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Abstract
In this survey, the authors review the main quantum algorithms for solving the
computational problems that serve as hardness assumptions for cryptosystem. To this
end, the authors consider both the currently most widely used classically secure crypto-
systems, and the most promising candidates for post‐quantum secure cryptosystems. The
authors provide details on the cost of the quantum algorithms presented in this survey.
The authors furthermore discuss ongoing research directions that can impact quantum
cryptanalysis in the future.

1 | INTRODUCTION

Quantum computers are a form of computers that leverage
quantum‐mechanical phenomena to perform computations—
unlike today's classical computers that leverage classical phys-
ical phenomena.

Sufficiently capable large‐scale quantum computers—that
are either not prone to errors or error‐corrected—would
pose a threat to most currently widely deployed asymmetric
cryptosystems. This is because Shor [1] has introduced poly-
nomial time quantum algorithms for solving the Integer
Factoring Problem (IFP) and the Discrete Logarithm Problem
(DLP) in cyclic groups.

A quantum computer capable of executing Shor's algo-
rithms for sufficiently large problem instances would, for
example, be able to break RSA [2], which is based on the IFP,
and DSA [3] and Diffie–Hellman (DH) [4], which are based on
the DLP—mainly in multiplicative groups of finite fields, or
groups of points of elliptic curves, in the case of elliptic curve
cryptography (ECC) [5, 6].

The aforementioned cryptosystems are currently used to
secure most transactions that take place over the Internet.

They are used not only to provide confidentiality but also for
authentication and to issue binding signatures for non‐
repudiation purposes. Examples of use cases for these
cryptosystems include, but are not limited to, a plethora of
services dealing with sensitive personal, corporate or gov-
ernment data.

Needless to say, the aforementioned cryptosystems will
need to be replaced with post‐quantum secure alternatives
prior to the advent of large‐scale quantum computers. They
will then become susceptible to attacks by adversaries with
access to such computers. At first, the set of adversaries with
this capability may admittedly be fairly limited, but over time it
will likely grow larger.

Whenever a cryptosystem is used to protect confidentiality,
it is critical to have idea of the length of time for which the
information protected has to remain confidential: Say that the
information needs to remain confidential for Δ years. Then the
cryptosystem used to protect it must be replaced at the very
latest Δ years before it can be broken—by any relevant ad-
versary, quantum or classical. This is because we must assume
the adversary to be able to record encrypted traffic sent today
for decryption in the future.
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For cryptosystems that are used for authentication, or
for issuing binding signatures for non‐repudiation, the situ-
ation is different: Such cryptosystems may be replaced much
closer in time to the point when they are broken, even if
mitigating actions may then have to be taken to extend the
lifetime or signatures that need to remain binding in the
long term. For instance, mitigation may be accomplished by
a trusted party attesting to having seen the signature at a
given point in time prior to when the cryptosystem origi-
nally used to issue the signature is broken. Similar mitigation
is not possible in the context of providing confidentiality in
the long term.

The threat posed by the possible future advent of large‐
scale quantum computers is sufficiently concerning to already
have prompted standardisation processes for post‐quantum
secure cryptography to be initiated. For example, the Na-
tional Institute for Standards and Technology (NIST) in the
United States (US) has started a standardisation process for
post‐quantum secure cryptosystems [7]. This process was
started after the National Security Agency (NSA) in the US
announced back in 2015 that it would transition to post‐
quantum primitives in its Suite B of cryptosystems [8].

Some standards are already available [9], and over the
coming years more are projected to follow [10]. Once available,
these standards will need to be integrated into other standards
—for example, for protocols—prior to being adopted in
products and finally being widely deployed on the Internet.
This whole process will take time.

At the same time, it is prudent to begin the process of
transitioning to post‐quantum secure cryptosystems as soon as
possible. In particular, use cases where confidentiality needs to
be provided in the long term should be prioritised, for the
reasons explained earlier.

Early adopters are wise to deploy post‐quantum secure
cryptosystems alongside existing classically secure cryptosys-
tems, in such a way that both systems have to be broken
simultaneously for the combined hybrid system to be broken.
Furthermore, early adopters are wise to beware of the risk of
introducing vulnerabilities—for instance in the form of side
channels—when implementing new post‐quantum secure
cryptosystems for which no well‐established industry best
practices do as of yet exist.

In order to inform decisions on what post‐quantum
cryptography to standardise and the pace at which the transi-
tion must be executed, research into quantum cryptanalysis is
needed. Such research allows the community to better under-
stand the costs of attacking classically and post‐quantum
secure cryptosystems quantumly.

It is against this backdrop that we decided to jointly write
this survey paper: In it, we—a subset of the participants at the
2021 Schloss Dagstuhl seminar on quantum cryptanalysis—
come together to jointly review the current state of quantum
cryptanalysis, with each expert focussing of her or his own area
of expertise.

In particular, we survey quantum algorithms for solving the
hard problems that underpin the currently most widely
deployed classically secure cryptosystems, alongside the post‐

quantum secure cryptosystems currently primarily considered
for standardisation.

The scope of this survey does not include discussing the
impact of quantum computing on security notions. In partic-
ular, security proofs are impacted in a way that goes beyond the
mere ability of a quantum adversary to solve some hard
problems more efficiently than a classical adversary, yet such
aspects of quantum cryptanalysis are not covered in this survey.

We provide asymptotic cost estimates for some of the
quantum algorithms that we discuss in this survey. It is worth
noting that such estimates can be used to derive security pa-
rameters for cryptosystems that are based on the hard prob-
lems that these algorithms solve. This is however not
something that we would recommend, without first carrying
out additional analyses, including a more fine‐grained analysis
of the quantum circuit for the algorithm in question and a
careful review of the specific design of the cryptosystem in
question—all of which is beyond the scope of this survey.

1.1 | Overview

This paper is organised as follows:
In Section 2, we first review some background information

on quantum computing and quantum algorithms. We
furthermore discuss different methods and models for costing
quantum algorithms.

Then, in Sections 3 and 4, we review the two main over-
arching families of quantum algorithms: search algorithms,
which derive from the seminal work of Grover [11], and al-
gorithms for finding a hidden subgroup inside of a control
group, which derive from the seminal work of Shor [1].

Next, we survey concrete quantum algorithms for breaking
currently widely deployed symmetric and asymmetric
cryptosystems:

In Section 5, we first survey quantum algorithms for
breaking currently widely deployed asymmetric cryptosystems
that are based on the IFP or DLP in some form. In particular,
we survey Shor's algorithms for the IFP and DLP and their
various derivatives. In Section 6, we briefly digress by discus-
sing generalisations of Shor's algorithms, before surveying al-
gorithms for breaking symmetric cryptosystems, such as hash
functions and block ciphers, in Section 7.

Finally, in Sections 8−10, we survey the main quantum al-
gorithms for attacking the hardness assumptions that underpin
future lattice‐based, code‐based and isogeny‐based cryptosys-
tems considered for standardisation. For hardness assumptions
that underpin hash‐based cryptosystems, see instead Section 7.

Note that this survey does not cover all hardness as-
sumptions that have been proposed as foundations for post‐
quantum cryptography. Instead, we chose to focus on the
computational problems that underpin some of the most
promising candidates for future post‐quantum secure crypto-
systems. Additional problems relevant to the cryptanalysis of
post‐quantum cryptography that are not covered in this survey
include the resolution of systems of quadratic equations, the
conjugacy problem over certain algebraic groups, and the
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search for fixed‐weight linear coefficients of a relation modulo
a Mersenne prime.

2 | BACKGROUND

In this section, we briefly recall basic notions pertaining to
quantum computing and quantum algorithms. We furthermore
briefly discuss different methods and models for costing
quantum algorithms.

For a thorough introduction to the subject, we recommend
introductory books such as Nielsen and Chuang [12] or the
more concise Kaye, Laflamme and Mosca [13].

2.1 | Qubits

The smallest unit of quantum information is the qubit—the
name ‘qubit’ being a contraction of ‘quantum bit’. The qubit
may be perceived as the quantum analogue of the classical bit;
the smallest unit of classical information. But whereas the
classical bit is in either one of two states, denoted 0 or a 1, and
a qubit is in one of two computational basis states, denoted j0〉
and j1〉, or in some superposition thereof:

Definition 1 (Qubit). A qubit is a two‐level quantum‐
mechanical system. It is in a state jψ〉 given by a normal‐
ised sum

jψ〉¼ c0 j0〉þ c1 j1〉; c0; c1 ∈ C; jc0j2 þ jc1j2 ¼ 1;

where the two computational basis states j0〉 and j1〉 form an
orthonormal basis for C2 given by

j0〉¼
�
1
0

�

; j1〉¼
�
0
1

�

:

A classical bit may be read without affecting its state. Such
a read operation yields either 0 or 1, depending on the state of
the bit.

A qubit may be observed in a measurement. The proba-
bility of observing j ∈ {0, 1} in such a measurement is |cj|2. If
the qubit is in a superposition when it is measured, the su-
perposition collapses to the basis state j j〉 conditioned on the
measurement. The state of a qubit is defined up to a global
phase expiϕ which is not observable. Thus, in the definition
above, c0 can be made a real number without loss of generality.

The notion of the qubit is abstract. As is the case for the
classical bit, there are possible physical realisations of the qubit.
For example, the linear polarisation of a photon could be used
to form a qubit (the two levels being the so‐called ‘up‐down
polarisation’ ↕ and ‘left‐right polarisation’ ↔). Another
example are the spins of a spin‐1/2 particle (the two levels are
being ↑ (spin up) and ↓ (spin down)).

2.2 | Systems of qubits

A set of n qubits may be combined to form an n‐qubit
system. Such a system can be in one of 2n computational
basis states, denoted j j〉 for j ∈ ½0; 2nÞ, or in some super-
position thereof:

Definition 2 (Quantum system). An n‐qubit system is in a
state jψ〉 given by a normalised sum

jψ〉¼
X2
n−1

j¼0

cj jj〉; cj ∈ C;
X2
n−1

j¼0

jcjj2 ¼ 1;

where the computational basis states j j〉 for j ∈ ½0; 2nÞ form an
orthonormal basis for C2n given by

j0〉¼

0

B
B
@

1
0
⋮
0

1

C
C
A; j1〉¼

0

B
B
@

0
1
⋮
0

1

C
C
A; ⋯; j2n − 1〉¼

0

B
B
@

0
0
⋮
1

1

C
C
A:

Two independent quantum systems, of n1 and n2 qubits,
that are in the states

�
�ψ1〉 and

�
�ψ2〉, respectively, may be

perceived as a single system. The resulting n1 + n2‐qubit sys-
tem is then in the product state given by

�
�ψ1〉 ⊗

�
�ψ2〉, where ⊗

denotes the tensor product. For compactness, we write�
�ψ1〉 ⊗

�
�ψ2〉¼

�
�ψ1〉

�
�ψ2〉¼

�
�ψ1;ψ2〉. If a state is not a product

state, then it said to be entangled. Like for an individual qubit,
a global phase is irrelevant.

An n‐qubit system may be split into one or more ni‐qubit
sub‐systems or registers. The computational basis states of such
an ni‐qubit sub‐system may be indexed using any set, for as
long as there is an injective map from the set to the 2ni basis
states.

2.3 | Measurements

An arbitrary n‐qubit subsystem of an n + m‐qubit system may
be measured, in any orthonormal basis, by applying the below
measurement postulate (up to re‐ordering the qubits):

Definition 3 (Measurement postulate). Let
� �
�ψ i〉

�

i≤2n be an
orthonormal basis corresponding to an observable of an n‐
qubit system. Assume that the state jψ〉 ∈ C2nþm of an n + m‐
qubit system decomposes as

jψ〉¼
X2n−1

i¼0
αi
�
�ψ i〉

�
�γi〉 for some

�
�γi〉 ∈ C2m ; αi ∈ C;

where
�
�γi〉 is a state and hence of norm one. Then the mea‐

surement of the first n qubits yields the outcome i with
probability |αi|2 and collapses the system to the state

�
�ψ i〉

�
�γi〉.

BIASSE ET AL. - 3



2.4 | Quantum computation

In essence, the goal of a quantum algorithm is to evolve the
state of a quantum system to a point where a measurement
yields classical information on the solution to a computational
problem of interest.

Quantum theory postulates that the evolution over time of
the state of a closed quantum system is described by a unitary
operator:

Definition 4 (Evolution postulate). The time evolution of the
state of a closed quantum system is described by a unitary
operator. For any evolution

�
�ψ1〉 →

�
�ψ2〉 of the closed system,

there is a unitary operator U such that

�
�ψ2〉¼U

�
�ψ1〉:

A consequence of this postulate is that quantum computing
is always reversible, in contrast to classical computing. The
reverse of a computationU is also called its uncomputation and
denoted U †.

Quantum algorithms are compiled to quantum circuits. A
circuit consists of a sequence of gates and measurements. A
gate applies a unitary operator to one or more qubits in a
quantum system.

Some common single‐qubit operators are the Pauli operators

X ¼
�
0 1
1 0

�

;Y ¼
�
0 −i
i 0

�

;Z¼
�
1 0
0 −1

�

;

the Hadamard (H ) operator, and the T and S phase‐shift
operators

H ¼
1
ffiffiffi
2
p

�
1 1
1 −1

�

;T ¼
�
1 0
0 eiπ=4

�

; S ¼ T 2
:

The X operator is also known as the ‘NOT’ operator since
it maps j0〉 onto j1〉, and vice versa.

Operators may be controlled, that is, applied to some qubit
conditioned on other qubits being in either the j1〉 or j0〉 state.
A common such operator is the two‐qubit controlled‐NOT or
CNOT operator

CNOT¼
�
I 0
0 X

�

¼

0

B
B
@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

C
C
A; ð1Þ

that maps ja; b〉 ↦ ja; a ⊕ b〉. It may be seen to perform a
reversible XOR‐operation (denoted ⊕). Similarly, there is a
doubly controlled‐NOT or Toffoli operator that maps
ja; b; c〉 ↦ ja; b; c ⊕ ða ∧ bÞ〉. It may be seen to perform a
reversible AND operation (denoted ∧).

Any single‐qubit operator U may be controlled by replac-
ing X for U in the expression (1) for the CNOT operator.

There are methods for constructing more advanced controlled
operators.

For U1 an n1‐qubit operator, and U2, and n2 qubit oper-
ator, the n1 + n2‐qubit operator U = U1 ⊗ U2 applies U1 to
the first n1 qubits of an n1 + n2‐qubit system and U2 to the
trailing n2 qubits. Similarly, for U1 and U2, two n‐qubit oper-
ators, the product operator U = U2U1 applies U1 and then U2

to an n‐qubit system.
This provides the necessary theoretical framework for

building operators corresponding to large circuits from few‐
qubit operators.

2.5 | Universal quantum computation

Any n‐qubit operator U can be reduced to an n‐qubit circuit C
containing only single‐qubit gates and CNOT gates—although
this reduction is not necessarily efficient—giving rise to one
notion of universal quantum computation.

