching(AP) in the future, a

page-oriented virtual memory system is adopted to achieve a simple and efficient

implementation of the prefetching using an existing program execution environment.

The algorithm to be developed in this thesis can be applied for conventional paging

systems as well. Moreover, in terms of address space management, pages offer poor

support for individual object protection and sharing because a page may consist of many

small objects. However, a paging system is discussed as a storage management system in

this thesis because they have several advantages[Leffler 89]:

• Allows large programs to run on small memory configurations. It allows more

programs to be resident in main memory to compete for CPU time, as the

programs need not be completely resident. Men programs use sections of their

program or data space for some time, leaving other sections unused, the unused

sections need not be present.

• Allows programs to start up faster, as they generally require only a small section to

be loaded before they begin processing arguments and determining what actions

to take. Other parts of a program may not be needed at all during individual runs.

Each virtual address system in a distributed system has a larger address space than

any single physical address space can provide in a single node. This is because the

Introduction 7

distributed address space can be shared by all nodes in a distributed system. Young

gained some insight into the proper role of location independence by looking at a

network wide virtual memory system combined with communication[Young 86, Dafni

87]. Some workstations that utilize remote file servers, combined with larger main

memories, make it worthwhile to increase the amount of prepaging[Lef£ler 89, Duglis

87].

In Li's shared virtual memory for multiprocessor systems[Li 89, Scheurich 89] and

other distributed systems[Li 86, Fleisch 87], address space is organized in pages which

can be accessed by any node in the system. A paragraph from Li's recent paper[Li 89]

points out that:

The shared virtual memory not only' 'pages" data between physical memories and

disks, as in a conventional virtual memory system, but it also ''pages'' data

between the physical memories of the individual processors. Thus data can

naturally migrate between processors on demand. Furthermore, just as a

conventional virtual memory swaps processes, so does the shared virtual memory.

Thus the shared virtual memory provides a natural and efficient form of process

migration between processors in a distributed system. This is quite a gain because

process migration is usually very difficult to implement. In effect, process

migration subsumes remote procedure calls.

In particular, Fleisch's model[Fleish 87] assumed that a fast (up to 8

Gigabits/second), high bandwidth network is available. Disk transfer rates will also

increase, but probably less dramatically than for buses and networks. These increased

rates suggest distributed shared memory will become more attractive in the future

because large memory systems will continue to be limited more by their 110 capacity than

by memory. A shared memory facility could reduce the number of I/O operations and

therefore improve system performance. Fleisch assumed that distributed shared memory

design should be similar to a virtual memory paging system. A memory mapping manager

Introduction 8

on each node views its local memory as a large cache of pages for its associated processor.

A memory reference causes a page fault whenever the page containing the memory

location is not in a processor's current physical memory. When the fault occurs, the

memory mapping manager retrieves the page from the memory of another processor, so

called memory-to-memory access. If there is a page frame available on the receiving

node, the page is simply moved between the nodes. Otherwise, the shared virtual memory

system uses page replacement policies to find an available page frame, swapping its

contents to the sending node. This paging mechanism is similar to that on a diskless

workstation.

When disks are present in the shared or distributed virtual memory environment,

they can easily be incorporated into the memory hierarchy of the system. If a disk server

provides a transparent paging service then the client disks can be seen as a remote

memory. However, the way of managing page faults in shared or distributed memory

access is different from that for conventional disk based page faults. Remote memory can

serve as an added level of the memory hierarchy between local memory and disks[Li 89].

In this way, the full potential of the large aggregate memory of a multicomputer can be

utilized. Application programs are completely relieved from having to arrange data

movement and availability across the network in an effort effectively to use the

capabilities of a multicomputer. However, in managing page faults, remote memory can

allow random accessing of any pages in the memory which, in contrast, is very expensive

in disk management. Also, the cost of communication is an important factor compared

against disk seek time[Cheriton 88, Theimer 85].

The major difficulty, though, is the cost of transferring a computation's context

from one system node to another. This context which consists primarily of the process

virtual address space is typically large in proportion to the usable bandwidth of the

interconnection medium. Moving the contents of a large virtual address space thus stands

Introduction 9

out as the bottleneck in remote memory access and process migration. As programs

continue to grow, the cost of migrating them by direct copy will also grow linearly. Any

attempt to make process migration a more usable and attractive facility in the face of

large address spaces must focus on this basic bottleneck. One approach is to perform a

logical transfer, which in reality requires only portions of the address space to be

physically transmitted. Instead of shipping the entire contents at migration time only part

of the referenced page can be sent. If on a page based process migration system, during a

program execution, the text file is not stored at the execution site the page could be

demand copied across the network. Zayas and Popek[Zayas 87, Popek 84] showed that

efficient process migration could be achieved by paging portions of a migrated process

only as they were needed. It makes it possible to start executing a migrated task before

moving all of its pages onto the new host. Pages can be faulted across the network and

moved by copy-on-reference or demand prefetched.

Shared memory multiprocessor systems have another problem associated with

memory coherence in their cache memory. A program running on a multiprocessor no

longer has a single, sequential order of execution. The locality of reference of a processor

is easily disturbed by the actions of other processors. Parallel computing introduces a new

type of problem in multiple cache memory systems. In conventional uniprocessor

systems, the higher the locality of data, the better the system performance that can be

achieved. However, this high locality of reference for a block of data may cause problems

when different processors modify adjacent locations. For example, the first write

transfers the block to one processor's cache. The second write moves it to another

processor's cache. This sequence is called false sharing[Hill 90] since no information is

transferred. False sharing arises when the data of two processors lie adjacent in memory

in the same page. So, reducing cache misses is more complex on a multiprocessor due to

interactions with other processors and it is quite different from that in uniprocessors. For

Introduction 10

example, a cache memory system that keeps more items in the cache by packing them

tightly may introduce false sharing between processors, thus, degrading performance.

Programmers should not optimize multiprocessor programs for finite caches unless the

amount of data each processor uses is large and the changes do not cause harmful

interactions with other processors. Therefore, a new scheme is required to manage this

kind of cache miss by adopting a new strategy for caches in multiprocessor systems.

1.3 Related Mechanisms

The concept of virtual memory was originally proposed in ATLAS [Edwards 64]

and evolved in the Multics[Organic 72] project. Research on traditional virtual memory

management for uniprocesor architectures[Denning 79] has had significant impact on

developing modern high performance computer systems. Locality of reference was the

most important observation about sequential programs. The use of virtual memory,

however, can degrade performance. There is a finite cost for each operation, including

saving and restarting state and determining which pages must be 10aded[Leffler 89].

Techniques such as grouping, restructuring and prefetching have been developed to

augment the performance of a virtual memory system.

1.3.1 Grouping and Restructuring

The modern program design that encourages small single purpose modules like

objects could incur a side effect in the execution of the programs. If these modules are

linked together in a random fashion in terms of control flow, as is commonly done, then

an operation often requires access to many modules scattered over numerous pages of

memory. Such a practice clearly leads to a poor locality of reference. Unfortunately,

program reference patterns can be extremely complex: because of this, programmers

generally find it difficult to determine the locality of their code either by observation or

through the use of tools. There are techniques for improving the locality of code

reference by grouping or restructuring modules at compile time or runtime. These

Introduction 11

methods involve automatic or semi-automatic reorganization of the code (in essence a

rearrangement of the link line) to optimize the location of modules[Breecher 89]. These

techniques can be applied to some languages having poor locality of reference.

Functional languages like Lisp or dynamic binding based object oriented languages like

Smalltalk[Courts 88] are good examples of low locality of reference. Stamos and

Williams describe static and dynamic grouping in the Small talk environment[Stamos 85,

Williams 87]. More details of these works will be given in Chapter 2. However, most of

the work is language specific and there is no general solution by this approach.

1.3.2 One Block Lookahead (OBL)

A typical prefetching technique is based on spatial locality and temporal locality.

Such an example of a prefetching algorithm exploiting these properties is the one block

lookahead (OBL) algorithm. Horspool described Joseph's original work on OBL in his

paper[Horspool 87];

In early 1970, Joseph simulated the policy. Thus, if a faulting reference to page

number i occurs and the page numbered i + 1 is not resident in main memory

either, then both pages i and i + 1 are loaded into main memory. This is

beneficial because it should not require twice as much work for the operating

system to fetch two consecutively numbered pages together as it would to fetch just

one of the pages. Most secondary memories are disk based and there would be

little extra seek time and latency delay needed to read the second page.

In spite of OBes inaccurate prefetching, it has been widely used in many operating

systems because of its simplicity and potentially minimal disk seek and latency time based

on spatial locality. However, the mis-prefetchings may break a working set, in particular

in local replacement algorithms. Moreover, it cannot be used for a lookahead

non-consecutive page because it is unable to encompass branches or long distance

calling in a program. Furthermore, suppose OBL is used on a distributed memory access

Introduction 12

or in a diskless workstation, it is far from an optimal methodology since the effect of

mis-prefetching is more expensive than on a local disk based system. Therefore, an

optimal prefetching policy which will work well on a distributed memory access is

required in local as well as distributed systems. Also, we need a new prefetching policy to

lessen mis-prefetching and causing less resident set breaking than OBL.

1.4 A Prefetching System Model

The model assumed in this thesis is a distributed computing system which supports

pre fetching of objects or pages in disks or networks. As shown in Figure 1.1, any node in a

distributed computing system can be either a client or a server depending on the

processes running on the machines. This model can include a dedicated file server model,

for example the Bullet[Renesse 89] file server which has a large RAM memory for

caching disks. A major point in this model is that the CPU overhead of distributed

operations becomes less significant as the performance of the system is dominated by

network latency, and will remain so despite the advent of new high-throughput networks.

The perfonnance of a distributed system depends on the degree to which the system

prevents unnecessary network communication [Chase 89]. So object or page migration

based on prefetching is an alternative of on-demand paging in distributed systems.

There are two major prefetching operations that may be carried out in the model.

The first is a conventional virtual memory function which operates between a main

memory and a disk based secondary memory system. The data transfer medium between

a main memory and a disk is a bus. The second is prefetching based objects or page

migration between nodes. Here, the communication medum is assumed to be a local area

network which has non-negligible communication overhead compared to disk access

times. In addition, one more prefetching operation in the model can be assumed between

very high speed CPU cache memory and main memory but this is not considered in any

detail here. Because cache memory is based on a line fetching which is of relatively small

Introduction

Client

RAM

D

Server

RAM Dis

D AP based
Virtual
Memory

Fig.1.1 The Model of a distributed computing system

13

size compared to a page and it requires special hardware such as associative memory for

high speed lookup of reference tables. The lookup time should be within the order of

several machine cycles.

Paging is adopted througout the implementation of accurate prefetching(AP) in

this thesis because the principle of accurate prefetching of objects or pages which contain

objects are the same. Also, when the paging system is adopted in the simulation, it

enables to implement a quick prototype to demonstrate the feasibility of AP but other

issues like memory utilization, object indexing and management are considered as

outside the scope of this thesis.

1.4 The Aims of this Thesis

The basic concept of prefetching in virtual memory systems, to run paging system

where some fetches of pages into the main memory were performed before any reference

to those pages had occurred, was known in early 1970 [Horspool 87]. Studies of

prefetching process images have been reported by Joseph[Jorseph 70] (one block

lookahead), Baier[Baier 76] (whose PRED function is based on spatiallookahead and

Introduction 14

recurrent patterns), Horspool (whose PRIO function resolved the memory inclusion

problem) and Theimer's preswapping paradigm[Theimer 85]. These predictive studies

present complicated priority techniques or statistical analysis and could reduce memory

pollution by suppressing unnecessary prefetches of pages in one block lookahead but still

could not encompass more than OBL. The term memory pollution means the

phenomenon of wasting main memory with useless prefetched pages which are not

referenced within a reasonable period of time[Horspool 87].

As object oriented programming is becoming used widely in software

development, the requirement for an advanced virtual memory system scheme for object

management in new hardware systems is growing. As stated earlier, there are no accurate

prefetching algorithms applicable to an object oriented distributed shared memory

system or diskless workstations. The nearest example is Zayas'[Zayas 87]

copy-on-reference scheme in which a page migration is delayed until there is a reference

to the page. When copy-on-reference was realized on a network a problem was posed. It

is that there are as many remote page requests in the distributed system as page faults in

local execution and this creates heavy loading for the network service routines and

increased communication overhead. Also, the copy-on-reference did not show good

results in migrating non-Lisp programs. Zayas pointed out that if there were an

optimized prefetching algorithm available to reduce the distributed page faults the

bottleneck of a process migration and distributed memory access would be resolved

dramatically.

A working set model based on locality of reference which will be discussed in

detail in Chapter 2. In this model, many page faults are incurred at the phase transition of

working sets. This is shown in the Figure 1.2 where the x axis shows time progressing and

the y axis is the number of page faults [Williams 87]. The initial paging stage is

unavoidable in a pure paging system but the time can be reduced by adopting a

Introduction

Page Far Rate

H-.. --H
Initial Steady
Paging State
Stage -

Working Set
Transition
Stage

Time

Figure 1.2 A working set transition diagram

15

segmented page scheme. After loading the first working set into main memory, the page

fault rate is decreased sharply for a time being until a transition phase follows. This is

because the working set satisfies a reference string of a processor. However, in a virtual

memory system this working set changes into another working set through a number of

page faults at the working set transition stage. As this figure shows, there is a high rate of

page faults at the initial paging stage and at every working set transition stage. These high

paging rates cannot be managed by a natural paging scheme or a simple prefetching

scheme but an accurate prefetching scheme can resolve it.

Moreover, the way of managing object or page faults in a shared or distributed

memory access is different from that in disk based faults. Most conventional virtual

memory systems work on just disk based systems. However, network expansion of virtual

memory systems requires an advanced prefetching policy to support efficient object or

page movement in memory-to-memory or memory-to-remote disk server in distributed

systems. This is because remote memory allows access to random objects or pages as

cheaply as contiguous object or page access and, compared to communication overhead,

disk seek time is no more the dominant factor[Cheriton 88, Fleisch 88, Johnston 90]. This

Introduction 16

enables the prefetching a group of objects or pages independent of their physical location

in remote memory. Most efforts to date have centered on increasing the fetching system

performance by considering mechanical disk head movement. But, a new mechanism to

deal with the faults in terms of random accessing secondary memory should be provided

in a distributed virtual memory system.

Furthermore, because of the modular subdivision of a program (in an

object-oriented languages) into scattered objects and the separation of code from data in

central and distributed environments, the simple sequential prefetching policy that has

been performed in OBL is insufficient for high performance computing systems. As in

normal virtual memory, prediction of future accesses in OBL is based on past

history[Brent 87]. As this is invalid, in particular, there is no high serializability in data

pages. Many exceptions are generated by object invocations during the transition to a

new phase. So, OBL is not very accurate and cannot suppress the fault rates caused by

object invocations. This thesis describes how to construct an accurate demand object

page prefetching(AP) with low memory pollution for object oriented systems. Object

oriented programming languages have good properties for building inter object

relationships using inheritance as well as establishing an intra objects relationship

between separated object member functions and their variables through encapsulation.

An interclass dependency which may cause the execution of methods up and down the

class hierarchy, the so called yoyo phenomenon[Taenzer 89], is used for AP. Also,

overprefetching is controlled by combining the inter object relationships with branch

based control flow analysis method.

Control flow graphs have been used for virtual memory by Verhoff[Ver 71],

Hatfield[Hatfield 71], Stamos[Stamos 84], Brent[Brent 87] and Hartley[Hartley 88].

These studies presented several grouping[Stamo 84, Williams 87] or

restructuring[Verhoff 71, Hatfield 71, Breecher 89, Hartley 88] methods as well as

Inlrodw /till!

pi L'ktdlltll-'I Brult)-)7 J, /\1 till IUI-'II the rl>truLlurlng Impr", emen;, fL;1:, ~'d" "ee ~':' '0

I()r till' PdrtlLUI,tf trdle\ tlldt v,de \lUJIL·J d Jilkrcrrt \et ut Ir;r~t JJ:J ·.:'oC~;-. ~'--: ::.': ~.j:-:

Pf(ll-'T.lillldfl (tIter thc trdLe \u!!ILlerllly \Il tlldt the re\lruc.tureJ p:ll.::;rdl11 :- .. :~~,', be :,~u

thL' Ilrigin,tI \,L'r\iilfllisrent)-)71 1;1,,'nt lel)l.rteJ elil dCCULik FIC:clC~j[12 [,)11::, J.,~

"(l\\L'\'l'l, thl' flll'lctchlill-' 1\ undllk til (kIJIIlII,lrdle gl)(lJ re"ulh U:'lfl~ C·(ll1'[l l~ ,\

,11l,tI)'\I\ hl'Ldll\L' the spcLidi h,lrJwdle is Ulldhk til trdcc elll (PL lIlJ1tIlJ! ;k,', ,I: ~,,:',

hrdllLh point. ~lore detdll.\ (I! HleIlt\ WI lrk (til: I-'I\cIlln Chdpter 2\1",l. f...:.,jehkr [klchk'

.~.\ 1111\L'\llgdtLd dll uhJcct hd\ul \\vdPping (11l\te,ld (If il,lgc III \c~llleIll S\\dl'i'lll~ tll ,,~,\,:

Illdin mCl1lury) but sh(1wnl thdt the rel.JtI\e Ul\t u! IlhJClt S\\'Ql]1IIlg \el"U" 11,1~1;1: r .. illgh

I'his 1.\ n:pldined III gredtn dLtaiiln \CCllllll 2,~, IIII\\L'\L'I, thl:' U\C 1>\ (lhJeLt IHlen:cll

progr;lIl1llling \trllctllIL' dnd Luntrol fluw gr,lflh t(lr d \lrtllclIIl1L'l1lllr\ \\"kIll Ir,I' IIL'rlllLI

been \ul-'l-'e\tLd Ilnr studied in dl'Llil.1 he dLLur;!le liL-Ill,llld Illcktch'l':]1llllc\ I.-\I'~

dl'suibl'J in this thL'sis u)Uld supress ,til \llch L'\LL'lltlUfh th.lt 1ll;IY (llll!1 III II HIL' JllillP h\

m;lking U\l' ill control tlow analYSl\

In addition, AP implll'\ a Illgll,tI grlluping Il)r (lbjnl 11.I~L'" III ,I \11[lJ.11 Illl:11H'I\

\\\Il'm, Thi\ 1\ bl'CIU\L' ;\P is ohtdinnl hy nll1JlIle ClllllIL'l[I\lty ,lllcl L'lllltln dlL' dl"I'L'I"Ld

(l\ l'Ill1dny rd~l'\, ;\IS(l, AP Cdn further ;lUgllll'llt pertnrlll,lnle \\IIL'II I(lUll'" l ill tl if' l'l ... l'llle:

phY\IL.tI grnllpings \llch dS ill d SIl1,lilt~Iik l'll\ lronml'nt. \ ... r,lt1li'iI\ "1(,11 grllul'lll,L' 1"1'.11 lh

!l'l] 1I i rnl ill ;\ I' to r soml' dyn;lll1l C ob j l'l'ts tl) C()fll b i nl' ! (l i,'.l' til L' I () II ! 11 L' l)[h l"! 11.111 J, "lmit

... ililrtl(lmin~\ [lust'll h\ thl' piJ\\ll',1i gll)uping l,11l be rC'du,-'L,J by Irh.llrl'lir,llln~ ,1:1

dllllldlL' iugll';Ii glllUpillg, Thl' l(1gic;lI gf'lHllllllg dl)L'\ Ihlt TlW\(' llf' dlll,llc.llL' ,111\ Illl'Ju:e,

pll\\ll',I1I\ but it ell ll'" plcktl'hing (1f (lbjL'L'[\ ()f' ["lgL'\ \\hich 11 I.'. l'll lllk (ll gIL IU;' .1 nJ re.d

t (1 I-' l' t h l'I I n t (1 111, I i 11 III L' III (1 1"\' ,

In d rl,II;lhk distrlhulL'd \\ ... lL'Ill, ~L'nding LlIgl' f',kf-Ll'. llt J.lt.l I"; che',lrll rhli1

sl'llding \l'\ LT.I1 \lll.IiI ()lIl',\11 I ~')l' I, rill ... Llc't 1'1\1\ Ilk" the' Jll'~[ltil'.l[IL'11 t,ll 'cnJn; ,c:~ ,-''....;:''

Introduction 18

of objects or pages. Consequently, AP consumes less overhead in terms of faulting rate

and processing requirements. Eventually, AP will be used as a transparent integrated

virtual memory function for local operation (to and from disk) and a distributed

operation (to and from remote machines).

1.5 Thesis Structure

This thesis is structured as follows. Chapter two expands on general background in

terms of the virtual memory system model, locality of reference, replacement algorithm,

restructuring, grouping and prefetching. The chapter then discusses and compares virtual

object memory management policies in a number of projects with goals similar to those

of AP.

Chapter three begins by formulating the AP system with regard to reference

strings and disk queue sorting. It then considers in greater detail the properties

influencial to object prefetching in object oriented languages. In the following two

sections discuss locality of reference and the yoyo problem in object-oriented

programming languages in order to establish prefetchability. This chapter also examines

object data prefetching in detail.

Chapter four deals with the conceptual basis of control flow graphs and building

prefetching blocks at compile time. This description of control flow graphs is followed by

a discussion of symbols to represent the control flows for a given program. Then the use

of prefetch blocks in a paging system is described in detail. Some considerations of

control flow in early and late binding object-oriented languages are described in the

following section.

In Chapter five it is shown how the mechanisms described in Chapters three and

four can be implemented to demonstrate the feasibility of AP. The first section of the

chapter describes in detail the implementation of the virtual memory simulator. The

procedures for constructing the compiler generating the prefetch tree are described in

Introduction 19

the following sections. The remainder of the chapter describes the employed mechanisms

by the simulator in using the prefetch table.

Chapter six shows performance measurements of the experimental prototype of

the compiler and the simulator. The chapter begins by illustrating performance

measurements for the compiler and then the results are compared to an original

compiler. General methodologies of performance analysis for prefetching schemes are

described and the influence of how fault rate on the virtual memory system is discussed.

The following section illustrates measured performance results in detail. The final

section analyzed the results and discusses various points affecting the performance and

influences of AP on a whole computer system.

The final chapter provides a summary of the thesis, presents the conclusion of this

thesis, and suggests some future research.

20

Chapter 2
Virtual Memory Issues and Prefetching

The previous chapter described how virtual memory systems are unable to

provide efficient support for the latest object oriented virtual memory management

schemes in local and distributed systems. A new accurate prefetching scheme is desirable

so that it can prefetch a group of distributed objects or pages thus reducing the number of

page faults. Also, it should be able to support new types of secondary memory (for

example, RAM disk[McKusick 90]) and process migration. In order to build such an

accurate prefetching method, we need an understanding of the details of a virtual

memory system model, program locality, paging schemes, object oriented system model,

various types of grouping and restructuring and prefetching. This chapter expands on

these virtual memory issues and discusses the requirements of accurate prefetching.

In the first section of this chapter, the description of the virtual memory system

model gives an overview of how a hierarchical memory model can be built and its

operations, organization and other related issues are described. This section also

introduces the basic techniques used to create a large virtual address space and the

mechanisms necessary for translation to physical space. To explain memory reference

patterns in a computing model, two types of program localities are considered in the

following section. Section 2.3 discusses some hardware requirements for the

implementation of virtual memory systems. Section 2.4 describes the details of how

paging systems operate using page fetching and replacement algorithms in fixed and

variable spaces. Various policies of memory replacement are presented in this section.

Section 2.5 considers various techniques for program restructuring. Techniques for

augmenting the performance of virtual memory in object-oriented systems are

summarized in the three following subsections. Section 2.7 describes various prefetching

Virtual Memory Issues and Pre/etching 21

policies in greater detail by reviewing the policies whose aims are similar to the work of

this thesis.

2.1 Virtual Memory System Model and Terminology

Hierarchical memory systems provide a huge virtual address space with low cost

hardware. This section describes the memory model, taxonomy and how the system can

be operated.

2.1.1 Memories

The virtual memory model and terminology in this section are based on those of

Hwang[Hwang 84], Leffier[Leffer 88] and Silberschatz[Silberschatz 88]. Memory

systems for conventional computers are hierarchical memory structures. The design

objective of hierarchical memory is to attempt to match the processor speed with the rate

of information transfer or the bandwidth of the memory at the lowest level and at a

reasonable cost. Memories in a hierarchy can be classified in terms of access method and

speed or access time.

Firstly, there are three kinds of access method available - random-access memory

(RAM), sequential-access memory (SAM), and direct-access storage devices (DASDs). In

RAM, the access time of a memory word is independent of its location. In SAMs,

information is accessed serially or sequentially (for example magnetic tapes). DASDs are

rotational devices made of magnetic materials where any block of information can be

accessed directly. The moveable arm disk is the most common DASD. The disk requires

"seek time" to move the arm to the desired track.

Secondly, memory can be classified into primary memory and secondary memory

in terms of the speed or access time. Primary memory is made of RAM and it is termed a

main memory. Secondary memories are made of DASDs and optional SAMs.

Virtual Memory Issues and Prefetching 22

In some workstation environments[Cheriton 88, Holliday 88], the common

two-level hierarchy is becoming a three-level hierarchy, with the addition of file-server

machines connected to a workstation via a local-area network. Also, distributed

memories require a wide variety of memories distributed throughout the system. In the

Cedar[Swinehart 86] system, for example, each processor has its own local memory, each

cluster of processors has a cluster memory, and the entire system has a global memory

which is accessible by all processors.

2.1.2 Virtual Memory System

A program consisting of objects is translated to modules of machine code and

unique identifiers by a compiler. A linker then combines these modules of unique

identifiers and a loader translates the unique identifiers into main memory locations. The

set of the identifiers defines the virtual space or the name space and the set of main

memory locations allocated to the program defines the physical memory space. If a system

provides a mechanism for translating the program generated virtual addresses into the

memory location addresses, this is called virtual memory system. Usually, virtual memory

allows a larger virtual space than physical memory space. A virtual machine is defined by

the architecture of the hardware on which a process executes. References to a virtual

address space are translated by hardware into references to physical memory. This

operation, termed address translation, permits programs to be loaded into physical

memory at any location without requiring position-independent addressing.

When an item is referenced at time t, it might be that the item is not be located in

physical memory. This is called an addressing exception or missing item fault. When a

missing fault occurrs, a fault handler brings in the required item from the next lower level

of memory. Because the fault rate is so significant in modeling the performance of a

hierarchical memory, memory management policy is often characterized by a probability

for finding the requested information in the memory of a given level. This is called the hit

Virtual Memory Issues and Prefetching 23

ratio H. Several factors effect the hit ratio, such as memory size, granularity of data

transfer, memory management policies. Suppose a hit function is H(s), the miss ratio

must therefore be F(s) = 1 - H(s).

In a generalized memory hierarchy, the missing item is retrieved by requesting the

item at successive lower levels. Three basic policies, termed fetch policies, define the

control of the transfer of the missing item from lower level to the desired level. Afetch

policy decides when an item is to be fetched from lower level memory. A variation of

fetching policies are described in detail at Sections 2.6 and 2.7. Aplacement policy selects

a location in memory where the fetched item will be placed. Where the memory is full, a

replacement policy chooses which item or items to remove in order to create space for the

fetched item. Section 2.4.1 describes one in detail.

2.2 Program Locality

Programs tend to favour a relatively small portion of their images during their

execution. Therefore, the virtual addresses generated by a process are not very random

but behave in a some predictable manner. This characteristic is referred to as the locality

of reference and describes the fact that over an interval of virtual time, the virtual

addresses generated by a typical program tend to be restricted to small sets of its name

space, as shown in Figure 2.1. The reference data of Figure 2.1 was observed from an

execution of a C++ program on UNIX. Program looping, sequential execution and

block structure construct several groups of locality of references in a program. This

locality of reference is broken at the transition of control from one group to another as

shown in Figure 2.1 Also, if one considers the interval At in Figure 2.1 the subset of pages

referenced in that interval is less than the set of pages addressable[Baier 76, Hwang 84].

There are two kinds of locality of reference: temporal and spatial. Temporal

locality is the tendency of a program to reference during the process time interval (t, t +

At) those pages which were referenced during the interval (t - At, t) [Baier 76]. Thus, over

Virtual Memory Issues and Prefetching

High
Address

a+kl--~

a

t t + .t..t
Fig.2.l. A storage reference pattern on UNIX

24

Time

short periods of time a program references memory nonuniformly, but over a large

period of time, portions of the address space which are favored remain largely the same.

This behavior has been observed in program loops, the use of temporary variables and

stacks of processes. Spatial locality means that if a process is to make references to an

address space in the future it is likely to be near the current location of reference. Namely,

if a is the address referenced at time t, spatial locality of reference is the address space (a­

k, a + k) during time (t, t + .t..t) in Figure 2.1. Naturally, temporal and spacial locality

coexist during the execution of a program. Traversals of a sequential set of instructions

and arrays of data enforce spatial localities. Notice that spatial locality is an important

factor in deciding the size of the block to be fetched and temporal locality effects the

determination of the number of blocks in a segment.

Virtual Memory Issues and Prefetching 25

2.3 Hardware Requirements for Virtual Memory

The key hardware for a virtual memory system is the address mapper which

translates virtual addresses to physical addresses. There are two implementations: direct

mapping and associative mapping. Direct mapping uses a translation table which

converts a virtual address to a physical address. Associative mapping uses an associative

memory that contains a pair of virtual address and physical address and the search is

performed by content. Since the search time in an associative memory increases in

proportional to the number of entries, a small high-speed cache is often used. This

hardware cache is called a translation lookaside buffer (TLB) and it maintains the

mapping between recently used virtual and physical memory addresses. Besides this basic

hardware, some additional registers and tables are required depending on the storage

management scheme.

Leffler[Leffeler 89] discussed hardware requirements for implementing page

based virtual memory as the following:

• Hardware support for the collection of information on program references to

memory.

• The CPU must distinguish between resident and non-resident portions of the

address space.

• When the system selects a page for replacement, it must save the contents of that

page if they have been modified since the page was brought into memory.

• The hardware maintains a per-page flag showing whether the page has been

modified.

Many machines also include a flag recording any access to a page for use by the

replacement algorithm. Also, a special instruction set is necessary to support a paging

system. If a processor stops execution during an instruction before it ends, the processor

Virtual Memory Issues and Prefetching 26

must be able to restart the instruction after handling the page fault because intermediate

computations done before the page fault may have been lost [Bach 86].

To handle many very small objects in virtual object memory systems, special

hardware units have been developed. For example, because each object is independently

swapped between real memory and the disk, MUTABOR[Kaiser 88] and

REKURSIV[Harland 87] adopted individual object fetching systems. Two level index

tables and accessing methodology were fully implemented in hardware to be able to

provide performance requirements. In the case of Brent's[Brent 87] prefetching, special

hardware was used to trace CPU execution. This is described in Section 2.7.3. Also, the

Ivy[Li 86, Li 89b] system (network wide shared virtual memory) maintains memory

coherence by using virtual memory hardware to implement page ownership schemes

analogous to hardware cache consistency protocols[Chase 89].

