240 research outputs found

    The Q-curve construction for endomorphism-accelerated elliptic curves

    Get PDF
    We give a detailed account of the use of Q\mathbb{Q}-curve reductions to construct elliptic curves over F_p2\mathbb{F}\_{p^2} with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) endomorphisms. Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when pp is fixed for efficient implementation. Unlike GLS, we also offer the possibility of constructing twist-secure curves. We construct several one-parameter families of elliptic curves over F_p2\mathbb{F}\_{p^2} equipped with efficient endomorphisms for every p \textgreater{} 3, and exhibit examples of twist-secure curves over F_p2\mathbb{F}\_{p^2} for the efficient Mersenne prime p=21271p = 2^{127}-1.Comment: To appear in the Journal of Cryptology. arXiv admin note: text overlap with arXiv:1305.540

    Families of fast elliptic curves from Q-curves

    Get PDF
    We construct new families of elliptic curves over \FF_{p^2} with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant-Lambert-Vanstone (GLV) and Galbraith-Lin-Scott (GLS) endomorphisms. Our construction is based on reducing \QQ-curves-curves over quadratic number fields without complex multiplication, but with isogenies to their Galois conjugates-modulo inert primes. As a first application of the general theory we construct, for every p>3p > 3, two one-parameter families of elliptic curves over \FF_{p^2} equipped with endomorphisms that are faster than doubling. Like GLS (which appears as a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when pp is fixed. Unlike GLS, we also offer the possibility of constructing twist-secure curves. Among our examples are prime-order curves equipped with fast endomorphisms, with almost-prime-order twists, over \FF_{p^2} for p=21271p = 2^{127}-1 and p=225519p = 2^{255}-19

    Computing cardinalities of Q-curve reductions over finite fields

    Get PDF
    We present a specialized point-counting algorithm for a class of elliptic curves over F\_{p^2} that includes reductions of quadratic Q-curves modulo inert primes and, more generally, any elliptic curve over F\_{p^2} with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof--Elkies--Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.Comment: To appear in the proceedings of ANTS-XII. Added acknowledgement of Drew Sutherlan

    Efficiency of SIDH-based signatures (yes, SIDH)

    Get PDF
    In this note, we assess the efficiency of a supersingular isogeny Diffie-Hellman (SIDH)-based digital signature built on a weaker variant of a recent identification protocol proposed by Basso et al. Despite the devastating attacks against (the mathematical problem underlying) SIDH, this identification protocol remains secure, as its security is backed by a different (and more standard) isogeny-finding problem. We conduct our analysis by applying some known cryptographic techniques to decrease the signature size by about 70% for all parameter sets (obtaining signatures of approximately 21 kB for SIKE p 434 ). Moreover, we propose a minor optimisation to compute many isogenies in parallel from the same starting curve. Our assessment confirms that determining the most efficient methods for isogeny-based signature schemes, including optimisations such as those presented in this paper, is still a open problem, with much more work to be done

    Lightweight Public Key Encryption in Post-Quantum Computing Era

    Full text link
    Confidentiality in our digital world is based on the security of cryptographic algorithms. These are usually executed transparently in the background, with people often relying on them without further knowledge. In the course of technological progress with quantum computers, the protective function of common encryption algorithms is threatened. This particularly affects public-key methods such as RSA and DH based on discrete logarithms and prime factorization. Our concept describes the transformation of a classical asymmetric encryption method to a modern complexity class. Thereby the approach of Cramer-Shoup is put on the new basis of elliptic curves. The system is provable cryptographically strong, especially against adaptive chosen-ciphertext attacks. In addition, the new method features small key lengths, making it suitable for Internet-of-Things. It represents an intermediate step towards an encryption scheme based on isogeny elliptic curves. This approach shows a way to a secure encryption scheme for the post-quantum computing era

    Fast and Frobenius: Rational Isogeny Evaluation over Finite Fields

    Full text link
    Consider the problem of efficiently evaluating isogenies ϕ:EE/H\phi: E \to E/H of elliptic curves over a finite field Fq\mathbb{F}_q, where the kernel H=GH = \langle G\rangle is a cyclic group of odd (prime) order: given EE, GG, and a point (or several points) PP on EE, we want to compute ϕ(P)\phi(P). This problem is at the heart of efficient implementations of group-action- and isogeny-based post-quantum cryptosystems such as CSIDH. Algorithms based on V{\'e}lu's formulae give an efficient solution to this problem when the kernel generator GG is defined over Fq\mathbb{F}_q. However, for general isogenies, GG is only defined over some extension Fqk\mathbb{F}_{q^k}, even though G\langle G\rangle as a whole (and thus ϕ\phi) is defined over the base field Fq\mathbb{F}_q; and the performance of V{\'e}lu-style algorithms degrades rapidly as kk grows. In this article we revisit the isogeny-evaluation problem with a special focus on the case where 1k121 \le k \le 12. We improve V{\'e}lu-style isogeny evaluation for many cases where k=1k = 1 using special addition chains, and combine this with the action of Galois to give greater improvements when k>1k > 1

    Isogeny-based post-quantum key exchange protocols

    Get PDF
    The goal of this project is to understand and analyze the supersingular isogeny Diffie Hellman (SIDH), a post-quantum key exchange protocol which security lies on the isogeny-finding problem between supersingular elliptic curves. In order to do so, we first introduce the reader to cryptography focusing on key agreement protocols and motivate the rise of post-quantum cryptography as a necessity with the existence of the model of quantum computation. We review some of the known attacks on the SIDH and finally study some algorithmic aspects to understand how the protocol can be implemented

    Optimizations of Isogeny-based Key Exchange

    Get PDF
    Supersingular Isogeny Diffie-Hellman (SIDH) is a key exchange scheme that is believed to be quantum-resistant. It is based on the difficulty of finding a certain isogeny between given elliptic curves. Over the last nine years, optimizations have been proposed that significantly increased the performance of its implementations. Today, SIDH is a promising candidate in the US National Institute for Standards and Technology’s (NIST’s) post-quantum cryptography standardization process. This work is a self-contained introduction to the active research on SIDH from a high-level, algorithmic lens. After an introduction to elliptic curves and SIDH itself, we describe the mathematical and algorithmic building blocks of the fastest known implementations. Regarding elliptic curves, we describe which algorithms, data structures and trade-offs regard- ing elliptic curve arithmetic and isogeny computations exist and quantify their runtime cost in field operations. These findings are then tailored to the situation of SIDH. As a result, we give efficient algorithms for the performance-critical parts of the protocol

    Quantum Algorithms for Attacking Hardness Assumptions in Classical and Post‐Quantum Cryptography

    Get PDF
    In this survey, the authors review the main quantum algorithms for solving the computational problems that serve as hardness assumptions for cryptosystem. To this end, the authors consider both the currently most widely used classically secure cryptosystems, and the most promising candidates for post-quantum secure cryptosystems. The authors provide details on the cost of the quantum algorithms presented in this survey. The authors furthermore discuss ongoing research directions that can impact quantum cryptanalysis in the future
    corecore