Furthermore, C can be efficiently approximated to any
given degree of precision by a circuit C 0 that consists exclu-
sively of H and S gates—that generate the Clifford group for
single qubits—along with the CNOT operator and the non‐
Clifford T operator.

This is a consequence of Solovay–Kitaev's theorem—if
one glosses over some details, such as adjustments to the
global phase and to determinants, and the need to include
inverses in the gate set. The interested reader is referred to
[Ref. 12, Appendix 3]. Note that there are many universal gate
sets, but Clifford + CNOT + T (for Clifford = {H, S}) is
arguably one of the most popular.

For f(x) any efficient classical function, we can use opera-
tors from a universal gate set to construct an efficient quantum
circuit that takes ja; b〉 → ja; b ⊕ f ðaÞ〉. Indeed, generic tech-
niques due to Bennett [14] convert any classical algorithm
taking time T and space S into a reversible algorithm taking
time T1 + ϵ and space O(S log T). Note that this implies that
an ancillary register, or ancilla, may be required for this to
work, depending on f and the size of the two registers. If f(x)
has an efficient classical inverse, then the above implies that we
can construct a circuit that takes ja〉 → j f ðaÞ〉.

2.6 | Architectural constraints

Up to this point, we have essentially assumed that single‐ and
two‐qubit quantum gates may be freely applied to any of the
qubits that make up our system. The same goes for
measurements.

In practice, there are, however, often architectural con-
straints. For instance, the connectivity between qubits may be
limited to some form of nearest‐neighbour connectivity. There
may, furthermore, be restrictions on which gates can be applied
to which qubits, or to which pairs of qubits, and so forth. Such
constraints can be overcome, for instance by routing, but
routing comes at a cost.

4 - BIASSE ET AL.



When costing circuits for quantum algorithms in this sur-
vey, we do not account for architectural constraints, since we
do not specify a specific architecture.

2.7 | Quantum error correction

Most quantum computers as currently envisaged are prone to
errors arising—for instance when gates are applied or when
measurements are performed—necessitating quantum error
correction.

The basic idea in quantum error correction is to use multiple
physical qubits to construct a logical qubit. The redundancy thus
induced allows for errors to be detected and corrected.

The number of physical qubits required to construct a
logical qubit depends on the number of operations that the
logical qubit is required to be able to undergo in sequence
without the risk of uncorrectable errors arising growing too
large. It furthermore depends on the physical characteristics of
the quantum computer, such as the physical error rates of
operators and measurements, and of course on the choice of
quantum error‐correcting code to employ.

There are a number of proposals for quantum error‐
correcting codes. One of the key contenders is stabiliser
codes, such as the surface code. For a good introduction to the
surface code, see Ref. [15].

It is important to understand that the overhead induced by
quantum error correction may be substantial. A distinction
must therefore be made between physical and logical qubit
counts and between physical and logical cost estimates for
circuits in general.

When costing circuits for quantum algorithms in this sur-
vey, we do so without accounting for the need for error
correction since we do not specify a specific architecture.

2.8 | Logical cost estimates

To estimate the post‐quantum security level of a cryptosystem,
we need to determine not only which quantum algorithm is
currently the most efficient for breaking the system but also
which metric to use to best cost the algorithm depending on
the context at hand.

Metrics commonly used to coarsely quantify the cost of
quantum algorithms at a logical level of abstraction include

� the number of gates in some logical circuit for the
algorithm,

� the (maximum) depth in gates of said circuit,
� the (maximum) width in logical qubits of said circuit,
� the product of the (maximum) depth and width of said
circuit, and

� similar metrics considering only non‐Clifford gates, since
they are typically assumed to be harder to implement.

When using metrics such as the above, the gate set
employed to lay out the circuit, and in particular the level to

which the circuit is optimised when it is laid out, may impact
the cost estimate, as may any architectural limitations that are
taken into account.

The choice of a certain metric may be influenced by a
hypothesis on the behaviour of quantum hardware. For
example, one might focus on the execution time without
considering costs relative to memory. This is done by using
only the depth of the circuit. On the other hand, the quanti-
fication of the impact of memory requirement is influenced by
assumptions on error correction. Indeed, as pointed out in Ref.
[16], if we assume active error correction, then the depth‐width
product (hereinafter DW‐cost) is a better measure of the cost
than the gate count. To see why, note that the latter metric, for
example, captures the cost of an idling qubit while the former
completely ignores it.

To complicate matters further, qubits may be measured,
left idle and later re‐initialised when a circuit is executed. This
is the case in particular for ancillary registers. This implies that
there is not necessarily a completely unambiguous definition of
the width and depth of the circuit. One option is to use the
maximum depth and the maximum width at any one point
during execution.

Alternative high‐level metrics include, but are not limited
to, counting the number of high‐level operations that must be
performed or the maximum depth of the circuit in such
operations.

For instance, the number of group operations or oracle
invocations may be counted. Such metrics are useful for
comparing algorithms that use essentially the same basic
building blocks, or for proving lower bounds on the cost of
algorithms. They are fairly simple to understand and use in a
meaningful way.

2.9 | Full‐stack physical cost estimates

The derivation of full‐stack physical cost estimates is beyond
the scope of this survey, as it requires assumptions to be made
on the future architecture and performance characteristics of
large‐scale quantum computers. It furthermore requires careful
analysis and optimisation of all layers in the quantum stack,
including of the algorithmic layer, the logical circuit layer, the
error correction layer, and of any required classical pre‐ and
post‐processing.

This being said, we do reference recent full‐stack cost es-
timates for Shor's algorithms and derivatives thereof where
available. Such estimates may prove useful when seeking to
quantify the feasibility of breaking currently widely deployed
asymmetric cryptosystems quantumly in, for example, 10, 15,
20, 30, … years' time.

2.10 | Memory cost estimates

The number of computational qubits required is often taken as
the amount of quantum memory required to execute a circuit.
This being said, there are cost estimates such as Ref. [17] where
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quantum information is swapped out to non‐computational
quantum memory.

In general, a quantum memory access can be defined as the
following unitary, which takes an index register i, an output
register x, M memory registers y0, …, yM−1, and writes in the
output register the contents of register i:

ji〉jx〉
�
�y0;…; yM−1〉 ↦ ji〉

�
�x ⊕ yi〉

�
�y0;…; yM−1〉 :

Such an operation can be implemented using ~OðMÞ gates of
a universal gate set, widthO(M) and depthO(log M ). It should
be noted that using only bounded‐arity gates, one cannot do
asymptotically better. The qRAM model assumes that this
operation can be implemented at low cost, typically O(log M)
or O(1). Following the naming conventions in Ref. [18]:

� quantumly addressable classical memory (QRACM) con-
cerns the case of a classical memory (y0, …, yM−1)

� quantumly addressable quantum memory (QRAQM) is the
generic case where the memory can be in a superposition
state as well

It should be noted that if the index register is in a classical
state, then it can be measured and the operation can be per-
formed efficiently in the standard quantum circuit model
(because we can apply quantum gates between any qubits at the
same cost). Likewise, if all the registers are classical, then this
model becomes classical random access memory (CRACM),
which is a standard assumption in classical cryptanalysis.

Note that the QRACM and QRAQM assumptions are
debatable. It is entirely possible that quantum memory in a
physical realisation of a quantum computer could come at a
significant cost. When costing quantum algorithms, it is
therefore important to state which memory model is used and
what the memory cost is in this model.

3 | SEARCH ALGORITHMS

3.1 | Grover's algorithm

The most versatile tool from quantum computing in the scope
of quantum cryptanalysis is probably Grover's search algo-
rithm. In a nutshell, it allows to search for preimages of an
unstructured Boolean function f : [1, N] → {0, 1}, assuming
that there exists an efficient quantum algorithm that imple-
ments f. When a single preimage of 1 exists (amarked element),
Grover's algorithm finds it at the cost of Oð

ffiffiffiffi
N
p
Þ applications

of the inspection function f, whereas a classical circuit would
need to inspect at leastO(N) elements to succeed with constant
probability. Therefore, many techniques use Grover either as
the main routine or as a sub‐routine. In particular, Grover's
search in theory enhances all brute‐force search procedures.

More generally, let S ⊆ [1, N ] be the set of preimages of 1,
and assume |S| = M. To start the search, we create the state
jψ〉 ≔ 1ffiffiffi

N
p
P

x∈½1;N �jx〉. In the case where N = 2n, this is done

by applying H⊗n to the input state j0〉⊗n. At this point, the
measurement of the state of the system would yield a marked
element with probability M/N. Grover's algorithm will
repeatedly act on the state to increase those odds.

Note that Grover's search is often described as searching a
database, which fits in the definition above if we think of f as
performing a memory access at a given index. However, in
order to implement this efficiently, one may need the quantum
random‐access model presented in Section 2.10.

The first building block of Grover's algorithm is an oracle
that implements the inspection function f (See Figure 1). Intui-
tively, this state acts on a superposition of basis states by multi-
plying the phase of all the component jx〉 corresponding to the
index x of a marked element by −1. The iteration of the Grover
algorithmusesOf alongside a similar operatorOϕwhich satisfies
Oϕj0〉¼ j0〉 and Oϕjx〉¼ −jx〉 for x ≠ 0. Note that Of can be
efficiently implemented froma circuit that implement f, whileOϕ
is efficiently implementablewithClifford+T+CNOTgates.An
iteration of Grover's algorithm is shown in Figure 2.

The initial state jψ〉 is in the span of the vectors jα〉; jβ〉
defined as

jα〉¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − M
p

X

x∉S
jx〉 and jβ〉¼

1
ffiffiffiffiffi
M
p

X

x∈S
jx〉

The vectors jα〉; jβ〉 are an orthonormal basis, and we can

see that jψ〉¼
ffiffiffiffiffiffiffiffi
N−M
N

q

jα〉 þ
ffiffiffi
M
N

q

jβ〉. Let us define θ by

cosðθ=2Þ ¼
ffiffiffiffiffiffiffiffi
N−M
N

q

and sinðθ=2Þ ¼
ffiffiffi
M
N

q

. This yields

jα〉¼ cosðθ=2Þjα〉þ sinðθ=2Þjβ〉:

Moreover, we can view the action of the Grover iterate as a
rotation in the span of jα〉; jβ〉.

Proposition 5 The Grover iterate G acts on Spanfjα〉; jβ〉g as

G¼
�
cosðθÞ −sinðθÞ
sinðθÞ cosðθÞ

�

:

F I GURE 1 Oracle function

F I GURE 2 Grover iterate
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Proof : We first show that the Grover iterate operator is equal
to G¼ ð2jψ〉〈ψ j − IÞOf . Then we apply this operator on the
two basis vectors jα〉 and jβ〉, and we observe that the matrix
of G has the claimed shape. □

Starting with jψ〉, the state we reach after k iterations ofG is

Gkjψ〉¼ cos
�
2kþ 1
2

θ
�

jα〉þ sin
�
2kþ 1
2

θ
�

jβ〉:

We need to select k so that this state is as close as possible
to jβ〉 (whose measurement would yield a marked element with
probability 1). This means aiming for 2kþ12 θ ≈ π

2.

Proposition 6 Assuming that M ≤ N/2, a measurement of the

state after k ≤ ⌈π4
ffiffiffi
N
M

q ⌉ Grover iterations yields x ∈ S with

probability at least 12.

This means that we measure a marked element with con-
stant probability after Oð

ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
Þ oracle calls. The total cost is

O
� ffiffiffiffiffiffiffiffiffiffiffi

N=M
p

Cost
�
Of
��

in terms of time, gate count and DW‐
cost.

3.2 | Amplitude amplification

Grover's search algorithm can be generalised to include a
subroutine to replace the creation of the uniform super-
position over all elements in [1, N ] with another algorithm
with better odds of leading to the measurement of a marked
element. This could typically be used to implement nested
searches. For example, the inner search might identify marked
elements in a set S0 such that S ⊂ S0. In the Oracles with costs
framework of Kimmel et al. [19], this strategy is used to take
advantage of the situation where the oracle Of used to mark
elements in S0 is significantly less expensive to implement than
the oracle Og that marks elements in S.

Formally, in amplitude amplification, we assume the
knowledge of an algorithm A that produces a superposition
over all possible outcomes with certain weights

Aj0〉⊗n ¼
X

x<N
αxjx〉jjunkðxÞ〉 ¼ jψ〉:

Here junk(x) is a state resulting from the computation of A
(i.e. a collection of intermediate values that are kept due to
reversibility). In the case of Grover's algorithm, A = H⊗n, but
in general, the measurement of jψ〉 yields x ∈ S with
probability

1 > p¼
X

x∈S
jαxj2 > 0

that is not necessarily M/N. The amplitude amplification cir-
cuit is almost identical to that of Grover's search except that

calls to H⊗n are replaced by A. It consists in the repetition of
the iterate shown in Figure 3. Similar to the analysis of
Grover's algorithm, we define the states

jα〉¼
1
ffiffiffiffiffiffiffiffiffiffi
1 − p
p

X

x∉S
αxjx〉 jjunkðxÞ〉

jβ〉¼
1
ffiffiffipp
X

x∈S
αxjx〉 jjunkðxÞ〉

Proposition 7 The amplitude amplification iterate Q acts on

Spanfjα〉; jβ〉g as G¼
�
cosðθÞ −sinðθÞ
sinðθÞ cosðθÞ

�

; where θ is

defined by cosðθ=2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
1 − p
p

and sinðθ=2Þ ¼ ffiffiffipp . This
means that Q acts as a rotation of angle θ.

We start the procedure with the state
jψ〉¼ cosðθ=2Þjα〉 þ sinðθ=2Þjβ〉. The state we reach after k
iterations is

Qkjψ〉¼ cos
�
2kþ 1
2

θ
�

jα〉þ sin
�
2kþ 1
2

θ
�

jβ〉:

Proposition 8 Assuming that p ≤ 1/2, a measurement of the
state after k ≤ ⌈ π

4
ffiffi
p
p ⌉ steps yields x∈ S with probability at least 12.

Therefore, the cost of amplitude amplification isO
�
CostðAÞffiffi

p
p

�

where the cost can be viewed as time, gates, or DW.
As with classical algorithms, time (i.e. circuit depth) can be

reduced by performing computations in parallel. Indeed, a
classical exhaustive search of the key is expected to be per-
formed massively in parallel by segmenting the search space.
Unfortunately, the performance of Grover search deteriorates
badly in a parallel setting. If we use R processors to search in
parallel for the secret key, we can make each of them search in
a subspace of size 2κ/R and aggregate their results: this re-
duces the depth by a factor

ffiffiffiffi
R
p

but increases the total work‐
load by a factor

ffiffiffiffi
R
p

. Indeed, R independent searches that
perform O

�
2κ=2
ffiffiffi
R
p

�
oracle calls each. This yields a total of

O
� ffiffiffiffi

R
p

⋅ 2κ=2� oracle calls. This naive parallelisation is actually
optimal.