2.4 Paging

Virtual memory can be implemented in many ways, some of which are software

based, such as overlays. The most effective virtual memory schemes are, however,

hardware based. In these schemes, the virtual address space is divided into fixed sized

units, termed pages. Virtual memory references are resolved by the address translation

unit to a page in main memory and an offset within that page. Page security, i.e. privacy

protection is applied by the hardware of the memory management unit on a per page

basis.

Address translation handles the first requirement of virtual memory by

decoupling the virtual address space of a process from the physical address space of the

CPU. To satisfy the second requirement, each page of virtual memory is marked as

resident or nonresident in main memory. If a process references a location in virtual

memory that is not resident, a hardware trap termed a page fault is generated. The

Virtual Memory Issues and Pre/etching 27

servicing of page faults permits processes to execute even if they are only partially

resident in main memory.

In normal circumstances, all pages of main memory are equally good and the

placement policy has little effect on the performance of a paging system. Thus, a paging

system's behavior is mostly dependent on the fetch policy and the replacement policy.

Under a pure demand-paging system, a demand-fetch policy is used, in which only the

missing page is fetched and replacements occur only 'when main memory is full. In

practice, however, few paging systems implement a pure demand-paging algorithm.

Instead, the fetch policy is often altered to prepaging, which pages are fetched into the

main memory before any reference to those pages occurs, and the replacement policy is

invoked somewhat sooners than actually required. Hence, some in-use pages may be

replaced with pages which mayor may not be used.

2.4.1 Page Replacement Algorithms

Page replacement algorithms can be put into two major classes: fixed space

replacement and variable space replacement. If main memory allocation is fixed for a

user program the number of page fetching and purging in and out of main memory are

necessarily matched. Thus, fixed space replacement algorithms can be implemented

locally (on a per process basis) which chose a process for which to replace a page, and

then chose a page in the process. The definitions of these algorithms are discussed in the

following subsection. On the other hand, if main memory allocation is allowed to vary,

fetching and replacement are able to happen independently in variable space

replacement. The definitions of global replacement algorithms (one in which the choice

of a page for replacement is made according to system wide criteria) are described in the

following subsection.

Virtual Memory Issues and Prefetching 28

2.4.1.1 Fixed Space Replacement Algorithms

Commonly used demand page replacement memory policies for fixed space

attempt to take advantage of temporal locality to approximate the longest time to next

reference replacement strategy [Hwang 84, Denning 79, Baier 76]. The behavior of the

ith process is described in terms of its reference string which is a sequence:

Ri(T) = ri(l) ri(2) ... ri(T)

where ri(t) E Vi is the tth virtual address generated by process i. A reference string R is a

sequence of T references r(l) ... ret) and a resident set Z(t) is a subset of all the program's

segments present in the main memory at a given time t. If the reference ret) is not in the

resident set established at time t - 1, a page fault occurs at time t. A useful measure of a

process's behavior is the fault rate, which is the number of page faults encountered while

processing a reference string, normalized by the length of the reference string. The most

common method used in measuring the effectiveness of a page-replacement algorithm is

the fault rate. So, the best choice of a page to replace is the one with the longest expected

time until its next reference. The forward distance at time t for page x is the distance of the

first reference to x after time t. This requires a priori knowledge of the paging

characteristics of a process. Similarly, we define the backward distance as the distance to

the most recent reference of x in R(t).

IT] Least Recently Used (LRU) - At a page fault, it replaces the page in Z(t) of the

process with the largest backward distance.

[g] Belady's optimal algorithm (MIN) - At a page fault, it replaces the page in Z(t) with

the largest forward distance. This algorithm minimizes the number of page faults

but it is not practical.

~ Least Frequently Used (LFU) - Replaces the page in Z(t) that has been referenced

the least number of times.

Virtual Memory Issues and Pre/etching 29

[1] First in First out(FIFO) - Replaces the page in Z(t) that has been in memory for the

longest time.

lm Clock algorithm (Clock) - This is a combination of a FIFO queue which is made

circular and the establishment of a pointer for the circular queue and usage bit in

each queue entry. The usage bit for an entry in the queue is set upon initial

reference. On a page fault, the pointer resumes a cyclic scan through the entries of

the circular queue, skipping used page frames and resetting their usage bits. The

page frame in the first unused entry is selected for replacement. This algorithm

attempts to approximate LRU within the simple implementation of FIFO.

[ill Last in First out (FIFO) - Replaces the page in Z(t) that has been in memory for the

shortest time.

[l] Random (RAND) - Chooses a page in Z(t) at random for replacement.

2.4.1.2 Variable Space Replacement Algorithms

Variable space page replacement algorithms are an extension of commonly used

fixed space replacement policies. One approach is simply to apply the replacement rule to

the entire contents of main memory without identifying which process is using a given

page. Examples of this approach are as follows [Hwang 84, Denning 79, Baier 76]:

IT] Global LR U arranges all the pages of the active processes into a single global FIFO

stack. Whenever an active process runs, it will reference its locality set pages and

move them to the top of the global LR U stack. At a page fault, it replaces the page

with the largest backward distance in the system.

[2] Global FIFO arranges all the pages of the active programs into a single global

FIFO list. It replaces the page that has been referenced the least number of times in

the system.

Virtual Memory Issues and Prefetching 30

~ FINUFO - In global FINUFO (first in, not used, first out), all the pages of the active

processes are linked in a circular list wi th a pointer designating the current position.

Each page has a usage bit which is set by the hardware when the page is referenced.

Whenever a page fault occurs, the memory advances the current position pointer

around the list clearing set usage bits and stopping at the first page whose usage bit

has already been cleared. This page is selected for replacement. This paging

algorithm was used in the Multics system.

~ Working Set(WS), W(t, e), is used to denote an estimator of a locality set. W(t, e) of a

process at time t is defined as the set of distinct pages which are referenced during

the execution of the process over the interval (t - e, t) where e is the window size. The

working set size w(t, e) is the number of pages of the set W(t, e). This algorithm

retains in memory exactly those pages of each process that have been referenced in

the preceding e seconds of process (virtual) time. If an insufficient number of pages

are available then a process is deactivated in order to provide additional page

frames. Notice that the working set policy is very similar to the LRU policy in that

the working set algorithm specifies the removal of the LRU page when that page

has not been used for the preceding e time units whereas the LRU algorithm

specifies the removal of the least recently used page when a page fault occurs in a

memory capacity. The success of the working set algorithm is based on the observed

fact that a process executes in a succession of localities: that is, for some period of

time, the process uses only a subset of its pages and with this set of pages in memory,

the program will execute efficiently. This is because, at various times, the number of

pages used in the preceding e seconds (for some appropriate e) is considered to be a

better predictor than simply the set of K (for some K) pages most recently used

[Denning 79, Hwang 84, Bach 86].

Virtual Memory Issues and Pre/etching 31

However, no current computer system uses the true working set policy for paging or

true LR U for the cache memory because of the expensive hardware support

required for an implementation[Horspool 87]. The 4.3 BSD virtual memory

system[Leffler 89] does not use the working-set model because it lacks accurate

information about the reference pattern of a process. It does track the number of

pages held by a process (the resident-set size), but it does not know which of the

resident pages constitute the working set: the count of resident pages is used only in

making decisions on whether there is sufficient memory for a process to be swapped

in when that process wants to run.

~ VMIN - This is an ideal variable space memory policy which could be local or

global. VMIN generates the least possible fault rate for each value of mean resident

set size. At each reference r(t) = i, VMIN looks ahead: if the next reference to page

i occurs in the interval (t, t + e), VMIN keeps i in the resident set until that reference

otherwise VMIN removes i immediately after the current reference. Page i can be

reclaimed later when needed by a fault. In this case, e serves as a window for

lookahead, analogous to its use by WS as a window for look behind. VMIN

anticipates a transition into a new phase by removing each old page from residence

after its last reference prior to the transition. In contrast, WS retains each segment

for as long as e time units after the transition. VMIN and WS generate exactly the

same sequence of page faults for a given reference string. Since VMIN is a

lookahead algorithm, it is known that the algorithm is not practical. However, if an

accurate prefetching policy is available to be able to anticipate page requirements

in the time interval (t, t + e), VMIN may be practical because, to a certain extent,

the prefetching policy can distinguish which pages will not be used in the time

interval.

Virtual Memory Issues and Pre/etching 32

[§] 1Wo-stage Selection - Another variation of page replacement policy is the two

stage selection scheme. First, it select pages for discarding by any replacement

algorithm and these are enqueued in the system buffer area. As a second step, some

pages are selected from the buffer store for true rejection to secondary memory.

2.5 Program Restructuring

The goals of program restructuring are to improve the page level locality of

reference, increase memory utilization, reduce the number of page faults, and reduce the

space-time cost of executing programs. The mechanism that restructuring uses to

accomplish these goals is to bring closely together in space those program parts needed

closely together in time. There are two restructuring schemes according to the time

rearrangement of modules: a posteriori and a priori[Hartley 88]. Aposteriori or run-time

method of restructuring performs collection, storage, and analysis of a reference string at

runtime. However, the priori or compile-time method performs program rearranging at

or before load time with information collected by the compiler from the program's

source language structure.

A real program is cut up into several modules, resulting in information about the

location and size of the relocatable units within the program. These programs are run on

a real system to determine the reference pattern of the modules. Using a model with the

original module arrangement, the reference string is run against these modules to

determine the original number of page faults and resident set size. From the module

information and reference pattern, a restructuring is proposed. The modules are then

rearranged in the model and the reference pattern is rerun. This technique uses real

programs on time sharing systems only for generation of a real reference string. By

bringing together into the same group of pages those procedures and data structures that

are referenced closely together in time, reordering a program's relocatable object

modules can increase memory utilization, and reduce its page fault rate and space-time

Virtual Memory Issues and Prefetching 33

execution cost. Such an approach was followed by most of the work by Hatfield, Ferrari,

Breecher[Hatfield 71, Ferrari 76, Breecher 89].

To improve the locality of a program, the sequences that should be taken to

restructure the modules (which should be smaller than the size of a page) in a program is

as follows: Firstly, the program is executed so that a reference string for modules of the

program can be obtained. Secondly, using the order of reference for modules, a

restructuring graph can be established. Module rearrangement attempts to make

co-resident in memory those modules that most frequently reference each other. Thirdly,

a static grouping scheme is applied to the graph in order to rearrange the modules

according to the ordering[Breecher 89]. Thus, when module i makes many references to

module j, the methodology ensures that after restructuring modules i and j will be

co-resident in memory.

Ferrari categorized restructuring policies into two groups. The first methods were

nearness methods or strategy-independent and did not consider the underlying memory

management policy of the operating system. Instead, such methods were based on the

steps described in the previous paragraph. Extensions of this technique place a module

based on the reference pattern of the program during the virtual time interval (t - T, t),

rather than just the last reference. Because of its broader field of observation, this

extended nearness algorithm works better than the simple nearness method[Ferrari 76].

The second method is strategy-oriented. Suppose two major strategies, a priori reference

pattern of a program and a memory replacement algorithm of an operating system, are

known, then there is enough information to build an effective model. The method seeks

to place in memory those modules involved in forthcoming references, whilst avoiding

critical references (references to different pages). For instance, the behaviour of CLR V is

to place together on the same pages of memory both critically referenced modules and

Virtual Memory Issues and Pre/etching 34

modules which make up the current resident set. This results in minimizing the paging

rate[Ferrari 76].

The restructuring methods could get performance improvements and satisfied the

necessity of an execution locating adjacently those portions of a program which are

needed within a relatively short time of one another. By considering program sectors of

one tenth to one third the page size, improvements in the page fault rate from 3: 1 for page

sizes of 512 bytes to 10:1 for page sizes of2k bytes were obtained[Hatfield 71]. Also, the

performance improvement obtainable by restructuring depends on the relative sizes of

blocks and pages. In general, the smaller the blocks with respect to the pages, the better

the improvement. The larger page sizes have in fact been found to increase the

effectiveness of restructuring.

However, an analysis of the costs of the restructuring procedure we have

described shows them to concentrate mostly in the areas of block selection, program

behavior data collection, restructuring graph construction, and clustering. Gathering of

referencing behavior information, a sort of preprocessing of memory tracing of

execution, make conventional posterior program restructuring methods very difficult and

expensive. This is because of the cost in terms of computer time which varies linearly with

the number of references of the process to be examined[Ferrari 76, Beecher, Hartley 88].

Hartley investigated a priori restructuring scheme so that he can achieve less costly

restructuring. The approach is based on an analysis of the source language structure of a

program by a compiler. The code for called subprograms is duplicated and substituted

in-line for the call. Ferrari also tried this static connectivity approach in performance

studies involving his critical working set. In general he found that there was no page fault

rate reduction in programs whose subroutines and functions were reordered according to

static connectivity when compared with the program's original order. Some successful

works in the priori structuring have been reported by Snyder[Synder 78] and

Virtual Memory Issues and Pre/etching 35

Abu-Sufah[Abu-Sufah 81]. Both of these studies achieved performance improvement

by a factor of ten through rearranging subprograms and data structures, such as large

arrays, rereferenced from within Fortran program loops. By reorganizing the loop

structure of programs to ensure that once a page of an array is referenced as much

computation as possible is done before it is replaced.

2.6 Virtual Object Memory in Smalltalk Systems

Several attempts have been made to improve virtual memory management in

object oriented systems. Most of these have been done using the Smalltalk-80 virtual

machine. In conventional languages, given pages in a primary memory are likely to have a

significant amount of useful content in the working set. However, in a Small talk

environment that supports dynamic or late binding, the unit of locality is a small, fine

grained object in comparison to page size, and the environment is composed of a large

number of these small, infrequently referenced persistent objects. This property of object

oriented systems leads to degraded paged virtual memory performance. To resolve the

problem Kaehler[Kaehler 83] investigated object swapping and Stamos and William

reported on object grouping schemes[Stamo 84, Williams 87].

2.6.1 LOOM - Large Object Oriented Memory for Smalltalk-80 System

LOOM is a single user virtual memory system that swaps objects[Kaehler 83,

Kaehler 86]. In LOOM, it is assumed that the object is the unit oflocality of reference and

all storage is viewed as objects that contain fields. LOOM swaps individual objects

between primary and secondary memory, and it reads into main memory only those

objects actually needed by the interpreter. One advantage of LOOM is that objects are

assembled into groups on disk pages, so that objects which are used are brought into

primary memory together. Close placement of related objects in secondary memory and

cached disk pages from a pool of buffers in primary memory lower the seek rate enough

so that LOOM does not need a complex mechanism for grouping.

Virtual Memory Issues and Pre/etching 36

Unlike a paging system, LOOM packs objects into main memory at maximum

density because it can arrange just the right working set in main memory, and add and

remove individual objects from it. However, the two different name spaces for objects in

main memory and secondary memory need complicated translation code between the

two representations. The object representations in both main and secondary memories

are quite complex because addresses in each of primary and secondary memories have a

different sized object pointer. Moreover, the translation between object representations

is time consuming.

Performance evaluation of LOOM shows that object swapping is quite expensive

compared to a paging system. Memory fragmentation is more common in LOOM than in

a resident system, since objects not only leave holes when they die, but also when they are

swapped out. Also, beyond a certain limit, adding real memory to the system will not

increase its performance.

2.6.2 Static Grouping

Static grouping means any algorithm that restructures the virtual environment

while the system is in a quiescent state[Stamo 84]. Object grouping is almost the same as

module restructuring described in Section 2.5 which is aimed at improving spatial

locality. Static grouping can be implemented by a priori and a posteriori algorithms.

Rearranging related objects on the same disk page increases memory utilization and

permits greater information density in primary memory. Because of the persistence of

objects, it could be more efficient to use program restructuring techniques to relocate

statically objects in virtual memory.

However, the differences between object grouping and the previous work on

restructuring programs are caused by the characteristics of the Small talk system. Firstly,

static grouping schemes deal with an entire programming environment composed of

existing code, data, and supporting structures whereas previous restructuring algorithm

Virtual Memory Issues and Pre/etching 37

manage code segments of a program. The second difference arises from Small talk's

inability to use conventional methods for determining the important interobject

references. Previous algorithms were based on the number of procedure calls, returns

and nonlocal gatos. Such priori techniques were not applicable for static grouping for two

reasons. First, a Small talk system uses small and numerous (about 17,000) objects.

Treating objects as entities requires heavy computation to interpret, record, and analyze

lengthy execution sequences that require substantial portions of the virtual memory

system. Secondly, Small talk's run time binding of a procedure name (message selector) to

its implementation (Compiled Method) makes control flow analysis extremely difficult at

compile time[Williams 87].

The implementation of static grouping is that when a Small talk virtual machine

loads an image it may arrange the objects in memory such that related objects are close

together, thereby statically grouping objects. Depth-first, breadth-first traversals are

implemented using the compiler, reference counts and dynamic statistics each to produce

different initial placements. The breadth-first and depth-first algorithms view objects as

nodes and pointers as directed arcs. This is quite similar to the restructuring tree

described in Section 2.5. One ordering is defined by the compiler, which corresponds to

an examination of an object's fields in the order assigned by the compiler when the

object's type is defined. The difference between this method and control flow analysis in

Section 2.3 is already explained. A second ordering is defined by static reference counts.

The static reference count of an object is the total number of pointers referring to the

object while the system is not in use. The third ordering was determined using dynamic

statistics obtained from earlier experience with the emulator. Due to Stamo's virtual

machine's inefficiency, only a limited amount of dynamic information could be obtained.

So, as stated earlier, the standard techniques for nearness algorithms were not feasible

for Smalltalk systems. Also, the OOZE algorithm locates all instances of a same type in

Virtual Memory Issues and Pre/etching 38

one contiguous interval of virtual addresses. One odd point of Stamos's experimented

result is that static reference counts and dynamic information in the three breadth-first

initial placements (compiler, reference counts, dynamic statistics) and the three

depth-first arrangements had little effect on either the initial placements generated by

the grouping schemes or on their performance. This is believed partly to be caused by

inefficiency of the virtual machine emulator that he used by the simulation.

The result of static grouping is that modifications to the basic grouping schemes

shows some performance improvements. The simple and efficient grouping techniques

avoided between 28 and 75 percent of the total number of page faults compare to

ungrouped initial placement in small main memory sizes (less than 140K). Among the

several static schemes, depth-first arrangements perform well in small main memories.

However, they do not show such a good improvements for relatively large memories.

Another interesting result is that grouping schemes have less of an effect on performance

as the ratio of page size to object size increases. In other words, as more objects fit on

each page, the detailed arrangement of information becomes less critical. One possible

explanation for this decline in large memory is an imbalance in page utilization.

2.6.3 Dynamic Grouping

Object oriented programming makes use of inheritance to reuse existing code. In

particular, a persistent object programming environment enables application programs

to be written by inheriting from any part of a large persistent object store. In contrast,

imperative languages are bound to the code that represents the program text. Also,

dynamic binding makes procedure names look for their implementations at run time.

These object-oriented properties lead to relatively poor paging performance on

conventional virtual memory systems when compared to imperative languages and it

cannot be resolved by static binding[Williams 87].

Virtual Memory Issues and Prefetching 39

Williams[Williams 87] obtained more realistic object groupings through full

memory reference tracing whereas Stamos's limited emulation used compression of the

tracing. The memory reference traces include all object memory accesses, object creation

and garbage collection information. It is based on dynamic information modelling in the

form of LRU dynamic grouping scheme performed whilst the system is running.

Grouping objects onto the page to be ejected is achieved by constructing a collection of

LRU objects whose total size is less than a page. This is an implementation difference

between the dynamic grouping and most of the posterior work which are based on

program connectivity.

Dynamic groupmg and some other dynamic groupmgs for references were

simulated and Williams concluded that, for reasonable memory sizes (less than 0.5

Mbytes), dynamic grouping is always better than static grouping at reducing page faults

and it changes working set more rapidly on phase transitions. However, runtime

overhead is more expensive than any of the posterior algorithms because of the need to

maintain an indirect object table, incremental copying garbage collectors, and to relocate

LRU objects in a page. A total ordering of all objects in primary memory by time of last

access must be maintained and it is expensive too. Also, as stated earlier, a different set of

input data even for the same program can alter the trace sufficiently so that the reordered

program runs worse than the original version. So it may be a waste of effort if a

re-grouped file is not executed many times.

2.7 A Review of Prefetching Based System

This section reVIews a number of prefetching algorithms which have been

developed. These systems address similar issues to those tackled by AP. An attempt is

made to compare each approach with that taken in AP.

Virtual Memory Issues and Prefetching 40

2.7.1 One Block Lookahead (OBL) Prefetching

The alternative to grouping is prefetchings and the simplest one is OBL. As stated

in Chapter one, since page n + 1 is quite likely to be required by the executing program

within a short period after the need for page n arose, an operating system fetching two

consecutive pages together can reduce the number of page faults. Horspool's[Horspool

87] supports this with an example: . .if page n contains instructions, we might reasonably

expect that control would soon flow or jump to an instruction in the next page. If page n

contains data, it is fairly likely that the program will step through a sequential data structure

(like an array) or traverse some other form of data structure that continues into the next page.

In addition, most OBL implementations are combined with on-demand fetching

scheme. This is called on-demand 0 BL and it is widely used because of its low overhead

for non-random accessing of the secondary memory system. Page clustering and

Fill-on-Demand Klustering in BSD UNIX are examples of on-demand OBL[Leffler 89].

Leffler adopted clustering, involves a logical page which is a multiple of the hardware

page size, to reduce the cost of paging operations and their related data structures. The

clustering allows fetching of as many pages as were in the cluster at a page fault. Also,

Fill-on-Demand Klustering is a virtual memory operation which attempts to read any

adjacent to the faulted page in the file that may also be needed. The small additional cost

of prefetching pages in the cluster is compensated by the improvement in service times

for future page faults.

The drawbacks of OBL and on-demand OBL, however, are that they increase the

number of pages brought into the cache and they are not able to prefetch any non-OBL

page on function call or long jump. OBL enables virtual memory to perform as if its page

size were double since two pages are loaded for each fault. This makes memory pollution

worse because there are no special algorithms to limit any unnecessary prefetching.

Moreover, OBL is not an appropriate method to apply to distributed shared memory

Virtual Memory Issues and Pre/etching 41

systems because such systems require a new method strictly to control misprefetching

pages since the communication overhead is not negligible. Furthermore, these

algorithms (OBL) are not appropriate for random access secondary memory because

pages which are non-contiguous to the faulted page cannot be prefetched from the

secondary store. In a random access secondary memory, the work required to fetch page i

together with page i + 1 costs no less than the work required to fetch page i and page i ±

n. There are many cases caused by long jumps or function calls in a file server having a

large cache memory where such fetching is required.

2.7.2 Variations of OBL

When a page has been prefetched into main memory, it is important to consider

what should be done with the page if it does not get referenced within a reasonable period

of time. Unless memory pollution is kept under control, it can easily happen that a

prepaging policy is less efficient than its demand paging counterpart.

In Hospool's prep aging algorithm, he made use of the memory inclusion property

to which OBL does not hold in order to tackle the memory pollution problem[Horspool

87]. Firstly, a variable-space prefetchingpolicy, known as VOBLlk, is an approach where

prefetched pages are initially given a smaller time window of Tlk. If the prefetched page

should get referenced before the time limit of Tlk is reached, the page will be

subsequently treated like a demand fetched page (and be given a new window of T time

units). Thus, unreferenced prefetched pages age at k times the rate of demand fetched

pages. So, the operating system must maintain in main memory exactly those pages whose

priority values do not exceed the window. Also, the priori'ty function determines when the

imaginary references occur. Secondly, a fixed-space policy, OBLlk, has exactly the same

form of priority function as VOBLlk but slightly different management for imaginary

references. If a page has not previously been referenced (or prefetched), it would not be

present in a memory of any size and we define its position function value to be infinite.

Virtual Memory Issues and Pre/etching 42

Consequently, it appears that when we suppress prepaging actions in order to avoid

violations of the memory inclusion property, we are also suppressing a high proportion of

memory pollution.

Like most a priori and a posteriori restructuring, Baier's[Baier 76] Spatial

Lookahead(SL) is aimed at dynamic improvement of spatial locality. However, Baier

intended to achieve predictive fetching. The notion of this method is to reduce the

number of times this operation is called by transferring possibly more than one page at

once, thus, the number of interruptions caused by page faulting will be diminished.

Suppose a program typically executes for long periods within a locality and it generates a

series of faults at intervals. Then it is possible to conjecture that recurrent patterns may

exist which tend to identify the locality being accessed. For example, similar page faults

could occur as the program executes in that locality. So, Baier proposed a redefinition of

contiguity in a virtual address space by dynamically updating the PRED function[Baier

76] which defines logical contiguity rather than physical contiguity in an attempt to

account for fragmentations.

The implementation is that the unit of virtual memory mapping ("minipages") be

smaller than the unit of disk transfer, and minipages can be grouped according to

dynamic reference patterns within disk pages. This affects a dynamic reorganization of

minipages within disk pages. The result is effectively to prefetch related minipages on a

page miss. Unfortunately, Baier's technique hardly improves performance[Williams 87]

because 60% still misprefetched. Single page SLcould set an improvement over LRU of

about 10:1. This technique can be implemented with software and may get some

reduction of page faults. However, SL still remains at the OBL level and it is inadequate

for a complex prefetching system.

Since memory management on a general purpose computer is a critical operating

system function, any algorithm must be inexpensive. This precludes the use of any

Virtual Memory Issues and Pre/etching 43

sophisticated algorithms including many potential solutions based on mathematical

programming. By this criterion, the Horspool's algorithm is impractical and only checks

prefetchability for a simple lookahead block. For each page, it would need to know the

times of both last real reference and its last imaginary reference for each page. This

information must be kept for every page, regardless of whether or not it is resident in

primary memory. Also, such an algorithm could not encompass pages other than adjacent

pages. Other studies [Smith 78, Smith 87, Giraud 84, So 88, Brent 87] have addressed the

problem of prefetching in cache or virtual memory systems, but with the exception of

Brent's prefetching they are still concerned with OBL.

2.7.3 Cache Memory Line Prefetching

Brent[Brent 87] developed a concise program structure notation called a program

skeleton that can be used for cache memory line prefetching. A source program is

translated to create a machine specific cache memoryprefetching control program called

the pre/etch skeleton. This is generated automatically by the compiler as it analyzes

control flow and data dependency of a source program. In the sense of generating

information for prefetching by compiler, Brent's work is similar to AP.

However, Brent's prefetching needs a special hardware unit runs in parallel with

the CPU. This prefetching hardware unit is simulated as a simple in-cache processor. The

cache machine traces CPU execution while executing the prefetch skeleton and

generates cache line prefetch requests ahead of CPU demand requests. The work shows

that the cache machine approach can provide some improvement both in instruction miss

delays only when the specialised hardware is used with the cache.

Some problems are posed by the approach: 1) the cache machine interferes

significantly with the CPU by memory contention. Total cache effect is not improved

much by the contention. 2) negligible data miss reduction 3) the prefetch skeleton

actually needs more memory than the actual program. These problems can be resolved

Virtual Memory Issues and Pre/etching 44

by the proposed demand prefetching policy although it does not allow for parallelism or

pipelining with CPU execution.

Another approach to data prefetching mechanisms was developed by

Gornish[Gornish 90]. By pulling array references out from loops in Fortran programs,

the data can be prefetched before control goes into the loop. Control and data

dependency analyzis enables the finding of the earliest point in a program that a block of

data can be prefetched. This scheme predicted 58% successful accurate data prefetching

rates among candidates. A drawback is that this policy limited to only prefetching data

only.

2.8 Conclusion

This chapter surveyed paging schemes, restructuring, grouping and prefetching so

that we could see if any of these strategies provided facilities for forming groups of

objects which can be accurately prefetched together. Most of the systems that have been

developed use the nearness algorithm as the basic principle for restructuring program

blocks. This approach, however, is not enough to support new types of secondary memory

and process migration because these systems require a more accurate and randomly

accessible prefetching scheme nor were they designed for object oriented systems.

The prefetching schemes discussed in the previous sections do not provide good

facilities for the goal because most of them are primarily OBL based. Only Brent's and

Gornish's prefetching make use of source code structure information to control the

random prefetching of cache memory lines. However, the use of a special processor and

its program in Brent's work place many constraints on it. Gornish's work is only concerns

on data prefetching, so it is unable to prefetch program 'codes. If we could find a way to

resolve these constraints this will be the right direction towards developing high

performance virtual memory systems.

AP and Object Oriented
Programming Languages

Chapter 3
AP and Object Oriented Programming Languages

45

The previous chapter has discussed the back ground to virtual memory systems. It

also surveyed some related work with prefetching. In this chapter, an intra-object and

inter-object relationship is built by making use of the properties of object oriented

systems. To support the prefetching of object pages, each object requires the addition of

links to related objects that are individually addressed.

There are two aspects to providing prefetchability, the first is the construction of a

relationship between objects using properties of object-oriented languages. The second

is the building of another relationship between function calls by conventional control

flow analysis. The purpose of this chapter is to describe the former approach of building

an intra and inter object relationship for prefetching pages for the objects. Also, how

control flows among objects in the same hierarchy is described in this chapter. The

advantage of object page prefetching is that it can be used for general purpose

prefetching of objects or pages in a variety of memory hierarchies.

The chapter begins by describing a formula for accurate prefetching. The

following sections discuss how intra and inter object relationship can be made using

encapsulation, inheritance and other object-oriented properties. The section after

discusses the requirement for object data prefetching in a UNIX environment. The final

sections deal with the problems of establishing the relationship at compile time and run

time.

AP and Object Oriented
Programming Languages

3.1 Formulation of AP

46

An accurate demand prefetching uses two memory fetching policies at the same

time to fetch the pages of a process when a page fault occurs: prefetching for necessary

pages in the near future and on-demand fetching for a faulted page. In prefetching, more

than one pages are fetched by anticipation of the process's future page requirements

whereas in demand fetching only the page referenced is fetched on a miss. So, the

behavior of the ith process ri(k) is the number of the page containing the virtual address

references of the process Pi at time k, where k = 1,2, ... T measures the execution time or

virtual time. The set of pages that Pi has in main memory just before the kth reference is

denoted by a resident set {zi(k-l)} , and its size (in pages) by zi(k-l). A page fault occurs

at virtual time k if ri(k) is not in the resident set Zi(k-l) [Hwang 84].

So, under the assumption of on-demand fetching for a faulted page and

prefetching for the object pages associated with the faulted page, Zi(k) is as following;

Zi(k) = {zi(k-l)} + {ri(k)} + {ri(k+n)} - Q(k)

In fixed space replacement systems, the first term on the right hand side Zi(k-l) is the set

of pages that Pi has in main memory just before the kth reference. The second term is a

demand fetched page for which a fault occurs at virtual time k and which will be accessed

after time t. The third term is a set of pre fetched pages {ri(k+ n)} where n is a number of

prefetched pages at time k, n = 1, 2, The final term Q(k) is a set of replacement pages

chosen by a replacement policy (see Section 2.4.1) when a set of pages {ri(k + n)} are

prefetched. Notice that among the replacement algorithms, MIN or VMIN can be

realized practically for Q(k) in the formula. Since AP anticipates necessary pages

accurately, it may also distinguish pages which will not be referenced in the near future.