3.3 | Random walks

Grover's search algorithm is generalised by the notion of
random walk on a graph. We assume that a graph G is given by

F I GURE 3 Amplitude amplification iterate
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a set of vertices V and edges E, and we assume that we are
looking for a marked element in M = f −1({1}) for some
f : V → {0, 1}. The general strategy of a random walk is to start
from a vertex x ∈ V, check if f(x) = 1, and if not, then walk in
the graph by sampling neighbours uniformly at random long
enough to ensure the new vertex x0 attained is distributed
almost uniformly at random in V and then test if f(x0) = 1. This
is repeated until a marked element is found. In addition to
running Of , there are two main steps in a quantum walk that
contribute to the overall cost:

� Setup: sampling the first vector and initialising the data
structure.

� Update: sampling a neighbour and updating the data
structure (we need to update the current node and its
neighbours).

Each of the aforementioned steps have a cost that depends
on the data structure that is chosen to navigate the graph (note
that depending on the model of computation chosen, memory‐
intensive data structures can penalise the cost). Moreover, the
cost is impacted by the shape of the transition matrix M. In the
case of a d‐regular graph (which is relevant to many compu-
tational problems), M ¼ 1

d A where A is the adjacency matrix of
the graph. The number of update steps required to reach a
node almost uniformly distributed is ~O

�
1
δ

�
where δ is the

spectral gap of M, that is, δ ≔ 1 − maxi>1|λi| where ðλiÞi>1 are
the eigenvalues of M not equal to 1. A similar approach can be
used quantumly [20]. The cost becomes

CostðSetupÞ þ
1
ffiffiffi
ε
p

�

Cost
�
Of
�
þ

1
ffiffiffi
δ
p CostðUpdateÞ

�

Many computational problems relevant to cryptanalysis
reduce to a walk in the Johnson graph of a set. In general, a
Johnson graph J(n, r) is an undirected graph whose vertices
and the subsets of size r of a given set U of size n. There is an
edge between vertices S ⊆ U and S0 ⊆ U if and only if
|S ∩ S0| = r − 1 (i.e. they differ by only 1 element). The
Johnson graph J(n, r) has jV j ¼

�
n
r

�
vertices, is r(n − r)‐regular

and its spectral gap is

δ¼
n

rðn − rÞ
:

The product Jm(n, r) of m copies of J(n, r) is the graph
whose vertices are of the form (v1, …, vm) where each vi is a
vertex of J(n, r), and there is an edge between (v1, …, vm) and�
v01;…; v0m

�
if and only if there is an edge between vi and v0i

for some i, and vj ¼ v0j for all j ≠ i. The product Jm(n, r) has�
n
r

�m elements, is mr(n − r)‐regular, and its spectral gap
satisfies

δð Jmðn; rÞÞ ≥
1
m

δð Jðn; rÞÞ:

3.4 | Quantum backtracking

Relevant to cryptanalysis of algorithms for lattices is an exten-
sion of Grover's search where instead of searching for a marked
element in a list, the task is to find a marked leaf in a (large) tree.
Let us describe the setup. We assume the following query access
to a tree T: for a given node v, we have an oracle that returns the
number of its children; also we have an oracle that for a node v
and index i, returns the ith child of v. The maximal degree of T
is the largest number of children among all nodes.

Backtracking algorithms is a classical method to solve
problems where we can partially enumerate solutions and
check whether the current sub‐solution can be extended to the
actual solution. Hence, a backtracking algorithm constructs a
tree in depth‐first manner where leaves represent solutions. An
example for such problem is SAT. Backtracking requires an
oracle PT that operates on nodes s.t. given a leaf v it tells
whether v is a solution (‘marked’) and given any other node the
oracle returns ‘intermediate’. Classically, finding a ‘marked’ leaf
can be done on time OðnodesÞ. Montanaro in Ref. [21] gives a
Grover‐like speed‐up for this task:

Theorem 9 ([21]). There is a quantum algorithm that given a
query access to a tree T as described above with maximal de‐
gree Oð1Þ, an oracle PT , n–an upper bound on the depth of T
and ɛ > 0, outputs either a marked leaf x or ⊥ if no marked x

exists, by making O
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

#nodes
p

⋅ polyðnÞlogð1=εÞ
�
queries to

T and to PT . The algorithm uses polyðnÞ qubits and is correct
with probability larger than 1 − ɛ.

4 | HIDDEN SUBGROUP PROBLEMS

Hidden Subgroup Problems (HSP) consist in the search for a
secret subgroup H inside of a control group G, given access to
an oracle function f: G → X for some set X of quantum states
that satisfies f(x) = f(y) if and only if x ∈ y + H. Many
interesting computational problems reduce to an HSP instance,
including factoring and the discrete logarithm problem, as
shown in Section 5.

4.1 | The abelian quantum Fourier
transform

Solving theHSP in an abelian group in quantumpolynomial time
is usually done by using theQuantumFourier Transform (QFT).
The QFT depends on the control groupGwe are working with.
To simplify this introduction, we start with the QFT used in
Shor's original work [1] which applies to G¼ Z2n .

Definition 10 (QFT over G¼ Z2n ). The QFT circuit over
G¼ Z2n performs the following operation on the basis states:

jx〉 ⟼
1
ffiffiffiffiffiffi
20n
p

X2
n−1

y¼0
e
2iπxy
2n jy〉:
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Such a circuit solves the phase estimation problem which,
given an input state jψ〉¼ 1ffiffiffiffi

2n
p
P2n−1

y¼0 e
2iπωyjy〉, asks to find an

approximation of ω ∈ R. One can show that the measurement
of the state QFT2n jψ〉 yields y such that

�
� y
2n − ω

�
� ≤ 1

2n with
constant probability.

A circuit realising the exact QFT over Z2n cannot be
implemented with Clifford + T + CNOT gates. Instead, it
should be approximated. The essential component for this
QFT that does not belong in our gate set are the controlled
rotations. Given k ≤ n, these gates realise the operation
j0〉ja〉 ↦ j0〉ja〉 and j1〉ja〉 ↦ j1〉Rkja〉 where

Rk ≔

 
1 0

0 e
2πi
2k

!

:

The QFT2n circuit is realised with a combination of
Hadamard and controlled rotations shown in Figure 4. We use
the notation 0. x1…xk to denote x

2k where x1…xk is the binary
expansion of x.

The QFT can be generalised to any finite abelian group G.
This uses the notion of the character group bG of G of group
morphisms f : G → C∗. Elements in y ∈ G are in corre-
spondence with characters χy ∈ bG. In a cyclic group Zd ,

χ1 : x ↦ e2iπx/d, while χi : x ↦ χ1(x)i (i.e. χ : y ∈ G ↦ χy ∈ bG
is a group morphism). If G¼ Zd1 ⊕ Zd2, and g = (g1, g2) ∈ G,
then χg ¼ χg1χg2, which allows us to define χg by induction for
any finite abelian group. For example, when G¼ Z2n , we have

χy : x ↦ e
2iπxy
2n .

Definition 11 (QFT over a finite abelian group G). The QFT
circuit over an arbitrary finite abelian G performs the
following operation on the basis states:

jx〉 ⟼
1
ffiffiffiffiffiffiffi
jGj

p
X

y∈G
χyðxÞjy〉:

Similar to the case G¼ Z2n , the QFT over an arbitrary
finite abelian group can be efficiently approximated by a
polynomial size circuit of Clifford + T + CNOT gates.

4.2 | Solving the HSP in a finite abelian
group

In this section, we assume thatG is finite and abelian and that we
have an implementation of a function f that satisfies f(x) = f(y)
if and only if x − y ∈ H ⊆ G whereH is a secret subgroup. The
goal of the HSP algorithm we present is to recover H by
measuring elements of bH . When a generating set for bH is
known, we use classical methods to recover H.

We initiate this process by creating a uniform superposition
over the elements of G:

�
�ψ0〉 ≔ 1ffiffiffiffiffi

jGj
p

P
x∈Gjx〉. When G¼ Z2n ,

this is done by using H⊗n while efficient methods exist for
other groups as well. We then use the function implementing f
to obtain the state

�
�ψ1〉 ≔

1
ffiffiffiffiffiffiffi
jGj

p
X

x∈G
jx; f ðxÞ〉:

Now, we measure the second register, which yields y = f(x)
in the range of f and collapses the state into a superposition of
all preimages of y. By assumption on the periodicity of f, we
know that f(x0) = y = f(x) if and only if x0 − x ∈ H, that is,
x0 ∈ x + H. This means that the system is left in the state

�
�ψ2〉¼ jxþH〉 ≔

1
ffiffiffiffiffiffiffi
jH j

p
X

h∈H
jxþ h〉:

The next stage consists in applying the QFT to the state�
�ψ2〉. This yields the following state:

�
�ψ3〉 ≔QFT

�
�ψ2〉¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jH j ⋅ jGj

p
X

y∈G

X

h∈H
χyðxþ hÞjy〉

¼

ffiffiffiffiffiffiffi

jH j
jGj

s
X

y∈G
χyðxÞ ⋅

 
1
jH j

X

h∈H
χhðhÞ

!

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
χyðHÞ

jy〉

Proposition 12 The measurement of the system in the state�
�ψ3〉 yields y such that H ⊆ ker(χy).

F I GURE 4 Quantum circuit for QFT2n
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Proof : If χy(h) = 1 for all h ∈ H, then clearly χy(H) = 1. On the
other hand, if there is an h ∈ H such that χy(h) ≠ 1, then we
have χyðHÞ ¼ 1

jH j
P

h0∈H χy
�
hþ h0

�
¼ χyðhÞχyðHÞ, which

means that χy(H) = 0. Hence, we have

�
�ψ3〉¼

ffiffiffiffiffiffiffi

jH j
jGj

s
X

y:χyðHÞ¼1

χyðxÞjy〉:

Since |χy(x)|, we see that the only possible measurements
are y such that χy(H) = 1, that is, H ⊆ ker(χy). □

The strategy to compute H consists in running the above
procedure several times and to compute ∩y measured ker(χy).
With high probability, this yields H in O(log(|G|)) steps.

4.3 | HSP in DN

In general, the HSP in non‐abelian groups can be a hard prob-
lem. Still, subexponential algorithms for the dihedral group (DN)
have been proposed [18, 22, 23]. These algorithms have a time
complexity in 2(log(N)), and Ref. [23] has polynomial memory. In
this section, we introduce Kuperberg's method [22] to solve the
HSP in DN, which is a non‐abelian group. Given a positive
integer N, we can define the dihedral group DN by
DN ¼ Z=NZ⋊ϕZ=2Z, whereϕ(0) is the identity andϕ(1) is the
inversion. Concretely, this means that the elements of DN are
those of ðZ=NZÞ � ðZ=2ZÞ and that the group law is given by

ða; bÞ ⋅
�
a0; b0

�
¼
�
aþ ð−1Þba0; bþ b0

�
:

Assume H is a subgroup of DN. Let us show how the HSP
instance defined by H can be reduced to a simpler instance of
the HSP where the secret subgroup has the shape H0 = {(0, 0)
(k, 1)}. We can define H1 ≔ H ∩ Z=NZ � f0g ¼ fða; bÞ∈
H with b¼ 0g. This subgroup H1 is isomorphic to a subgroup
of Z=NZ, which is of the form MðZ=NZÞ for M ∣ N. The
subgroup H1 is normal in DN, and we have the following
identity.

Proposition 13 Let H1 be a subgroup of DN that is isomorphic
to MðZ=NZÞ for M ∣ N, then the map

ϕ : DN →DM
ða; bÞ ↦ðamod M; bÞ:

is surjective with kernel H1, which means that DN/H1 ≃ DM.

Proof: The map ϕ is clearly surjective since M ∣ N. In addition,
if ϕ(a, b) = (0, 0), then b = 0 and M ∣ a, which means that
a ∈ MðZ=NZÞ and thus (a, b) ∈ H1. Hence, ker(ϕ) ⊆ H1. On
the other hand, it is immediate that H1 ⊆ ker(ϕ), so ker
(ϕ) = H1, and by the fundamental theorem of algebra DN/ ker
(ϕ) = DN/H1 ≃ DM. □

So, given a function f: DN → X that hides H, our strategy is
to first find H1 that is hidden by the function
f 0 : DN ∩ Z=NZ � f0g→ X, which is the restriction of f.
This is done by re‐casting this as an instance of the HSP in the
abelian group G¼ ZN . Once this is done, we learn the integer
M and we turn our attention to the resolution of the HSP
instance defined by the hidden subgroup H2 of DM.

Proposition 14 With the notations above, the hidden sub‐
group of DM is either H2 = {(0, 0)}, or of the form

H2 ¼ fð0; 0Þ; ðk; 1Þg for some 0 ≤ k < M:

Therefore, we look for a secret s ∈ ZN , which defines a
hidden subgroup H = {(0, 0) (s, 1)} ⊆ DN. We describe
Kuperberg's sieve algorithm from a high level perspective by
restricting ourselves to the case of N = 2n. There are two main
ingredients to this method: first, the creation of so‐called coset
states and then the sieve itself that recombines the coset states
together to learn information about the secret s. To create a
coset state, we compute a uniform superposition of all ele-
ments of DN:

jϕ0〉¼
1
ffiffiffiffiffiffiffi
2N
p

X

ða;bÞ∈DN

ja; b〉¼
1
ffiffiffiffiffiffiffi
2N
p

XN−1

a¼0

X1

b¼0

ja〉jb〉:

Then, we use a circuit Uf : ja; b〉jc〉 ↦ ja; b〉jc þ f ða; bÞ〉
for the function f that hides H on the input state jϕ0〉j0〉, thus
creating the state

1
ffiffiffiffiffiffiffi
2N
p

XN−1

a¼0

X1

b¼0

ja〉jb〉jf ða; bÞ〉:

We measure the second register and learn f(a, b) for some
a, b. This leaves the state in the superposition of all elements
(x, y) such that f(x, y) = f(a, b). As f hides the subgroup
H = {(0, 0) (s, 1)}, the sum should have two elements, one with
b = 0 and one with b = 1. Let t = a for the pair (a, b) with
b = 0, then the other pair is (t, 0) ⋅ (s, 1) = (t + s, 1) so that the
resulting state is

jϕ1〉 ≔
1
ffiffiffi
2
p ðjt〉j0〉þ jtþ s〉j1〉Þ

We apply QFTN ⊗ I2 to jϕ1〉 (i.e. we apply the QFT to the
first register and leave the second one alone), thus producing
the state

1
ffiffiffiffiffiffiffi
2N
p

XN−1

k¼0

�
ωtkjk; 0〉þ ωðtþsÞkjk; 1〉

�
:
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We measure the first register, thus obtaining a value k
drawn uniformly at random in [0, N − 1] and leaving the
second (single‐qubit) register in the state

1
ffiffiffi
2
p
�

ωtkj0〉þ ωðtþsÞkj1〉
�

∝
�
�ψk〉 ≔

1
ffiffiffi
2
p
�
j0〉þ ωskj1〉

�
;

which is one of the N possible coset states.
We now assume that we have a circuit that can produce

coset states
�
�ψk〉 for k distributed uniformly at random in

[0, N − 1]. Note that the classical information of the label k is
known as well. Our goal is to create the coset state

�
�
�ψN=2〉¼

1
ffiffiffi
2
p ðj0〉þ ð−1Þsj1〉Þ

If this state is known then (−1)s = (−1)b where b = 0 if s is

even and b = 1 if s is odd. As H
�
�
�ψN=2〉¼ jb〉, we readily obtain

the parity of s from
�
�
�ψN=2〉, that is, its binary digit of lowest

order. Unfortunately, the odds of drawing
�
�
�ψN=2〉 are small. So

instead, we collect many coset states
�
�ψk〉 for a random k, and

we recombine them with the hope of creating
�
�
�ψN=2〉. Given

two coset states
�
�ψk〉;

�
�ψ l〉, we perform the circuit described in

Figure 5. The input state is the product state
�
�ψk;ψ l〉, and after

the CNOT gate, the system is left in the state

1
ffiffiffi
2
p
��
�ψkþl〉j0〉þ ωsl

�
�ψk−l〉j1〉

�
:

Hence, with probability 1/2, the measurement of the sec-
ond qubit is 1 and the system is left in a state that is propor-
tional (up to a global phase) to

�
�ψk−l〉.

We look for indices k, l whose first m ≔ ⌈
ffiffiffiffiffiffiffiffiffiffiffi
n − 1
p

⌉ binary
digits are the same. Then, the first m binary digits of k − l will
be 0. We need to create a large enough initial list L0 of coset
states so that enough of the corresponding indices have their
first m binary digits in common. The resulting coset states
(which have indices with m initial zeros in their binary
decomposition) will be in a list L1. This process is then
repeated with the next m bits in the binary decomposition of
the indices. The last coset state should be

�
�ψ2n−1〉. We begin

with jL0j ¼ 2n0 random coset states, and at each stage
jLiþ1j ≥ jLij8 , which means that jLmj ≥ 2n0−3m. Starting with
n0 ≥ 4m guarantees enough coset states after the mth stage of
the sieve to obtain

�
�ψ2n−1〉.

Once we know b ∈ {0, 1} such that s = 2s0 + b, we need to
repeat the sieve in DN/2 to learn the bit of s0 of lowest order.
We can immediately see that the function

f 0 : DN=2 →X
ðx; yÞ ↦ f ð2xþ b; yÞ:

hides the subgroup H0 : = {(0, 0), (1, s0)} ⊆ DN/2. So, the
above procedure can be repeated to learn the first bit b0 of s0.
Eventually, after log(s)/log(2) ≤ log(N)/log(2) steps, the pro-
cess allows us to learn all the bits of the binary decomposition
of secret s. This can be generalised to arbitrary N, and even to
the HSP in G⋊ϕZ=2Z for an arbitrary finite abelian group G.

5 | FACTORING AND DISCRETE
LOGARITHM PROBLEMS

Shor's algorithm [1, 24] for the IFP splits any integer N—that
is odd and not a perfect prime power—into two non‐trivial
factors. To completely factor N, the algorithm may be
applied recursively.

There exist efficient classical algorithms for testing pri-
mality [25, 26] and for reducing perfect powers. The re-
strictions imposed by Shor, therefore, do not imply a loss of
generality.

5.1 | Shor's original factoring algorithm

Shor's algorithm works by first classically reducing the IFP to
an order‐finding problem (OFP) in a cyclic subgroup of Z∗

N .
This OFP is then solved quantumly using an order‐finding
algorithm.

It should be noted that there exist other potential appli-
cations for efficient order‐finding algorithms, besides factoring
integers: Shor's order‐finding algorithm computes orders in
any cyclic group for which the group arithmetic may be effi-
ciently implemented.

5.2 | Reducing the IFP to an OFP

First, an element g is selected uniformly at random from Z∗
N .

In practice, this may be accomplished by selecting an integer
g uniformly at random from the interval (1,N ) and testing if g is
coprime toN. If it is not, we will have found a non‐trivial factor
of N. Otherwise, we will have successfully selected g.

The order r of g is then computed quantumly. The order is
the least positive integer such that gr ≡ 1 (mod N ). If r is even,

gr − 1¼
�
gr=2 þ 1

��
gr=2 − 1

�
≡ 0 ðmod NÞ;

F I GURE 5 Iterate of Kuperberg's sieve
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so N ∣ (gr − 1), whilst N ∤ (gr/2 − 1) by the definition of r.
If, furthermore,N ∤ gr/2 + 1, it must be that gcd(N, gr/2� 1)

are non‐trivial factors of N. Specifically, it must be that N = ab,
for some a, b≠ 1 where a ∣ (gr/2+ 1) and b ∣ (gr/2− 1). Shor cites
Miller [25] for this randomised reduction. See also Long [27].

Shor proves [Ref. [1], p. 1498] that the probability of r being
even, and of the above condition being met, is at least 1/2. If
either condition is not met, the whole algorithm may simply be
re‐run. After n runs, the failure probability is then at most 2−n.

5.2.1 | Improved reductions

Ekerå [28] has recently shown how the complete factorisation
of N may be computed efficiently classically, with very high
probability, given the order r of g, and in a follow‐up work [29],
he gave probability estimates that account for the possibility of
failing to recover r.

In the worst case, for N an m‐bit integer with n distinct
prime factors, the failure probability when using this approach
is at most

2−k
�n
2

�
þ

1
2c2log 22cm

by [Ref. [28], Th. 1], where c, k ≥ 1 are parameters that may be
freely selected. Increasing c, k increases the success probability
at the expense of having to perform more classical post‐
processing work.

In practice, c, k may be selected so as to guarantee a very
low failure probability without compromising efficiency.
Furthermore, for nearly all integers N, the failure probability is
much smaller than the bound indicates: In general, it is ex-
pected to be insignificant.

Note that the failure probability tends to zero asymptoti-
cally as N → ∞, if c = 1 and we, for example, let k depend on
m such as k ≤ 3 log2m.

5.3 | Quantum order finding

Shor's order‐finding algorithm—if slightly generalised, for
reasons that will soon become clear, and with notation from
Ref. [30]—uses two registers: a control register of ν : = m + ℓ
qubits—for m the bit length of the order and ℓ ~ m—and a
work register of some t qubits—for t sufficiently large to allow
group elements to be represented and group operations to be
performed.

The work register may be initialised to any value. For
simplicity, we initialise it to j1〉, to have it represent the identity
in Z∗

N . The control register is initialised to j0〉, after which H
gates are independently applied to the ν qubits in the register,
yielding

1
ffiffiffiffiffi
2ν
p

X2
ν−1

a¼0
ja; 1〉:

As may be seen above, the effect of applying the H gates is
to induce a uniform superposition over all possible states in the
control register. Next, we compute ga to the work register,
yielding

1
ffiffiffiffiffi
2ν
p

X2ν−1

a¼0
ja; ga〉:

Above, and in what follows, we perceive g as an element of
Z∗
N and forego writing out mod N. In practice, the exponen-

tiation would typically be performed by classically pre‐
computing

n
g; g2; g2

2
;…; g2

ν−1
o
;

and multiplying g2i into the work register if the ith control qubit
ai = 1 in what amounts to the square‐and‐multiply algorithm:

a¼
Xν−1

i¼0

2iai ⇒ ga ¼∏
ν−1

i¼0
g2

iai ¼ ga0þ2a1þ2
2a2þ…:

Note that multiplication by powers of g mod N is an
invertible operation. This is what allows us to multiply pre‐
computed powers of g directly into the work register. Note,
furthermore, that the set of powers of g may be efficiently
computed by repeated squaring.

We now have

1
ffiffiffiffiffi
2ν
p

X2
ν−1

a¼0
ja; ga〉¼

1
ffiffiffiffiffi
2ν
p

Xr−1

e¼0

 
Xme−1

b¼0

jrbþ e〉

!

jge〉

where me ≔ ⌊ð2ν − e − 1Þ=r⌋, and r is the order of g.
If, at this point, we measure the work register and obtain ge

for some e ∈ ½0; rÞ, this leaves the system in the state

1
ffiffiffiffiffiffi
me
p

Xme−1

b¼0

jrbþ e; ge〉:

As may be seen, the control register is now periodic in r,
with an unknown offset e. To eliminate e, we apply QFT2ν to
the control register, leaving the system in the state

1
ffiffiffiffiffiffiffiffiffiffi
2νme
p

X2
ν−1

j¼0

 
Xme−1

b¼0

exp
�
2πi rjb
2ν

�!

j j; ge〉¼

1
ffiffiffiffiffiffiffiffiffiffi
2νme
p

X2
ν−1

j¼0

 
Xme−1

b¼0

eiθrb
!

j j; ge〉

where we define

θr ≔
2πi αr
2ν where αr ≔ frjg2ν
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and where {u}n is u reduced mod n constrained to ½n=2; n=2Þ.
The probability of measuring a given j (that yields θ ≠ 0) is
then

1
2νme

�
�
�
�
�

Xme−1

z¼0
eiθrb

�
�
�
�
�

2

¼
1

2νme

sin 2ðmeθr=2Þ
sin 2ðθr=2Þ

:

The measured value j implicitly defines αr which is un-
known to the user. If αr ∈ [ − r/2, r/2], Shor uses that for
some unknown

z ≔
rj − frjg2ν

2ν ¼ ⌈ rj
2mþℓ⌋ ∈ ½0; r�;

the convergent z/r will be found in the continued fraction
expansion of j/2ν (see Hardy and Wright [[31], Th. 184] for a
proof) if

�
�
�
�
j
2ν −

z
r

�
�
�
�¼

jαrj
2mþℓr

<
1
2r2
;

thus enabling us to find the convergent z/r when ℓ ~ m. We
may increase the success probability by increasing ℓ.

It may be shown that we expect to observe j that produces
αr such that |αr| ~ 2m, efficiently yielding ℓ bits of infor-
mation on r.

For instance, Shor [1] asymptotically lower‐bounds by 4/π2
the probability of observing j that produces αr ∈ [ − r/2, r/2].

In [Ref. [32], App. A], the probability of observing αr such
that |αr| is of length τ bits is shown to be exponentially sup-
pressed in τ as τ grows larger than m. Furthermore, the prob-
ability distribution in log(|αr|) is plotted in [Ref. [33], Fig. A1],
for maximal r= 2m− 1 and for specific choices ofm and ℓ. This
figure is, however, representative also for other choices of pa-
rameters, for as long as r is not divisible by a very large power of
two: Picking a smaller r ∈ ½2m−1; 2mÞ shifts the distribution
slightly. Varying m and ℓ has no visible effect for as long as m
and ℓ remain sufficiently large.

In practice, it is more efficient—see [Ref. [1], p. 1501]—to
try to solve not only j but also j � 1, j � 2, … for the
convergent z/r instead of increasing ℓ (This is when assuming
classical computation to be cheap compared to quantum
computation).

Since we expect to observe j yielding αr such that |αr|
~2m as stated above, we expect αr ¼ frjg2ν to increase or
decrease by r ~ 2m if we increase or decrease j. Solving for
small offsets in j, therefore, yields the convergent z/r with
high probability.

A further concern when performing order finding is that
factors may cancel between r and z. Shor [1] points out that the
probability of r and z being coprime is ϕ(r)/r = O(1/log log r).
Hence, the expected number of runs is O(log log r). Odlyzko
furthermore states in private communication to Shor [1] that
this may be reduced to O(1) runs by searching for the missing
factor d = gcd(z, r).

In fact, assuming we also solve for offsets in j, it is shown
in Ref. [32] that z mod r is selected essentially uniformly at
random from ½0; rÞ via j. The probability of a d not being cm‐
smooth, for c some small constant, may then be upper‐
bounded and shown to be small—see the main result in Ref.
[32]. And if d is cm‐smooth, d may be found efficiently clas-
sically as is explained in for example, Ref. [32] and [Ref. [33],
Section 6.2.4].

5.4 | Practical implementation and control
qubit recycling

In practice, the circuit is typically not implemented as described
in the previous section: It is not necessary to actually measure
the work register. If one foregoes this measurement and in-
terleaves the QFT with the modular multiplications, then the
QFT may be performed semi‐classically [34]. A single qubit,
that is recycled [35, 36], then suffices to implement the control
register in practice. In total, only t + 1 qubits are then required
to implement the circuit.

5.5 | Tradeoffs and lattice‐based post‐
processing

Seifert [37] has proposed to pick ℓ ≈ m/s for some s ≥ 1. The
quantum circuit then still leaks ~ℓ bits of information on r, so
a total of n ≥ s runs are then required to solve for r.

Seifert states that his aim is to save control qubits, but in a
more modern interpretation in which control qubits are recy-
cled, Seifert reduces the circuit depth from ~2m multiplica-
tions in Shor's algorithm to m + m/s multiplications. The
reduction comes at the expense of having to perform n ≥ s
runs, so Seifert effectively makes a tradeoff between the circuit
depth and the number of runs.

As for post‐processing, Seifert generalises continued frac-
tions to higher dimensions using simultaneous Diophantine
approximation techniques. Ekerå [33, App. A and Section 6.2]
describes a similar lattice‐based post‐processing technique:

Specifically, let L be the integer lattice spanned by the rows
of

2

6
6
4

j1 … jn 1
2ν … 0 0
0 ⋱ 0 0
0 0 2ν 0

3

7
7
5: ð2Þ

where {j1, …, jn} are the measurement results in the n runs.
Then, the short vector u¼

� �
rj1
�

2ν;…;
�
rjn
�

2ν; r
�

∈ L
may be found by enumerating short vectors in L, as is shown in
Ref. [33]. For s ≥ 1, we require about s runs to solve; see, for
example, [Ref. [33]., Table A2] for estimates of the number of
runs n required to solve for r = 2m − 1 as a function ofm and s.
(Solving for smaller r, that is not partially very smooth, is in
general easier.)
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5.6 | Specialised algorithms for RSA and
DH

If the goal is to factor RSA integers N = pq, for p, q, two
random primes of equal bit length, the algorithm of Ekerå and
Håstad [30, 38] outperforms factoring via Shor's original order‐
finding algorithm and via Seifert's algorithm when making
tradeoffs [30].

Ekerå and Håstad use that for g ∈ Z∗
N , it holds that

x¼ gNþ1 ¼ gpþq:

If g is selected uniformly at random from Z∗
N , it holds with

overwhelming probability that p + q < r for r the order of g.
The idea is, hence, to compute the logarithm d = loggx = p + q
quantumly. Given N = pq and d = p + q, it is then trivial to
solve for p, q.

To compute d, Ekerå and Håstad introduce a quantum
algorithm that is derived from Shor's algorithms [1] and that
efficiently computes short discrete logarithms in groups of
unknown order. A logarithm d is said to be short if it is smaller
than the order r of g by some order of magnitude.