3.2 The Influence of the Properties of 00 Languages on AP

The properties which should be considered in building a relationship for

prefetching are data abstraction, encapsulation, inheritance, dynamic binding,

AP and Object Oriented
Programming Languages 47

construction and destruction of objects. This section describes these properties in detail

from a view point of prefetching and the following sections discuss how the properties can

be used for AP.

3.2.1 Data Abstraction and Encapsulation

An object is a basic element which has an internal state and operations. To

construct objects, object oriented languages provide data abstraction and encapsulation.

Data abstraction supports the construction of objects considered abstractly by both the

implementor and user of a class in terms of their behaviour rather than their state. An

object is an abstraction that has data and functions, with the functions being defined by a

set of operations that are available on the object. The operations and the internal state of

the object are defined by a class declaration, so that objects are instances of a class, and

all instances of the same class share identical functions. So, data abstraction allows the

separation of the abstract behavior of a class from its implementation details.

A set of functions provided by a class provides the only means by which instances

of the class may be manipulated. When an object is used the user does not care about the

internal structure of the object because it is not necessary to know how the functions are

implemented or how the class is structured. For instance, an object that represents the

int_Stack in Figure 3.1 (the pointer to integer bottom, top and current) could have

operations which enable the stack to be pushed and popped by maintaining the pointers.

How the actual stack is maintained as the internal state of the object changing need not

concern the user of object, who only needs be concerned with the behaviour, defined by

the two operations provided by the class. This is the power of data abstraction, since the

implementation of the abstraction is divorced from the behaviour that the abstraction

provides.

AP and Object Oriented
Programming Languages 48

Encapsulation is a basic feature of object oriented languages because of its facility

for data hiding and protection. Also, it is an important factor for demand prefetching of

an object's data because each object class specifies and tightens an abstract data type.

A class that represents an integer stack using an array is illustrated in Figure 3.1. In

the class int_Stack, the internal status of the stack is implemented as three pointers to an

integer array: bottom, top and current. The int_Stack is represented by the class

int_Stack which provides two operations to push and pop an integer to and from the

array. An alternative implementation of the class using an array is to use linked lists.

Thus, although the internal data structure of the stack is changed, the interface of the

operation push and pop would not need to be changed. This is an example showing that

data abstraction and encapsulation provides a consistent interface without affecting users

of the class in spite of changes to the internals of a class.

class int_Stack{
int *bottom;
int *top;
int *current;

public:

}

int_Stack(int size){
bottom = new int[size];
top = bottom + size;
current = top;}

-int_Stack() {
delete bottom;}

void push(int Int){
* (current++) = Int;}

int pop () {
return (current>bottom) ? *--current a;}

void exception(){
jjexception handling routine}

main()
{

}

int Stack a(lOO);
a.push(5) ;
b = a.pop() ;
cout « b;

Fig.3.1 The class int Stack

AP and Object Oriented
Programming Languages 49

Encapsulation provides a good property for constructions intra object

relationships in the AP system. Because the property enables us to tie the data structure

and operations together so that once a part of the object is referenced the potential that

other parts may be referenced is high. The simplest application of the intra object

relationship is object data prefetching. It happens when a member function is invoked but

its data object has not resident in memory, then the data should be prefetched. For

example, it occurs in a.pushO in the Figure 3.1. When the member function pushO is

fetched the encapsulated data object a can be prefetched at the same time. This is based

on the data dependency graph which is explained in Section 3.3.

3.2.2 Inheritance

Inheritance is another property which enables the features of an existing class

(base part) to be re-used by a newly declared class (derived part). This property is

assumed to be provided by object-oriented languages. It is possible to eliminate the

reimplementation of shared code in a class hierarchy if inheritance is used when

designing a new class. It enables new classes to be derived from existing classes, with the

new class inheriting the data and member functions of the existing class. So, inheritance

provides programmers extensibility and code sharing. There are two ways to refine the

existing class: by adding extra functionality or by providing a restricted interface to the

inherited data structures. In a number of systems this takes the form of a class hierarchy in

which common functionality is shared between classes that belong to the hierarchy

[Dixon 88].

When a new class is derived from a base class it can inherit the attributes of the

base class. The base class may also be termed the super-class of the derived class, and the

derived class sub-class of the base class. A class hierarchy is pictured in Figure 3.2 as a

model of the object layout of a base class and a derived class. The class Employer is

derived from its base class Person. The object Fred consists of base object attributes and

AP and Object Oriented
Programming Languages

class Person {
private: char *name;

int id.;

public:
} ;

int birthdate;

class Employer : public Person
{
private: short position;

int salary;

50

char *name

int id.

int birthdate

Person Fred;

char *name
public:

} ; base class int id.

Person Fred;
Employer John;

Fig.3.2 The employer class hierarchy

int birthdate

short position

int salary

Employer John;

part

new class
part

the attributes of the derived object itself. The inherited attributes for Person are left

unchanged in the derived class and the new class provides additional attributes to the new

class so that they are more applicable to the derived object.

There are some constraints to refine the existing class in some object oriented

languages. In Smalltalk-80[Goldberg 83] and Objective-C[Cox 86], they should inherit

all data and operations from all of their ancestors or nothing because they do not allow

partial inheritance of operations. This mechanism complicates object interfaces as the

hierarchy becomes deeper and forces some redundant operations to be included in a

derived class[Parrington 88].

If a derived class is only allowed a single base class then the language used to

declared the derived class supports sub-typing inheritance e.g. Smalltalk-80, Figure

3.3(a) shows this sub-typing, or single inheritance: class C directly inherits only from class

B. When a class is allowed more than one immediate base class then the language

supports multiple inheritance e.g. C++: in Figure 3.3(b) class C directly inherits from

both class A and class B. More complex arrangements are possible. For example, Figure

AP and Object Oriented
Programming Languages

(a)

v
(b) (c)

Fig. 3.3 Single, multiple and repeated inheritance

51

3.3(c) demonstrates repeated inheritance where the multiple inheritance paths from the

derived class D lead to a common shared ancestor A [Meyer 88]. If a new type can have

more than one parent type then it can inherit the operations and instance variables from

each of them. However, repeated inheritance introduces a semantic ambiguity: in the

example, should an instance of class D have one set of instance variables for its ancestor

instance of classs A, or two sets? C++ provides the keyword virtual to specify that only

one instance of the repeated base class is to be inherited.

AP can makes use of single inheritance as well as multiple inheritance for the sake

of object prefetching by building inter object relationships for the objects in a hierarchy.

Multiple inheritance is more useful for AP because it ties more objects together thus

increasing the logical locality of reference. The details of using inheritance for AP is

described in Section 3.3.

3.2.3 Dynamic Binding or Virtual Functions

When a function which is mentioned in a derived class is called to perform an

operation on an object the definition actually used is determined at execution time

according to the class of the object. Thus, if an instance of the base type is expected as a

parameter to some operation such as a pointer to a member function, then an instance of

AP and Object Oriented
Programming Languages 52

the derived type can be supplied instead. This implies that the object cannot simply be

treated as being of the base type, rather a lookup must be performed at run time to

determine the actual type of object supplied so that the correct version of the subtype is

actually called[Parrington 88]. In most cases the compiler can detect the type of the

object and ensure that the correct version of subtype is invoked when required but

dynamic binding objects are exceptions. This is called dynamic binding and it enhances

flexibility through runtime binding of operations to objects. Dynamic binding encourages

placing the code that deals with a particular class of object in the implementation of the

object's class rather than in the client program thereby making the client program more

general.

For example, if we need a type that contains a list of arbitrary type of objects, this

generic list can be built easily if it is designed so that types which are inserted into the list

are declared to be derived types of some base type and thus can be inserted into a list with

ease. If a main program trys to print out descriptions of all objects in the list, the program

simply selects each entry in the list and invokes the printing member function of that

entry. Since the compiler cannot detect what type of object will be on the list, the

determination of which particular implementation of the subtype member function to

caB has to be made at run time.

C+ + is a strongly typed language with early-binding (at compile time) of

operation names to the code that implements them. However, as noted above, there are

some occasions where dynamic binding must be used, otherwise objects could not be

treated as instances of their parent type and passed to operations that expected them to

behave as instances of their parent type [Parrington 88]. In C+ + this is known as the

virtual function mechanism.

The implementation of dynamic binding IS based on the procedure caB

mechanism and the mechanism is described in C++ manual as follows: "The

AP and Object Oriented
Programming Languages 53

interpretation of the call of a virtual function depends on the type of the object for which

it is called, whereas the interpretation of a call of a non-virtual member function depends

only on the type of the pointer denoting that object." Usually, this is implemented using

pointer to member function. Thus, if the type of the operand is X, the type of the result is

"pointer to X". Since any type can be substituted for the X the operator & in C++ is

polymorphic.

Most late binding object oriented programming languages such as Smalltalk-80,

Guide[Balter 89] and Objective-C support dynamic binding and, in particular, the

binding mechanism is associated with message passing in Smalltalk-80. Since a message

is sent to an object to perform an operation in the object, the message contains an object's

name only. The object which receives the message selects an appropriate operation for

the request at runtime. In Small talk terms, this run time binding is carried out between an

object name (procedure name or message selector) and its implementation (Compiled

Method).

From the prefetching point of view, dynamic binding makes it difficult to build the

relationship between operations (member functions) and instance variables (object data)

at compile time. For example, func_AO is defined as a virtual function in class Base and its

derived class Derived as well. A pointer p to the base object can point either a base object

or a derived object. Then the real object which pointer p points to in the virtual member

function called p- > funcAO cannot able to be ascertained at compile time. Thus, a call to

func_AO must determine at run-time which particular implementation to invoke based

upon the type of the object currently under consideration. So, building the relationship

for prefetching is resolved by run-time AP. This point will be described in detail in the

following subsection.

AP and Object Oriented
Programming Languages

3.2.4 Construction and Destruction

54

The mechanism which provides memory space construction of an object which

consists of some data structures and operator can be categorized into two groups. These

two memory allocation strategies for execution of a program are static and dynamic

allocation. Allocation that occurs when a program is compiled is static memory

allocation. Otherwise, if a reserved free space for a program execution is allocated for

objects at run-time it is dynamic memory allocation. An object's extent is defined as an

object's lifetime, that is a period of time which storage is bound to the object while a

program is executing[Lippman 89]. Whenever a new object is created, a constructor of

that class is called. For C++, there are three distinct object creation methods:

automatic, static and free store.

• A static object is created when the program starts and it will be destroyed at the

termination of the program. Variables defined at file scope are said to have static

extent. Storage is allocated before program start up and remains bound to the

variable throughout program execution. For the initialization of these static

objects, Stroustroup says "No initializer can be specified for a static member, and it

cannot be of a class with a constructor"[Stroustroup 86]. This could mean two

things: Firstly, if a class has a constructor, that class may not have static members.

Secondly, you cannot have a static data member which needs a constructor. Thus, a

static data or a static constant data member is allowed, as long as the member does

not require a constructor or the member is private. Similarly, a destructor does not

have any control over what will happen to the memory occupied by the object it is

destroying after the destructor is finished. A relationship for prefetching of static

object can be established but it can not contain constructors or private data.

• An automatic object is created by the constructor of the class each time its

declaration is encountered in the execution of the program. The life of an automatic

AP and Object Oriented
Programming Languages 55

object is similar to that of local variables. Variables defined at local scope are

spoken of as having local extent. Storage is allocated at each entry into the local

scope: on exit, the storage is freed. Automatic objects do not retain their values

from one call to the other because the objects are newly created whenever the

function is called. As far as prefetching is concerned, this kind of object cannot be

prepared for prefetching at compile time and even then they are not worth

prefetching because local variables on the stack are unlikely to make frequent page

or object faults.

• Objects allocated on the free store are spoken of as having dynamic extent. Storage

allocated through the use of the operator new remains bound to an object until

explicitly deallocated by the programmer. Explicit deallocation is achieved by

applying the operator delete to a pointer addressing the dynamic object. The new

operator handles dynamic memory allocation from a free unallocated memory

space given to a program that it may utilize during execution. This kind of object can

not be managed properly in AP because its address is not known at compile time.

However, if the relationship is allowed to be built at runtime and if the constructor

and destructor are extended to fills in the addresses of objects into the prefetch

table whenever they are created and deleted, these objects in the heap can be

prefetched.

The philosophical basis of the new mechanism in C++ is that allocation and

deallocation are completely separate from construction and destruction. Construction

and destruction are handled by constructors and destructors. Allocation and deallocation

are handled by operator new and operator delete. At the time a constructor is entered,

memory has already been allocated in which the constructor will do its work. Here is a

simple case:

AP and Object Oriented
Programming Languages

void fO{
T x;

}
Executing f causes the following to happen:

Allocate enough memory to hold a T;
Construct the T in that memory;
Destroy the T;
Deallocate the memory.

Similarly, T* tp = new T;

does the following:
Allocate enough memory to hold a T;
If allocation was successful,

construct a T in that memory;
Store the address of the memory in tp

and delete tp;

means:
If tp is not null,

destroy the T in the memory addressed by tp;
free the memory addressed by tp.

3.3 Yoyo in Objective-C and Smalltalk-80

56

High inter-object control flow in the object hierarchy in Objective-C and

Smalltalk-80 is obvious. This point is well described in Taenzer's paper[Taenzer 89]. In a

late binding object oriented language, a complex problem behavior is implemented by

methods in a class. Objective-C and Small talk methods sends self and super messages in

their object hierarchy to implement required behavior. These messages cause frequent

control flow within a class hierarchy. In Smalltalk, for instance, a new message is sent to

the metaclass (class object) which returns a new instance of the class. Then, an initialise

message is sent to its new instance. A set of classes in the hierarchy define only the

initializing method and inherit the new method from the class. This makes it hard to

understand when this initialize method will be used. In this case, you must find the new

method in the superclass (or its super-superclass or its super-super-superclass, etc.) and

discover that it sends itself the initialize message. Furthermore, in writing an initialize

AP and Object Oriented
Programming Languages 57

method, you have to remember how to send the initialize message to super

objects[Goldberg 83].

The control flow of messages on these methods in the same hierarchy is described

as a yoyo problem by Thenzer. Because in Objective-C and Smalltalk the object self

remains the same during the execution of a message. "Everytime a method sends itself a

message, the interpretation of that message is evaluated from the standpoint of the

original class (the class of the object). This is like a yoyo going down to the bottom of its

string. If the original class does not implement a method for the message, the hierarchy is

searched (going up the superclass chain) looking for a class which does implement the

message. This is like the yoyo going back up. Super messages also cause evaluation to go

up the class hierarchy." Thus, the yoyo is a problem caused by software reuse because

when writing a new classes most of its methods are derived from its base class. However,

as far as prefetching is concerned, the yoyo can be used for object prefetching as a means

of providing a strong relationship between the inter-class hierarchy. Note that

Smalltalk-80 treats everything uniformly as objects, including fundamental data types

and blocks of code. There is no separation between code and data objects. So, object data

prefetching which is describing in the following section is not necessary in Smalltalk-80.

The yoyo can be graphed so that nodes represent straight-line code fragments and

data objects and arcs represent procedure calls, returns, (conditional)branches, and data

accesses. A standard technique for determining the frequently used arcs is to interpret the

execution of the program and maintain a traversal count for each arc. As explained

earlier, such control flow analysis techniques are not feasible for a system containing a

large number of small code and data objects. This was explained in detail in Section 2.6.2

static grouping.

AP and Object Oriented
Programming Languages

3.4 Intra and Inter Object Relationships for AP

58

The properties of object oriented languages described in the previous sections

give many influences to control flow in the languages. These can be described in terms of

control and data dependency inside an object and among objects in the same hierarchy or

in different object hierarchies.

The modularity in most object oriented languages is designed to support function

sharing and structured programming. Since the methodology of object oriented

programming is to divide a system into a set of objects, which closely match the concepts

of the real world problem, providing a way of managing the complexity of the

programming task. This kind of data abstraction and information hiding enables modular

design in programming[Parrington 88]. This modularity influences high locality of

reference by control flows between objects.

Memory reference patterns for object oriented programs are more localized than

for similar programs using traditional models. In the case of the Amber[Chase 90]

object/thread model, the body of an object operation can reference only the thread stack

and the contents of the object itself, so an executing operation is likely to make a

sequence of memory references local to the current object[Chase 89]. Locality in a data

abstraction programming language like CLU[Liskov 86] has similar characteristics.

However, the problem of a persistent object oriented programming environment,

in particular in Smalltalk-80 or Guide[BaIter 90], is that locality of reference is neither

bounded by contiguous segments of code nor operating on some data because most of

application to reuse any portion of a large persistent object[Williams 87]. Persistent

objects have a lifetime which is independent of that of a program or the process that uses

them. The system provides a permanent address space for these objects. This can be

viewed as a substitute for a traditional file system. So, the address space containing these

persistent objects tend to be large and it imposes a requirement on the supporting system

AP and Object Oriented
Programming Languages 59

for efficient object management. In particular, if a system supports the persistent

programming[Balter 90] approach, giving users a unifying view of the system, the system

should support long-term storage units. Therefore, a system supporting persistent

programming may have many garbage objects in memory and these may decrease the

locality of reference of the program. Persistent object oriented virtual machines have

strong small spacial locality of reference within an object but global locality of reference

is rather low because a number of these small spacial localities are dispersed over the

whole object range.

This is slightly better in an early binding language like C++ because process

execution is bound in just one executable file. Locality of reference for objects in the

same branch of a class hierarchy is quite high compared to that for objects in different

branches. But still the locality in C++ is not enough for a high performance virtual

memory system because it supports dynamic binding. Thus, it can be said that object

oriented programming languages have two characteristics with regard to locality of

reference. Encapsulation and inheritance enhances locality of references but dynamic

binding lessens it.

Several cases can be found in C++ showing high locality of reference. Firstly, a

derived class is inherited from its base class, so the encapsulation is still preserved

between two objects. Thus, a member of a derived class has no special permission to

access private members of its base class. When a member function of a derived class

needs data access to its base class this should be done by a function call with scope.

Secondly, any particular instance of dynamic binding is always restricted to a particular

inheritance hierarchy. Thirdly, an initialization process for derived objects depends on its

base class if there is some subtyping. For instance, let us look at class declarations like

this:

AP and Object Oriented
Programming Languages

class Color { /* stuff * /}

class Primary_Color: public Color {/* more stuff * /}

class Blue: public Primary Color {/*still more stuff * /}

60

Here, when we call "new Blue" this causes calls on the constructors for Color, Primary

Color and Blue executed in that order. When we call "delete b" it invokes the destructors

of Blue, Primary_Color and Color in that order. Once control goes into a boundary of the

class hierarchy to create an object at a leaf of the hierarchy the control would go up to the

base class to create and initialize the object and down one hierarchy to the other until it

reaches the leaf object itself. Once an object is created then object data access will be

followed by the member functions in the objects because the data object is only able to be

modified by the member functions. After manipulating the data, when control leaves the

member function some of the object will be cleaned up by calling destructors in the

hierarchy in the same sequence as for construction.

These series of invocations are made whenever an object is created, used and

destroyed. It means that a series of function invocations form a spacial locality, so, it can

be said that there is a relatively high tendency to locality of reference in a class hierarchy

by calling functions within it. Although these objects have high locality of reference, they

may possibly spread over many different pages.

To enhance logical locality of reference for these dispersed objects, the objects

can be logically grouped using encapsulation and inheritance, the logical group

prefetched when part of it is invoked. The operations and data structures encapsulated by

a class can be retrieved from a source program at compile time, and kept in a relationship

table. An object name is mapped into a class name and this can be recorded in the table.

The inheritance tree can normally be deduced by the compiler. Thus, invocations which

may result in yoyo can be identified, and the inheritance tree can be recorded in the table.

If this is performed during the parsing phase, all the relationships between objects in a

AP and Object Oriented
Programming Languages 61

program can be identified by the compiler. This is similar to the attempts at a priori

program restructuring which were based on static program connectivity.

Where encapsulation ensures locality of reference is high within the object an

attempt can be made to prefetch all member functions and data at one go. Some

exceptions from accurate prefetching may arise. For instance, if we consider the

exception handling routine in the class int_Stack in Figure 3.1 five member functions will

be prefetched together whenever anyone of the member functions is referenced.

However, although the potential of referencing all four member functions is very high,

the exception handling function will not be invoked unless an exception occurs.

Inheritance shows a high locality of reference between objects in the same class

hierarchy. However, as far as accurate prefetching is concerned, there may be some

member functions which are not involved in the yoyo phenomenon e.g. another exception

handler in a base class. Therefore, not all member functions in base objects need be

prefetched since it is unlikely that these functions will be referenced in the near future.

In conclusion, intra and inter object relationships can provide high locality of

reference, and they can be used for object grouping. However, when all member

functions and object data related to these intra and inter relationship are prefetched,

some prefetched functions may be not referenced and they may pollute the memory.

Imprudent prefetching of the logical group can cause memory pollution, thus,

prefetching ought to be combined with control flow analysis of the logical group.

AP and Object Oriented
Programming Languages

3.5 Object Data Prefetching at Compile Time

62

Object data which is encapsulated by member functions could be prefetched in

prospect of a text page's future requirements. This is significant in an operating system

where object code and data reside in different pages because fetches for these pages are

incurred independently and these causes more faults. There are two possible way to

suppress the faults by building the relationship between object data and code: using the

object-oriented properties with either data or control dependency analysis. Object data

prefetching by data dependency analysis can be built either at compile time or at runtime.

Building the relationship at compile time is not as simple as at runtime and as is shown

below. This section describes how the object code and data may be separated in UNIX

and the following section discusses the methods for prefetching object data.

3.5.1 Separation of Object Data from Code in UNIX

Most of UNIX systems support several executable file formats. In executable type

407 files, instructions and data are intermixed but a 410 file is pure executable and a 413

file which is pure demand-paged executable, instructions are separate from data. Process

text and data images in 410 and 413 occupy separate sections of memory in a certain

executable file formats which are shown in Figure 3.4. There are several advantages of

keeping text and data separate: protection, sharing and the fact that the data segment may

grow during program execution.

new page in 413
t

a.out ILh_d_r...lI ____ t_ext ____ ---IIL--___ d_a_ta ___ --'

Fig.3.4 Executable file types for 410 and 413

AP and Object Oriented
Programming Languages 63

However, because of this separation of text and data in executable files other

problems are generated. For example, text and data fetchings are performed

independently. When a process invokes a non-resident member function which suppose

to have an object data it causes a text page fault and the process will stop execution until

the page will be read into main memory. When the page is fetched the process will restart

but it will face another page fault because the object data which the function required is

not read in yet. So, the data page loading is done in the same way as the text page. In this

situation, an object data page related to the object member function can be stucked

together and then they can be fetched simultaneously.

Figure 3.5 illustrates the model of object storage in the UNIX operating system. A

virtual address space is separated into a manageable size page, for fetching and purging.

These pages are again grouped into regions: code, data(static data and heap area) and

stack. Most of the statically and dynamically created objects are stored in the data or stack

reagions. So, the object data in Page M + 1 is not able to coexist in the same page as its

member function which is stored in page M. In this environment, the method of stucking

the member function and object data together and prefetching them at the same time are

described in the following section.

3.5.2 Object Data Prefetching with Data Dependency Analysis

To suppress page faults, control and data connectivity can be used to relate pages

and to move them in and out of main memory together. Among the properties of

object-oriented languages, encapsulation has the dominant effect on the data

prefetching policy. Object data prefetching is closely associated with data dependency

analysis too. Since data-flow analysis is affected by the control constructs in a program,

this property is used to build the relationship between them. In fact, the data analysis can

be done in the level of statements and this is explained in detail in the following sections.

AP and Object Oriented
Programming Languages

Pag M

Instruction Area

•
•
•

Fig. 3.5 Object data and codes are stored in different pages

3.5.2.1 Establishing a Relationship between a Member Function and
its Object Data at Compile-time

64

In a demand paged virtual memory, when a non-resident address is referenced the

address is used by the fault handler to read the faulted page into main memory. On the

other hand, to run a prefetching system where some fetches of pages into the main

memory before any reference to those pages had occurred, some priori reference

information for imaginary faults should be stored in a table which provides references so

that the pages are prefetched correctly. This can be provided by establishing an intra

object relationship table which can be built if we make use of encapsulation properties

described in the previous sections.

Member function and its object data can be retrieved from a source program at

compile time and be kept in the relationship table. Object data can be linked to

associated member functions quite simply if we make use of the object invocation syntax.

AP and Object Oriented
Programming Languages 65

Member variables of a class in C++ are referenced using the. or the - > operator in the

same way that structure members are referenced in C. For instance, pushing an integer

onto a stack object a is invoked by a.pushO. In this statement, the relationship between

object variables and their member functions can be defined directly at compile time. If

this operation is proceed during parsing a program all the names of member functions

and their object data can be identified by the compiler so as to record them under their

own class names.

However, there are four constraints on building the relationship at compile time.

The first is dynamically created objects as described in the previous section. In C++ ,

there are three possible storage allocations for objects according to the way in which they

are created. Firstly, consider names with global scope, when machine code is generated

by the compiler, the position of each objects data relative to a fixed origin such as the

beginning of an activation record must be ascertained. Information about the storage

locations that will be bound to the names at run time is kept in the symbol table (name

and address or offset). This information in the symbol table can be used to index the

object data. Secondly, local names whose storage are allocated on a stack are supported

by the runtime system[Aho 86]. The positions of automatic and free store objects are

known dynamically at run time except for those of static objects described in Section

3.2.4. So, only statically declared objects can be prefetched if the relationship table is

built at compile time. However, the relationship table can be implemented for free store

allocated objects if object addresses in the relational table are filled in by an extended

new operator whenever it creates new objects at run time.

The second obstacle to implementing object data page prefetching at compile

time is dynamic binding. Conventional programs have statically bound procedure calls,

whereas bindings in some object oriented languages are often performed at run time.

This means that it is not feasible to determine the precise body of code that may be used

AP and Object Oriented
Programming Languages 66

by an application[Goldberg 83, Stamo 84, Williams 87, Taenzer 89). Therefore, the

properties of late or dynamic binding and dynamic object creation are severe constraints

on building the relationship at compile time.

The third constraint is the many-to-one relationships between the member

functions of a class and instances of that class (i.e. objects). In particular, the relationship

between polymorphic functions and object data is many to many at compile time. If the

relationship is built at compile time looking up a many-to-one or many-to-many table

for each object is expensive and it is unlikely to be practical. One potential solution to this

problem is to group these polymorphic functions in a page or adjacent pages statically to

increase spacial locality of reference.

The fourth obstacle is caused by the use of pointers and aliases. A call of a

procedure with x as a parameter (other than as a value parameter) or a procedure that can

access x because x is in the scope ofthe procedure. We also have to consider the possibility

of "aliasing," where x is not in the scope of the procedure, butx has been identified with

another variable that is passed as a parameter or is in the scope. Another case is that an

assignment through a pointer that could refer to x. For example, *q = y is the assignment

of x if it is possible that q points to x.

3.5.2.2 Prefetching Object Data at Runtime

Constructing the relationship table at compile time to prefetch dynamically

created and bound object pages is not so simple. The relationship is a static description of

objects and does not include objects specified during execution. Thus, the serious

weakness of the relationship with respect to such data is the inability to prefetch

dynamically bound functions and data whose addresses are not known at compile time.

There is, however, an alternative which could be adopted quite simply at runtime. Thus

simple method adds little overhead to the execution time of a process but is quite limited

a scheme because it makes use of the functions in a symbolic debugger.

AP and Object Oriented
Programming Languages 67

When a page fault happens on a function call, the arguments to the function

(including the object pointers) are already on the stack. Even when a virtual function

which is multiply redefined in derived classes is called to operate on an object, the

selection actually used is determined at execution time based on the class of the object.

The arguments to these dynamically bound functions are already specified and the

invocation of a member function is now the same as a procedure call. The first argument

is a pointer to the object mapped to this in the member function. When a fault handler

tries to read the member function which caused the invalid address into memory the

related object data pages which the member function will need in the near future can be

prefetched using the first argument. Suppose the arguments are referenced by pointers,

the object data may reside on the heap and the pointers to the object data are on the

stack. So, the object data can be prefetched indirectly using the pointers and the rest are

the same as the non-pointer method.

The implementation details of this are described in Section 5.6.4. So, as described

in the previous section, object data prefetching for dynamically bound functions can be

resolved. In a conventional virtual memory system, the object's data might have been

read into memory during execution of the called member function by another page fault

for the object. Thus, the potential page faults can be suppressed by prefetching the

object's data.

Current implementations of object data prefetching can resolve most faults

caused by static objects even they are referenced by pointers or aliased. Although

prefetching object data on the stack is not required, if object data are referenced by the

pointers on the stack, they should be prefetched properly. Run-time creation of objects

by the new operator and variables which addresses are computed and specified at runtime

can be prefetched by this method. One reason to be able to achieve the data prefetching is

AP and Object Oriented
Programming Languages 68

that a symbolic debugger provides most of addresses required and resolves aliases and

pointers.

There are some constraints remaining on object data prefetching at runtime. As

Brent states, all variables cannot be prefetched either by the use of a prefetch table or by

this runtime object data scheme. This is because there are register variables and local

variables which are defined within activation records in a stack. Stack variables do not

have fixed addresses that are known when the program is compiled. However, the stack is

not a large component of the miss ratio since it is accessed often with good locality and

the referenced parts of the stack do not tend to get replaced. Therefore, stack variables

do not need to be prefetched often except during phase transition.

3.6 Conclusion

This chapter described how AP makes use of source program structure

information, in particular, the properties of object-oriented languages. Data abstraction

and encapsulation enable us to build relationships between operations and their data.

Inheritance provides another means of tying together objects in the same hierarchy

because control flow within the hierarchy is very common. This is shown because object

oriented programmers take the approach of reusing software by inheritance and this

causes a vertical control flow. On the other hand, dynamic binding makes it difficult to

build the relationship for prefetching at compile time.

A practical method of achieving the accurate object data prefetching was

proposed by using encapsulation. From the foregoing we can see the possibility of using

the properties of object oriented programming languages for prefetching object data.

However, the constraints and exceptions which we mentioned do not allow us to make a

general accurate prefetching scheme, because all encapsulated member functions and

data in an object and all constructors and destructor functions in the same hierarchy are

AP and Object Oriented
Programming Languages 69

not guaranteed to be referenced unless there is direct control flow between them.

Therefore, the next chapter introduces control flow analysis to reinforce the relationship.