For m the bit length of d and ℓ ~ m/s for s ≥ 1 the
tradeoff factor, the algorithm first induces the state

1
ffiffiffiffiffiffiffiffiffi
2νþℓ
p

X2ν

a¼0

X2ℓ

b¼0

�
�
�a; b; gax−b〉

and then applies QFT2ν and QFT2ℓ to the first and second
control registers, respectively, to obtain

1
2νþℓ

X2
ν

a;j¼0

X2
ℓ

b;k¼0

exp
�
2πi ðaj þ 2mbkÞ

2ν

��
�
�j; k; ga−bd〉:

The probability of observing (j, k) and ge for e = a − bd is
then

1
22ðνþℓÞ

�
�
�
�
�
�

Xb1ðeÞ

b¼b0ðeÞ

eiθdb

�
�
�
�
�
�

2

by [Ref. [30], Section 3], for b0(e) and b1(e) as given in [Ref.
[30], Section 3.1], and

αd ≔ fdj þ 2mkg2ν and θd ≔
2παd
2ν ;

if it is assumed that r ≥ 2m+ℓ + (2ℓ − 1)d, so as to simplify the
analysis: It then holds that e = a − bd (Otherwise, it only holds
that e = (a − bd) mod r). The requirement that r ≥ 2m+ℓ

+ (2ℓ − 1)d defines what it means for d to be short. It may in
some cases be possible to relax the requirement, at the expense
of complicating the analysis. For one generalisation, see
Section 5.7.

Further analysis [[30], Section 3.2] yields an expression for

PðθdÞ≔
1

22ðνþℓÞ

X2ν−1

e¼−ð2ℓ−1Þd

�
�
�
�
�
�

Xb1ðeÞ

b¼b0ðeÞ

eiθdb

�
�
�
�
�
�

2

that is exact and on closed form. It may be shown [Ref. [30],
Lemma 2] that we expect to observe ( j, k) yielding |αd|~2m,
leaking ~ℓ bits of information on d. To recover d, we use that
the known vector

v¼
�
f − 2mk1g2ν; …; f − 2mkng2ν; 0

�
∈ Znþ1

is close to the unknown vector u = (dj1, …, djn, d) ∈ L for L
the same lattice as in Section 5.5 spanned by the rows of (2). By
the analysis in Ref. [30], we expect to recover u, and hence d,
by enumerating all vectors in L within a ball centred on v.

The algorithm of Ekerå and Håstad is useful not only for
breaking RSA [2] but also for breaking Diffie–Hellman (DH)
[4] in safe‐prime groups with short exponents, as standardised
in Refs. [39–41].

For RSA, Ekerå–Håstad performs between 3/4 and 1/4 as
many modular multiplications as Shor's order‐finding algo-
rithm, as a function of s. For DH, the constant factor advan-
tage is greater when comparing to Shor's algorithm for the
DLP. For details, see [Ref. [30], Tables 2–4].

5.7 | Generalisations and extensions

If, in the algorithm as presented in the previous section, we
take m equal to the bit length of r and ignore the requirement
that d must be short, we obtain an algorithm [33] that com-
putes both the order r and the logarithm d. It has potential
cryptanalytic applications in the computation of discrete log-
arithms in random Schnorr groups of unknown order, since
Shor's DLP algorithm requires r to be known.

The analysis in Ref. [33] shows that this generalised algo-
rithm induces a two‐dimensional probability distribution in (θr,
θd): The probability distribution induced by Shor's order‐
finding algorithm [33, Fig. A], and by Ekerå–Håstad's algo-
rithm for short discrete logarithms [[33], Figure 5], re‐appear as
marginal distributions of this two‐dimensional distribution
[[33], Figure 4], indicating that the requirement that d is short
may be relaxed without impacting the distribution.

5.8 | General discrete logarithms

Shor's algorithm for the general DLP [1] in groups of known
order is a good option for solving the elliptic curve DLP (EC‐
DLP), to, for example, break EC‐DSA and EC‐DH. Proos and
Zalka [42] provide an early implementation of the group
arithmetic. Shor's DLP algorithm is also a good option for
solving the DLP in safe‐prime groups with full‐length expo-
nents and in Schnorr groups of known order.
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If Shor's DLP algorithm is modified as in Ref. [43] to
induce the state

1
22ðmþςÞ

X2
mþς

a;j¼0

X2
mþς

b;k¼0

exp
�
2πi ðaj þ bkÞ

2mþς

��
�
�j; k; gax−b〉

for m the bit length of the order r and ς ≥ 0, some small
constant, when solving g and x = gd for d ∈ ½0; rÞ, then the
qubit recycling optimisations described in Section 5.4 are
directly applicable.

In Ref. [43], it is shown heuristically that this modified
algorithm achieves a very high success probability [43, Table 1],
if ς is selected to slightly increase the lengths of the control
registers compared to what Shor originally proposed and if a
small search is performed in Shor's classical post‐processing
when solving (j, k) for d given r.

It is furthermore explained in [Ref. 43, Section 5.2] how
tradeoffs may be achieved by instead using lattice‐based post‐
processing. The idea is very similar to that in Section 5.6, but it
requires r to be known.

Kaliski [44] has proposed a different kind of tradeoffs, the
idea being to compute the logarithm d, one half‐bit at the time
via the Blum–Micali [45] reduction. This achieves a maximal
tradeoff, at the expense of performing very many runs of the
quantum algorithm.

5.9 | Simulations

As previously stated, the probability distributions induced by
Shor's algorithms, Seifert's algorithm, and the various algo-
rithms by Ekerå and Håstad may be captured exactly, as error
bounded approximation or—for Shor's algorithm for the DLP
—heuristically.

This in turn implies that the algorithms may be simulated
classically [30, 33, 43], when the solution to the problem
instance is known, for example, enabling the characteristics of
various post‐processing strategies to be evaluated in practice.

5.10 | Cost estimates

The hard part when implementing the aforementioned algo-
rithms is to implement the group arithmetic in a fault‐tolerant
manner. There are a number of studies in the literature that
propose efficient circuits for the group arithmetic and that cost
them in various models.

For recent full‐stack physical cost estimates for the afore-
mentioned algorithms when working in Z∗

N , see Refs. [17, 46].
For recent optimised logical circuits and cost estimates for the
EC‐DLP, see Refs. [47, 48]. For a recent physical cost estimate,
see Ref. [49].

For physical cost estimates that cover both RSA and the
EC‐DLP, alongside some widely used symmetric cryptosys-
tems, see Ref. [50].

For a recent survey that compiles expert opinions on the
impact of some of these algorithms and cost estimates on the
migration timeline, see Ref. [51]. For broader studies, see for
example, Refs. [52, 53].

6 | GENERALISING SHOR's
ALGORITHM

Shor's factoring algorithm can be viewed as the resolution of
the HSP problem on Z. Namely given f : Z → ZN defined by f
(x) = ax (mod N), which has period r and is injective on Z=rZ,
find r. Hallgren [54] generalised Shor's algorithm by considering
HSP on R. Since quantum computers are digital, additional
conditions are introduced on the oracle function to facilitate
finding the hidden subgroup once the function is discretised.
Efficient quantum algorithms for several basic number‐
theoretical problems were then devised, thereby reducing
them to the HSP on R, including solving Pell's equation,
whereas the best classical algorithms need superpolynomial
time. This was later extended to Rc with constant dimension,
which allowed the design of efficient quantum algorithms for
computing the unit group and the ideal class group of a number
field and finding a generator of a principal ideal (a.k.a. the
principal ideal problem PIP), in number fields [55, 56]. These
algorithms were proven to run in quantum polynomial time in
infinite classes of number fields of fixed degree.

However, this approach is inefficient in families of number
fields of arbitrary degree. Indeed, it is not clear how to solve an
analogous HSP on Rn efficiently, given the exponentially
growing error with the dimension due to discretisation. This is
a consequence of the fact that a unique representation of the
HSP oracle function's output is essential. However, when
reducing the number‐theoretical problems to HSP, the output
of the oracle is typically a real‐valued lattice, lacking a canonical
representation. The methods of Refs. [55, 56] designed for
families of fields of constant degree do not satisfy these re-
quirements, and computing a suitable oracle function in
polynomial time poses a roadblock.

These difficulties were overcome by Eisenträger, Hallgren,
Kitaev and Song [57]. They introduced a restricted HSP in Rn,
which imposes a Lipschitz continuity condition on the oracle
function. The methods for solving this HSP problem intro-
duced in Ref. [57] successfully take advantage of this property
of the oracle and achieve a polynomial run time. In Ref. [57],
the authors also gave an efficient reduction from computing
the unit group in high‐degree number fields to the continuous
HSP they introduced. A key ingredient is a quantum encoding
of a real‐valued lattice, addressing the issue of unique repre-
sentation. Later, Biasse and Song [58] followed this framework
and constructed reductions that enable the computation of any
S‐unit group in arbitrary‐degree number fields, which as a
consequence gave efficient quantum algorithms for PIP and
computing the class group as well. Their quantum algorithm
for the PIP turned out to be useful to break several crypto-
systems based on a specialised lattice problem [59, 60]. This
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also inspired more recent quantum cryptanalysis on lattice‐
based cryptosystems [61, 62].

Here, we give a brief overview of the continuous HSP and
the quantum algorithm for solving it. The exposition is adapted
from Ref. [57].

Problem 1 (The continuous HSP over Rm). Assume that the
unknown subgroup L ⊆ Rm is a full‐rank lattice satisfying the
following promise: there are positive parameters (a, r, ɛ) and a
function f : Rm → S, where S is the set of unit vectors in some
Hilbert space, such that

1. f is periodic on L, that is, f(x) = f(x + v) for all x ∈ Rm and
v ∈ L;

2. f is Lipschitz with constant a, that is,
kjf ðxÞ〉 − jf ðyÞ〉k ≤ akx − yk for all x; y ∈ Rm;

3. If the distance between the cosets (x mod L) and (y mod L)
is greater or equal to r, that is, if minv ∈ L‖x − y − v‖ ≥ r,
then j〈f ðxÞjf ðyÞ〉j ≤ ε.

Under these conditions, the continuous HSP problem is
to compute a basis of L.

The resolution of Problem 1 relies on the ability to make
(efficient) oracle calls jx; 0〉 ↦ jx〉 ⊗ jf ðxÞ〉. The quantum al-
gorithm presented in Ref. [57] first creates a superposition of
points in Rm of the form

P
x∈RmwðxÞjx; 0〉 (normalisation

factor omitted) with a sufficiently broad wave function w. This
is similar to the first stage of Shor's algorithm. Here, w
effectively truncates the function to a finite domain. Then, the
oracle f is applied in superposition. In fact, since quantum
computers are digital, we can only prepare the superposition
over a fine discrete grid that approximates wðRmÞ. Then, we
would like to measure the state in the Fourier basis. Shor's
algorithm would perform the Quantum Fourier transform over
a finite group ZN for a large enough N and measure in the
standard basis. However, the resulting approximation errors
would be difficult to analyse. In Ref. [57], the authors develop a
variation on the phase estimation technique, which may be
viewed as approximately performing Fourier sampling over Z.
To see how this helps reveal the hidden lattice, note that
loosely speaking, in the Fourier domain, the HSP function
would be peaked at points in the dual lattice
L∗ ≔ fx ∈ Rm∣ ∀ y ∈ L; 〈x; y〉 ∈ Zg. In the course of the al-
gorithm, the truncation only disturbs the Fourier domain
lightly for the window function w we choose. Then the
disturbance due to discretisation can also be controlled due to
the Lipschitz condition of the function.

In slightly more technical terms, the subsequent measure-
ment yields u ∈ L* with the probability distribution

qu ¼
1

dðLÞ2

Z

ðRm=LÞ2
〈f ðx0Þjf ðxÞ〉 e2πi〈x−x

0;u〉 dx dx0:

Repeating the procedure sufficiently many times, we obtain
an approximate set of generators for L*, from which we can
compute an approximate basis for L efficiently.

7 | SYMMETRIC CRYPTOGRAPHY

While not entirely immune to the quantum computing threat,
symmetric cryptography is expected to retain a significant level
of security in face of the threat. Indeed, the computational
assumptions used in symmetric cryptography usually do not
exhibit a structure that could be exploited by a quantum ad-
versary, as is the case for the IFP and DLP hardness as-
sumptions and Shor's algorithm.

7.1 | Block ciphers

A block cipher Ek with block size n and key size κ is a family of
permutations of {0,1}n indexed by k ∈ {0,1}κ. The first and
most important security feature expected from a block cipher
design is security in the secret‐key setting:

Problem 2 (Secret key recovery). Given access to encryption
and decryption oracles for Ek, with a key k chosen uniformly
at random, recover k.

In practice, an adversary can also try to recover one key
among multiple targets, classically as well as quantumly. We
focus here on the simplest case of a single key. It is ex-
pected that the best algorithm for recovering k is generic
exhaustive search. This attack is applicable to any block
cipher. It performs ⌊n/κ⌋ þ 1 queries with arbitrary
plaintexts pi, stores the obtained plaintext–ciphertext pairs
(pi, ci), and searches for a candidate key k such that
Ek(pi) = ci for all the pairs. Note that false positives
(wrong keys satisfying this condition) may occur. But if we
assume that all permutations Ei are drawn uniformly at
random, the choice of ⌊n/κ⌋ þ 1 pairs ensures that the
probability of false positives is exponentially small in n.
Thus, we can safely assume that there is a single solution
to the exhaustive search problem. However, this cannot be
proven from the specification of E.

Usually, ⌊n/κ⌋ is constant, and this algorithm requires O
(2κ) evaluations of the cipher. Any algorithm performing better
is considered as a valid break, even if it is computationally
infeasible to mount the attack in practice.

Since being broken in this definition is a one‐bit in-
formation, cryptanalysts usually consider reduced versions as
attack targets. Let us take as an example the well‐studied,
20‐year old block cipher standard AES [63]. AES comes in
three versions, AES‐128, AES‐192, and AES‐256, with a
block size n = 128 and a key size κ ∈ {128, 192, 256}. It
is a Substitution‐Permutation Network (SPN) with, respec-
tively, r = 10, 12, 14 rounds for the three versions. To
date, the full AES has withstood cryptanalysis in the secret‐
key model: Only 7, 8 and 9 rounds have been successfully
attacked [64].

Key search with Grover's algorithm: The problem of
recovering the key, given a few plaintext–ciphertext pairs (pi, ci),
is an instance of unstructured search, to which Grover's algo-
rithm can be applied.
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The search space is the set of all keys {0,1}κ, and as noticed
above, we can ensure that there is only one marked element.
The oracle Of evaluates the function

f ðkÞ ¼ 1 iff ∀ i;Ek
�
pi
�
¼ ci; f ðkÞ ¼ 0 otherwise:

In general, the cost is reduced from O(2κ) to O(2κ/2)
evaluations. This is why it is often recommended to double the
bit length of keys when aiming for long‐term security, when the
design permits it, which is the case for AES‐128. For other
block ciphers, doubling the key length would require proposing
a new design, whose security would need to be studied. Note
that as mentioned in Section 3.2, Grover's search parallelises
inefficiently (contrary to classical search). This means that
doubling the key size is actually a very conservative measure,
especially if one considers a realistic adversary limited in time.

Several authors have studied the exact cost of the quantum
circuits involved in Grover search, starting with Ref. [65]. As
with the classical exhaustive search, one encryption costs more
than one gate; instead of 264 basic operations, the Grover
search on AES‐128 has been optimised so far to about 280
quantum gates [66].

Quantum break of block ciphers: The secret‐key crypt-
analysis of block ciphers can be naturally extended to the
quantum setting. Instead of a key‐recovery algorithm faster than
the classical exhaustive search, the goal becomes to find a
quantum key‐recovery algorithm faster than Grover's search.
These procedures usually combine classical cryptanalysis tech-
niques with amplitude amplification and quantum walks [67].
For example, the best (but only) results obtained with AES so far
[68] attack, respectively, 6, 7 and 8 rounds instead of 7, 8 and 9.

Since attacks are always studied with respect to a generic
algorithm, the availability of Grover search, which is a powerful
generic algorithm, makes many of them relatively less powerful.
However, it is still necessary to study them, as classical attacks do
not give meaningful information for the expected quantum se-
curity (see the example of SPHINCS‐Simpira below).

Finally, note that block ciphers do not exist in a vacuum:
They are used as building blocks in operation modes, whose
security is discussed in Section 7.3.

7.2 | Hash functions

A hash function H is a one‐way function that transforms a
message of any size into a digest of fixed bit size n. The
following problems are expected to be difficult for a secure
hash function:

1. preimage search: given a target t, find a preimage x such
that H(x) = t (requires O(2n) evaluations of H classically)

2. second‐preimage search: given a message y, find a second
preimage x such that H(x) = H(y) (requires O(2n) evalua-
tions of H classically)

3. collision search: find a pair (x, y) such that H(x) = H(y)
(requires O(2n/2) evaluations of H classically)

Preimage search: Grover's algorithm can also quadratically
accelerate preimage search, and to this respect, the situation is
similar to block cipher key‐recovery: The non‐generic attacks
known so far are quadratic accelerations of classical preimage
attacks.

Collision search: Finding a collision of n‐bit digests with
constant probability can be done classically in time O(2n/2),
thanks to the birthday paradox and polynomial memory, thanks
to Pollard's rho method. In the quantum setting, this reduces to
O(2n/3) with Brassard, Høyer and Tapp's algorithm [69]:

1. Make 2n/3 queries to H on arbitrary inputs
�
x0;…; x2n=3−1

�
.

These queries are classical and stored in classical memory.
2. Using a Grover search, find y ∉

�
x0;…; x2n=3−1

�
such that

HðyÞ ∈
�
Hðx0Þ;…;H

�
x2n=3−1

��
.

In the second step, the probability that a random y collides
on one of the precomputed values is 2n=3 � 1

2n ¼ 2
−2n=3, which

leads to a time complexity O(2n/3). This algorithm is optimal
for a random function [70]. However, not only does it reach a
less than quadratic speedup but also consumes a considerable
amount of memory: the table built at step 1. Also, during Step
2, we need to check if y belongs to the table in superposition
over y. Thus, the time complexity of O(2n/3) is only obtained
in the QRACM model (see the definitions in Section 2).

By reducing the number of elements below 2n/3, one ob-
tains the time‐memory trade‐off curve T2 � M = 2n, which
contains all quantum collision search algorithms known to
date. When M ≤ 2n/5, the QRACM requirement can be
dropped [71]. The memory storage becomes classical memory
with sequential access, which is easy to implement.

For comparison, classical collision search can be paral-
lelised with the time‐space trade‐off T � S = 2n/2 [72]. Here
‘space’ includes both memory and parallel processors. No
quantum collision algorithm known to date reaches below this
curve, so they remain only applicable if a large memory is
considered cheaper than a comparable amount of processing
units.

Quantum break of hash functions: Although generic
quantum collision search suffers from less speedup and
memory usage, this actually makes non‐generic quantum
collision search algorithms more appealing. Hosoyamada and
Sasaki [73] demonstrated that some collision attacks on hash
functions could benefit from quadratic speedups, yielding new
and improved attacks in the quantum setting. Indeed, suppose
that a classical algorithm of time complexity 2n/2 < T < 22n/3

finds a collision of H. Its time complexity is too large to qualify
as a classical attack. However, if it benefits from a quadratic
acceleration, then we have

ffiffiffiffi
T
p

< 2n=3, meaning that it yields a
quantum attack.

There are two important conclusions to draw from this:
First, quantum collision attacks on hash functions can be
stronger (in terms of rounds attacked) than the classical
ones. Second, one should not assume a post‐quantum se-
curity level for collision search only based on the generic
BHT algorithm.
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For example, in the proposal Gravity‐SPHINCS [74], a
modified version of the post‐quantum hash‐based signature
scheme SPHINCS, the hash functions used in the scheme need
collision resistance (instead of only preimage resistance for
SPHINCS). The authors considered a generic level of security
2n/2 for quantum collision search, equal to the quantum pre-
image security, due to the time‐memory tradeoff of collision
algorithms detailed above. But there could exist hash functions
which, although considered classically secure, would invalidate
these security claims.

7.3 | Structured constructions and
superposition attacks

Contrary to what is often perceived, symmetric cryptographic
designs are not devoid of structure. Most symmetric cryptog-
raphy algorithms exhibit, in fact, a strong algebraic structure, as
they need to build high‐level functionalities (encryption,
authenticated encryption etc.) from very small components
(e.g. block ciphers of fixed block size). However, this structure
is not necessarily exploitable by a quantum adversary. In this
section, we look at structural attacks without classical equiv-
alent (contrary to the examples presented above).

The first structural attacks on (classically secure) symmetric
designs were published by Kuwakado and Morii in Refs. [75,
76]. Notably in Ref. [76], they remarked that the key‐recovery
in the Even–Mansour block cipher could be solved as an
instance of Boolean period‐finding. The Even–Mansour cipher
is a generic construction of a block cipher Ek1;k2 from an n‐bit
public permutation Π and two n‐bit keys k1, k2 (Figure 6):

Ek1;k2ðxÞ ¼ k2 ⊕Πðk1 ⊕ xÞ :

Kuwakado and Morii's attack defines the following
function:

f : x ↦ Ek1;k2ðxÞ⊕ΠðxÞ ¼ k2 ⊕Πðk1 ⊕ xÞ⊕ΠðxÞ;

which is such that f(x ⊕ k1) = f(x). Finding the secret k1 be-
comes an instance of the following problem:

Problem 3 (Boolean period‐finding). Given access to a two‐to‐
one function f such that ∀x, y, f(x) = f(y) ⇔ y ∈ {x, x ⊕ s} for
some value s (the period), then find s.

This problem is a special case of the Hidden Subgroup
Problem in the groupG¼ ðZ2Þ

n with the subgroupH = {0, s}.
It is solved by Simon's algorithm [77], which was an inspiration

for Shor's, in about O(n) queries to f (thus, to Ek1;k2), breaking
the cipher. However, it requires superposition queries to the
cipher, that is, the ability to create a state of the form
1
2n=2
P

x∈f0;1gn
�
�x;Ek1;k2ðxÞ〉. Therefore, the implementation of

the attack must use a quantum embedding of Ek1;k2, which
means that a black‐box that contains the secret keys must be
available.

Later on, it was shown that such superposition attacks can
target many constructions that are known to be classically
secure [67], using Simon's algorithm, but also Kuperberg's al-
gorithm [78] and even Shor's algorithm itself [79]. The practical
implications of these attacks remain debated, since without
superposition queries, they are inapplicable.

Structured attacks with classical queries: It is now known
that the structure exploited by some superposition attacks can
also be exploited by attacks making only classical queries, that
is, by a standard quantum attacker listening to today's classical
communications. Though these attacks do not lead to
polynomial‐time breaks, they allow one to obtain significantly
better time‐memory tradeoffs [80] and a more‐than‐quadratic
quantum time speedup on a key‐recovery attack [81]. We will
now review the principle of the offline‐Simon algorithm, on
which they are based.

A typical target example is the FX construction (Figure 7),
which increases the key length of a cipher Ek by XORing two
additional n‐bit keys k1 and k2. If k is known, the FX cipher
becomes an Even–Mansour cipher. Using Kuwakado and
Morii's attack on Even–Mansour, k is found by looking for a
value z such that f(z) = 1, where

f ðzÞ ¼
�
1 if x ↦ FXk;k1;k2ðxÞ⊕ EzðxÞ is periodic
0 otherwise :

The oracle function Of is computed in superposition over
z by calling Simon's algorithm. By using a Grover search on the
space {0,1}2n, if k is of 2n bits, this requires O(2n) iterations.
This is the Grover‐meet‐Simon approach of Ref. [82]; a su-
perposition attack so far, since each iteration needs to call FX
in superposition.

In Ref. [80], the authors introduced the offline‐Simon al-
gorithm, which performs the same attack, but makes only O(n)
superposition queries to the FX quantum oracle at the begin-
ning of the algorithm. Intuitively, the queries done at each
iteration in Grover‐meet‐Simon are actually redundant and can
be removed, leaving us only with a single layer of offline
queries. These queries are stored using polyðnÞ qubits only,
kept in a database and reused at each iteration.

F I GURE 6 The Even–Mansour cipher [85] F I GURE 7 The FX cipher [123]
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Since only O(n) superposition queries are now made, it
becomes possible to replace them entirely with classical
queries. Indeed, one can construct a superposition
1
2n=2
P

x∈f0;1gn jx; FXðxÞ〉 using 2n classical queries to the
black‐box FX (the whole codebook) and ~Oð2nÞ quantum time.
One starts with a state 1

2n=2
P

x∈f0;1gn jx; 0〉, then for each i,
XORs FX(i) to the second register if the first one is equal to i.
Note that the memory used is still polyðnÞ qubits, since the
classical queries to FX are consumed online and do not need to
be stored. There is also no memory access here, since the
database is not accessed in a classical sense; it is only reused to
perform instances of Simon's algorithm.

Then, the resulting algorithm runs in quantum time ~Oð2nÞ,
with a first step of ~Oð2nÞ computations to prepare the data-
base, and a Grover search of time ~Oð2nÞ. It does not have a
classical equivalent, though a classical attack in time O(22n)
does exist.

In Ref. [81], the offline‐Simon algorithm was extended to
target more constructions and in particular, constructions of
the form:

x ↦ E0kðk2 ⊕ Ekðk1 ⊕ xÞÞ;

with two independent block cipher calls keyed by k. Any
classical key‐recovery attack requires time Ω(25n/2), and the
best attack requires also Ω(2n/2) memory. But the offline‐
Simon attack uses a quantum time O(2n), still with polyðnÞ
qubits. It shows that in this case, doubling the key length
would not restore the initial level of security.

These recent results show that there exist inherently
quantum key‐recovery attacks, even in the classical query
scenario. Although only polynomial gains are expected in this
case, the scope of application of these attacks is not fully un-
derstood yet, as they have been discovered recently.

7.4 | Open problems

The most important open questions here are related to the
quantum attacks without classical equivalents, which so far
happened on structured constructions.

Question 1 Can we extend the scope of attacks on structured
constructions, in order to target dedicated designs such as
AES?
Question 2 Concerning superposition queries, could there
exist security arguments of ciphers against superposition at-
tacks, the same way there exist security arguments against
standard classical cryptanalysis techniques (differential, linear,
algebraic etc.)?
Question 3 Finally, concerning classical queries, what is the
limit of quantum speedups? For example, is there a fixed
exponent α such that if there is no classical attack of
complexity T, then there will be no quantum attack of
complexity Tα?

8 | EUCLIDEAN LATTICES

8.1 | Definitions

For m ≥ 1, a lattice L is a discrete finitely generated additive
subgroup of Rm. Equivalently, for a linearly independent set of
vectors (called a basis) fb1;…; bng ⊂ Rm, a lattice L is the set
of all integer linear combinations of bi's, that is,
LðBÞ≔

�P
ixibi j xi ∈ Z

�
¼ BZm, where the matrix

B ∈ Rm�n has bi's as columns. The number of basis vectors, n,
is the rank of L. In the rest, we shall be concerned with the
case m = n (such lattices are called full‐rank), as all the algo-
rithms we described here can be easily adapted to the general
case.

Associated to a lattice are its invariants: the determinant
and the first successive minimum.

Definition 15 (Determinant of a lattice). The determinant of a
lattice is defined as detðLÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðBtB

p
Þ. Geometrically, it is

the volume of PðBÞ, the fundamental parallelepiped of L,
defined as PðBÞ ¼

�P
icibi; ci ∈ ½ − 1=2; 1=2Þ

�
.

This volume is independent of the basis B. All lattice bases
are related by unimodular transformations U (i.e. detU = �1),
that is, B0 = BU is another basis of L(B).

Definition 16 (Minimum distance of a lattice). The first suc‐
cessive minimum (or the minimum distance) λ1(L) of lattice L
is the Euclidean length of its non‐zero vector: λ1(L)≔ minv ∈ L

{0}kvk.

In general, the ith successive minimum of a lattice, λi(L), is
the smallest r, s.t. L contains i linearly independent vectors of
norms at most r. Minkowski's inequality states that for n‐rank
lattice L, λ1ðLÞ ≤

ffiffiffi
n
p

det ðLÞ1=n. It is tight up to a constant
and is usually treated as equality to approximate the length of
the shortest vector.

The Gram–Schmidt orthogonalisation (GSO)
B⋆ ¼

�
b⋆
1 ;…;b⋆

n
�
is obtained iteratively by setting b⋆

1 ¼ b1,
and b⋆

i as the orthogonal projection of bi on ðb1;…; bi−1Þ⊥

for i = 2, …, n. This orthogonalisation process can be
described via matrix‐decomposition B¼ B⋆μt, where μ is a
lower‐triangular matrix with μi;j ¼ 〈bi; b⋆

j 〉=kb⋆
j k

2 for i ≥ j.
Hard problems on lattices: There are several fundamental

problems related to lattices. Some of them are used in the
security proofs of some of the most promising proposals for
quantum‐safe cryptography.

Problem 4 (Closest Vector Problem (CVP)). Given a (target)
point t ∈ Rn and a basis for a lattice L, find v ∈ L closest to t.

In the promise variant of CVP, the Bounded Distance
Decoding (BDD) problem, we know in addition that
‖t − v‖ < R where R ≪ λ1(L). In this case, the solution v is
unique.
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Problem 5 (Shortest Vector Problem (SVP)). Given a basis of
a lattice L, find v ∈ L s.t. kvk = λ1(L).