Pre/etching Blocks

Chapter 4
Prefetching Blocks

70

The previous chapter considered the effects of the properties of object-oriented

languages on accurate prefetching. It has been assumed that encapsulation and

inheritance allow the creation of inter and intra objects relationships. This chapter

introduces an approach that helps to achieve the goal by making use of conventional

control flow analysis for c++. The relationship considered in chapter three to prefetch

objects can be reinforced using control flow analysis because the object oriented

properties are expressed explicitly in a program.

Control and data dependency analysis are major areas of interest in compiler

study in respect of optimum code generation and parallel processing. The flow graph of a

program is used as a vehicle to collect information about the intermediate program for

common sub expression elimination, dead-code elimination and renaming temporary

variables and interchange of statements. Data dependency graphs represent the data

dependency structure of a program. The data dependency structure influences the cost of

partitioning the program for parallel execution. In addition, control and data flow

analysis are able to be used for object prefetching.

The use of the basic block, which is used for code optimization in general compiler

theory, is the first step in building a program control graph for prefetching. Then the basic

blocks are combined to form a prefetching block to represent single-entry single-exit

block. Some unnecessary inner branches and inner loops in basic blocks are eliminated in

a prefetching block to simplify and optimize the prefetching table. Also, data objects

associated with a prefetch block are tied to the block.

Pre/etching Blocks 71

The first section shows how it is possible to decompose a program into basic

blocks for building the basic units of a control flow graph. It then considers some of the

primitive graph symbols used to represent a program compactly. The section after

discusses how to make a prefetch block using basic blocks and the primitive graph

symbols. To decompose high level language statements into their low level structures

before being graphed the following two sections tackle the branch and loop statements of

C++. The following sections then discusses adding object data to the prefetch block.

Also, some characteristics of a prefetch block in terms of page faults are addressed in this

section. The final section assesses the technique developed in this chapter for

constructing the prefetching block by comparision with similar work.

4.1 Program Decomposition

To establish a prefetching block, a program should be decomposed into basic units

of computation and flow control. The prefetching block contains some objects which are

possibly dispersed in several pages. A decompose-and-merge algorithm is used to build

the prefetching block. So, the fundamental units of computation and flow control are

discussed in this section.

A program consists of one or more statements that are branches, assignments,

copies and function calls. Simple assignment and copy statements are mainly

computational details. As far as control flow is concerned, the statements can be

classified into two groups: branch statements or computational statements. To show the

control flow of the program, a complicated program consisting of branch and

computation statements can be simplified if all redundant computational details are

removed. The technique of using a graph based on basic blocks can be found for

prefetching in cache memory[Brent 87] or other applications such as parallel

processing[Baxter 89, McCreary 89, Montenyohl 88]. Structural graphs of programs

Pre/etching Blocks 72

concisely characterize the execution paths of the program without the confusion of

extraneous information.

4.1.1 Basic Block

To analyze control and data dependency of a program in compiler theory, the

program should be decomposed into a set of basic units. A basic block is defined as the

unit which is a sequence of consecutive statements in which flow of control enters at the

beginning and leaves at the end without a halt or the possibility of branching except at the

end[Aho 86]. If there are branches or other exceptions these become leaders of new

independent basic blocks.

Basic blocks are often used for a graph representation of three-address

statements. Also, if a set of basic blocks are linked by flow-of-controls, this directed

graph is called a flow graph. This flow graph which is generated from a basic block is used

for improving and optimizing code generation. Various code optimizers, for example

loop optimization and dead code elimination, try to use such transformations to

rearrange the computations in a program in an effort to reduce the overall running time

or space requirement of the final target program.

4.1.2 Three Address Statements

Three address code is a sequence of low level statements including some

statements for flow of control. They are quite fundamental statements to form basic

blocks. Aho[Aho 86] summarized the types of common three-address statements as

follows: (For a complete description of the three address statements, see[Aho 86].)

• Assignment statements with a unary, binary arithmetic or logical operation.

• Copy statements

• Unconditional jumps

• Conditional jumps

Pre/etching Blocks 73

• Function calls

• Indexed assignments

• Address and pointer assignments

4.1.3 Building a Basic Block

A basic block is an elementary node of a prefetching block which contains

location information with regard to object variables, sequential arithmetic or logic

expressions and statements including function calls. As stated above, these objects can be

located in anywhere in the address space. The basic block is a unit to tie them together in

a sequential block for prefetching.

To form a basic block, three address statements for unconditional, conditional

jumps or branches are not included in a basic block. Instead, these lead a new basic block.

There is a general method to build the basic block. We first determine the set of leaders,

the first statements of basic blocks. And then for each leader, its basic block consists of

the leader and all statements up to but not including the next leader or the end of the

program. The rules to determine a leader are as following.

• The first statement is a leader.

• Any statement that is the target of a conditional or unconditional goto is a leader.

• Any statement that immediately follows a goto or conditional goto statement is a

leader.

As stated earlier, the nodes of the flow graph are the basic blocks. One node is

distinguished as initial: it is the block whose leader is the first statement. The rest of the

flow graph is linked from the initial node with directed arcs. The general rule for

establishing a whole flow graph is that there is a directed edge from block Bl to block B2

if B2 can immediately follow Bl in the following execution sequence:

Pre/etching Blocks 74

• if there is a conditional or unconditional jump from the last statement of B1 to the

first statement of B2, or

• B2 immediately follows B1 in the order of the program, and B1 does not end in an

unconditional jump. Here, B1 is a predecessor of B2 and B2 is a successor of B1.

These general rules for building a control flow graph based on basic blocks are

adopted for making a prefetching block and eventually to create a prefetch table.

However, the basic block involved in this section is not very useful without modification

because the three-address statements which are elements of the basic block are too low

level and have fine granularity. So, elimination is performed to make a practical size of

prefetching block in the following section. Before we discuss the prefetching block, five

basic symbols are defined so as to be able to build a control flow graph in high level

language statements.

4.2 Control Flow Graph of a Basic Function

To provide a prefetch table to the AP system, a concise description of the structure

of a program and its prefetchable unit, called a prefetch block (PB), is developed in this

section. The description does not have any semantics of a language but concisely shows

the syntactic control flow graph of a program. Conventional graph techniques are used to

analyze programs. However, a method which is more simple, easily generated at compile

time and easily used by AP must be developed. So, the flow graph is generated

automatically from the source program at compile time. A C++ compiler is extended to

generate the flow graph and prefetch tree during the code generation phase.

Program structure can be graphed using only the following set of basic symbols:

begin function, return, sequential block, call and object data and branch. However, to

represent the prefetchability of a block or function, a symbol for pre/etch block appears in

the program graph. These graph symbols are extended from Brent's models[Brent 87] to

fit for object oriented system and they are defined as follows:

Pre/etching Blocks 75

4.2.1 Begin Function

The entry point of the function. There can only be one begin function symbol in a

function. This unique start point of a function can be decomposed into more than one

three address statements because it includes formal argument passings. However, a

function calling three address statement except argument passings is matched to this

begin function. The object data are not shown here with the function start symbol

because a member function have more than one objects to manipulate. So, it is graphed

with the function call symbol. The symbol for begin function is an ellipse shape.

egin Functio

4.2.2 Return Function

A function can have one or more exit points where control leaves the function and

object manipulation is finished. Each exit point of a function is shown as a return. The

symbol for return is same as for start, an ellipse. From a prefetching point of view, a return

address, the location to which the called routine must transfer after it is finished, is

important information. The return address is usually the location of the instruction that

follows the call in the calling procedure. In a small memory space, the page having a

function return point can be purged out if the nested function is very deep.

Return

4.2.3 Sequential Block

This is a sequential execution path of code with a single-entry and single-exit

point. A block can be classified in two ways. The first is the sequential block which has a

single entry single exit point. The second is the nonsequential block which contains some

Pre/etching Blocks 76

internal branches. For our purposes a block can contain more than one statement and

even branches, as long as the single-entry single-exit rule is maintained. However,

function calls are not allowed to appear within sequential blocks because a function call

statement is an independent graph for further processing. One difference between a

sequential block and a basic block is that a basic block consists of three-address

statements but a sequential block is based on high level statements rather than three

address spaces. The sequential block symbol is a rectangle.

4.2.4 Function Call and Object Data

The invoked function name will be shown inside a triangle of which one corner is

open. The open side is linked to the caller and the other side to the called function. The

called procedure can be substituted in place of the call. Object data which are

encapsulated in a class with the member functions are graphed together with the function

call so that it can be prefetched. Also, object data which are associated with the function

are shown together, because, whenever an object member function is called the member

function has encapsulated object data. So, this associated object member function and its

object data can be graphed together. We implicitly assume that the objects are passed to

the member function by value or by pointers, so the object data graph can be set up at the

member function level.

Prefetching Blocks 77

4.2.5 Branch

The conditional branch symbol identifies a point where two or more possible

paths through the code can be taken. The branch symbol is a circle with several arcs as

outputs. Each output is a links to the beginning of another sequential block in the graph,

which is called the branch target. Since the graphs represent only the structure of control

flow, the conditional test that is implied by the branch need not be shown. Also, the

branch point is the beginning point of a prefetch block. So, the branch point contains

prefetching information such as the addresses of objects in the prefetch block .

. - ,

, ..

The reason why conditional branches are so vital in control flow analysis both in

basic block and a prefetching scheme is that they break spatial locality of references. For

example, if two function calls are being associated with each block in a conditional

branch and the two functions are physically located sufficiently apart from each other to

break the spatial locality of reference, the branch test at the branch point decides which

function to invoke following the branch. The unconditional branch had an important

meaning in building basic blocks using three address statements but it is not very

important when building high level control flows for prefetching. Since most

unconditional branches can be predicted their control flow, even if they can break spatial

locality of references, can be managed by prefetching.

Prefetching Blocks 78

4.3 Prefetch Block

The basic block which computes a set of expressions can be represented as various

types of three-address statements. Three-address statements can be combined into

larger units in three ways: sequencing, conditionals and loops. Sequencing is achieved

simply by writing non-jump statements one after another. The non-jump statements

include various types of assignment and copy statements. The function call statement is a

sort of non-sequencing control flow since the control transfers to and from the callee

function naturally. However, it still obeys the single-entry-single-exit rule if the function

does not have nested function calls associated with a conditional branch. Although it

breaks spatial locality, this can be managed by prefetching some related pages. A

program can, therefore, be seen as a set of basic blocks and branches which link the

blocks in a sense of control flow. Aprefetch block consists of a set of instructions between

an entry and an exit point. For the purpose of building a prefetching block, a prefetch

block may contain more than one statement and even a nested loop or internal branches

as long as the single-entry-single-exit rule is maintained.

One difference between a basic block and a prefetch block is in function call

statements and inner branches. The definition of a basic block does not include function

call statements in its sequence of consecutive statements. However, the prefetch block

does includes function calls. One difference between a prefetch block and Brent's[Brent

87] "Execution block" is that the latter does not allow function calls to appear in

execution blocks.

A block which has neither conditional branches nor function calls can be defined

as a primary prefetch block, otherwise, it is defined as a non-sequential block. A primary

prefetch block consists of a set of instructions between a branch instruction and the next

following branch instruction. As far as prefetching is concerned, a primaryprefetch block

does not have significant meaning because it does not includes any locality breaking

Pre/etching Blocks 79

object codes but it still has some prefetchable objects on the heap or stack. Compared to

a primary prefetch block, a pre/etch block can contain a variety of prefetchable objects

such as long jumps, member functions and object data, with the exception of branch

points. Non-sequential block does not exist practically because it is decomposed into

primary prefetch blocks and prefetch blocks.

If we take a look at the C++ grammar in Figure 4.1, a primary prefetch block

consists of only a sequence of statements like the production from (3) to (6) in which flow

of control enters at the beginning and leaves at the end without halt or the possibility of

conditional branching except at the end. A prefetch block can have nested sequential

blocks. A prefetch block does not have conditional branch statements but has function

calls, i.e., does not have productions from (7) to (14). A function consists of data

declaration parts and a set of blocks. Thus, a function can be classified in the same way as

a block. A function which has only prefetchable blocks is a prefetchable function.

The reason why functions and blocks must be classified into subblocks is that it is

an important criterion for judging the prefetchability of a function or a prefetch block.

The control flow of a program which consists of simple sequential functions and

sequential blocks can be anticipated straight forwardly. Thus, if a program does not have

any conditional branch, its control flow would correspond to a depth first traversal of the

activation tree that starts at the root, visits a node before its children, and visits children at

each node from left to right order[Aho 86, Horwitz 88]. However, a big constraint on

code page prefetching is conditional branches in a program (productions (7) to (14) in

Fig4.1). For instance, a nonsequential block (a prefetch block) with no function calls but

inner branches must be prefetched by a system which reads a whole function code into

memory before execution but a nonsequential block which has function calls and

branches could not be prefetched even in that case.

Pre/etching Blocks 80

The graph of a prefetch block is similar to that of a sequential block. A prefetch

block can include a sequential blocks in the control flow graph because the sequential

blocks obeys the single-entry-single-exit rule. This prefetch block is symbolized as a

dotted ellipse.

, ,
I ,

I ' , '
I

Prefetch Btock
I I , .

• I

, ,

4.4 Control Flow for Conditional Branches and Loops in C++

The C++ grammar for a function, block, conditional and unconditional branch

is shown in Figure 4.1. These high level statements can be converted to three address

statements which are similar to assembly code[Aho 86]. For example, the "for" and

"while" loops are high level statements for easy programming and they are not well

matched with the symbols in the previous section. Since these high level statements in a

source program can expand to more than one branch in assembly languages. The

following is a list of C++ statements that directly affect the execution paths.

These high level language statements do not correspond to the symbols in the

previous section. So, these statements must be decomposed into their inner structure

using the symbols. They are as follows:

rn Call statements,proc-name(arguments): This directly corresponds to the symbols of

function call and object data. Object data is a part of the argument passed to the

function but it is an entity to be prefetched.

Prefetching Blocks

function-del : deel;
att-function-def :type deel arg-del-list
function-def I deel arg-del-list base-init
stmt-list :stmt-list statement

I statement;
block :{ stmt-list } ;
simple :e

base-init
block;

block

I BREAK I CONTINUE I RETURN e I GOTO Id

statement :expr ;
I simple SM
I att-fct-def
I block
I IF condition statement
I IF condition statement ELSE statement
I WHILE condition statement
I FOR (statement e ; e) statement
I SWITCH condition statement
lID COLON statement
I CASE e COLON statement
DO statement WHILE condition

(1)

(2)

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

81

Fig. 4.1 C++ grammar for function, block, conditional and unconditional branch

[2) Break is a sort of unconditional branch out of the current switch block or a loop. So,

this can be graphed with a directed arc. Continue is similar to Break, i.e. this is a

branch to the beginning of the current loop and can be graphed as an arc to the start

of the loop. Goto Id directly corresponds to an arc to the label.

~ Return statement corresponds to the symbol in 4.2.2. It can have a return value or

not but the return value is of no interest from the prefetching point of view, because

mostly it is stored on the top of stack which is very likely to be located in main

memory.

[1J If statements (statements (7) and (8)) are straightforward to graph. They have a

conditional branch symbol followed by an arc directed to a sub graph. The branch

test statement is not limited to simple statements but it can contains calls or sub

branch statements.

Pre/etching Blocks 82

lm While condition test expressions have a loop test and a branch test as well. There are

two arcs: one to a loop body subblock followed by a loop back and the other is its

exit.

[§] For statement

fore expr1; expr2; expr3)
statement

is equivalent to
expr1;
while (expr2) {

statement
expr3;

}

nb. if statement contains a break, expr 3 is never executed.

Most commonly, exprl and expr3 are assignment expressions or function calls.

Exprl is the initialization code that is performed before the loop. Expr3 is the loop

index increment statement that is executed at last of every loop. Expr2 is a

relational expression[Kernighan 78]. The statement is the body of the while loop.

SoJor statements have four subgraphs which can contain any statement or symbol.

[1] Switch statements (statements (11), (12) and (13)) : The switch statement is a special

multi way decision maker. The conditional expression matches one of a number of

constant values and takes a branch to the one that matches. It can be decomposed

into if statements and graphed accordingly.

[aJ Do - While statements : The loop body is executed first and followed by a

conditional branch test. The body sub graph and conditional statement sub graph

are serialized in control flow and followed by a branch symbol.

For example, Figure 4.2 shows a simplified set of class hierarchy definitions and a

set of prefetch blocks. The derived class Blue declaration for the base class Color is

illustrated. The mainO function has an object creation and an if-then-else statement

with some member function calls in the block. The main program can be graphed using

Prefetching Blocks

class Color { . .. } ;
class Primary_Color : public Color { .. . };
class Secondary_Color : public Primary_Color{ . .. };

class Blue : public Primary Color{ ... }; I e

class Purple public SecondarY_Color{ ... I };

main Cl {
blu = new Blue;
ppl = new Purple;
if (clr != 0) {

blu.paintCl ;
}
else{

ppl.erase();
}

Blue: : paint Cl
{ Primary_Color: :draw(); }

Pup Ie: : erase ()
{ Secondary_Color :: clear();

Primary_Color: : draw()
{

}

{

while (c=next ())
c->draw() ;

Secondary_Color : :clear()

}

PB3
, ',':

~I.
" \

Fig. 4.2. Program frame and prefetch blocks

83

. ,

.' .

'PBf
'>:::::::::::::,,:::>: \

Pre/etching Blocks 84

the symbols defined above in terms of its control flows and object data dependency. The

prefetch blocks starts with the Begin_Main symbol followed by a sub graph concerning

two object creations. When the main function is called, the first prefetch block, PB1,

contains the address of builtin_new, the constructor of Blue and the constructor of Color

because it is a base class of Blue. The prefetch block is not able to stretch further because

the if branch is followed by the creation of the object. So, the if branch leads to new

prefetch blocks: one in the then block, PB2, and the other in the else block, PB3. The

head of PB2 has some sequential blocks followed by the invocation of two member

functions. These are graphed as two triangles with the function names on each of the

triangle. blu.paintO has a nested function call Primary_Color::drawO which is a

nonsequential function because it has an another conditional branch associated with a

nested function. Also, the member function has an object of class Blue which consists of

one base class, Color, plus the members unique to the derived class, Blue. This object

graph, a shaded circle, is linked to the triangle. This prefetch block contains three

important prefetching data items: the address of Blue, the address of Blue::paint and the

address of Primary _ Color::draw. On the other hand, if the branch takes the else block,

Ppl.eraseO, Primary _ Color::clearO, would be called. In this case, the prefetching block,

PB3, contains the address of an object Purple which contains all the base and derived

parts of the data, namely, the address of function eraseO and function clearO·

4.5 Adding Data to the Prefetch Block

In earlier chapters, we suggested that building programs usmg the

object-oriented method was efficient, because it concentrates on modeling entities from

the real world as related logical objects. This method leads to the interesting notion that

individual objects should be responsible for fetching their encapsulated parts,

particularly when the objects are persistent. Thus, encapsulation provides a means to

prefetch object data while the member function is read into main memory. As

Pre/etching Blocks 85

Brent[Brent 87] mentioned, data misses are so significant in virtual memory paging or

cache line prefetching system because these are typically the major component of faults,

so, a prefetching scheme that uses a control flow analysis notion is not complete unless

data is prefetched along with instructions.

As stated earlier, an object is an instance of a class and consists of some data and a

set of member functions that determine the external behavior of the object. The class of

an object specifies what operations may be applied to the object data, because the

member functions provided by an object have access to the instance variables and can

modify the data. Therefore, the relationship between object data and member functions

can be built so as to prefetch one of them when either of them is referenced. Thus, when

object X's data is fetched from a disk to some arbitrary location in main memory, related

member functions of the object can be moved at the same time and vice versa. The object

may also have more data, referenced indirectly. Pages for indirect code and data cannot

be prefetched when the object is first accessed. The reason for this is discussed in detail in

the following section.

The prefetch block provides an accurate representation of the flow of control of a

program and contains some information on object references. For example, it can

contain addresses of instance variables, member functions and long branch points.

However, not all data references can be contained in the prefetch table because AP is not

aware of the existence of pointers and references. For example, in indexed assignments of

the form x = y[i],x is set to the value in the location i memory units beyond locationy, so

it is hardly reasonable to expect to have precise addresses of objects referenced by indices

or pointers at compile time.

Object data prefetching which is described in Chapter 3 can be adapted to the

control graph and it is shown in Figure 4.2 .. There were two approaches suggested for

acheving this goal: compile time analysis and run time analysis. However, if object data

Pre/etching Blocks 86

prefetching is intend to be combined with the prefetching tree, it should be done by the

compile time strategy and the run time scheme used additionally for objects which cannot

be prefetched any other way.

4.6 Prefetch Block and Paging

The prefetch block is now a complete description of the program structure and its

data accesses. It identifies the branching structure, procedure calls, and some of the

references to data in a program. Many possible uses can be found for this prefetch block.

Analysis of the program structure is facilitated by using the control flow analysis since

only significant structural information is retained in its concise format. Object code and

data prefetching can now be performed using the prefetch block since many of the

necessary data references are specified.

In order to create as big blocks as possible, the prospective sequential blocks or

functions can be merged into a prefetch block. A prefetch block was defined as one or

more sequential blocks between a conditional branch and the following conditional

branch in the control flow. The key features of the prefetching scheme using prefetch

blocks presented here are as follows:

• Control flow cannot be predict at a conditional branch, so it should rely on demand

prefetching at that point.

• All objects' data associated with member functions in a prefetch block are

prefetchable if they are static at compile time. Otherwise, they can be prefetched at

run time by the method described in the Section 3.5.2.2.

• A set of adjacent primary prefetch blocks or prefetch blocks in a control flow can be

merged to form a bigger prefetch block. Low-level assembly language branches

which build primary blocks are not significant for most memory prefetching or

Pre/etching Blocks 87

program analysis. One of the benefits of this approach is that it includes the

significant information, while unnecessary information is excluded.

• No page faults would happen in a prefetch block in a pure prefetching method,

however, they are likely to occur in a demand prefetching.

• A minimum, viable prefetching block is a prefetch block which has statements

dispersed over at least two pages.

• A prefetch block in the shrinking phase should be built independently because it is

independent to that in the growing phase. However, the distance between these two

can be a good parameter for the selection of a replacement page.

To resolve the naming problem for prefetching blocks which occur at every page

fault, a possible solution with hardware is that a register can be allocated to contain the

name of the current executing prefetching block by tracing CPU execution so that it can

provide the block name to the fault handler. This could be a fast but expensive approach

because of the hardware support required. Another approach taken in this thesis is

software based using the functionality in a symbolic debugger. The naming is resolved in

the simulation by looking up the prefetch table to find a prefetch block which is

associated with a page fault. The lookup of a faulted function can be performed

efficiently by hashing the function names and then finding the pre fetch block in the

function that uses the faulted address. By this method, naming problems can be resolved

because a faulted address is uniquely mapped to a prefetch block. The details of

implementation are described in chapter 5.4.

Consider again the control flow graph shown in Figure 4.2 which has already been

described in Section 4.4. In Figure 4.3, suppose the graphed code located at page Nand

some library codes invoked in the prefetch blocks such as mallocO are dispersed in pages

M + 1 and graphic control routines which are invoked by drawO are stored in M. The

Pre/etching Blocks 88

FigA.3 The dispersion of object codes

branch points, if it is a leading point of a prefetch block, contain all necessary addresses

which would be essential information for prefetching the pages. After checking the

branch condition, one of the prefetch blocks which may be in page M or in M + 1 would

be selected and prefetched. At the moment, all loops in the control flow graph are

omitted for simplicity but some optimization will be applied to the looping later on.

Most page faults caused by function calls in nonlookahead virtual memory

systems can be suppressed by prefetching a prefetch block. In OBL, some proportion of

useless prefetches could occur but these kinds of misprefetching will be reduced and page

faults which are caused by long jumps could be suppressed by AP. It also suppresses much

Pre/etching Blocks 89

memory pollution. However, the constraints described in Section 3.5.2.1 are still

effective and AP is still unable to manage properly faults caused by the language

properties. In particular for dynamic binding(virtual function), in the case of taking a

uniform action for several objects in a hierarchy by calling the virtual functions defined in

each class, it is likely to be more efficient if some grouping policy is introduced for these

virtual functions. The problem, however, posed by this method is that a page which

contains a group of virtual functions may be not referenced, and then, it contaminates

main memory.

Moreover, the problem of the current implementation is that AP is only able to

suppress page faults caused by member function calls and their objects. But natural page

faults, such as a page fault occuring between two contiguous pages cannot be managed

properly because the branch prediction problems still remained. This point is described

in greater detail in Section 6.3.

4.7 Comparision with Similar Work

It is worth comparing AP with other object migration schemes although AP has

different basis to them since it has been developed for efficient virtual memory and

process migration based on paging scheme in the current implementation. Some object

migration schemes, for instance SOS, have a uniform migration mechanism for local and

remote accesses. Their first goal was to implement a one-level storage, transparently

integrating the so called "vertical migration" (to and from disk) with "horizontal

migration" (between memory contexts). Actually, vertical importation from storage into

a context is identical to horizontal importation, therefore, this comparision emphasizes

on how AP can be applied to distributed object oriented systems.

Pre/etching Blocks 90

4.8.1 SOS

SOS extended the object concept to distributed or "fragmented" objects which

shows a single object externally by providing local fragments or proxies which are

distributed internally[Shapiro 89]. A fragmented object is a group of Elementary Objects

which is dispersed but it is represented by local fragments. A fragment can add new

fragments to the group and group membership is preserved across migration. In SOS, an

object is mapped into a context which is an address space. It may contain any number of

objects which have their own unique identifier. To allow object migration, SOS provides

two different identities: an address and a location-independent reference (containing an

object identifier). An address is not meaningful outside of its instantiation context. It

needs to be explicitly translated into a reference in order for it to be embedded in a

message. This permits pointers automatic conversions between references and addresses.

The object migration mechanism in SOS is quite simple. When an object is to be

migrated from source to destination context, it moves prerequisite, object data, object

code and then reinitializes it in its new site. Code and prerequisite are migrated

recursively if not already present in the new site. Because SOS migrates the prerequisites

on demand, the migration time is significant. It therefore provides static groupings where

a group is created when a proxy provider migrates a proxy to another context. The details

of static grouping are not known but SOS does not have a facility for accurately

prefetching objects.

4.8.2 Emerald

Emerald[Jul 90] is an object-oriented language for distributed programming,

featuring fine-grained mobility. Mobility in the Emerald system differs from existing

process migration schemes in two important respects. The first is that it is object based so

the unit of mobility can be much smaller than in paging based process migration systems.

Prefetching Blocks 91

Second is that there is language support for mobility such asjoin, leave and attach. The

compiler transforms the user-defined object representation in order to facilitate

migration: its first few bytes are a standard descriptor and all fields of a similar type are

grouped together. Conceptually all objects live in a single, network-wide address space.

An object reference is global, but a local reference is optimized into a pointer.

Another important point when moving objects containing references is deciding

how much to move. Suppose an object is a part of a graph of references - one could move

a single object, several levels of objects, or the entire graph. The programmer can specify

movability explicitly and group related objects together. This is the difference between

AP and Emerald, thus, AP groups objects to be migrated by compiler transparently to the

user.

4.8.3 Guide

Guide[Balter 90] is an object-oriented distributed operating system which

provides persistent objects and concurrent computation through threads. To support

persistent objects, the system supports a permanent repository for objects, as a substitute

for a traditional file system. Guide objects imply two meanings: one is storage units and

the other is instances of a class. All guide objects are persistent and they exist as long as

they are referred to by at least one other persistent object. These objects have system

wide location independent unique identifiers. The execution abstraction is called a job

which may be viewed as a multiprocessor virtual machine consisting of distributed

concurrent activities operating on objects.

Since objects are stored in multiple sites and location transparent secondary

storage, they are loaded on demand into a virtual memory for execution by an object fault.

A basic object invocation is similar to procedure call but it is called an object invocation.

An invocation is specified by a reference to an invoked object, the name of a method and

the parameters of the invocation. When an object is not found in main memory where the

Pre/etching Blocks 92

execution takes place, on demand fetching for the object takes place. Object

management like this can be a good application area for AP because small objects which

are stored in different disk blocks can be managed more efficiently together rather than

individually. Moreover, if AP is adapted to the Guide system, the naming issue for every

persistent but location independent object can be resolved by using the object index table

which contain names and addresses of objects in the system.

As far as object migration is concerned, Guide has a different concept from other

systems. Whenever a new object is created, the object image is replicated to every node in

the distributed system. In the case of a diskless workstation, the image is moved to the

machine at boot time. It, therefore, does not require object member function migration

but only object data. However, if we assume that the image is not moved to the diskless

workstation by brute force, AP can prefetch some related member functions according to

the object id and function name.

4.8.4 Comparision with AP and Discussion

As we can see in the above, AP has good functionality for managing object

migration in such systems as SOS, Emerald, Guide and others. In these systems, object

page fetching and migration based on accurate prefetch in AP is more efficient than

individual on demand object migration. A significant advantage of the AP approach is in

performance. As stated in Chapter 2, the pure object-oriented approach for memory

management such as in SOS and Emerald is expensive. Each elementary object in SOS has

a size of 50 to 100 bytes and up. All migratory objects have system descriptors which cause

considerable overhead to the system managing them. These overheads for managing

individual objects could be reduced if the systems adopted AP for their object storage

management, in particular, fetching a group of objects at the same time for virtual

memory management and object migration.

Pre/etching Blocks 93

For instance, the migration algorithms of SOS and Emerald use simple grouping

schemes. When an SOS object is to be migrated to a new context, all system descriptors

for the object's data are copied and, in particular, the object code (operations) is

imported recursively. Thus, SOS transfers all code objects by brute force or on demand

fetching (always using deep copy[Sollins 79] and therefore losing shared behavior) and

has some static groupings for special occasions such as moving the name server when

booting. Emerald also provides facilities for forming groups of objects which will move

together as if they are linked each other. In comparision to AP, SOS and Emerald remain

conventional migration strategies because they do not provide any user transparent

accurate prefetching for groups of objects.

Another notable point is that AP provides object data prefetching by intercepting

the arguments passed to a member function. This technique depends on the argument

passing schemes chosen, such as pass-by-value or pass-by-reference. In particular,

argument prefetching in distributed systems is quite important because otherwise serious

performance problems could arise. In a distributed object-oriented system such as

Emerald, Clouds or Guide, the desire to treat local and remote operations identically

leads to the use of the same semantics. On a remote invocation, access to an argument by

the remote operation is likely to cause an additional remote invocation (call back[Jul

89]). The references must be resolvable on all nodes with uniform semantics - the

local-address / global-reference distinction can exist but it should be hidden from

programs by providing a single, network-wide address space, and compiler support for

trapping remote access[Chase 1989]. For this reason, systems such as Argus have

required that arguments to remote calls be passed by value, not by object-reference.

Similarly, RPC systems require call-by-value since addresses are context dependent and

have no meaning in the remote environment. In any of these cases of argument passing

Pre/etching Blocks 94

schemes in local or remote calls, object data management through proper prefetching

arguments could help to reduce the object data fetching time.

4.9 Conclusion

We have seen that the use of control flow analysis to reinforce the relationship

between objects is feasible because some inter-object and intra-object relationships

described in the previous chapter are expressed explicitly in object invocations. The

prefetch table describes source code structure, in particular, it concerns itself with

function calls and static object data in a concise structural representation.

The prefetch table consists of several prefetch blocks which are separated by

major branch points to represent an accurate description of the objects of a program.

Consequently, the prefetch block enables us to group objects and function calls in the

block together and prefetch them at the same time. We discussed how this methodology

can be useful for object migration in object-oriented distributed computing systems.

Implementation of AP

Chapter 5
Implementation of AP

95

The previous chapters described how objects' member functions can be collected

together and prefetched at the same time so as to reduce the number of page faults and

increase global paging system performance. This capability is provided by establishing a

prefetch table of an object's function calls based on control flow analysis and data

referencing patterns. This chapter discusses in detail one way in which the accurate

prefetching mechanism can be implemented.

The approach taken in this implementation falls into three major parts. The first is

the construction of a virtual memory system simulator which is a simplified model

functioning for the AP system. The second part is establishing the prefetch tree. This is

generated by an extended C++ compiler. The prefetch tree generation implementation

is based on the concepts described in the previous chapter. The final part is the building of

an interface which enables AP to be run using the prefetch table on a simulator. Rather

than providing an elaborate model or an actual implementation on a real machine, AP

was simulated to provide a prototype for testing its feasibility.

This chapter begins by describing the accurate prefetching virtual memory system

model. The section after describes how each module in the model is simulated and can be

used during the operation of the system. In particular, this section shows the details of

how the prefetching manager and the page fault manager operate for accurate

prefetching.

The following sections describe the extended compiler in more detail. In

particular, these sections describe how the notions for prefetch tree generation described

Implementation of AP 96

in the previous chapters are implemented and consider the steps that are required to

complete the prefetch table.

We then discuss naming issues for prefetch blocks when looking for a relevant

prefetch block with a faulted address. The section after describes in detail AP's running

operation which consists of three phases. The final section summarize and discusses the

technique developed in this chapter for implementing accurate prefetching.

5.1 The AP System Model

The basic architecture of AP is shown in Figure 5.1. The approach taken in this

simulation makes the whole virtual memory operation clear and simple enough to show

how the accurate prefetching of pages works. The layered structure on the bottom of the

figure shows that the whole simulated AP system works on top of UNIX and is considered

as an application program from the UNIX point of view. The AP virtual memory

simulator consists of two major parts: the prefetching virtual memory simulator and a

prefetching table generating compiler. To simulate the address references of a process,

the virtual memory simulator consists of five modules: a code executor, main memory

(s_main) and secondary memory (s_secondary), prefetch queue manager and page fault

manager.

First, the virtual memory simulator provides an instruction executor to the

simulator to trace the control flow of the program and evaluate all addresses involved.

Main memory and secondary memory are simulated to provide an address space for

processes and these are accessed by the executor. Main memory specifies a virtual

address space for use by a process as primary memory. The secondary memory also

specifies an address space so as to contain a whole process image. Both of the memories

are assumed to allow random access to any page. This is because AP is not limited to just

disk based secondary memory systems but a local use or a remote RAM disk or remote

file server as well. The key module is the prefetch manager which handles accurate

Implementation of AP

0-

Ex
Pr

Simulated
Pated Main

Memory
(s_main)

AP Virtual Memory Simulator

UNIX

Hardware

Fig.S.l. The structure of AP system

97

r

Implementation of AP 98

prefetching by searching a prefetch table and obtaining related pages in a prefetch block

at the same time at a page fault. The prefetch manager gets its prefetch information from

a prefetch table generated by the compiler and these are stored in a prefetch queue by the

Prefetch Queue Manager. The fetching algorithm then reads the queued pages into the

simulated main memory from the secondary memory when a fault occurs. If the main

memory becomes full and needs more free space, then the page replacement algorithm

purges LRU pages out to the secondary memory.

The compiler generates a prefetch table to provide a reference table for

prefetching to the prefetch manager. It makes use of control flow analysis to build a frame

for a program, building class hierarchies, and eventually, building a prefetch table. If the

prefetch table is completed, the file is stored in the same directory as the executable code.

When the program is executed, the prefetch manager will reference the table to get a

prefetch block which is associated with a faulted address. The prefetch manager can then

prefetch pages in the prefetch block. The details of these are described in the following

sections.

5.2 Simulation of a Virtual Memory System

The AP system is simulated on a Sun3/60 to demonstrate the feasibility of the

accurate prefetching based virtual memory system. One major point in this simulation is

the question of how to perform program executions realistically and how to evaluate

addresses of each opcode and operand precisely. Fortunately, there is a simple way of

implementing the simulation without complicate simulation of hardware in detail in a

virtual memory system. Instead of all details of computational, control signals and data

transfers on buses in a computer system, we are just interested in program control flow

and address references. This simple but efficient simulator can provide a main parameter

- fault rate - to measure the performance of virtual memory system. The functionality of

each manager and object prefetching scenario are as follows.

Implementation of AP 99

5.2.1 Executor

The executor simulates the CPU's memory accesses and it has two major

functionalities. The first is that it traces the control flow of the CPU in a virtual address

space when it executes a program. The tracing is exactly the same as that of the CPU of a

real machine. The machine code in the real main memory provides an execution

environment to the CPU. The approach taken in this simulation is that whilst the CPU

executes the machine code step by step and computes instructions as usual, the executor

follows the CPU's control flow by tracing the program counter. To control CPU

execution of the program in step mode, i.e. instruction by instruction, the executor causes

the processor to stop or to continue its execution by inserting a break point between every

instruction in real memory. In fact, the breakpoints are related to the ptraceO system call

provided by the operating system.

The second function is that the addresses referenced by each instruction are

evaluated and checked by the executor to see if they are in a given address range. While

the CPU is stopped, the executor performs address evaluation of the opcode and

operands for the current instruction. Whenever the code executor executes an instruction

the address evaluator fetch the addresses of the opcode and operands of the instruction in

order to determine if the reference was a valid or invalid memory access. The evaluation

of the accessed opcode address is relatively simple compared to that of the operand

because the opcode is matched with the contents of the program counter of the CPU. On

the other hand, operand address evaluation is not so easy. Operands have basic

addressing modes: direct, deferred, indexed, register and combinations of these modes.

MC68020 microprocessor instruction sets are classified into groups according to the

addressing modes. To get the right addresses for the operands of the current executing

instruction, its opcode is disassembled, decoded and then its operand's addresses are

taken from registers or memory directly or indirectly depending on the instruction mode.

Implementation of AP

while (the program is not end)
{

}

get_opcode_address;
get_oprd_address;
execute_the_instruction;
if(the addresses are not in main memory)

fault(the addresses);

Fig.5.2 The operation of the executor

100

To determine if the reference of the current instruction is a valid or invalid

memory access, the addresses are compared to the address space in the s_main memory.

If it was a valid reference, but we have not yet brought in the page into s _main memory,

then a page fault signal will occur. Namely, if the address is not found in the s_ main

memory, the executor asks the page fault manager to read the page from s_secondary

memory. The further processing for page reading will be explained in the following

subsection. Address invalidity is detected by the executor and a demand for the page is

transferred to the page fault manager. Figure 5.2 illustrates the operation of the executor.

The loop executes the body until a user program is finished. The body consists of tracing

control flow by getting the program counter by "get_opcode_address" and operand

address evaluation is performed by "get_oprd_address". Then the executor allows the

CPU to single step the instruction and stop waiting until the next loop. While the CPU

pauses, the executor analyzes the evaluated addresses of the instruction to see if they are

valid references or not. If they are invalid in the main memory then it calls the page fault

manager to read in the page.

Implementation of AP 101

5.2.2 Primary Memory (s_main)

The hypothetical hierarchical memory model in this simulation shows that s _main

is a higher layer memory and s_secondary is a lower layer memory. The higher layer

memory can be a cache or main memory and the lower memory may be a RAM based

local memory, distributed memory or a conventional disk based nonvolatile memory

system. In any of these cases, the model is page based virtual memory system in this thesis.

A virtual memory system based on the accurate prefetching of pages operates

between the two memories in the hierarchy: s_main memory and the s_secondary

memory. Thus, the logical address space of s_main seen by the paging scheme is larger

than the physical address space of the s_main. The s_main memory provides a working

environment which specifies an address space for a process executed by the executor and

it can be changed according to the new pages read into the s_main by the prefetching

algorithm. This paging operation has no connection with the UNIX virtual memory

system. In other words, the real virtual memory system which is an independent of the

simulation is managed by the UNIX kernel. Thus, a real process image provides an

execution environment for the UNIX process and it is expected to be controlled

instruction by instruction by the executor in Figure 5.2. The valid address space for the

executor just depends on s_main memory rather than UNIX memory address space.

The structure of s_main memory is a list of pages which are linked with forward

and backward pointers to the next or previous page so that the sequence of pages can be

changed easily. Besides the pointers, the s_main memory consists of entries about a start

and an end address of the page, a flag showing the status of the page (whether it is

occupied or not) and a reference count of the page for LRU replacement scheme. The

size of the page is decided by the difference between the specified start and end address of

each page. Again, nothing stores any process image in the page because the s_main

memory is not used by any instructions or data but is used to provide the address range for

Implementation of AP

struct page page[NUMPAGES]

struct page corememory;
struct page pgfreelist;

p flags

ref count

st addr

ed addr

*p forw -
*p back

p flags

ref count

st addr

ed addr

*p forw
~ *p_back

Fig. 5.3 The structure of s _main memory

102

• • •

the virtual memory simulator. Figure 5.3 shows the structure of s_main memory. The

total size of s_main memory can be varied if the array size is changed. Notice that the

s_main data structure looks more like a page table than a memory because it contains

most of the control flags for the page rather than the image of a process.

The operations of s_main memory are mainly queue manipulations. If a page is

chosen to be read into s_main by the fault manager, the page is allocated from the page

free list (pgfreelist) and it is added to the tail of the corememory list after setting the

entries in the page. When the page starts to be referenced, then the reference number

increases whenever the page is referenced while it stays in s_main memory. If a free page

is not available from the pgfreelist, i.e. the s_main is full, a page in the corememory list

must be freed and linked back to the pgfreelist and then it will reallocated for the new

requirement. When the page is purged from s _main memory, the entries in the page need

neither to be saved nor linked into the s_secondary list.

Implementation of AP 103

5.2.3 Secondary Memory (s_secondary)

In the hypothetical hierarchical memory model, s_secondary is a lower layer

memory such as a disk based nonvolatile memory or remote file server. However,

because this s_secondary memory is not assumed to a dedicated disk based secondary

memory only, disk seek time in the disk system or communication delay in the remote

memory access system are not considered here. The s_secondary memory is viewed as a

large capacity virtual address space which is able to contain any size of process address

space.

The s_secondary memory does not exist as any special data structure in the

simulation. It is a free list linking a set of empty pages to represent a dummy bulk

memory. This is also possible because s_ main memory does not need to contain any real

process image. As illustrated in Figure 5.3, if a page is linked to the corememory the page

is considered to have been read into s_ main memory, otherwise, if it is freed and linked to

the pgfreelist the page is considered as purged out to the s_secondary memory. In the

latter case the page should be flushed of all entries without saving them because the role

of s_secondary is only a conceptual in this simulation. However, a real file which contains

an executable process's image is stored in a real disk based secondary memory. This

provides a necessary working environment for the CPU supported by the UNIX virtual

memory system for real paging operation.

5.2.4 Prefetch Queue Management

The prefetch queue management is the most important manager in the AP

simulation and it is a unique function compared to other virtual memory systems. In

conventional virtual memory system such as OBL, the most obvious problem that arises

comes about due to the fact that there is no accurate prefetching management to suppress

memory pollution. As was pointed out in Section 5.1, the model of virtual memory

Implementation of AP

a fault address

Enqueue the
pages in faulted
prefetch block

Fig. 5.4 The operation of prefetch queue manager

104

systems was extended to allow accurate prefetching. This comes into existence due to the

operation of prefetch queue management and subsequent page prefetching.

The prefetch queue management consists of two major functions: prefetch queue

management and lookup of a prefetch block associated with a faulted address in the

prefetch table. The prefetch queue is another linked list similar to the memory list which

is shown in Figure 5.3. The reason why the two queues have similar structure is that both

of them share the same information about the entries in a page as their elements. Thus, if

there is a requirement to push a page on the prefetch queue, a page is allocated from the

preqfreelist. Then the entries - start and end addresses, and the status of the page - of the

page are set and it is added to the prequeue list (preqlist). The prefetch queue can have

more than one prefetchable page in the list. If a page fault incurs, the page fault manager

reads the prefetch queue and prefetches the pages. After finish the prefetching, the pages

in the prefetch list are returned to the freelist again. Figure 5.4 illustrates the state

diagram of the operation of the prefetch queue manager. The prefetch queue manager

reads a prefetch table for a program when the user program starts execution. Whenever a

page fault happens, the prefetch queue manager looks for a prefetch block with the

faulted address and adds prefetchable pages into the prefetch queue.

Implementation of AP

while (the program is not finished)
{

}

get_opcode_address;
get_oprd_address;
execute_instruction by instruction;
if(function_call instruction)

enqueue argument pages to the pre fetch queue
if(invalid address) {

fault(the invalid address);
lookup pre fetch block for the invalid address

}
enque the pages to the prefetch queue;

Fig.5.5 The extended executor for AP

105

and

The information for prefetching comes from two sources: the prefetch table and

object data. The former is a compiler generated table which contains all the relationships

described in Chapter 3 and Chapter 4. Suppose we have a prefetch table for a whole

program, this table is used for the life time of the process. When a page fault occurs a

prefetch block associated with the faulted address has to be specified. To find a specific

prefetch block, the prefetch table file is read at the beginning of the simulation and built

as a hash table according to the function name. This would add execution time to the

process but the overhead of prefetch queue management is relatively small compared to

that caused by the page fault. However, it could be reduced if this prefetching part is

processed in parallel to the main processor. After making the prefetch table into an

internal data structure of the simulator, lookup of a specific prefetch block is

straightforward. This operation will be described in detail in Section 5.5. When a page

fault happens, only the faulted address is known to the fault manager. This address is used

looking for a function and even a precise prefetch block. A prefetch block contains

accurate information about future references, so, these are added to the prefetch queue.

Implementation of AP 106

The scheme for prefetching object data at runtime will be described in Section 5.6.

The information on object data is collected by debugger functions at run time and they

will be queued using the same mechanism as described above. The only difference is that

the source of information is the prefetch tree but runtime debugger routines called

whenever the executor encounters a function call instruction.

Figure 5.5 shows the operation of the executor for prefetch queue management.

The bold statements are added so as to be able to prefetch object data pages and the

pages in prefetch blocks. A notable point in this figure is that the two operations are

independent of each other. The object data prefetching is checked whenever the executor

meets a function call instruction and the prefetch block searching is performed only at a

page fault because AP is based on a demand prefetching scheme.

5.2.5 Page Fault Manager

Machines whose hardware satisfies the requirement given in Section 2.3 can

support a kernel that implements a prepaging system. To implement the algorithms for

demand prefetching the hardware must set the reference and modify bits of pages. In this

simulation, a software valid bit that indicates whether the page is really valid or not is

used.

A crucial issue in conventional operating systems is how to implement a page fault

manager in their kernel. In the case of UNIX, the system can incur two types of page

faults: validity faults and protection faults but only validity faults are considered in this

simulation. Also, UNIX systems can field the fault with the required page in one of five

states: on a swap device and not in memory, on the free page list in memory, in an

executable file, marked "demand zero" or marked "demand fill". This simulation only

considers the pages in an s_secondary memory in the memory hierarchy described in the

previous section. The other difference between a real implementation and the simulation

is that the modules described in the previous sections - the executor, s_main memory,

Implementation of AP 107

s_secondary memory and prefetch queue manager - are used to evaluate every aspect of

the AP system.

When a process attempts to access a page which is invalid in the s_main memory, it

incurs a validity fault and the executor invokes the page fault manager. Address validity is

checked by the address evaluator in the code executor and it immediately gives a signal to

the page fault manager in order to read in the page containing the address if it is not

present. Then the page fault manager reads the faulted page and those pages in the

prefetch queue list into the s_ main memory. If there are several prefetchable pages in the

prefetch queue, the system prefetches all the pages at the same time. While the pages are

read into s_main memory, LRU pages are purged out by the replacement algorithm if

there are no free spaces available in the s_main memory. Page fault manager consists of

four different functions: incore, pagein, page out and vfault handler. These are described

in detail in the followings.

incoreO: This routine checks the validity of a current accessing address which is

evaluated by the executor in s_main memory. This function is called by the executor to

look for every referencing address at pages in s_main memory. Whenever a page is

referenced by the executor with a valid address in it, the page is considered to be the most

recently referenced. So, the latest referenced page should be linked at the head of s _main

memory. Although this routine is quite simple, this is one of the most time consuming

process in the simulation because every address for opcode or operand should be

checked for their validity and the LR U sequence of the pages in the link is renewed. Each

page is set to 512 bytes as a basic size. If the address is found in a page in the list then a

positive value is returned. Otherwise, it returns a negative value and then the executor

raises an invalid address signal to the page fault manager.

pageinO, pageoutO: The basic data structure involved in the page in and out

operation is a double linked list. When the simulation system is initialized the freelist

Implementation of AP 108

pages are established. Whenever there is a demand to read a page into s_main memory

from the s_secondary memory pageinO is invoked and it operates that one of the free

page is allocated from the freelist and linked to the s_ main memory list after updating the

page entry. The sequence for reading in a page is that when an invalid address is

encountered during execution of a program it calls the vfaultO function. The vfaultO

function allocates a new page in the s_main memory from the free list and sets up the

starting and end address of the page and fills some other entities for the page. If there is

no space to read into a new page in the main memory the pageoutO function is invoked by

the page fault manager. PageoutO selects an LRU page and flushes the entry of the page

and links it back into the freelist.

vfaultO: This is the main routine that controls the whole demand prefetching

operation. It invokes pageinO, pageoutO and prefetchO in sequence. VfaultO checks

whether the faulted address is in s_main memory as incoreO does to prevent a race

condition and then if the search is unsuccessful, allocates a newpage from the free list. As

stated earlier, if there are no pages available in the freelist, pageoutO is called to purge a

page from s_main memory. Also, vfault is in charge of pre fetching pages in the prefetch

queue. If the pages in the prefetch queue are not resident in the s _main memory the pages

will be prefetched together at this fault. These prefetchable pages have accumulated in

the prefetch queue since the last fault. Then real prefetching of the pages is performed at

the next following fault if those pages are still not in s_main memory. The pages in the

prefetch queue have waited to be fetched until this page fault occurred. There could be

some unnecessary pages to be prefetched for the time between when the pages are

enqueued in the prefetch queue and when they are prefetched. To prevent unnecessary

prefetching, incore is invoked for each of the pages in the prefetch queue and if they are

still not in s_main memory then they are read in.

Implementation of AP 109

5.2.6 Page Purging Management

The page purging manager purges out pages that are no longer expected to be

used in the near future or that are not recently accessed. The executor wakes up the page

purger when a free page is required. The purging operation in this simulation is different

from the real implementation in UNIX which has two indexes - low-water-mark and

high-water-mark. The Unix page purger is woken up when the available free memory in

the system is below the low-water-mark, and the page purger swaps out pages until the

available free memory in the system exceeds the high-water-mark. By swapping out

pages until the number of free pages exceeds the high-water-mark, it takes longer until

the number of free pages again drops below the low-water-mark, so the page purging

manager does not run as often. This is quite an efficient scheme.

The page purging manager in this simulation, however, is called whenever page

space is required in s_main memory. LRU is used as the fixed space page replacement

scheme in the current implementation, therefore, there are no high or low water mark

indexes. The doubly linked free page list and s_main memory make it easy to implement

LRU. Whenever there is a reference to any pages in s_main memory the order of the

pages are changed, thus, the last referenced page is at the head of the list. If the page

purging manager is called, the page at the tail of the queue will be purged out. This

approach takes most of the simulation time. Some machines set a reference bit when they

reference a page, but software methods can be substituted if the hardware does not have

this feature as in this simulation. In the clock replacement algorithm which is used in

UNIX, the number of examinations by the page purger between memory references can

be recorded in the page list but this is not adopted so as to test the effect of LRU in this

simulation.

Implementation of AP 110

5.3 Generating Prefetch Blocks

The prefetch block is a general notation for a program structure and it provides

basic reference information for AP. The prefetch block has a tree structure as an

intermediate phase but it ultimately has a table structure so as to be used to predict page

accesses. It should be concise enough to represent the control flow of a C++ program

and it should contain sufficient information to predict page accesses accurately. The

prefetch block contains some information on function calls, object data and their virtual

addresses which are in the same sequence as it's original program. The language that will

be used to develop the examples in this thesis is C++ [Stroustrup 86] and the properties

of the language have already been described in chapter three.

The establishment of prefetch blocks is divided into four modules. The first step is

to analyze the control flow of a program and then build a preliminary tree using an

intermediate language. The second step is to collect information on encapsulated objects

and object hierarchies and save them in a tree. The third is to aggregate these separate

trees into a single prefetch tree. Since the addresses will be ascertained after linking

several relocatable modules of a program in files and libraries, the prefetch tree does not

have addresses for symbols up to this phase. Finally, therefore, a process should be

carried out to link all prefetch block files for a user program and libraries and to collect

the symbol addresses from an executable file. This procedure establishes a complete

prefetch block. Each step is described in detail in the following sections.

5.3.1 Generate a Prefetching 'free

Before the prefetch block is described, the process of how a C++ program may

be compiled must be described. Most UNIX systems support two kinds of object files.

First, compilation systems generate relocatable object files, and second, link editors

combine relocatable files to create executable files. One can run the program in an

executable file because it is a complete image. On the other hand, relocatable files are

Implementation of AP 111

partial images and typically are not suitable for execution. Linking refers to at least three

separate concepts: combining object files, resolving symbolic references, and relocating

code so that it may run at particular addresses. Linking is performed by the UNIX utility

ld. Loading is the act of bringing a program into the address space of a process so that the

program any be executed. Loading is performed by the system call execO. The process of

compilation is illustrated in Figure 5.6.

To generate a control flow tree of a program, the GNU C++ compiler, in

particular, its intermediate code generation routine, has been extended. The modified

compiler supports analysis in terms of control flow and object hierarchy and then

synthesis these into the prefetching tree. The process of building the tree is in two steps. A

set of instructions make a prefetch block and a collection of prefetch blocks makes a

global prefetch tree.

Intermediate codes in a compiler have significant roles such as optimizations. The

AP makes use of the intermediate codes for building the prefetch tree. The intermediate

code known as a register translation language (RTL) shown in Figure 5.7 is generated

when a program is parsed but before it is optimized. The parsing pass of the compiler

reads an entire text of a function definition and then constructs partial syntax trees. C++

object and data analysis is also done in this pass, and every tree node that represents an

expression has a data type attached. Variables are represented as declaration nodes. Each

statement is read in as a syntax tree and then converted to RTL. The RTL generation part

is the conversion of the syntax tree into RTL code which is closer in form to assembly

language than to the source text. It is actually done statement by statement during parsing

but for most purposes it can be thought of as a separate pass[Tieman 89, Pyster 88]. In the

GNU C+ + compiler, the parse tree is not generated with a function basis but to

statements or declarations. Whenever a statement or a declaration is parsed, this parse

Implementation of AP 112

tree is translated to a corresponding RTL intermediate language list. So, building the

prefetch tree can start from this RTL.

RTL has much information which is unnecessary for building a concise program

structure. Only necessary information is written into a file (.pb) and this become the

frame of the prefetch tree. To establish a prefetching block, the prefetching tree

generator reads the RTL code for each function and generates a control flow graph. This

is the same process as a code generator that inputs RTL code and generates optimized

assembly code. So, this activity belongs to the code generation pass of a compiler. The

sequential block in the control flow graph is represented by a sequence of RTL

instruction numbers for non-branch or non-call instructions. However, ifthe prefetching

tree generator encounters a branch or a call instruction, the algorithm building a basic

block which was discussed in Section 4.1.3 is applied to it. Thus, if the prefetching tree

generator encounters a branch instruction, the instruction become a leader of a prefetch

block. A label is given for the leader for later reference.

Figure 5.8 illustrates the contents of a .pb(prefetch block) file. A .pb file contains

all the instruction sequence numbers for functions in a relocatable file of a program. For

example, the function "point_PSpoint" has twenty one RTL instructions and a primary

prefetch block and a prefetch block with the function call. The primary prefetch block has a

starting label PBB (prefetch block begin) and ending label PBE (prefetch block end) with

the block nesting index number. In these prefetch block, both of the index numbers are

"I" because they are not nested in each other. If a block is nested in another block, the

nested block has the index number n + 1. Also, PBB has a RTL instruction number for the

end of a block. For example, for the first PBB, JD = 12 thus, RTL 12 is the end of the

prefetch block. In addition, prefetchability such as a ''primary prefetch block(Ppb)" or

''prefetch block(Pb)" of the prefetch block is recorded at PBE. The prefetchability of the

prefetch block will be used to aggregate the blocks to a bigger prefetch block later on.

Implementation of AP

fileI.C, file2.C, ...

file I.c, file2.c, ...

Itmp/xxfile 1 J Itmp/xxfileZ .c ...

fileI.c file2.c . .fileI.c.vcb.

lib.c

a.out, a.outname

113

source code ,
Lexer

toke table
Analyse parse tree,
build class hierarchy,

.----_--L.-_----, object relationship
parser

'---___ ----l

tree abIes

and finally make pbs.
Build labels for the
prefetch blocks.

enerator
.~~~~~~anguage

tuples table, ~raphs, relations

prefetfh tree

assembler code
prefetch tree
a.o, b.o, libc.a

a.pb,b. b, libpb.a

9 t symbol address

a.out,

/tmp/pbfinalout

Fig. 5.6 Global structure of the compiler Fig. 5.7 The structure of g+ + for AP

Implementation of AP 114

Also, if the prefetch block generator runs into a function call instruction which is

important information in the prefetch block, the invoked function name is recorded after

the RTL instruction sequence number. This name will be used to find the function's

address from the symbol table. The prefetch block tag numbers will be used to manage

nested blocks properly. If there are backward branches they should be sorted out at the

end of the processing for a function, so, the prefetch block generator must have a two pass

look up to deal them.

;; Function point]Spoint

2 3 4 6 7 PBB 1, JD = 12
8 9 Iff _builtin_new
10 11 12 PBE 1 pb
5 13 14 15 16 17 PBB 1, JD=21
18 19 20 21 PBE 1 ppb

nonprefetchable

Fig.5.8 A .PB File

Fig. 5.9 The primitive program skeleton in Fig.5.8

To build the prefetch tree, the .pb file is re-read by the prefetch tree generator so

that the instruction number, PBB and PBE become entities in the tree. The prefetch tree

Implementation of AP 115

can be represented by a variety of data structures but a tree structure was adopted in this

simulation. This is because a tree structure can represent the flow of control best. A hash

function table is built for a quick search for a function in a program and each entity in the

table provides the head of the tree of a function. Prefetch blocks, function calls, position

labels then become branches in the tree. For example, Figure 5.9 shows a prefetch tree

for the function "point_PSpoint" in Figure 5.8. An entity in the hash table is allocated for

the user function and it also has the first PBB from RTL instruction 2 to 6. Then, a node is

built for PBB, 1FT and PBE. The 1FT node has a pointer to the function in the hash table.

If it is not already in the hash table in the first pass, the linking is postponed to the second

pass of searching. The linked list data structure is useful to optimize the prefetch block

and deal with backward branches. After completely establishing the prefetch block, it is

saved in a file which is named by appending .pb to the source file name. When the basic

process of building the prefetch block is completed the prefetch block generator starts to

aggregate some sequential prefetch blocks to make as big blocks as possible. This is

described in the following section.

Figure 5.9 illustrates the data structure of the prefetch tree after completing the

linking of prefetch blocks for functions in a program. The hybrid data structures are a

hash table for each function, a linked list and a tree which represents the prefetch blocks

in each function. Again, each prefetch block can be represented by a list of records

consisting of an identifier, a sequence of function calling and branches in the block,

followed by a pointer to the leader of the block, and by the lists of predecessors and

successors of the block. The hash table is called "pb_hash_table" and it enables fast

searching for function names. This tree will be used by relookupO for linking function

calls and labelling each prefetch block.

A problem with implementing the prefetching tree in C++ is that the GNU

compiler generates assembly code on a function basis. And prefetching encompasses all

Implementation of AP 116

the functions in a program. To keep the structure of the present compiler, the prefetch

block tree is established independently from the RTL and assembly code generation pass.

It is important to note that an edge of the flow graph from block B to block B' does not

specify the conditions under which control flows from B to B'. That is, the edge does not

tell whether the conditional jump at the end of B (if there is a conditional jump there)

goes to the leader of B' when the condition is satisfied or when the condition is not

satisfied. That information can be recovered when needed from the jump statement in B.

5.3.2 Merging Prefetch Blocks

By now, a program skeleton has been made in a tree structure representing the

control flow of a program. A hash table contains all the function heads in the program

and each function head become a root of the control flow tree for the function. Some

important information about a function such as a start block, end block and sub_function

calling become a node of the program. In establishing the prefetch blocks in the previous

section, we realized that some primary PB are contiguous. For example, RTL instructions

5, 13 to 16 in Figure 5.9 are sequential to the following PBB. Therefore, merging and

optimization for some primary prefetch blocks (sequential) and some prefetch blocks in

the prefetch tree should be performed. Consecutive primary prefetch blocks or prefetch

blocks are combined into a prefetch block. For example, suppose a prefetch block has a

function call then the primary prefetch block before the function call statement and the

first prefetch block in the invoked function can be merged into a bigger pre fetch block.

The benefit of this merging strategy is that we can prefetch more and more references

accurately. This merging operations should be carried out for a whole program and,

therefore, a global control flow graph is required.

How should be represent a global control flow graph for a whole program? The

parse tree in the compiler is built for each statement rather than for a whole program.

Most conventional compilers do not generate any information about inter-function

Implementation of AP 117

relationship because it is not necessary in a stack based machine. However, the

prefetching compiler must be able to generate some inter-function control flow graphs

using symbols as discussed in Chapter 4, i.e. a sequential block or function calls which

would be able to replace it in a sub graph. The methodology used to achieve this is to build

a prefetch tree having nodes for each prefetch block and function call to link caller and

callee function to each other by pointing to the callee function at prefetch tree generation

time.

pb_hash_table

po nt-PSpom
2-6 ~---...

•

builtin ne
-~-

Fig. 5.10 An optimized program skeleton

Figure 5.10 illustrates the tree in Figure 5.9 after merging sequential blocks into

their preceding prefetch blocks. The difference in the two trees is that the sequential

block (RTL instruction 2 to 6) is absorbed into the function head and the second

sequential block (RTL 5 to 17) is also merged into the PBE. As shown in this figure, a

sequential block is merged to the previous prefetch block and eventually the PBE of the

previous prefetch block is extended to the end of a merged sequential block end. Merging

inter-function blocks is performed at the very last stage of building the prefetch tree and

will be described in Section 5.3.5.