Note that a solution of the SVP is not unique:
kvk = k − vk. We can relax the above and ask for a vector v s.t.
kvk ≤ γλ1(L). This problem is called the approximate Shortest
Vector Problem (γ‐appSVP). The approximation factor γ can
be a function of n, in particular, γ ¼ polyðnÞ is relevant for
security of lattice‐based cryptographic constructions. We
should also emphasise that many of known SVP algorithms
actually solve a variant of SVP, called Hermite SVP (or Her-
mite appSVP)—the problem that asks to find v s.t. ‖v‖ ≤ γ det
(L)1/n. This variant of SVP is stated relative to the determinant
of the lattice, not to λ1(L). Again, this version of SVP is more
relevant in cryptanalysis. Also, finding the exact value of λ1(L)
is by itself a hard problem (as opposed to computing det(L)),
so we are interested in algorithms that solve Hermite SVP.

Solving appSVP and BDD: lattice basis reduction and
embedding techniques: Lattice basis reduction aims at
improving the quality of the input basis, where the ‘quality’ of a
basis is measured by the orthogonality of its vectors (it also
translates into the slow decay of kb⋆

i k’s). There are several
notions of reducedness of a basis ranging from fast but weak
(in terms of quality of the output) LLL reduction due to A.
Lenstra, H. Lenstra, and L. Lovász [83] to strong but
computationally inefficient Hermite–Korkine–Zolotarev
reduction [84]. The trade‐off between the output quality and
the runtime is achieved by a so‐called BKZ reduction (short
for Block Korkine–Zolotarev [85]). Together with a lattice
basis, it receives as input integer parameter β and produces a
basis with the first (i.e. the shortest) vector satisfying

kb1k ≤ 2β
n
2βðdet LÞ1=n: ð3Þ

In other words, β‐BKZ solves eO
�
2

β
2n log β

�
‐appSVP. BKZ

works by calling an SVP‐solver on certain (projected) sub‐
lattices of L of dimension β. In Ref. [86] it was shown that
after polyðnÞ number of SVP‐calls, the guarantee defined in
Equation (3) is achieved. Hence, if the running time of an SVP
solver for dimension n is TSV PðnÞ, the running time of BKZ
is TBKZðβÞ ¼ polyðnÞ ⋅ TSV PðβÞ.

An SVP solver can also be used to solve CVP (and hence,
BDD). In Ref. [87], Kannan shows that given a BDD instance
for a lattice L in dimension n, one can construct an (n + 1)‐
dimensional lattice L0 such that a solution to (a slightly
modified) SVP problem in L0 gives a solution to the original
BDD problem in L. Therefore, the most important algorithmic
task is SVP, and it will be our focus in the rest of this section.

8.2 | Algorithms for SVP

Assume that we are given as input a lattice represented by a
basis B ∈ Qn�n (we chose to work with rational bases in order
not to deal with approximation issues, see Ref. [88] for real‐
valued input bases) with entries of bit‐sizes polyðnÞ. Our

task is to find a polyðnÞ approximation to the shortest vector
in L(B), that is, solve polyðnÞ‐appSVP. This is the most rele-
vant setting in lattice‐based constructions of signatures and
encryption schemes [89, 90]. More exotic constructions such as
FHE schemes [91] reside on the hardness of Ω

�
2log

cn
�
‐

appSVP, which is even easier for known algorithms. Further-
more, we shall be focussing mostly on heuristic algorithms,
which may not be able to find exactly the shortest vector, but a
polyðnÞ approximation to it with a small‐degree polynomial. In
practice [92], only heuristic versions of SVP algorithms are
currently competitive for solving SVP in high dimensions.

State‐of‐the‐art SVP solvers are presented in Table 1. Let
us take a closer look at it. Runtimes T are given on the lg‐scale
relative to the dimension n with smaller order terms omitted,
that is, the best known runtime for provable sieving is
22.465n + o(n). The same is for the memory complexities M.
Quantum algorithms may require classical random access
memory (CRACM), quantumly addressable classical memory
(QRACM), or quantumly addressable quantum memory
(QRAQM). Most of the quantum algorithms mentioned in this
section require QRACM.

Based on asymptotic time and memory complexities (in
terms of the lattice dimension n), SVP solvers can be classified
into two groups: (1) algorithms requiring super‐exponential
time 2ω(n) and polyðnÞ space and (2) algorithms requiring
both exponential time and space 2Θ(n). The former includes
the family of so‐called enumeration algorithms [93, 94] that
run in time 2Θ(n lg n). Recent result of Albrecht et al. [95] shows
the runtime exponent of 18 n lg nþ oðn lg nÞ beating the long‐
standing exponent 1

2e n lg nþ oðn lg nÞ from Ref. [86]. The
latter has been quantumly sped up in Ref. [96] using the
quantum backtracking techniques (see Theorem 9) achieving
the square‐root improvement. It is not obvious that this
backtracking technique immediately applies to the result of
Albrecht et al.; hence, we do not put the potential exponent of
1
16n lg n in Table 1. We give details on enumeration algorithms
later in this section.

Single‐exponential time and space algorithms vary in their
underlying ideas. Sieving algorithms have received arguably
most of the attention. Since their introduction in 2001 [97], a
series of studies [98–102] have proposed various improve-
ments culminating in the currently best known heuristic run-
time and memory exponents of 20.292n + o(n) and 20.2075n + o(n),
respectively [103]. There is a significant gap between provable
and heuristic sieving algorithms, and closing this gap is an
interesting open problem. A very good introduction to prob-
able sieving algorithms can be found in Ref. [104]. In this
survey, we shall concentrate on heuristic sieving and make the
assumption explicit when we describe the algorithms.

Another approach to solve SVP are algorithms that either
use specific properties of discrete Gaussian distribution over a
lattice (such as algorithms from Ref. [105] (called BDD‐based
in Table 1) and Discrete Gaussian Sampling (DGS) algorithms
from Ref. [106]), or rely on the properties of the Voronoi cell
of a lattice [107]. We are not aware of any quantum speed‐ups
reported on DGS or Voronoi cell SVP algorithms (hence, we
put ‘—’ in Table 1).
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Classical enumeration: We now give a high‐level descrip-
tion of enumeration‐based SVP. The algorithms rely on the
process that given a radius R searches for all points in
L ∩ BnðRÞ, where BnðRÞ denotes the n‐dimensional ball of
radius R centred at 0. Given a lattice basis B together with its
GSO B⋆ (recall that B¼ B⋆μt), some t ∈ Span(L(B)) and
R > 0, the algorithm will enumerate candidates

x¼
P

ixibi ¼
P

ixi
�
b⋆
i þ

Pi−1
j¼1μi;jb

⋆
j

�
by enumerating their

coefficients xn, …, x1 as described below:

� Take all xn ∈ Z s.t. jxnj ≤ R=kb⋆
n k. These xn's will be the

candidates for the last coefficients of x's from the ball. Note
that the projection of x orthogonally to Span(b1, …, bn−1) is
xnb⋆

n , and it is contained in the ball B1ðRÞ.
� For every xn from the previous step, take all xn−1 ∈ Z s.t.

jxn−1j ≤ −xnμn;n−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − x2nkb
⋆
n k

2
q

kb⋆
n−1k

: ð4Þ

� For such choices of xn−1, the projection of x orthogonally
to Span(b1, …, bn−2) is xnb⋆

n þ
�
xnμn;n−1 þ xn−1

�
b⋆
n−1 and

it lives inside the ball B2ðRÞ.
� Continue analogously choosing xi's for each previously
found xi+1 s.t. the projection of x with fixed coordinates xn,

…, xi+1 orthogonally to Span(b1, …, bi−1) is contained in
Bðn−iþ1ÞðRÞ.

Enumeration thus constructs a tree whose nodes of level
i = n, …, 1 are labelled by the possible values of xi, and where
an edge between a node of level i + 1 and a node of level i
exists if the corresponding value for xi is a possible choice
given the values xn, …, xi+1. A path from level n down to the
level 1 gives a lattice vector x in BnðRÞ. Certain paths do not
lead to a leaf of level 1, because Ineq. (4) might not be satisfied
for certain integers. The runtime of the enumeration is deter-
mined by the size of the tree. Traversing the tree can be done
in the depth‐first manner requiring only polyðnÞ space: we do
not keep all the leaves and paths to them, but only the leaf that
gives the current shortest solution.

Let us estimate the size of the tree. Let Nk be the expected
number of nodes on some level k of the tree that maximises
Nk. By construction, Nk is the number of points in the ball
Bðn−kþ1ÞðRÞ that belong to L projected to the orthogonal
complement of Span(b1, …, bk). According to Gaussian

heuristic, Nk ≈ VolBðn−kþ1ÞðRÞ
kb⋆

n k⋯kb⋆
n−kk

, where the denominator is the

determinant of the projected lattice. Computations
show [108] that if the input basis B is BKZ‐preprocessed (i.e.
the shape of kb⋆

i k’s can be controlled), then Nk = 2n/2e lg n + o

(n lg n). Using a more involved preprocessing and tricks [95],
one can further improve the runtime exponent to the currently
best known

TABLE 1 SVP algorithms and their
complexities

Classical Quantum

Algorithm lg T
n

lg M
n

lg T
n

lg M
n Technique

Enumeration 1
8 lg n

lg polyðnÞ
n

1
4e lg n

lg polyðnÞ
n Quantum

[95] [96] Backtracking

Sieving (provable) 2.465 1.325 1.799 1.286 (QRACM) AA

[114] [116]

Sieving (heuristic) 0.292 0.2075 0.257 0.257 (CRAM) AA

0.0767 (QRACM)

0.0496 (QRAQM)

[103] [118, Theorem 1]

0.953 0.5 (CRAM) AA

BDD‐based 1.741 0.5 0.873 polyðnÞ qubits

0.5 (CRAM)

0.1604 (QRACM)

polyðnÞ qubits

[105] [105]

DGS‐based n
4c

n
4c — —

for nc‐appSVP [107] — —

Voronoi cell 1 1 — —

[66] — —
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TC
EnumðnÞ ¼ 2

1
8 n lg nþoðn lg nÞ:

In order to set up the radius R, one can, for instance, use
Minkowski's upper bound on λ1. Such enumeration is rather
costly, and one can hope that the projection of the shortest
vector might be shorter than λ1. This idea lies behind the
pruned enumeration [93] strategy, where instead of a ball, the
enumeration chooses a different shape (e.g. a cylinder), thus
pruning some branches of the tree. There is a trade‐off be-
tween the success probability and the size of the tree for
pruned enumeration that offer practical improvements.
Asymptotically, pruning strategies affect the o(n lg n) term.

Quantum enumeration: Aono et al. in Ref. [96] showed
how to perform SVP enumeration with the quantum back-
tracking technique of Montanaro (see Theorem 9), leading to
roughly the square‐root speed‐up. Interestingly, their result
extends to pruned enumeration as well. Their proof applies to
the enumeration that classically runs in 2

1
2e n lg nþoðn lg nÞ time,

thus leading to

TQ
EnumðnÞ ¼ 2

1
4e n lg nþoðn lg nÞ:

Whether the result can be extended to the recent classical
enumeration strategy from Ref. [95] potentially leading to
TQ

EnumðnÞ ¼ 2
1
16 n lg nþoðn lg nÞ is an open question.

Classical sieving: Sieving algorithms receive on input a
lattice basis B and start by sampling an exponentially large list
A of (long) lattice vectors from L(B). Sampling relatively long
lattice vectors can be done in polyðnÞ time [109]. The elements
of A are then iteratively combined to form shorter lattice
vectors, x0 = x1 � x2 � … � xk such that
‖x0‖ < maxi ≤ k‖xi‖, for some k ≥ 2. Newly obtained vectors
x0 are stored in a new list, and the process is repeated with this
new list of shorter vectors. It can be shown [101] that after
polyðnÞ such iterations we obtain a list that (heuristically)
contains a shortest vector. Here we shall focus on the case
k = 2, also known as 2‐Sieve, and refer the reader to Ref. [110,
111] for k ≥ 2 classical sieving and to Ref. [112] for k ≥ 2
quantum sieving. We only note here that varying k gives time‐
memory trade‐offs: For larger k's, the runtime increases but
the algorithm requires less memory.

Following the analysis of 2‐Sieve from Ref. [101], we can
state the central heuristic assumption: all the lists of lattice
points appearing during the sieve can be thought of as inde-
pendently chosen uniform vectors on the unit sphere Sn−1. In
reality, however, we deal with lattice vectors of Euclidean norm
larger than 1 and, furthermore, a lattice may not even (and it
likely does not) have exponentially many vectors of the same
norm. Yet, we imagine that if we normalised all the vectors in
the list A, then they would behave like independently chosen
uniform vectors on Sn−1. The heuristic analysis proceeds as if
we dealt with such normalised identically distributed uniform
vectors. The main purpose of introducing this assumption is to
aid the complexity analysis, although we cannot show the
correctness of heuristic sieve. In particular, we cannot prove
that it does not output 0. This is in contrast to provable

algorithms [113, 114] that make a lot of analysis effort to show
that the output is not 0.

Under this heuristic, we estimate the size of the list A. Two
vectors x1; x2 ∈A ⊂ Sn−1 satisfy ‖x1 � x2‖ < 1 − ɛ for some
small ε¼ 1=polyðnÞ, if the angle between them is less than π/3.
This means that if we place a vector x1 on Sn−1, any other vector
x2 with angular distance from x1 being less than π/3 will
produce the pair (x1, x2) whose sum/difference is a
shorter vector. In other words, x2 belongs to the surface of the
spherical cap ‘centred’ at x1—the area then contains all unit
vectors s.t. the angle between them and x1 is≤π/3, see Figure 8.
The area of this surface relative to the area of the unit sphere is
sinn(π/3).

Thus, in order to cover the unit sphere with such spherical
caps, we need on expectation jAj ≈ 1=sinnðπ=3Þ¼
ð
ffiffiffi
3
p

=2Þn ¼ 20:2075nþoðnÞ vectors (as we assume that the list
vectors are independently uniform on Sn−1). By increasing this
value by a polyðnÞ factor, we can heuristically guarantee that
almost all spherical caps will contain at least a constant number
of list elements, outputting new shorter vectors. We expect the
output to be of size 20.2075n + o(n). This allows us to repeat the
whole process with these new shorter vectors being the new
list A. After polyðnÞ repetitions of sieving, we end up with a
non‐empty list of short(est) lattice vectors.

We have just established the memory requirement for
heuristic 2‐Sieve. If we perform the search for all pairs xi, xj
that sum to a shorter vector, the runtime will be
jAj

2
¼ 20:415nþoðnÞ.
A faster approach is built on the observation that the

problem of searching for xi, xj is an instance of the near
neighbour problem on the unit sphere. The near neighbour
search technique of Becker–Ducas–Gama–Laarhoven [103]
leads to the fastest 2‐Sieve known today with 20.292n + o(n)

runtime and 20.2075n + o(n) memory complexities. The algo-
rithm starts by creating a set of ‘buckets’ indexed by vectors
v ∈ Sn−1 not from the given lattice. In the sequel, we make use
of the following definition.