Two pass searching is necessary to complete the linking between a caller and a

callee function. In the control flow graph some functions which are not able to be looked

Implementation of AP 118

for at the first pass of generating the program frame are looked for again here after

completing a preliminary linked list. If the functions are found then they are chained to

the global prefetch tree.

5.3.3 Building Class Hierarchy Trees

In C++ , some objects are like other objects in an object hierarchy. These objects

in the same hierarchy have several implications. As stated earlier in Chapter 3, the yoyo

problem, a series of constructor and destructor invocations and dynamic bindings occurs

in the hierarchy. As far as accurate prefetching is concerned, yoyo problem can be

encompassed by control flow analysis which has already been described in the previous

sections because the function invocations involved in yoyo problem are expressed

explicitly. However, an explicit object hierarchy is required to adopt static grouping

among dynamically bound functions in the hierarchy. Thus, this hierarchy tree is built to

enhance the locality of reference by glueing some member functions in the hierarchy

together. The tree will also be used to prefetch constructors and destructors in base

classes. The constructors and destructors are in a sense explicitly expressed in the

functions but it is easier to put them in the class hierarchy tree.

There are no internal data structures which represent the full object hierarchy in

the compiler. So, AP's own object hierarchy table is built to make inter-object

relationships at compile time. Existing data structures for virtual functions can be used

for the object hierarchy but these are not enough because they are not able to represent

the whole object hierarchy in a program. For example, Figure 5.11 illustrates the data

structures for an instance of a class Point and its virtual function table in the OOPS

library[GoI87]. Each object inherits a pointer, vptr, to its virtual function table, vtbl. The

virtual function table pointer, vptr, is inherited from class Object in the library. Both the

vptr and vtbl are managed by the C++ translator as an internal structure and are not

accessible to the user but they can be shown in the preprocessed code compiled by

Implementation of AP 119

class Point class Class

tr

Object Data to base class

vtbl

vtbl

to metaclass

L...... __II = one instance per

= one instance per class

Figure 5.11 A virtual function table in c++

standard c++. This table enables dynamic binding by lookup for a proper

implementation of virtual functions. Therefore, the builtin virtual table cannot to be

accessed for establishing the inter-object relationship table because it is built for a

limited set of objects: those which have virtual member functions.

A tree is, therefore, built for each independent class inheritance hierarchy to

group constructors and destructors in its base classes as well as some member functions.

The data structure for it is a simple tree with a hash table for easy lookup of object names.

The hash table is used to hash base class names in each hierarchy. Figure 5.13 illustrates

an AP's class hierarchy structure for the tree in Figure 5.12. Whenever the parser

encounters a class with its base class (class D: B) it searches the tree to see whether the

object's base class is already present. If it is a new class, the class is managed as a base of

the hierarchy by allocating a new entry in the hash list. If its base class is already registered

in the tree, the class belongs to existing hierarchy. Siblings in the same class are pointed to

Implementation of AP 120

Fig.5.12 A class hierarchy tree

Inherit Hash Table

A

•

•

Fig.5.13 The data structure for the tree in Fig.5.12

with a forward pointer and subclasses are linked on beneath it. In current

implementation, multiple object hierarchy is not considered.

5.3.4 Relational Table for Object Member Functions and Its Data

Encapsulated operations and data structures in an object are important

information for prefetching in the AP. As explained in chapter three, when either of the

encapsulated parts is accessed the other part can be prefetched before it is read into main

memory by a fault. The implementation is done in two steps. Firstly, an object name is

mapped to a class name then the object's data are linked to member functions. The data

structure used for building the relationship is basically the same as that in the object

hierarchy tree. Every new class's entities in a C++ program are recorded in a hash table

Implementation of AP 121

named class_base. For member functions, C+ + classes overload their constituent

function names automatically. When a function name is declared in a class, its name is

changed to its overloaded name during compilation. For example, since names for

constructors and destructors can conflict, a leading '$' is added for destructors in the

compiler. When a constructor is encountered during processing, a new entry in the hash

table is allocated for the new function. If the function is a constructor, then it should have

a pointer to its class name so as to be able to look for its constructor in the base class. The

class hierarchy tree which is described in the previous section is a route looking for its

base class. Then all the names of member functions which belong to the class can be

identified by the compiler to record them under the class name. If a destructor is

processed, the auto-deleteO function in the C++ library is added by the compiler.

Figure 5.14 shows the hash table with linked list for the relational table.

Whenever a new class is declared, an entry is allocated for the class and it become a head

of a list. The list contains member functions as an entry in each node and each node has its

base class name.

class base
hash table

lassnam

•

classname PS classname cIassname _PSI _ cIassname

Fig. 5.14 A relational tree for objects

Implementation of AP 122

5.3.5 Collecting Object Data and Variables for Functions

The prefetch block provides an accurate representation of the flow of control of

the program and contains some information on object references. As for data prefetching

in prefetching blocks, the names and locations of data items should be collected and

those related to a faulted prefetch block can be prefetched by providing information to

the fault manager. So, the object data and variable references are collected at this phase

and they are appended to the prefetch block.

Not all variable references need to be prefetched. For instance, references to

variables that are either register variables, variables whose addresses are computed at

run-time, or local variables that are in the stack are not meaningful in terms of

prefetching. The reasons are as follows: first, register variables do not make memory

references. Secondly, variables whose addresses are not known during compilation

cannot be prefetched using the prefetch tree because the determination of location is

delayed until runtime. Implementations of languages like C use extensions of the control

stack to manage activations of procedures. Data objects whose life times are contained in

that of an activation can be allocated on the stack, along with other information

associated with the activation. However, all data objects in, for instance, Fortran can be

allocated statically. One reason for statically allocating as many data objects as possible is

that the addresses of these objects can be compiled into the target code[Aho 86]. Stack

variables do not have fixed addresses that are known when the program is compiled,

because, for languages like C, it is common to push the activation record of a procedure

on the run-time stack when the procedure is called and to pop the activation record off

the stack when control returns to the caller. The structure of a general activation record is

shown in Figure 5.15 and local variables in the activation record can be found in the lower

second row. However, the stack is not a large component of the miss ratio since it is

accessed often with good locality and the referenced parts of the stack do not tend to get

Implementation of AP 123

replaced. Therefore, stack variables do not need to be prefetched[Brent 87]. Figure 5.16

shows a typical subdivision of run-time storage organization in which a different storage

allocation strategy is used for each area. Static data allocation lays out storage for all data

objects at compile time. Stack allocation manages the run-time storage as a stack.

Dynamic allocation allocates and deallocates storage as needed at run time from a data

area known as a heap.

return value Code

actual parameters Static Data

· Heap
· · ~

Free Area

t ,

local data Stack

Figure 5.15 A general activation record Fig.5.16 A subdivision of run-time memory

To collect global and static variables as well as object data which are accessed by

member functions, the same type of hashed linked list described in the previous section is

used. When the compiler parses a new function an entry in the hash table is allocated for

it. Then, for all new variables or object declarators encountered during the parsing, new

nodes are allocated if they are not already queued. A hash table called symbol_tab is used

to build a linked list of variables defined in each function. This variable table

(symbol_tab) is tied to the prefetch table which is discussed in Section 5.2.2. A member

function has an entry in the prefetch table and the symbol_tab. The pointer

sub2 _ func _call in the prefetch table links the entities together by pointing to the function

in the symbol table. Figure 5.17 shows the combination of prefetch tree and the variabls

tree. Addresses of these object and variable will be filled in by the function

symbol_addressO which is described in the following.

Implementation of AP 124

Fig. 5.17. An Intermediate Prefetchtree for a Function

Most object data collected in the tree are generated by using symbol generation

routines in the GNU C++ compiler provided for symbolic debuggers. The compiler was

extended to generate variable names for the symbol table which we need only for

prefetching. Notice that this scheme for managing object data and variable for

prefetching is almost the same as Brent's work. However, AP has an additional

prefetching scheme at runtime to cover some dynamically created object data and

variable prefetching. This is discussed in Section 5.5.4 in detail.

This way of building a prototype is acceptable because some existing routines in

the compiler can be extended for prefetching. The operational command to generate the

symbol table for prefetching is "g + + -V -dv filename.cc". When an example C++

Implementation of AP 125

program is compiled with the -v option, it gives hint to the code generator to generate

only the necessary symbols for AP.

5.3.6 Combine All the Trees into a Prefetch Tree

By now, several trees have been built to represent a program frame based on

control flow analysis, class hierarchy tree, encapsulation trees tying encapsulated

member functions and data, and a linked list that collects variables related to functions.

These independent trees must be combined into a prefetch tree to contain all the

information described for prefetching. Otherwise, the prefetch queue manager would

have to search every tree at every page faults. Since all the trees have same data structure,

it is easy to link them together into a single tree.

Each tree has a hash table as a root for each function and these hash tables are

identical because the keys of the hash tables are the function names. The class hierarchy

tree has different entities in the hash table where nodes in the tree have constructors and

destructors. Those function names can be linked when they are referenced. Therefore,

the final prefetch tree is established by linking all the tables by using pointers. This final

prefetch tree cannot be kept as an internal tree of the compiler anymore because the

necessary address for the symbols in the tree will be specified by a linker which is a totally

different phase. This is similar to the way that all assembled files are written in relocatable

files and kept until they are linked. So, the final prefetch tree is saved in files named by the

source file name with .pb _in appended. The number of .pb _in files is the same as that of

source files.

The object hierarchy tree in Section 5.2.3 was built to enhance the locality of

reference by combining some member functions in the hierarchy together. The tree is

also used for prefetching calls on constructors and destructors in ancestor classes. The

constructors and destructors are in a sense explicitly expressed in the function but it is

easier to call them if we use the object hierarchy tree. The use ofthis hierarchy tree is that

Implementation of AP 126

it should be combined with the prefetch tree because when a constructor in a leaf class is

called, all the constructors in the ancestors should be listed in the prefetch tree.

When the prefetch generator encounters an object declaration the class name of

the object is searched for in the inherited hash table. The class name is used to look for its

ancestor classes as well as their constructors in the hashing table of the object hierarchy

tree. If the class name is identified the names of the constructor and destructor for the

class are copied to the prefetch tree. This operation goes on until all base classes are

sorted out. Moreover, the relational table for object member functions and their data can

be used to combine the prefetch tree and the objects. Consequently, the prefetch tree

contains most information for prefetching objects. However, the address of objects are

not yet specified.

5.4 Getting the Address of Objects

Addresses of objects are the most important information for an accurate

prefetching scheme. The prefetching tree has most names to be prefetched but the

location of the objects are not yet known because it is feasible to leave the relative

positions of the activation records unspecified and allow the link editor to link objects,

executable code, object data and activation records.

The addresses of member functions and static variables are fixed at linking time of

the program. Most compilers generates all symbol names at compile time but the

relocation addresses are unspecified because relocation is not performed until linking all

library functions and user programs in separate files. The compiler operates on just one

file at a time and cannot correlate a declaration in one file with a reference in another file.

The linking loader, ld, does just this. It takes a collection of object files and builds one

executable binary file by resolving all external references. It scans all of the object files

being linked for the declaration of an as yet unresolved identifier.ld can be told to search

any number of previously developed libraries for declarations as well.

Implementation of AP 127

One simple method to get the address of symbols from a final executable file is

extending the namelist program(nm). The namelist (symbol table) program prints out

global and local symbols from an executable file with an appropriate format. So, the

addresses generated for every object by the namelist program can be filled into the

entities in the prefetch tree. The addresses of objects and variables which are left blank in

the pre fetch tree at compile time would be filled in at'this stage by the symbol_addO

routine. Symbol_addO looks up all addresses for objects, builtin functions and static

variables from the symbol table in an executable file and fills them in the prefetch tree so

as to complete the tree. However, this method takes a long time, proportional to the

number of symbols, as looking for every symbol needs a search of all the symbols in a file.

The alternative is to search an internal symbol list in the linker. Every symbol is

reprocessed by the linker to check undefined or multi defined symbols at link time. So,

they can be read into the symbol list in the linker from reallocatable files. The symbols are

grouped together into two categories. One is global symbols which are saved in an

internal data structure, a linked list, and the other is local symbols which are not of much

interest to this implementation. The global symbols have addresses but the local symbols

have relative addresses. So, finding symbol addresses for the global symbol list can be

done by searching the internal symbol list in the linker.

The further processing covers combining all prefetch files, which were established

by the compiler/assembler and saved in files named .pb _in, for a user program and some

library files which will be included in the source files, into a final prefetch file named the

pbfinalout. Figure 5.18 illustrates linking of prefetching files for library functions and a

user program into the final prefetch table. The prefetch files for a library are already

built, archived and stored in the same directory as the library files. The archived files

contain all the prefetching information for library source files and these are archived like

an ordinary library. Furthermore, addresses for every symbol in the prefetch table files

Implementation of AP

, , ,
a.out

, , ... ~ tbol addresses

... ~ pbfinalout ~ - - - - - - - - -

Fig. 5.18. Building a PBfinalout

, ,

128

are searched for and taken from the symbol files which are read into the list at the early

stage of loading. When a prefetch block file for each text file is processed, global symbols

in the prefetch table are sought in the global symbol lists. Searching for symbol addresses

for the global symbol by this method takes less time than the previous method by

symbol_address because it makes use of an internal symbol list which is built by the

linker.

5.5 Naming of Prefetch Blocks

In the AP system, when a process encounters a page fault the prefetch manager

looks for the relevant prefetch block which the fault refers. The prefetch block contains

information such as flow of control, encapsulated objects, object hierarchy prefetchable

object functions and variables with addresses. To identify the prefetching block which is

uniquely defined in the pbfinalout, a naming system is necessary to address the right

prefetching block which is associated with the fault. A naming scheme for the prefetch

blocks is discussed in this section.

To address every prefetch block, labels are added to each prefetch block by

inserting dummies during the intermediate code (RTL) generation phase in the compiler.

Implementation of AP 129

Ox2152 -'point]Spoint:
.stabd 68,0,4
link a6,#O
movel a6@(8),dI
tstl dl

Ox215e LlOOOI:

Ox216a L5:

jne L5
pea 8:w
jbsr _builtin_new
movel dO,dl

movel dl,dO
movel dO, dO

Ox216e Ll0002:

Ox2170 L4:

xx

jra L4
.stabd 68,0,4

unlk a6
rts

Fig. 5.19 Pseudo labels in a prefetch table

These labels have the form L10xxx for branch points and L20xxx for function call

statements and they are unique within the file in which they are defined. Then, the way of

getting addresses for each prefetch table labels into same as for an ordinary variable,

namely, the addresses for the labels can be taken from an executable file at linking time as

with other labels. For example, Figure 5.19 shows two dummy labels for the two

prefetching blocks. The first one is an ordinary label for a function name. The second

label LlOOOl is inserted to identify the prefetch block starting with "jne L5" and it ends

with "movel dO, dO". The third label L5 is an ordinary label generated for internal jump.

The fourth is another prefetching label just before a branch instruction. The figure shows

that the prefetching labels have addresses like ordinary labels.

A RTL label instruction is inserted just before a jump instruction. This is done by

finalO when all optimization is finished. After compilation, the intermediate labels will be

saved in the resulting symbol table in a relocatable file by giving the - L option to the SUN

Implementation of AP 130

assembler. Without the option, all the defined labels are discarded in the assembling

stage. A noteworthy point to make here about adding labels is that each .pb file may have

the same labels, in particular, those labels for prefetching, which are defined uniquely in

the file. However, these labels are not ambiguous when searching for their address

because the symbols must be uniquely defined as local to the file. Symbols for branch

points and function call statements belong to this class of symbols. This method of

implementation provides fast and efficient look up of for symbols' addresses. How do we

know the address range of the last label in a function? The last address of a function is

required to specify the address range of the function. This can be implemented by

generating another label XX just before a return instruction, rts. In this example, the

label just before the end of unlink, unlk, is used to generate the last address of the

function. The last address of the function -point_PSpoint is L4 + 6 in Figure 5.19. Now,

every prefetch block has a unique address and this provides a name for a suitable

prefetching block at a page fault.

To achieve accurate prefetching, an arbitrary faulted address which belongs to a

function should map to a prefetch block because it is uniquely defined in the program.

Since the prefetching tree was built as a skeleton ofthe program, all function names in the

program can be found in the prefetch tree as well. However, addresses for data are not

defined but they can be prefetched if they are related to the functions. For function calls

in the prefetch tree, only the caller contains prefetching information with regard to its

called functions by pointing to their prefetch blocks. For example, if a prefetch blockA

has a function call to fredO, prefetch blockA will have a pointer to the prefetch block head

offredO. This method avoids multiple descriptions for function invocations and makes for

a simple prefetch tree. However, the prefetch block of the caller function will contain all

the prefetch information including for the callee without pointer when the prefetch tree is

read and saved at an internal data structure by the simulator. This is described later in this

Implementation of AP 131

section. For object data and variables which are statically defined at compile time, the

head of the function block contains the necessary information.

To illustrate how a prefetch table is generated and maintained for accurate

prefetching, a modified form of the prefetching tree diagram used in Figure 5.20 is

employed. Consider an application program containing two functions, one mainO and

the other fredO which is invoked by mainO. In Figure 5.20, the prefetching diagram can

be translated to a simpler diagram which is optimized from the original flow graph. The

optimization is particularly done for function calls so that a function call symbol can be

replaced by an equivalent subblock. For instance, the first primary prefetching block, D,

in fredO is combined with the last primary prefetching block, C, in the caller function.

This combined sub graph is shown as a shaded box in Figure 5.20. Also, Figure 5.20 has

branch destination points (shaded circles) for notational convenience. Now, this diagram

consists of primary prefetching blocks and arcs from sources to destinations. The arcs

have hardly any meaning in terms of prefetching because they bypass control flows. As

stated earlier, branch points have labels of the form LIOxxx and function calls L20xxx.

The labels can also be used to distinguish prefetchability for a primary prefetching block

or a prefetching block. If a block is a primary pefetching block, the page fault manager

does not need to search information for prefetching but use an one block lookahead.

However, if a block is a prefetch block, this block may have some prefetchable blocks

which are related to function calls because this block might be an optimized sub block

rather than a simple prefetch block. The fault manager should therefore search the

prefetchable informations.

The symbol diagram can be transformed to a linked list with a hash table for the

function names. The head of each list contains a begin symbol and a pointer to the first

prefetch block. The second node contains a begin_branch which is always coupled with

an end_branch. The branch node pair makes a prefetch block. Node C is a primary

Implementation of AP
132

Begin Main
a

W"--"-t" -- ®
j

return main

Prefetch Tree Optimized Prefetch Tree for Main

Fig. 5.20 Naming of objects in a prefetch tree

Main --{Q]-[l!] ..

Fred

Fig. 5.21 Prefetch tree for Figure 5.20

Implementation of AP 133

prefetch block and it points to the next node which is a sub function invocation. As shown

in Figure 5.21, the called function is pointed to by the function. The use of pointers avoids

duplication and is efficient for dealing with combining these inter function primary blocks

into one prefetch block but it makes search time longer. (This pointer will be replaced by

values in a final prefetch table at run time a task which will be discussed in detail in the

following section.) Then a end_branch node is followed by another primary prefetch

block. Notice that the branch nodes will be discarded at run time to reduce the searching

time for a prefetch table.

5.6 Running the Simulator

The last section described how the prefetch tree can be constructed. During this

discussion, a number of implementation techniques were considered, and the prefetch

table was made in a file and it is ready to be accessed by the prefetch manager. To run the

AP simulator, the prefetch table is read by the simulator before a user program runs.

There are three aspects to consider at this stage, the first is the loading of the prefetch

table file and making an internal prefetch table for the simulator, the second is searching

for a prefetch block at a page fault, and the third is object data prefetching using

parameter passing at run time.

5.6.1 Loading a Prefetch Table

A prefetch table saved in a file named pbfinalout is read into an internal data

structure in the simulator so that the table can be referenced while the simulator is

running. This scheme can be able to save search time for a prefetch block at a page fault

compared with looking up a prefetch block from a prefetch file directly. The alternative

to this scheme is that whenever there is a page fault, the file can be repeatedly opened,

searched and closed. However, this takes longer time for searching for the prefetch block

which is associated with a page fault than looking up an internal linked list. Even the table

Implementation of AP

•

•

LI000l
st_addr= 0x2I52
end_addr = 0x2I76
preCinfo[builtin_ne

LlO002
st_addr= 0x2I6e
end_addr = 0x2I70
prefjnfo[..]

Fig.5.22 A final prefetch table reference by the simulator

134

searching time is very critical for improving virtual memory performance because this is

an operating system overhead.

One method adopted to reduce the searching time in this simulation is shown by

the linked list in Figure 5.22 where a pointer is given for a callee function to prevent

duplication. However, the pointer is replaced by values for the callee function so that

searching time can be saved. This is a final prefetch table which is referenced by the AP

simulator. The linked list as shown in Figure 5.22 contains all the prefetchable

information for a prefetch block. Each node has four entries: label, start and end

addresses of the prefetch block and an array of prefetchable information. The labels can

be grouped into three categories: func _head, LI0xxx, L20xxx. Firstly, func _head is always

in the hash table and it corresponds to the symbol 'begin function'. Func_head labeled

nodes contain two addresses which specify the range of the functions. Also, the first

prefetch block of the function is included in the head node by the merging scheme

described in Section 5.2.2. Secondly, LlOxxx labels represent a prefetch block. They

contain start and end addresses for the block and some prefetchable information related

to static variables. Thirdly, L20xxx labels represent a function invocation in the block. So,

this node must have contained some prefetch information in it. The information was

pointed to by a pointer in the prefetch tree but when it is read into the prefetch list in the

Implementation of AP 135

simulator, the references are turned into values. The addresses in the node specify the

address range of the block but the end address is in the caller function rather than the end

of a callee function.

As it is stated earlier, address of the labels are desirable when looking for a

position with the missing address where a fault is incurred. The final prefetch table has

address ranges for each prefetch block in the program. Thus, a necessary prefetch block

can be found by table look up. The information for a prefetch block can be found with a

faulted address and it will be used eventually to prefetch the prefetch block.

5.6.2 Searching for a Prefetch Block at a Fault

How do we look for prefetching block corresponding to a faulted address? The

way of looking for the appropriate prefetch block from the prefetch list in the simulator is

to find the function with the faulted address in the hash table. The hash function is mainly

used to fill in prefetching information in the table but when searching a PB, address

ranges are used. Because the only information available when looking for prefetching

block is a faulted address, we look for a faulted function and then for a faulted prefetch

block by searching the linked list in the function.

Different labels have different schemes when looking for prefetching blocks.

Firstly, the address range in a function_head label specifies from the starting label of the

function to the return instruction of the function. Generally, the code area of memory is

filled up with consecutive user functions and library functions. So, any addresses in the

code area must belong to a function. The function_head labels specifies the address range

for any function in the program. Secondly, LlOxxx type labels are assigned for every

branch points as dummy labels to identify each prefetch block. Before we optimize the

prefetch tree, there are a number of small patches of prefetch blocks but some

consecutive prefetch blocks are combined into bigger prefetch blocks. So, the addresses

of prefetch labels specify the beginning address and the end address of the prefetch block

Implementation of AP 136

including the merged sequential blocks. Thirdly, 120xxx type labels are used for every

function call statement. The labels are unnecessary for naming prefetch blocks but they

are used to look for a proper prefetching point in a prefetch block. The usefulness of the

120xxx label is that it provides an address by the function invocation statement, namely, it

is used to determine whether it is lower or higher than the faulted address. For example,

suppose a prefetch block has two prefetchable function call statements and the fault

address is in between the two call statements. Then only the second call statement needs

prefetching. If we do not have addresses of the two call statements, it is not easy to

prefetch the second function call only rather than both of them in the prefetch block. To

prevent AP from misprefetching function calls, the position of a callee function is used

when the fault manager searches for a proper position to enqueue accurate information

in the prefetch queue. This type of label contains valuable position information for it..

Searching a proper block is simple as the nodes in the list are ordered in ascending

of the starting address of each block. Each blocks' start address is compared to the faulted

address and if it does not fit the search goes on to the next block. When a page fault is

incurred, the prefetching table is searched by the page fault manager to enqueue some

prefetchable pages. There are two different schemes of prefetching depending on the

prefetch block. The first is for primary prefetch blocks which may need just a one block

lookahead prefetching if it is on a page border. The second is for prefetch blocks which

require prefetching for different pages according to the array info[] in the prefetch block.

The major function related to this is called findJuncyc(). The function looks for a

faulted function in the prefetch table and if there are some prefetch blocks which are

lower address than the faulted address it skips them. Now, if these are no more with lower

addresses, this is the right position to prefetch prefetch blocks. If it looked for a right

position findJuncyc enqueues the addresses of objects in the info[] in the prefetch

block which is shown in Figure 5.22. The number queued is limited by

Implementation of AP 137

PREFETCH_NUM which is set to 5 in the current version but it should be a function of

memory size and the number of addresses in the info[]. The size of the queue is one ofthe

critical factors influencing the performance of prefetching as well as the amount of

memory pollution.

5.6.3 Running the Simulator

The hypothetical procedure of handling a page fault in AP on a real machine is

Page Table

9.reset
page table

Main-Memory

In

t e request
pages

Fig. 5.23 The procedures in managing a page fault

shown in Figure 5.23. This figure is different from the simulation described in the

previous sections in one way. The simulator does not have the page table, physical

memory and secondary memory separately but has dummy memories having page table

functionalities. However, this model is sufficient to explain the operation of AP in steps.

The scenario in the figure is as follows:

Implementation of AP 138

IT] If a program running on the executor tries to access a page having a function fredO

which was not brought into memory, then a page fault signal will occur.

[ZJ Then we check the page table to determine if the reference was valid or invalid. If it

was invalid, the program is suspended.

~ The address evaluator raises a fault signal and this wakes up the fault manager.

[1] The fault manager asks the prefetch manager if there are some prefetchable pages

with the faulted address.

~ The pre fetch manager looks up a prefetch block in the prefetch table for the

program and adds the prefetchable pages to the queue and returns to the fault

manager.

~ A request for the faulted page and prefetchable pages is transferred to the disk

server and then the pages are scheduled for input.

[1J When the disk read is completed, the pages are in main memory and page table is

modified to show that the page is now in memory.

[§] Restart the instruction that was interrupted by the fault address. (There is a method

to restart the instruction in the faulted page before all the prefetched pages are read

into the main memory)

The details of simulator related operations such as loading the prefetch table,

searching for a proper prefetch block are omitted in the above description. However, an

important operation for data prefetching is not described in the above procedure. The

following section describes the details of the implementation of object data prefetching.

5.6.4 Object Data Prefetching Using Parameter Passing

Object data prefetching can be realized by prefetching encapsulated object data

when one of its member function is invoked. The object data argument passing scheme is

Implementation of AP 139

an important point when performing object data prefetching. The first part of this section

discusses argument passing schemes in C++ and then the implementation detail of the

object data argument is described.

As stated in Section 5.2.5, an activation record contains storage for a function

invocation on the program's runtime stack. Formal arguments are described as the list of

arguments in a function definition and they are stored within the activation record.Actual

arguments of a function call are the expressions used in the function call one to one

mapping. Argument passing is the process of initializing the storage of the formal

arguments by the actual arguments[Lippman 89]. Parameter passing semantics are an

important issue in designing object oriented systems. For instance, Small talk adopted a

natural parameter passing method, call by sharing, through passing a reference to the

argument object. The same mechanism was used in CLU and in Emerald, a distributed

object oriented system, with a different name where it is called call-by-object-reference.

However, the default initialization scheme of parameter passing in C+ + is

pass-by-value, take an copy the rvalues (data value which stored at a location in memory),

of the actual arguments into the storage of the formal arguments. Two alternatives to

pass-by-value are pass-by-pointer and pass-by-reference. In these cases, the formal

arguments are declared as pointers or type references. A reference argument passes the

lvalue, a location value where its data value is stored, so as to modify the actual argument

and not a local copy.

Although prefetching the argument object is impossible to realize at compile time

as shown in Brent's work [Brent 87], it can be implemented at runtime because we make

use of runtime symbols generated by a debugger. To prefetch the arguments passed to a

function at runtime, AP invokes some extended functions of GNU debugger to get the

location of argument objects which are passed by pointers or references. As stated

earlier, the relationship between a function call statement and its arguments cannot be

Implementation of AP 140

built at compile time because the location of the arguments are unspecified and they used

to be referenced by pointers. However, the requirement to measure performance caused

by accurate prefetching of argument objects is quite substantial so as to find the effect of

the separate storing of encapsulated object's data and member functions in different

pages. Therefore, this scheme is quite expensive to implement at runtime but it is worth

investigating to measure it regardless of the cost.

While the simulator is running, if the executor encounters a call instruction it sets a

flag to take a record of addresses of object's data which are passed as actual arguments to

the function. Then the executor lets the CPU process the instruction one step and then the

executor takes a record of all the position information about the arguments passed for

prefetching them. For the pass-by-value scheme, the location information which is used

to take a local copy of the argument objects are saved and they are added to the prefetch

queue. When the function is initiated, the addresses are used for performing the copying

process. So, before the copying process happens, the page containing the object can be

prefetched if it is not resident in s_main memory. For the pass-by-pointer and

pass-by-reference, the address of the pointers involved in the argument passing

operation can be extracted out by the extended debugger functions. This is an indirect

operation which reads addresses of the arguments using the contents of the pointer and

gets the addresses of the objects. If the addresses are taken from the pointers, then they

are added to the prefetch queue. The rest of the prefetching operations for

pass-by-pointer and pass-by-reference are the same as for in pass-by-value, thus, the

position information in the prefetch queue will be prefetched like the pages from the

prefetch table.

5.7 Summary and Discussions

To summarize the description of the AP implementation, the virtual memory

simulator comprises of the executor, s_main memory, s_secondary memory, prefetch

Implementation of AP 141

queue manager and page fault manger. The virtual memory simulator takes prefetching

information from the pbfinalout file which is generated by the compiler. The sequence of

generating the prefetching tree which will be used by prefetching manager in the virtual

memory simulator is as follows.

IT] build a program skeleton by control flow analysis

[Z] build class inheritance trees

~ collect all object data and variables which are related to each function.

[1] link a class name and its member function names

[§] combine all the trees into a prefetch tree.

~ get all relocated addresses of all objects

B
Name
Generation

Inhertance

Fig. 5.24 Process of building a prefetch tree.

All the procedures except ~ take place concurrently at compile time whereas ~ is

performed independently at link time. Using the prefetch tree, the virtual memory

simulator searches an associated prefetch block with a page fault and prefetches them if

they are not found in s_main memory. Figure 5.24 shows a diagram ofthe the prefetch

tree generated by the compiler. PB generation corresponds to IT] and PB name

generation means the operation described in Section 5.24. Figure 5.25 illustrates the final

Implementation of AP

main 2f36
p1 p2 p3 _$tmp_O

L201072f50

Fe point]Spoint_SI_SI 2118
NSTD _malloc 4904
NSTD _builtin_new 4468

L201082f62

Fe point]Spoint_SI_SI 2118
NSTD _ malloc 4904
NSTD _builtin_new 4468

L201092f6c

Fe rectangle]Srectangle _ Spoint _ Spoint 2ge6
NSTD _ malloc 4904
NSTD shape _ PSshape 26eO
NSTD append]Sspgslist]Sshape 2550
NSTD append]Sslist]V 22aa

Fig. 5.25 The final prefetch tree generated by the compiler

name = main, st _ addr = 2f36, ed _addr = 3012
info = 2f36

name=L20107, st_addr=2f50, ed_addr=3006
info = 2f50 info = 2118 info = 4904 info = 4468

name = L20108, st_addr=2f62, ed_addr=3006
info = 2f62 info = 2118 info = 4904 info = 4468

name=L20109, st_addr=2f6c, ed_addr=3006
info = 2f6c info = 2ge6 info = 4904 info = 4468
info = 26eO info = 2550 info = 22aa

Fig. 5.26 The final prefetch list in the simulator

142

prefetch tree in a pbfinalout which is the final product of the compiler. When this

pbfinalout is read into the simulator for running, the prefetch table becomes a linked list

having entities shown in Figure 5.26. For example, the start and end addresses ofthe main

function are illustrated in the figure and this first prefetch block does not have any

prefetch information. The second prefetch block starting with name 120107 ranges from

Implementation of AP 143

the position of this function 2f50 to 3006 and it has three prefetchable pages. The third

and fourth names have different starting address but the same end address. This means

that these names belong to a prefetch block but they represent positions of function calls

in the block.

A problem posed during the implementation is that if library functions are

invoked their locations are specified but sub functions called by the library functions are

not processed in this version because library source code is not available. Thus, when the

page fault manager looks up the prefetch table for builtin library functions to collect the

function addresses, they can be found easily. However, in this case, prefetching

information for nested functions in the builtin function cannot be found. The prefetching

compiler was designed to be able to process even library functions but recompilation of

the whole C++ library needs to be carried out in the future.

The other problem is that the timing of prefetching pages is critical. When some

pages are read into main memory and they are not referenced soon the effect of memory

contamination is as severe as in most other prefetching systems. When a group of pages is

prefetched too early to be referenced, because the number of prefetches

(PREFCH _NUM) is too big compared to the s_main memory size, some of them may be

not referenced while they stay in s_main memory. This kind of over prefetching breaks

the working set. For example, if a real reference follows after the page was purged out,

then the misprefetched page breaks the working set and must be read in again.

Consequently, the necessary formula for this is strongly related to time. Thus, AP does

not mean a prefetching of a set of pages which will be referenced in the long term but only

pages which will be referenced in the near future. This is a function of time t, the pages of

main memory reference string R(t) and the number of pages in main memory at a given

time z(t). As a further study, the effect of mis-prefetched pages in a virtual memory system

has to be clarified in algebra.

Performance Measurement and Analysis 144

Chapter 6
Performance Measurement and Analysis

The last three chapters have described how prefetch trees may be constructed

using the properties of an object-oriented programming and control flow analysis. This

chapter discusses several performance measurement schemes for virtual memory

systems. Then we describe some performance measurement and analysis using example

programs in order to show how the AP mechanisms described in earlier chapters effect

the overall performance of virtual memory systems.

This chapter begins by evaluating the performance of the compiler which

generates a prefetch table in terms of time taken to compile. A comparison is made

between the original GNU C++ compiler and the extended one. The following section

discusses two general performance measurement methods for prefetching based virtual

memory systems. Total system performance of AP is described in the following section, as

well as the limits of AP in terms of fault management. The next section discusses what

kinds of faults can be managed and those that cannot. Tlie final section discusses various

points concerning the performance of AP and its influence on the whole computer

system.

6.1 Performance Measurement of the C++ Compiler

This section discusses simple tests which illustrate the performance of the

experimental implementation of the system - the modified GNU C++ compiler. The

compiler performance has not been optimized yet but it is worth comparing with the

original GNU C++ compiler (version 1.32.0) in terms of the time taken to compile and

link so that we can measure the time spent in generating a prefetch tree.

Performance Measurement and Analysis 145

The tests for the extended C++ compiler which generates a prefetch tree for AP

were performed on a SUN® 3/60 Workstation that has four megabytes of memory and

runs the SUN implementation of the Berkeley BSD 4.3 UNIX operating system (version

4.0.3).

The extended C++ compiler can compile any C++ program and it generates

exactly the same executable code as the GNU C+ + compiler does. Two small C+ +

programs are used throughout the performance evaluation. The first example program is

myshape from Stroustrup's book. This program is relatively small but uses many

object-oriented features. The source code of the program is 360 lines of C++ code. The

second test program is Marshall's LRing queue manipUlation program which has 605

lines of C++ code.

To illustrate the performance of this compiler, parse time and link time were

shown in Table 6.1 and Table 6.2. Most of the extensions (such as building a program

skeleton, inheritance trees, collecting object data) for prefetch tree generation are

included in the parse pass. Table 6.1 shows that the overhead of parse time in the

extended compiler is 1.16 times than the original. This amount of overhead is quite

acceptable.

v.1.32.0 v.1.32.0 v.1.32.QAP
ORG AP v.1.32.0RG

LRing 9.20 sec. 10.88 sec. 1.18

Myshape 9.06 sec. 10.46 sec. 1.15

Table 6.1 The parse time of extended GNU C+ + compiler

Performance Measurement and Analysis 146

v.1.32.0 v.1.32.0 y,1.32.QAP
ORG AP v.1.32.0RG

LRing 1.82 sec. 12.94 sec. 7.10

Myshape 1.74 sec. 13.12 sec. 7.54

Table 6.2 The link time of extended GNU C+ + compiler

As stated in the previous chapter, the linker was also extended to link prefetch

tables in several files including library files into a final prefetch table and then get

addresses for the symbols in prefetch blocks such as objects and variables. Linking time

was measured (Table 6.2) so as to observe the time spent compared with that of the

original linker. As we can see in the table, the extended linker takes about 7 times longer

than the original. This is because linear searching for addresses for every symbol takes

time proportional to N2/ 2 (where N is number of symbols). This overhead can be

reduced by an optimization such as using hash table for symbol lookup but it is still likely

to remain as a relatively big overhead of the compiler.

6.2 Performance Evaluation of AP

This section describes how performance of AP can be evaluated. Performance

evaluation for a prefetching system is different from that of demand fetching or OBL

because it brings in dispersed pages. This section begins by discussing how to evaluate a

prefetching policy and what points ought to be considered in the evaluation. The

following section discusses lifetime curves and a space-time product developed for

prefetching policies. The section after discusses the performance evaluation policy

adopted in this simulation, and is followed by two performance tests for the C++

programs mentioned in the previous section.

Performance Measurement and Analysis 147

6.2.1 Cost Measurement Method for Prefetching Policies

It is important to consider how the performance of prep aging policies should be

evaluated. In particular, how general prefetching paging systems are effected by fault rate

is important. Horspool[Horspool 87] pointed out that the following points of virtual

memory system influence operating system performance:

i) Amount of main memory that is occupied by the program.

ii) Number of page fault interruptions.

iii) Number of pages loaded into main memory.

iv) Number of pages removed from main memory.

v) Total page wait time.

iii) and iv) should be equal to the number of faults in conventional fixed or

variable space demand paging systems. The total page wait time should be approximately

proportional to the number of faults. Therefore, we can reasonably describe the

performances of fixed space and variable space policies by fault rate curves that show the

trade off between the main memory allocation (mean memory allocation for a variable

space policy) and the numbers of faults. This can be determined from the lifetime curve

which gives the mean number of references between faults when the mean resident set

size is given. A knee in the lifetime curve which is shown in Figure 6.1 is a maximum point

of mean lifetime and a minimum point of real space time product for a given size of

resident set [Denning 79].

Also, the effective access time[Silberschatz 88] for a demand paged memory has

significant influence on the performance of a computer system. Let p be the probability of

a page fault (0 < p < < 1), and memory access time Ct. We would expect p to be very

close to zero. The effective access time is then:

effective access time = (1 - p) • Ct + p • page fault time.

As long as we have no page faults, the effective access time is equal to the memory access

Performance Measurement and Analysis

lifet

g(a

spac

e

:a , , , , , , , , ,

mean size of resident set

g(x)

ST(x)

Fig. 6.1 Life time and space time curves

148

time. Here, we can see that the effective access time is directly proportional to the page

fault rate.

When prepaging is considered, the total number of page fetches is no longer

directly proportional to the number of page faults. Because the number of prefetched

pages is determined by the prefetching policy, in part, by the prefetch tree information

and, in part, by the length of prefetching queue in AP. Also, it is unreasonable if

prefetching a page are directly comparable with the costs of demand fetching a page.

Other researchers have sometimes assumed that each prefetch incurs a cost equal to

Performance Measurement and Analysis 149

about 20% of the cost of a demand fetch in OBL with a moving head disk as a secondary

memory[HorspooI87].

A space-time product could represent the performance of a prefetching scheme

the most accurately because it considers the five points listed earlier in this section. The

relationship between fault rate and real space time product (RSTP) was formulated by

Horspool[Horspool 87] and the following is taken directly from his paper.

RSTP = J SIZE(t) dt,

where SIZE(t) is the amount of real memory used by a program.

If the total real execution time of the program is T r, then,

Tr = Ty + Tw,

where Ty = program duration in virtual (or process) time and Tw = total page wait time (time

that the program is inactive waiting for page fetches to be completed). Thus,

RSTP = My. Ty + Mw. Tw,

where My and Mw represent the mean memory allocations over virtual time and during page wait

time. Assumes that My F;:j Mw,

Tw = F. Cf + P. Cp,

where F = number of page faults, Cf = expected time required to fetch a missing page,

P = number of prefetches performed and Cp = expected extra time required to prefetch a page.

Therefore,

RSTP = Mv • (Tv + F. Cf + P • Cp)

When we wish to compare two paging policies, PI and P2 on the same hardware they have

identical values for Mv, So,

RSTPI - RSTPz = Mv • [(PI - F2) • Cf + (PI - P2) • Cpl,

(where RSTPl> FI and PI represent the observed values of RSTP, F and P when using policy PI

similarly for policy P2) Simple rearrangement leads to the following result:

RSTPI > RSTPz iff (PI - F2) / (P2 - PI) > Cp / Cf (P2 > PI)

Performance Measurement and Analysis 150

The ratio (Pi - F2) / (P2 - Pi) shows a ratio of successful prefetches or an effective faults

decreasing. It represents the relative cost of prefetching a page versus the cost of demand fetching

a page and usually it is less than 0.2 in OBL but it would slightly higher than this in AP.

To compare demand paging and AP, Hospool's model needs a slight modification.

In practice, Cf consists of disk seek time and operating system overhead. Smith[Smith 78]

reported that operating system overhead would be a dominant factor in any system where

the CPU is fully occupied. In particular, it is obvious in process migration system. So, in

demand fetching, Cf = Dsf + Of (where, Dsf = disk seek time and latency delay for a

normal fault, Of = operating system overhead such as context switching, 110 initiation).

However, in the case of demand prefetching, operating system overhead is less dominant

because several pages are fetched at the same time. Thus, the operating system overhead

in demand prefetching does not directly proportional to the number of page fetching. Cp

for demand prefetching, like AP, needs less accounting Ifor operating system overhead.

So, Cp = Dsp + Op(where Dsp is disk seek time and latency delay for prefetching page,

Op = operating system overhead for prefetching a group of pages). Therefore, the

effective decrease for AP is (Dsp + Op) / (Dsf + Of). Moreover, when AP prefetches

several pages without memory pollution, the benefit of AP should be more than that and

it is a near optimal policy. If we consider page sorts in the disk I/O routine in the UNIX

operating system, the assessment of a prefetching policy becomes more complicated.

Consequently, as we can see in the above performance evaluation techniques such

as effective access time, Hospool's cost measurement method and Denning's life time

curve, fault rate is the most significant factor and memory access time is directly

proportional to the fault rate. Therefore, the performance tests in the following section

are mainly concentrate on measuring the fault rate.

Performance Measurement and Analysis 151

6.2.2 Policies on Performance Measurement for AP

The policy adopted for evaluating the performance of AP in the following section

is quite restricted compare to Hospool's theoretical method which was described in the

previous section. This is because of limitations in the functionality of the simulator with

respect to measuring some time parameters. The simulator is unable to measure times

such as: the total execution time of a process, the expected time required to fetch a

missing page, the expected extra time required to prefetch a page, disk seek time and

latency delay, and the operating system overhead. These time parameters can be

obtained when AP is implemented on a real machine.

However, most of the times involved in virtual memory management system are

closely associated with page fault rate. For instance, the total page wait time and the

overhead from the operating system should be approximately proportional to the

number of faults. This hypothesis is obvious in randomly accessible memories like a

cache or a RAM disk. We can therefore reasonably assess the performance of AP in terms

of paging rate.

Another point that we have to consider in the performance evaluation of a virtual

memory system is whether it implements a local or a global memory management

method. A global memory management policy seeks to optimize the memory of the

entire system rather than on a per process basis. However, this can lead to a paging system

so complicated that it can not be modeled at all [Breecher 89]. The performance

evaluation in the following is therefore limited to a per process memory management

scheme.

6.2.3 Performance Measurement of AP

To illustrate the performance of the AP, prefetch tables and executable files which

are generated by the extended C++ compiler for the test programs are used in the

simulator. A number of tests were made which involved recording the number of page

Performance Measurement and Analysis 152

faults and page fetches. However, the time taken to execute the test programs cannot be

measured because the simulator was not designed to measure such times. As stated

earlier, the simulator runs on top of UNIX and, therefore, all disk operations are hidden

under the operating system and it is quite difficult to measure the execution time

accurately without putting all the functionality of AP into the UNIX kernel.

Results were measured for several main memory sizes which are usually within

virtual memory operating ranges. S_main memory size varied from approximately 20%

to 80% of the whole addressing space of a process. This is the working range for

conventional virtual memory systems. Each page size was set to 512 bytes in this

simulation. Prefetching is also dependant on the size of the prefetching queue, so this is

another variable in the simulation.

Thble 6.3 and 6.4 show the basic performance characteristics in terms of the

amount of paging. The first column shows the sizes of s_main memory and the numbers in

bracket are percentages of the s _main memory size out of the total pages required to run

the program. The second column is the size of the prefetch queue and it is only applied to

the AP scheme. In the third and fourth columns, paging for On-Demand (OD) fetching

and OBL in terms of the number of page faults and total pages read into main memory

were measured to compare them with the result of AP. Also, the number of pages read in

by the OD policy is the same as its page faults and it provides a reference for comparing

the paging rates of the other two policies. This is the minimal paging rate that we can

expect in a paging system. Non prefetching systems are unable to suppress page faults less

than OD's number. The results for OBL are shown at the fourth column in order to

compare its results to OD and AP. The first sub-column in OBL is the number of page

faults and the second sub-column is the number of the total readin pages into main

memory. In the fifth column, the details of paging by AP are shown in terms of the

number of faults, the amount of prefetching, the total amount of paging (the sum of the

Performance Measurement and Analysis 153

number of faulted pages and prefetched pages) and the prefetching percentage which is

the number of prefetched pages out of the total pages read into main memory. The sixth

and seventh columns illustrate page fault ratios comparing AP to OD fetching and AP to

OBL. Finally, the last column shows Hospool's RSTP in Section 6.2.1 of AP compare to

OD.

The test results for the LRing program are given below in Thble 6.3, Figure 6.2 and

Figure 6.3. The size of the executable file of the test program is 160k bytes but its real

referenced address space during execution is 22k (44 pages), the rest being functions

which are not invoked during execution, symbol table and dummy pages which are built

by the UNIX executable file format. As far as paging rate (number of pages read into

s_main) is concerned, the overall result of OBL is almost double of OD if it is estimated

just by page movements. However, when the access time is considered as an another

factor, the performance of OBL may be improving.

memory size #pref AP AP
k bytes, pages, que. OD OBL AP
(%) fault fault/pgin fault pref. page

5k, 10, (23) 3 356 438, 835

5k, 10, (23) 6 356 438, 835

7.5k, 15, (34) 6 216 248, 454

10k, 20, (45) 6 154 164, 288

12.5k, 25, (57) 6 92 111, 189

15k, 30, (68) 6 76 74, 126

17.5k, 35, (79) 6 43 62, 104

25k, 50, (114) 6 43 34, 59

OD: On Demand Fetching,
OBL: One Block Lookahead,
AP: The Accurate Prefetching,

333 51

331 68

193 29

139 15

82 12

67 12

34 10

34 10

prefetch (%) = #prefetching / #pagein in AP * 100,
fault fatio = AP fault / OD fault

III

384

399

222

154

94

79

44

44

OD

pre- fault
fetch ratio

%

13 0.93

17 0.92

13 0.89

9.7 0.90

12.8 0.89

15.2 0.88

23 0.79

23 0.79

Table 6.3 Page fault and prefetching ratio for LRing

OBL

fault RS-
ratio TP

0.76 0.62

0.76 0.37

0.78 0.79

0.79 1

0.74 0.83

0.71 0.75

0.51 0.9

100 0.9

Performance Measurement and Analysis

no. of faults

450

400

350

300

250

200

150

100

50

OBL

OD
AP

OL---~
o 10 20 30 40 50 60 70 80 90 100

size of memory(%)
Fig. 6.2 Page fault reduction for LRing

no. of page-in
900,---,

800

700

600

500

400

300

200

100

OBL

AP

OD

.~ ~ .'

.. :-' ~,. ...•. ~"""':- .. . ~
, ~,

00 10 20 30 40 50 60 70 80 90 100

size of memory(%)
Fig. 6.3 Number of page fetches for LRing

154

Perfonnance Measurement and Analysis 155

In Thble 6.3, the result shows that the number of page movements in AP is almost

the same as that for page faults with an OD policy. This means that AP does not prefetch

redundant pages. However, the numbers are slightly worse in the low memory size range

because a small memory is more likely to cause misprefetching and is more sensitive to

this than a bigger memory. This is discussed in Section 6.3. The number of page faults for

AP is far less than that for OD. The difference between the number of faults for AP and

OD is almost the same as the amount of prefetching for AP. This means that AP does not

cause memory pollution. The ratio in the last second column of AP shows the prefetching

ratios. It illustrates that over 15% of the prefetching rate is obtained in the normal

operating range. This is quite a significant improvement for paging systems compared to

Stamos's static grouping[Stamo 84] which shows relatively good results in a small

memory range rather than the normal operating ranges. The last column illustrates RSTP

which is worth comparing to Smith's 0.2 in OBL discussed in Section 6.2.1.

The results are graphed in terms of two different values: Figure 6.2 illustrates the

number of page faults for the three kinds of policies and Figure 6.4 shows the total

number of pages read into main memory. These graphs reveal some interesting

characteristics. Firstly, AP's performance in terms of page faults is much better than OBL

and it is comparable to an optimal scheme, OD, as expected. As Figure 6.2 shows, the

number of page faults is consistently lower than the other two policies over the whole

address space. This means that the performance improvement for AP is significant for the

overall virtual memory operating range. Secondly, the total number of pages read in by

AP in Figure 6.3 is far less than that of OBL and is almost the same as the optimal points

of OD fetching. Therefore, the presence of accurate prefetching through control flow

analysis and object data prefetching is apparent.

The second test for Myshape shows similar figures which are shown in Table6.4,

Figure 6.4 and Figure 6.5. The size of the executable file of the benchmark program is

Performance Measurement and Analysis 156

135k bytes but its image after stripping the symbol table is 57k bytes. The symbol table is

only used for indexing objects in the simulation but not all of them could be used if AP is

implemented on a real machine. The real memory reference address range is smaller

than this, only 17k (34 pages) because, again, some pages are dummy. The rest of the test

conditions are the same as the previous measurement. .

The results obtained again support the performance improvement through AP.

Thus, fault rate and page transfers are far ahead of OBL in accuracy. One notable point in

this test is that the AP prefetching ratios for the same memory size, i.e. both 29.4 %, are

different from each other depending on the pre fetch queue size. For example, the

prefetch rate for a prefetch queue of 6 is almost double that of queue of3. However, the

accuracy is relatively low if the prefetch queue size is unnecessarily big and the proportion

of prefetched pages at a fault is too high compared to the number of existing pages in

main memory.

memory size #pref AP AP
k bytes, pages, que. OD OBL AP
(%) fault faultlpgin fault pref. page

5k, 10, (29.4) 3 254 280/491

5k, 10, (29.4) 6 254 280/491

7.5k, 15, (44) 6 96 1521254

10k, 20, (59) 6 57 66/115

12.5k, 25, (74) 6 38 45178

15k, 30, (88.2) 6 34 28/49

OD: On Demand Fetching,
OBL: One Block Lookahead,
AP: The Accurate Prefetching,

231 31

215 67

81 15

47 11

29 9

25 9

prefetch (%) = #prefetching / #page in in AP * 100,
fault fatio = AP fault / OD fault

in

262

282

96

58

38

34

OBL

pre- fault
fetch ratio

%

11.8 0.91

23.7 0.85

15.6 0.84

19 0.82

23 0.76

26 0.74

Table 6.4 Page fault and prefetching ratio for Myshape

OBL

fault RS-
ratio TP

0.83 0.74

0.76 0.58

0.53 1

0.71 0.9

0.64 1

0.89 1

Performance Measurement and Analysis

no. of faults

280 OBL

240 OD

AP
200

160

120

80

40

\. "

o~--~--~--~--~--~--~--__ --~--____ ~
o 10 20 30 40 50 60 70 80 90 100

size of memory(%)

Fig. 6.4 Page fault reduction for Myshape

no. of page-in

480

420

360

300

240

180

120

60

OBL

AP
OD

" . -
°0~--1~0--~20~~30~~4~0--~5~0--~~~~70~~8~0--~9~0--~100

size of memory(%)

Fig. 6.5 Number of page fetchings for Myshape

157

Performance Measurement and Analysis 158

Page Faults by Library Functions 69/94

Page Faults by User Defined Functions 10 / 94

Unavoidable Page Faults 3 /94

Prefetching 12/94

Figure 6.6 An analysis of paging rates for LRing at 12.5k memory size

Notice that the comparision of the results between AP and OBL is quite

significant with regard to page faults in spite of basic library functions not being

recompiled for prefetching. So, many page faults caused by library functions are currently

unavoidable. The current version of AP is only able to generate a prefetch tree for

functions programmed by users and that is why AP's performance limit still remains. For

example, Figure 6.6 shows this point very clearly. The fifth row in Table 6.3 illustrates

paging rates for LRing at 53.2% of s_main memory size. It gives a total of 92 page faults

by OD. In the case of AP, however, 94 pages are readin by 82 page faults and 12

prefetches. When this AP result was traced and analyzed to know precisely which

functions made which page faults, the results in Figure 6.6 were obtained.

Library functions are the dominant cause of page faults in the small test program.

They incurred 69 page faults out of total 94 pages read in. User defined functions also

cause 10 page faults and 12 prefetchings out of 94 page faults. Three page faults at the

start of the program for a code page and two stack pages are included in the unavoidable

page faults. The 12 prefetched functions are all for user defined functions because they

are under the control of the AP. Therefore, it can be said that approximately more than

50%, (12 user page prefetches among total 22 user pages read in) of user defined

functions are accurately prefetched by AP. Consequently, if all C++ library functions

Performance Measurement and Analysis 159

(including C library functions) were recompiled and we were able to generate the

prefetch tree for the library functions, more than half the total page faults would vanish

because the principle of the AP is the same for user programs and library functions.

The results of object data prefetching described in Section 3.5.2.2. are shown in

Thble 6.5. When we measure the effect of object data only, the test results show that

average prefetching ratio is approximately 3.1 %. The influence of object page

prefetching in a small memory is more than that in a large memory size. This is because

the potential for object data prefetching by AP is higher in the former. Thus, object data

prefetching occurs when its member function incurs faults and the object data is not

stored in main memory. If the member function is in main memory then its object data is

not prefetched but is demand fetched by a fault. So, the possibility of both member

function and its object data not being in main memory is higher for a small memory

system than for a larger memory system. Another reason for the low rate prefetching rate

is that the candidate of prefetching is quite limited since object data prefetching is only

for member functions which have object data as transferred argument. Some member

functions like constructors are not included in the candidate of the object data

prefetching function because the objects are not created yet. Also, most of library

functions are also excluded from the candidate because only user defined member

functions are considered for the candidate of the object data prefetching in this

simulation.

6.3 Manageable and Unmanageable Faults by the AP

Many different kinds of factors cause page faults in virtual memory in local or

distributed systems. Initial loading of a program, dynamically created objects in heap or

stack, sequential programs in different pages and conditional or unconditional control

branch by jumps or function calls are the major reasons for page faults. Among these,

some can be made manageable and be controlled to inhibit faults by the strategy in AP

Peiformance Measurement and Analysis 160

memory size Object Data
kbytes, pages, % Prefetching Pre fetch (%)

fault
5k, 10, (23%) 14/340 4.1

7.5k, 15, (32) 6/210 2.9

10k, 20, (42.5) 6/146 4.1

12.5k,25, (53.2) 2/91 2.2

15k, 30, (64) 2/75 2.7

17.5k,35, (74) 1/42 2.4

Table 6.5 The effect of object data prefetching for LRing

for optimal space-time product. For instance, AP can be used efficiently for initial

loading of a program and at every phase transition in the working set so as to supress the

number of consecutive faults which used to be managed by loading a segment in a

segment-paged scheme. Moreover, inherited constructors or destructors are under the

control of AP and some object data can be managed by run-time AP. Although it is not

implemented in this simulation, static grouping of encapsulated objects and virtual

functions in the same class hierarchy may also reduce pagings.

On the other hand, some faults are controllable but at too great on expense. For

example, dynamically created object data may be prefetched when its member functions

are read into main memory but much location information for objects would need to be

kept at run time. Also, some page faults can be managed if the size of the prefetching

queue is increased. The parameter which decides the number of pages prefetched at the

same time influences AP performance enormously. The bigger the parameter, the more

pages will be prefetched. Because the number of addresses queued in the prefetch queue

is increased. However, this does not make for a good prefetching system because it could

commit memory pollution or purge some useful pages from main memory to secondary

Performance Measurement and Analysis 161

memory. An example of this is when a function is dispersed in several pages that they

cannot all be prefetched at the same time because the priority of the page which contains

a return statement of the function is lower than the page having the function head. If any

low priority pages are prefetched into main memory, some higher priority pages will be

purged out. The priority can be adapted for every page to be read in but this is not

considered by this implementation. If these pages cause a page fault, it should considered

uncontrollable.

6.4 Discussion

In this discussion, several ways to improve AP are considered. The first is the

question of what is a proper memory size for a prefetching system and how to use it

efficiently. The second is how to assign priority to prefetched pages compared to demand

fetched pages. The third is the effect of branch prediction to eliminate the obstacle of

conditional branches. Finally, the influence of AP on disk sorting is considered.

With regard to the first, there is a prerequisite on an ordinary non-accurate

prefetching scheme that for effective prepaging you have many memory pages. Thus, if

devoting a page to prefetching sacrifices more than about 1 % of your memory, then you

lose - the increased misses caused by the smaller memory will not be compensated by

successful prefetches. On the other hand, if you have more than about 100 pages,

devoting one to holding prefetches is worthwhile - it doesn't cost you many misses, and it

will pre fetch a useful page often enough. So, it seems that if a system has about 100 units

of memory (pages in a main memory, or cache blocks in a cache), then prefetching is

worthwhile it. Consequently, if a system has significantly fewer pages/blocks, it is better

off devoting them all to normal caching by demand fetching. However, if a system has

significantly more, it is better to spend a few on prefetching. AP does not need to obey the

prerequisite and even reverses it because it depends on accurate prefetching and works

well even in small main memory systems. Some results in the previous section revealed

Performance Measurement and Analysis 162

slight performance degradation in the small memory because overprefetching was

intentionally generated (60% -six prefetch pages out of ten pages in main memory).

However, AP works very well even if 40% of pages are devoted for prefetching and it

proved that even such a large page allocation for prefetching is still useful.

In answer to the second question, it has been found beneficial to give prefetched

pages less chance to remain in a main memory than demand fetched pages. A similar

philosophy is reflected in the prepaging policy of the VME/B operating system. However,

these are not considered in this simulation because if AP prefetches pages accurately they

are likely to be referenced in the near future. In this case, the usefulness of prefetched

pages are the same as demand fetched pages. So, there are no reason to give less priority

for prefetched pages in the case of a real accurate prefetching scheme.

One of major problems in designing AP is to ensure a steady flow of instructions.

A change in the expected sequence of instructions due to a branch will cause us to reload

a page. Since AP relies heavily on a prefetch tree which is generated by control flow

analysis based on branch points at compile time, the size of a prefetch block is relatively

small. A possible alternative to the approach we have taken is to predict control flows at

branch points. If there is an accurate branch prediction algorithm available, the

performance of AP is likely to be maximized when the prediction algorithm is combined

with the prefetching scheme.

There are a number of branch prediction methodologies to reduce the

performance degradation caused by branches. They are multiple instruction streams,

prefetching branch targets, data fetch targets, prepare to branch, delayed branch, a taken

not taken switch, and branch target buffer (The details can be found in [Lee 84 D· Some of

these replicate several branch targets and others try to prefetch a branch target by a

special mechanism for calculating the target. The details of these algorithms are

Performance Measurement and Analysis 163

described in [Lee 84]. According to the results of the algorithms, the probability of

correct branch prediction is about 70%.

As stated earlier, if a page is misprefetched into a main memory it could break the

working set and, consequently, it may cause a number of page faults to reload the pages to

form the working set again. The result of this kind of misoperation is so critical therefore , ,

it is unlikely to improve performance if any of the branch prediction algorithm discussed

above are adopted into AP since their accuracy is about 70%, therefore, the other 30%

could cause misprefetching. Moreover, branch prediction algorithms are mainly

developed so as to improve time critical purposes such as pipelinings. However, AP does

not rely so heavily on every branches compare to pipeline operations and is not so find

like pipelining. It is a tradeoff between adopting a branch prediction algorithm where the

probability is about 70% and a potential breaking of a working set by the rest of 30% of

misprefetching. Therefore, no branch prediction algorithm is introduced to current

version of AP but is worth investigation in the future.

Finally, disk sorting was briefly considered so that the accurate prefetching could

reduce disk seek time. If an accurate prefetching system provided more than one object

or page which mayor may not consecutive each other to the disk scheduling queue,

optimal scheduling of disk head movement could be achieved and consequently the seek

time can be minimized. This strategy gives many benefits if it operates on randomly

accessible secondary memory. It also shows the same or better performance than

conventional fetching strategies in movable head disk based secondary memory system.

This is because giving a number of prefetchable pages to a disk system having a long disk

scheduling queue enables it to optimize disk access by ordering them [Seltzer 90]. Pages

which are the prefetch queue can be used for efficient disk page sorting. In conventional

disk based virtual memory system, disk page requests are sorted into ascending or

decending order depending on the disk sort algorithm adopted in the system. For

Performance Measurement and Analysis 164

example, SSTF (shortest seek time first), SCAN and LOOK algorithms[Silberschatz 89]

perform track sorting before real read/write operations are carried out. Therefore, if

information on the prefetching pages is available, partial sorting can be more efficient

because they provide lookahead information for future references.

Conclusion and Directions for Future Work 165

Chapter 7
Conclusions and Directions for Future Work

It is a difficult task to realize an accurate prefetching system but this thesis has

shown that it can be done if we make use of control flow analysis and the properties of

object oriented languages. The notions and practices behind the use of control flow for

nearness algorithms, such as restructuring or grouping of program pieces, were well

known in the early stages of virtual memory development. However, the notion of

prefetching objects for object oriented computing models is relatively new and is

different from previous work. It allows objects to be prefetched accurately without any

memory pollution and the performance of the memory management system is thereby

significantly enhanced. This chapter concludes topics discussed in this thesis and indicates

some of the possible areas for further research.

7.1 Conclusions

The requirements were to develop a scheme that could reduce fault rates as much

possible so as to handle dispersed objects in object oriented languages in the latest

memory systems which allow random block or page accessing (e.g. large RAM cache or

RAM disks). This motivation defines the goal of this thesis to be the development of a

system that can support an accurate prefetching methodology, lowering fault rates and

solving the memory pollution problem for object oriented languages.

The limits of existing policies such as restructuring and grouping based on

nearness algorithms were obvious when dealing with complicated and dispersed objects

in object oriented programs. These policies do not have any mechanism for fetching

objects at the time when they are required and do not fetch objects if they will not surely

be referenced in the near future. Also, the restructured program often runs worse than

Conclusion and Directions for Future Work 166

the original non-restructured version since a different set of input data even for the same

program can alter the trace dramatically. These approaches were inefficient in

suppressing the set of consecutive faults that happens at every phase transition.

Alternatively, OBL is a simple prefetching scheme for reducing disk access time but is

hardly adequate to handle the latest memory systems which allow random accessings.

Therefore, a new approach for tackling the problem should be able to control the

fetching of objects by using information derived from source program structures.

Moreover, as a means of lowering fault rates, a group of related objects can be tied and

fetch them together. When one object in the group is demand fetched, the other objects

will be prefetched.

To prefetch a set of objects or pages together, an intra and inter object

relationship must be built to stick them to each other. We tried to find a means of

supporting this facility among the properties of object oriented languages. Data

abstraction and encapsulation enabled us to build intra relationships between operations

and their data. These properties provided data dependencies to be able to tie them. This

property was used to prefetch object data which were usually stored in different pages or

segments to the functions. However, prefetching of data objects by encapsulation at

compile time was difficult to implement because there were many constraints such as

dynamic creation and the use of pointers. So, this was implemented at runtime to observe

the effect of data object prefetching. Inheritance provided another good property for

building an inter object relationship between objects in the same hierarchy. The yoyo

problem is a typical example of high inter-object dependency causing busy control flow

among objects in the same hierarchy because the execution of methods goes up and down

the class hierarchy. Although there is a strong tendency to yoyo in user programs, only

limited member functions such as constructors and destructors were worth prefetching

because there were a few exceptions of the functions from the yoyo. Virtual member

Conclusion and Directions for Future Work 167

functions also showed the yoyo phenomenon but they were not worth prefetching all

together because not all member functions in an object are used in the near future and we

do not want to prefetch objects without some certainty that the object member function is

referenced soon. Therefore, control dependences and data dependences by control flow

analysis were required to reinforce the relationship.

Some inter and intra object relationships are expressed syntactically by object

invocations. Control dependency of a program can be exposed by using the control flow

analysis technique. Significant program structure was encoded in the compact form of a

table, the program being divided into prefetch blocks which obey the

single-entry-single-exit rule. In the control flow graph model, branch points became

leaders for building prefetch blocks. This rule led to a guideline required for establishing

prefetch blocks for high level statements containing branch points. A problem raised by

this approach was that there were too many fine grained prefetch blocks which did not

contain substantial prefetching information. These nonsignificant blocks are merged into

their consecutive blocks. Data dependency implied by encapsulation also can be

expressed using argument passing schemes. Object data were attached to the prefetch

block containing the function call since they are very likely to be referenced in the near

future by the function.

This extension of dependencies by control flow analysis revealed that the behavior

of control flow analysis in early binding object oriented programming languages is almost

the same as that in procedure oriented languages. Control transfer between member

functions occurs through member function invocation and object data transfer occurs by

parameter passing. This is because interfaces between objects are procedure basis.

However, control flow analysis was not able to be applied to dynamic binding because the

binding is not specified at compile time. Instead of this, dynamic binding can be used for

static grouping of virtual functions. Therefore, the properties of object oriented

Conclusion and Directions for Future Work 168

programming provided some hints for the relationship which can be used for both static

grouping of objects and prefetching related objects in a large memory system. However,

these were not sufficient themselves to build the relationship for AP without the

reinforcement of control flow analysis.

From the full implementation of the AP simulator, we can see that many page

faults caused by function calls can be suppressed because the prefetch table provided

reference information to the fault manager. This is a simple software approach to

lowering fault rates. This result agrees with Portfield's findings quoted in [Gornish 90]

which were that effective compile-time prefetching is often more effective than hardware

prefetching because the compiler can analyse program structures. However, when the

prefetch table was used by AP, prefetch operation was demand prefetching. So, a limit to

suppressing of faults was remained, thus, whenever there was a page fault it could

prefetch some object group but there was no way to prevent the fault itself by this demand

prefetching scheme. This is a drawback of the software approach because no parallelism

can occur between the prefetching operation and computation, therefore, and the fault

rates cannot be zero.

The performance measurement for the compiler and the AP scheme were carried

out using test programs and later the results were analyzed in detail. The simulator can

measure paging rate but was unable to measure timing parameters. The measured results

showed that about 20% of accurate prefetching was obtained in normal virtual memory

working ranges. This means that the same amount offault rates were reduced. However,

this rate is expected to be easily increased into about 50% if all library functions related to

a user program were recompiled by the AP compiler.

The results supported the original goal of this thesis in developing an accurate

prefetching scheme for object oriented system without the drawbacks caused by those

nearness algorithms or other prefetching schemes. In this, we have been successful in

Conclusion and Directions for Future Work 169

showing that AP achieved both a significant real improvement in performance, and was

misprefetch free and relatively simple to implement. The key finding of these

experiments is that the realizable AP substantially reduce the number of page faults

caused by dispersed objects. AP provides not only significant improvement in reducing

the number of page faults but also reduces memory pollution dramatically through very

accurate prefetching. In particular, the page fault reduction for object data pages which

have weak sequentiality is a valuable achievement. Some proportion of useless

prefetches which could occur in OBL can be managed and page faults which were caused

by long jumps can be suppressed by AP.

Accurate prefetching can be applied to many memory hierarchies although there

are some minor problems if it is applied to cache memory. Since it needs to lookup the

prefetch table, it may not be suitable for cache memory in conventional CPU, but if an

associative memory is adopted to reduce the searching time by content searching of the

table, AP can be used for cache memory as well. One significant advantage of AP when it

is applied to local or distributed virtual memory system is that it reduces operating system

and network overheads by moving a group of useful objects at the same time. Therefore,

memory hierarchies such as cache, virtual memory, and distributed paging can be

application areas of AP.

7.2 Future Work

We believe that the current AP implementation demonstrates the viability of this

approach and meets our goal of enhancing virtual memory performance in terms of page

or object fetching. However, a number of areas of future work have become apparent

throughout the description of the mechanisms of AP. The first area is that AP should be

implemented on a pure object-oriented system to evaluate performance variations.

Although most of the main areas for individual object prefetching are considered in this

Conclusion and Directions for Future Work 170

thesis the implementation would meet more realistic problems which would have to be

resolved. Optimization of the generation of the prefetch table by the compiler needs to

be under taken and a real implementation of the accurate prefetching algorithm in an

operating system would also need careful study.

Another extension of the accurate prefetching scheme is to adapt a static grouping

for objects using the intra and inter object relationship. The use of object properties for

accurate prefetching was not much used in current version but the work described in

Chapter 3 and 5 could be used for object grouping which has been described by other

researches. Some C++ programs are grouped manually to place sibling virtual

functions in a single file. Objects in the same hierarchy are intentionally put in the file so

that they can be located consecutively in the final executable file. This rearrangement

have been done manually for large amounts of software but it can be automated by using

the scheme shown in the thesis.

Object and page migration in distributed systems were suggested in the thesis. An

implementation would give some realistic results to verify the feasibility of AP in

distributed systems. Apart from other issues related to distributed systems, the future

work would have to concern itself with the reduction of communication overheads for

transferring objects or pages. In particular, the effect of AP in terms of overheads related

to network software invocations are important parameters when evaluating its

performance. AP could be tested on some object oriented distributed system such as SOS

or COOL.

Another area of future research is investigating the effects of AP when it is

adapted to a multiprocessor system. There are two issues for AP: one is fetching multiple

objects or pages and the other is the coherence problem incurred by multiple fetches. A

program running on a multiprocessor no longer has a single, sequential order of

execution. The temporal and spatial locality, especially for shared data, of a processor is

Conclusion and Directions for Future Work 171

easily disturbed by actions of other processors. So, there should be a potential

prefetching algorithm which includes the scheduling of pages to processors for optimum

sharing. In the case of multiple objects or pages fetched to local memories in each

processor, page coherence becomes more complicated. Li[Li 86] addressed the page

coherence problem in a distributed shared memory system but assumed a single page

fetch at a fault. The page coherence issue should be extended appropriately to multiple

object fetches.

For shared memory multiprocessor system, shared data should not be in the same

page so as to prevent reference contention. Using a page-oriented system, the

programmer would optimize data reference patterns by laying out data structures and

partitioning the work so as to make each node reference different sections of the linear

address space. If two nodes write-share the same block of addresses, the virtual memory

system will thrash[Chase 90]. These complicated problems cannot be resolved by natural

or simple grouping algorithms but the AP approach could be a starting point for research

because lookahead information in the pre fetch table may give hints that could prevent

the contentions.

Modern garbage collectors tend to get involved with the virtual memory hardware

in order to speed the scan for garbage. Most object-oriented systems which support the

persistent object model should have an algorithm for garbage collection algorithm.

Suppose the persistent objects are listed in a prefetch tree, it is possible to do a

short-term garbage collection by selecting objects which are unlikely to be referenced in

the near future. This operation is based on a distance algorithm whereas the accurate

prefetching is based on a nearness algorithm. Apart from this issue, the distance algorithm

can be used to make practical Belady's MIN and VMIN algorithms.

Also a possible area is how to adapt hardware systems to AP. The time spent in

looking up the prefetch table at every fault can be saved if it is carried out by hardware,

Conclusion and Directions for Future UVrk 172

e.g. an associative memory. Finally, the possibility of the applicability of AP to relational

databases and other information systems that contain only implicit relationships in

contrast to explicit pointers is not known. This area also needs further investigation.

References 173

References

[Abu-Sufah 81]
W.Abu-Sufah, D.J.Kuck, D.H.Lawrie, "On the Performance Enhancement of Paging
Systems through Program analysis and transformations," IEEE Trans. Comp., vol. C-30,
no.5, pp.341-356, May, 1981.

[Aho,86]
AAho, et.al. Compilers: Principles, and Tools, Addison Wesley, 1986.

[Baier 76]
J.L.Baier, G.R.Sager "Dynamic Improvement of Locality in Virtual Memory Systems,"
IEEE Trans. on Software Eng. Vol SE-2, No.1 March, 1976.

[Balter 90]
R.Balter, et.al, '~chitecture and Implementation of Guide, an Object-Oriented
Distributed Systems," IMAG Universities of Grenoble, Technical Report 1990.

[Barak 85)
ABarak and A.Litman, "MOS: A Multiprocessor Distributed Operating System,"
Software Practice and Experience, vol.15 (8), pp 725-737, Aug., 1985.

[Baxter 89)
W.Baxter, H.Bauer, "The Program Dependence Graph and Vectorization," 16th ACM
Symposium on Principles of Prog. Lang. Austin, Texas, 1989.

[Bergland 86]
E.J.Bergland, '~Introduction to the V-System," IEEE Micro, Aug., 1986.

[Breecher 89]
J.Breecher, '~ Study of Program Restructuring in a Virtual Memory System,"
Performance Evaluation, 10, pp79-92, 1989.

[Brent 87)
G.A.Brent, "Using Program Structure to Achieve Prefetching for Cache Memories,"
Ph.D. dissertation, Univ. of Illinois at Urbana Champaign, 1987.

[Caceres 84)
Ramon Caceres, "Process Control in a Distributed Berkeley UNIX Environment,"
Report No. UCB/CSD/84/21l. Dec., 1984.

[Campbell 88]
G.Jonston, R.Campbell, '~ Multiprocessor Operating System Simulator," USENIX
Proc. C+ + Workshop Danver, Co, Oct., 1988.

[Cardelli 85]
L.Cardelli, P.Wegner, "On Understanding Types, Data Abstraction and Polymorphism,"
ACM Computing Surveys, Vol. 17, No.4, Dec., 1885.

[Casavant 87) . . '
T.L.Casavant, '1\nalysis of Three Dynamic Distributed Load Balancmg StrategIes WIth
Varing Global Information Requirements," IEEE CH2439-81871, 1987.

References 174

[Chase 90]
J.S.Chase, et.al, "The Amber System: Parallel Programming on a Network of
Multiprocessors," Proc. of the 12th ACM Symposium on Operating Systems Principles
1989. '

[Cheriton 88]
D.R.Cheriton, "The Unified Management of Memory in the V Distributed System"
Standford Univ. Technical Report No. STAN-CS-88-1192, 1988. '

[Courts 88]
R.Courts, "Improving Locality of Reference in a Garbage Collecting Memory
Management System," CACM Vo1.31, No.9, Sep., 1988.

[Cox 86]
Brad J. Cox, Object-Oriented Programming, An Evolutionary Approach, Addition
Wesly, 1986.

[Dafni 87]
Dafni, "Texas Object-based systems," Ph.D. Dissertation, 1987.

[Dasgupta 90]
P.Dasgupta, et.al. "The Design and Implementation of the Clouds Distributed Operating
System," USENIX Computing Systems, Vo1.3, No.1, Winter 1990.

[Denning 79]
P.J.Denning, "Working Sets Past and Present," Tech. Rep. CSD-TR-276, Computer
Science Department, Purdue Univ. May, 1979.

[Dewhurst 89]
S.C.Dewhurst, K.T.Stark, "Programming in C++ ," Prentice-Hall, 1989.

[Dewhurst 87]
S.C.Dewhurst, "The Architecture of a C+ + Compiler," USENIX Proc. C+ +
Workshop Santa Fe. NM, 1987.

[Dixon 88]
G.N.Dixon, Object Management for Persistence and Recoverability, Ph.D. Thesis, The
Univ. of Newcastle upon Tyne, 1988.

[Duglis 87]
EDouglis, J.Ousterhout, "Process Migration, the Sprite Operating System,"
CH2439-8187, IEEE 1987.

[Edwards 64]
D.B.G.Edwards, "The ATLAS computing system," Information Processing Machines,
pp43-55, Proc. in Prague on Sep. 7th-9th, 1964.

[Ezzat 86]
Ahmed K.Ezzat, "Load Balancing in NEST: A Network of Workstations," Proc. of Fall
Joint Compo Conf. pp1138-1149, 1986.

[Ferrari 76]
D.Ferrari, "The Improvement of Program Behavior," Computer, Nov. 1976.

References 175

[Finkel 86]
R.~inkel, e~ aI, "!:,rocess .Migration in Charlotte," Computer Science Tech. Rep. #655,
Umv. of Wmconsm-Dadlson, Aug., 1986.

[Fleisch, 87]
~.D.Fleisch, "Distributed Shared Memory in a Loosely Coupled Distributed System,"
slgcomm 87, pp317-327, Aug. 1987.

[Gautron 87]
P.Gautron, M.Shapiro, "Two extensions to C++: A Dynamic Linkeditor and Inner
Data," USENIX Proc. C+ + Workshop Santa Fe. NM, 1987.

[Giraud 84]
EA.Giraud, et al "Cache Prefetching with Chaining," IBM Tech. Disclos. Bull. pp2437,
Vol. 27, Sept., 1984.

[Goldberg 83]
A Goldberg and David Robson, Smalltalk-80, The Language and Its Implementation
Addison Wesly, 1983. '

[Gorlen 87]
K.E.Gorlen, ''An Object-Oriented Class Library for C+ + Programs,"
Software-Practice and Experience, Vol. 17(12), Dec., 1987.

[Gornish 90]
E.H.Gornish, et.al. "Compiler-directed Data Prefetching in Multiprocessors with
Memory Hierarchies," International Conf. on Supter Computing, ACM SIGARCH
Compo Arch. News, Vol.18, No.3, Sep., 1990.

[Habert 89]
S.Habert L.Mossseri, "COOL: Kernel Support for Object-Oriented Environments,"
Technical Report, LOO:EXP:REP:568, 1989.

[Hac 87]
AHac, X.lin, "Dynamic Load Balancing in a Distributed System Using a Decentralized
Algorithm," CH2439-8187, IEEE. 1987.

[Harland 87]
D.M.Harland, "OBlEKT: A Persistent Ojbect Store· With An Integrated Garbage
Collector," ACM SIGPLAN NOTICES V22, #4, Apr., 1987.

[Hatfield 71]
D.l.Hatfield and l.Gerald, "Program Restructuring for Virtual Memory," IBM Sys.l.
1971.

[Hartley 88]
S.l.Hartley, "Compile-Time Program Restructuring in Multiprogrammed Virtual
Memory Systems," IEEE trans. on software eng., vol. 14, no.n, Nov., 1988.

[Hill 90]
M.Hill, l.Larus, "Cache considerations for multiprocessor programmers," CACM
vol.33, No.8. Aug., 1990.

[Holliday 88] . " .
M.AHolliday, "Page Table Management in Local/Remote ArchItectures, InternatIOnal
Conf. on Supercomputing, St.Malo, France, luly, 1988.

References 176

[Horspool 87]
R.Nigel Hors{,ool, Ronald M. Huberman, "Analysis and Development of Demand
Prepaging PolIcies," The Journal of Systems and Software 7, pp183-194, 1987.

[Horwitz 88]
S.Horwitz "et.al., "On the Adequacyy of Program Dependency Gr~phs for Representing
Programs, Proc. of 155th ACM SIGACT-SIGPLAN SymposIUm on principles of
Programming Languages, Jan., 1988.

[Hwang 84]
K.Hwang, EA. Briggs, Computer Architecture and Parallel Processing McGraw- Hill
1984. ' ,

[Jorseph 70]
M.Joseph, '~Analysis of Paging and Program Behavior, Computer Journal 13 48 - 54
1970. ' ,

[Johnston 90]
G.M.Johnston, R.H.CampbeU, '~ Object-Oriented Implementation of Distributed
Virtual Memory," An Internal Technical Paper, 1990.

[JuI90]
E.Jul, N. Hutchinson, "Fine-Grained Mobility in the Emerald System,"
Object-Oriented Database Systems, ed. Zdonik SB and Maier, pp317-328,
Morgan-Kuafman Pub. Inc. 1990.

[Kaehler 83]
T.Kaehler, G.Krasner, "LOOM -Large Object Oriented Memory for Smalltalk-80
Systems," pp251-270, Smalltalk-80 bits of hIstOry, words of advice. 1983.

[Kaehler 86]
T.Kaehler, "Virtual Memory on a Narrow Machine for an Object-Oriented Language,"
Prodeedings of the ACM Conf. on Object-Oriented Programming Systems, Languages
and Applications, pp 87-106, Sep., 1986.

[Kahn 81]
K.C.Kahn, et.al. "iMAX: A Multiprocessor Operating System for an Object Based
Computer," ACM 0-89791-062-1-12 /81-0127, 1981.

[Kaiser 88]
J.Kaiser, "MUTABOR, A Coprocessor Supporting Memory Management in an
Object-Oriented Architecture," IEEE Micro, Oct. 1988.

[Kernighan 78]
B. Kernighan, D. Ritchie, "The C Programming Language," Prentice-Hall, 1978.

[Koenig 88a] ..'
Andrew Koenig, "What is C++ Anyway?," Journal of ObJect-Onented Programmmg,
Vol.1, No.1, Apr/May, 1988.

[Koenig 88b]
Andrew Koenig, '~ Example of Dynamic Binding in C++, JOOp, Aug/Sep., 1988.

[Lee 84] . "
J.K.F.Lee, "Branch Prediction Strategies and Branch Thrget Buffer DeSIgn, Computer
Jan., 1984.

References 177

[Leffler 89]
S.J.Leffler, et.al, The Design and Implementation of the 4.3 BSD UNIX Operating
System,Addison-Wesley 1989.

[Li 86]
K.Li, P. Hudak, "Memory <;:oherence i!1 ~hared Virtual Memory Systems," 5th ACM
SIGACT -SIGOPS SymposIUm on Pnncipies of Distributed Computing, Calgary
Canada, 1986. '

[Li 89a]
K.Li, R.Schhaefer, ':A Hypercube Shared Virtual Memory System" 1989 International
Conference on Parallel Processing, Aug. 8-12, 1989. '

[Li 89b]
K.Li, P. Hudak, "Memory Coherence in Shared Virtual Memory Systems," ACM trans.
on computer systems, vol.7, no A, pp321-359. Nov., 1989.

[Lippman 89]
S.B.Lippman, C+ + Primer, Addison-Wesley, 1989.

[Liskov 86]
B. Liskov, Guttag, J. Abstraction and Specification in Programming Development, ,MIT
Press, McGraw-Hill, 1986.

[McCreary 89]
C.McCreary and H.Gill, ':Automatic Determination of Grain Size for Efficient Parallel
Processing," Vol.32, No.9, CACM Sept., 1989.

[McKusick 90]
M.K.McKusick, A "Page able Memory Based Filesystem," UKUUG Summer '90,
London, 9-13, July 1990.

[Meyer 88]
B.Meyer, "Object-Oriented Software Construction, Prentice-Hall 1988.

[Montenyohl 88]
M.Montenyohl, "Correct Flow Analysis in Continuation Semantics," Proc. of 15th SCM
SIGACT-SIGPLAN Sympo. on Prog. Language, 1988.

[Nelson 87]
M.N.Nelson, et.al. "Caching in the Sprite Network File System," 1987, ACM Trans on
Compo System. Vol.6, No.1, Feb., 1988.

[Organick 72]
E.lOrganick, "The Multics System: An Examination of Its Structure, Cambridge, Mass.:
M.lT.Press, 1972.

[Parrington 88]
G .D.Parrington, Management of Concurrency in a Reliable Object-Oriented Computer
System, Ph.D. Thesis, The Univ. of Newcastle upon Tyne, 1988.

[Popek 85]
G.J.Popek, B.J.Walker, "The LOCUS Distributed System Architecture," The MIT Press
1985.

References 178

[Pyster 88]
AB.Pyster, "Compiler Design and Construction, Tools and Techniques " VAN Nostrand
Reinhold Company, 1988. '

[Renesse 89]
R. Ren,~sse, A.S.Thnenbaun:t, ~.Wilschut, "T~e Design of a High-Performance File
Server, pp22-27 The 9th DIstrIbuted Computmg Systems, Newport Beach, California,
June5-9, 1989.

[Ruggieri 88]
C.Ruggieri, T.Mrtagh, "Lifetime Analysis of Dynamically Allocated Objects," Proc. of
15th SCM SIGACT-SIGPLAN Sympo. on Prog. Language, 1988.

[Scheurich, 88]
C.Scheurich, M.Dubois, "Dynamic Page Migration in Multiprocessors with Distributed
Global Memory," IEEE Trans. on Computers, pp1154-1163, Aug., 1989.

[Seltzer 90]
M. Seltzer, et.al, "Disk Scheduling Revisited," USENIX Conference Proceeding, Winter
1990.

[Shapiro 89]
M.Shapiro, et.al., "SOS: An Object-Oriented Operating System - Assessment and
Perspectives," Computing Systems, Vo1.2, No.4, Fall 1989.

[Silberschatz 88]
ASilberschatz, J.L.Peterson, "Operating System Concepts," Addison-Wesley, 1988.

[Smith 78]
A.J .Smith, "Sequential Program Prefetching in Memory Hierarchies, IEEE Computer
11, 7 - 21, Dec., 1978.

[Smith 88]
AJ.Smith, "Cache Memory Design: An evolving art," IEEE Spectrum, Dec., 1987.

[Smith 81]
J.E.Smith, '~Study of Branch Prediction Strategies," proc. of Computer Architecture,
1981.

[So. 88]
K.So, R.N.Rechtschaffen, "Cache Operations by MRU Change," IEEE Trans. on
Computers, Vol.37, No.6, June, 1988.

[Sollins 79] .
K.R.Sollins, "Copying Complex Structures in a Distributed System," Ms.C ThesIs, MIT.
1979.

[Stamos 85]
J W:Stamos "Static Grouping of Small Objects to Enhence Performance of a Paged
Virtual MeI~·lOry," ACM Trans. on Computer Systems, Vo1.2, No.2, May, 1984.

[Stroustrup 86] .
B.Stroustrup, The C+ + Programming language, AddIson Wesly, 1986.

References 179

[Stroustrup 87]
B.Stroustrup, "Possible Directions for C+ + ," Proc USENIX C+ + workshop Nov
1987. ' .,

[Swinehart 86]
D.Swinehart, P.Zellweger, R.Beach, RHagmann, ':.\ Structural View of the CEDAR
Programming Environment," Transactions on Programming Languages and Systems,
Vol.8, No.4, pp 419-490, Oct., 1986.

[Synder 78]
RSynder, "On the. application of a priori knowledge of program structure to the
performance of VIrtual memory computer systems," Ph.D. dissertation, Univ.
Washington, Nov., 1978.

[Thenzer 89]
David Thenzer, "Problems in Object-Oriented Software Reuse," ECOOP 89
Proceedings, pp23-pp38, 1989.

[Tetzlaff 89]
W.H.Tetzlaff, M.G.Kienzle, and J.A.Garay, ':.\nalysis of block-paging strategies," IBM
Jour. of Research and Development, Vol.33, No.1, Jan., 1989.

[Theimer 85]
M.M.Theimer, K.A.Lantz, D.RCheriton, "Preemptable Remote Execution Facilities for
the V-System," ACM Operating Systems Review, Vol 19, No.5, Dec., 1985.

[Tieman 89]
M.Tieman, "G + + 1.34.1 Manual," 1989.

[Thomasian 87]
A. Thomasian, ':.\ Performance Study of Dynamic Load Balancing in Distributed
Systems," IEEE, CH2439-8187, 1987.

[Verhoff 71]
E.W.Verhoff, ':.\utomatic Program Segmentation Based on Boolean Connectivity,"
SJCC 1971.

[Williams 87]
I.W.Williams, et.al., "Realization of a Dynamically Grouped Object-Oriented Virtual
Memory Hierarchy," Proc. of APPINS, 1987.

[Young 87] . . .
M.Young, RRashid, et.al. "The duality .of Memo?,' and CommUnICatIOn m the
Implementation of a Multiprocessor Operatmg System, CMU Tech.Rep.15, Feb., 1987.

[Zayas 87]
E.R.Zayas, ':.\ttacking the Proce~s ~igration ~ott1eneck," Proc. of the Elev~nth ACM
Sympo. on Operating Systems PnncIples, Austm, TX, pp13-24, ACM Operatmg System
ReVIew 21, 5. Nov., 1987.

	480488_0001
	480488_0002
	480488_0003
	480488_0004
	480488_0005
	480488_0006
	480488_0007
	480488_0008
	480488_0009
	480488_0010
	480488_0011
	480488_0012
	480488_0013
	480488_0014
	480488_0015
	480488_0016
	480488_0017
	480488_0018
	480488_0019
	480488_0020
	480488_0021
	480488_0022
	480488_0023
	480488_0024
	480488_0025
	480488_0026
	480488_0027
	480488_0028
	480488_0029
	480488_0030
	480488_0031
	480488_0032
	480488_0033
	480488_0034
	480488_0035
	480488_0036
	480488_0037
	480488_0038
	480488_0039
	480488_0040
	480488_0041
	480488_0042
	480488_0043
	480488_0044
	480488_0045
	480488_0046
	480488_0047
	480488_0048
	480488_0049
	480488_0050
	480488_0051
	480488_0052
	480488_0053
	480488_0054
	480488_0055
	480488_0056
	480488_0057
	480488_0058
	480488_0059
	480488_0060
	480488_0061
	480488_0062
	480488_0063
	480488_0064
	480488_0065
	480488_0066
	480488_0067
	480488_0068
	480488_0069
	480488_0070
	480488_0071
	480488_0072
	480488_0073
	480488_0074
	480488_0075
	480488_0076
	480488_0077
	480488_0078
	480488_0079
	480488_0080
	480488_0081
	480488_0082
	480488_0083
	480488_0084
	480488_0085
	480488_0086
	480488_0087
	480488_0088
	480488_0089
	480488_0090
	480488_0091
	480488_0092
	480488_0093
	480488_0094
	480488_0095
	480488_0096
	480488_0097
	480488_0098
	480488_0099
	480488_0100
	480488_0101
	480488_0102
	480488_0103
	480488_0104
	480488_0105
	480488_0106
	480488_0107
	480488_0108
	480488_0109
	480488_0110
	480488_0111
	480488_0112
	480488_0113
	480488_0114
	480488_0115
	480488_0116
	480488_0117
	480488_0118
	480488_0119
	480488_0120
	480488_0121
	480488_0122
	480488_0123
	480488_0124
	480488_0125
	480488_0126
	480488_0127
	480488_0128
	480488_0129
	480488_0130
	480488_0131
	480488_0132
	480488_0133
	480488_0134
	480488_0135
	480488_0136
	480488_0137
	480488_0138
	480488_0139
	480488_0140
	480488_0141
	480488_0142
	480488_0143
	480488_0144
	480488_0145
	480488_0146
	480488_0147
	480488_0148
	480488_0149
	480488_0150
	480488_0151
	480488_0152
	480488_0153
	480488_0154
	480488_0155
	480488_0156
	480488_0157
	480488_0158
	480488_0159
	480488_0160
	480488_0161
	480488_0162
	480488_0163
	480488_0164
	480488_0165
	480488_0166
	480488_0167
	480488_0168
	480488_0169
	480488_0170
	480488_0171
	480488_0172
	480488_0173
	480488_0174
	480488_0175
	480488_0176
	480488_0177
	480488_0178
	480488_0179
	480488_0180
	480488_0181
	480488_0182
	480488_0183
	480488_0184
	480488_0185
	480488_0186
	480488_0187
	480488_0188
	480488_0189
	480488_0190