Definition 17 (Angular distance). We say that two vectors v,
w ∈ Sn−1 are α‐close for some α ∈ [0, 1], when 〈v, w〉 ≥ α.

F I GURE 8 Surface (in orange) of the spherical cap on the unit semi‐
sphere. Subtracting any vector from the orange with x1 yields a shorter
vector
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The definition is driven by the distance measure on the unit
sphere: The closer the angular distance between v and w to 0,
the more orthogonal the vectors are. For the 2‐Sieve, 1/2‐close
vectors produce a short sum/difference. Identical vectors are
at distance 1. We shall drop the word ‘angular’ in the rest of the
section.

For a given set of buckets, a list A, and closeness param-
eters 0 ≤ α, β ≤ 1, the search for close pairs proceeds in two
steps:

1. for each x ∈A, search for all buckets v's that are α‐close to
it and put x into the v‐bucket;

2. for each x ∈A, search for all buckets v's that are β‐close
to it and then check if these buckets contain a vector
close to x.

The idea behind this bucketing is that vectors that end up
in the same bucket are more likely to give a shorter sum than
just two random unit vectors, so we do not have to search for a
close pair through the whole list A but rather through a much
shorter bucket. The relation between the parameters α and β is
as follows: The closer α to 1 is, the more restrictive the con-
dition on being in the bucket becomes; hence, the buckets
contain fewer vectors, so the first step of the above procedure
is fast. However, since we intend to find almost all close pairs,
we are required to search through more buckets, or equiva-
lently, β should be smaller.

To solve the task of finding relevant buckets for a given x,
vectors v are chosen with some structure. For example, Ref.
[103] proposes to choose v to be a concatenation of codewords
from a specially crafted spherical code. The advantage of
choosing such v is that it enables us to find relevant buckets for
a given x in time proportional to the number of such buckets,
which is (up to lower order terms) optimal. For further details
on this technique, we refer the reader to Ref. [103]; here we
simply assume that we can find all relevant buckets for a given
vector in time equal to the size of the output.

Let us now analyse the algorithm. We use the following
theorem proven in Ref. [115]. We give here its simplified
version, where the ‘≈’ sign hides polyðnÞ factors.

Theorem 18 (adapted from Th. 1 of Ref. [115]). If, for some
constant k < n, x1, …, xk are independently uniformly
distributed on Sn−1, then the probability that their pairwise
inner‐products satisfy 〈xi, xj〉 = Ci,j is

P
�
〈xi; xj〉¼ Ci;j

�
≈ det ðCÞn=2;

where C ∈ Rk�k is a symmetric positive‐semidefinite matrix
that stores the pairwise inner‐products of xi's.

� From Theorem 18, the probability that x ∈A belongs to a

fixed bucket is det
�
1 α
α 1

�n=2

¼ ð1 − α2Þn=2. Hence, the

expected size of buckets is jAjð1 − α2Þn=2.

� If we let |V| be the number of buckets, then for each
x ∈A, finding all its relevant α‐close buckets takes time
jV jð1 − α2Þn=2, which is the expected number of buckets a
point will be put into.

� Analogously, for each x ∈A, inspecting all its β‐close
buckets takes time jV jð1 − α2Þn=2 ⋅ jAjð1 − α2Þn=2.

� Finally, the number of needed buckets |V| can be
computed from the probability of the event that a triple
(x, x0, v) satisfies 〈x, v〉 ≥ α, 〈x0, v〉 ≥ β provided that
〈x, x0〉 ≥ cos(π/3) = 1/2. The inequalities can be treated as
equalities [111, Theorem 3], leading to (up to polyðnÞ
factors)

jV j−1 ¼ det

0

@
1 α β
α 1 1=2
β 1=2 1

1

A

n=2

=det
�
1 α
α 1

�n=2

:

The optimal values that balance the costs are α = β = 1/2,
resulting in jV j ¼

�
3
2

�n=2 ≈ 20:292nþoðnÞ. This value determines
the runtime. There are techniques [103] that allow not to store
all the buckets at once at the price of a slight increase in
runtime, which does not affect the leading order term. We
conclude on the time and space complexities of classical 2‐
Sieve:

TC
2SieveðnÞ ¼ 2

0:292nþoðnÞ SC2SieveðnÞ ¼ 2
0:2075nþoðnÞ:

Quantum sieving: One can apply amplitude amplification
techniques to the naive 2‐sieve to speed up the 20.415n + o(n)

algorithm to 20.312n + o(n), [116]. Assuming that we can store
the (classical) list A in QRACM enables us, for each x ∈A, to
find a y ∈A s.t. ‖x � y‖ < max{‖x‖, ‖y‖} in time roughlyffiffiffiffiffiffiffi
jAj

p
(here we also assumed that we have 1 yper x on

expectation). Following the notations from Section 3.2, we can
efficiently implement an algorithm A that produces a super-
position over the pairs from A, that is, (up to normalisation)

Aj0〉⊗n ¼ jψ〉 ≔
1
jAj

X

x1;x2∈A
jx1〉jx2〉

We then apply the amplitude amplification procedure to jψ〉
with the checking function f(x1, x2) that evaluates to 1 if
‖x1 � x2‖ < max{‖x1‖, ‖x2‖}. If, as in the classical 2‐Sieve,
jAj ¼ 20:2075nþoðnÞ, heuristicallywe expect jAj suchpairs.Hence,

after O
� ffiffiffiffiffiffi

jAj
2

jAj

q �

¼Oð
ffiffiffiffiffiffiffi
jAj

p
Þ applications of f, we measure a

pair (x1, x2) that leads to a shorter vector. Repeating the process
OðjAjÞ times leads to a new list of shorter vectors. We repeat the
whole process polyðnÞ times with the new list of shorter vectors.
We only need polyðnÞ‐size registers to perform the algorithm in
addition to a QRACM of size OðjAjÞ.

A quantum version of the near neighbour‐based sieve is
proposed by Laarhoven in Ref. [117]. The idea is to modify the
second step of the 2‐sieve algorithm with near neighbour
search, namely
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1. classically store x's in their α‐close buckets. As in Sec-
tion 7.2, the memory model used is QRACM: classical
memory with quantum random access.

2. for each x ∈A, find classically all its β‐close buckets, create
a superposition over all these relevant buckets, and apply
amplitude amplification to only those buckets that contain
vectors close to x.

As in the classical 2‐Sieve with near neighbour search,
Laarhoven's algorithm profits from the fact that the buckets we
run Grover on are much smaller than the whole list A, and yet,
due to the way we construct these buckets, we do not miss the
solutions (a rigorous proof of this statement can be found in
[Ref. 111, Theorem 3]).

In more details, for each classically known x ∈A, we can
design an algorithm Ax that uses the buckets stored in
QRACM and satisfies Axj0〉⊗n ¼ jψ〉 with

jψ〉¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ‐close bucketsÞ

p ⋅
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbucketj

p
X

v:
〈x;v〉<β

X

y∈Bucketv

jy〉;

where the outer sum ranges over all buckets (indexed by v) that
are β‐close to x, and the inner sum ranges over all elements y
from each bucket Bucketv. We apply amplitude amplification
with Ax and the checking function fx(y) that outputs 1 if
‖x ± y‖ < max{‖x‖, ‖y‖}. Using the above analysis of the
classical 2‐Sieve, it is not difficult to see that Laarhoven's
quantum 2‐Sieve algorithm is optimised for α¼ β ¼

ffiffiffi
3
p

=4,
leading to

TQ
2SieveðnÞ ¼ 2

0:265nþoðnÞ SQ2SieveðnÞ ¼ 2
0:265nþoðnÞ:

Here again, we only need polyðnÞ‐sized quantum registers.
Note that we decreased α and β in comparison to the classical
near neighbour 2‐Sieve, since now we can allow for larger
buckets as the search inside the buckets is improved. In turn, it
means that in total we need fewer buckets. Recall that the total
number of buckets determined the runtime. However, contrary
to classical sieve, we must store all the buckets because we run
Grover search over them. Hence, the space complexity
SQ2SieveðnÞ is asymptotically the same as the time complexity.

Recent results of Refs. [118, 119] further improve quantum
2‐Sieve by either exploiting quantum random walks such as in
Ref. [118] or in Ref. [119] by running amplification not only
over the β‐close buckets found classically but over all buckets
using as the ‘checking’ oracle a circuit that samples a β‐close
bucket with a potential close vector from its bucket. This al-
gorithm sets α = 1/2 and β ≈ 0.44, which results in

TQ
2SieveAAðnÞ ¼ 2

0:2571nþoðnÞ SQ2SieveAAðnÞ ¼ 2
0:2571nþoðnÞ:

It is more subtle to describe memory requirements of the
result from Ref. [118]. As it is based on quantum walks, it
requires QRAQ, QRAC, and classical memories, see Table 1.

8.3 | Average‐case problems: LWE and SIS

So far, we have been considering the so‐called worst‐case lattice
problems, that is, the problems where the input lattice may be
arbitrary. Cryptographically relevant problems are average‐case
problems where an instance is generated using some random
(known) process. The purpose of this subsection is to describe
two main average‐case problem on lattices: the Learning with
Errors (LWE) problem and the Short Integer Solution (SIS)
problem. We refer the reader to the comprehensive survey
[120] about the hardness of these two problems and their use
in cryptography. We do not consider here the NTRU problem;
instead, we refer the reader to the recent survey on NTRU by
Albrecht and Ducas [121].

The Learning with Errors problem: introduced by Regev
in Ref. [122]; LWE is an average‐case instance of BDD on the
lattice

LqðAÞ ¼ AZn
q þ qZm;

where A ∈ Zm�n
q is a uniform random matrix, q > 1 is a

modulus, and m ≥ n ≥ 1 are integers. With overwhelming
probability, Lq(A) has rank m, and det(Lq(A)) = qm−n. A BDD
instance requires a target vector, and in case of LWE, it is

b¼ Asþ emod q;

for the secret vector s ∈ Zn
q and the ‘noise’ vector e ∈ Zq,

where kek ≤
ffiffiffiffi
m
p

αq for some α ∈ (0, 1). We can think of n as
of the main security parameter, and the other parameters m, q,
α are the functions of n, e.g., n¼Θðbit securityÞ, m = Θ(n
log q), q = nΘ(1), and α¼

ffiffiffi
n
p

=q.
According to Minkowski's bound, λ1

�
LqðAÞ

�
≤

ffiffiffiffi
m
p

q1−n=m, which is much larger than ‖e‖ in the LWE setting;
thus, we have a valid BDD instance (Lq(A), b).

The beauty of LWE lies in its versatile use in cryptography:
the constructions based on the hardness of LWE range from
‘standard’ cryptographic primitives such as encryption schemes
[122, 123] to fully homomorphic encryption [124] and
attribute‐based encryption [125]. From the complexity
perspective, LWE is particularly attractive due to what is called
a worst‐case guarantee: Regev [122] shows a quantum reduc-
tion from the worst‐case problem called the Short Indepen-
dent Vector Problem (SIVP) to LWE.

Problem 6 (Approximate SIVP). Given a lattice L and γ ≥ 1,
the approximate shortest independent vector problem asks to
find n linearly independent vectors from L s.t. their norms are
at most γλn(L).

Regev gives a polynomial time quantum reduction from
SIVP with parameter γ on an arbitrary n‐dimensional lattice to
LWE with m¼ polyðnÞ; q < 2polyðnÞ and αq > 2

ffiffiffi
n
p

for the
LWE error e following the ‘discrete Gaussian’ distribution. We
shall not define this distribution formally here; it is enough to
think about this distribution as of discrete analogue of the
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Gaussian distribution over R restricted to a discrete set, say Z,
and extended to Zn by sampling each coefficient independently.

Regev's reduction tells us that any algorithm for LWE, be it
classical or quantum, efficiently transfers to a quantum algo-
rithm for SIVP, which we believe to be a hard problem.
Therefore, a reasonable question is, how hard is LWE?

Since LWE is a BDD instance, a natural approach is to use
Kannan's embedding and apply BKZ reduction. Under
Kannan's embedding, an LWE instance (A, b) translates into a

O
�
q1−n=m

αq

�
‐appSVP instance. In order to solve this appSVP, we

run BKZ reduction with parameter β set to be of order

βLWE ¼
log q
2log 2α

log

 
n log q
log 2α

!

⋅ n:

This value for βLWE is obtained by solving for β the

equation 2
m
2β log β ¼

q1−n=m
αq and minimising it for m. We can plug‐

in βLWE into any complexity of SVP solver (classical or
quantum) for a βLWE‐dimensional lattice, thus obtaining an
estimate on the asymptotic hardness of LWE.

More elaborate analyses [126] and LWE estimators
[127, 128] refine the behaviour of BKZ reduction and consider
the evolution of the norms of Gram–Schmidt vectors during
BKZ, leading to a more accurate estimate aiding to set the
security levels of concrete LWE parameters. We do not detail
this technique here, but refer the reader to the above
references.

Do there exist specific non‐lattice‐based attacks on LWE?
First, there are classical combinatorial approaches to solve
LWE [129–131]. Second, there is a method (also classical) due
to Arora‐Ge [132], see also Ref. [133], that uses Gröbner‐basis
solvers to attack LWE. These methods are currently inferior to
lattice‐based attacks for all practically relevant parameter sets,
partially due to fact that they perform poorly (or even do not
work at all) when m is as small as Θ(n), or even polyðnÞ. We
are not aware of any reported quantum speed ups specific to
these attacks.

There are also interesting results, when ‘LWE is given as
quantum states’. One can define at least two versions of what it
means. First, following Ref. [134], one can ask whether for a
fixed s and e, given a superposition over all possible rows of A
as 1

qn=2
P

a∈Fnq
ja〉j〈a; s〉þ e〉; one can efficiently find s and e.

The authors in Ref. [134] give affirmative answer, noticing that
QFT, applied to the above state, reveals the solution.

In another formulation of “quantum LWE”, stated in Ref.
[135], one is given a uniform random A ∈ Zm�n

q with ai's
being the rows of A, and 1ffiffiffiffiffiffiffiffiffiffiP

i∈Z

p
jf ðiÞj2

P
ei∈Zf ðeiÞj〈ai; s〉þ ei

mod q〉, where f() can be any function over Z s.t.
P

i∈Zi ⋅ jf ðiÞj2 <þ∞ (for example, f can be a pdf of discrete
Gaussian distribution or an indicator function of a finite set).
Now finding s, e in this variant of quantum LWE appears to
be hard, as we do not know any efficient algorithm for it
[135], apart for some specific cases of f and of LWE pa-
rameters [136].

The Shortest Integer Solution problem: for n > 0, m ≥ n,
q > 1, and b > 0, asks, given a uniform matrix A ∈ Zm�n

q , to
find x ∈ Zn, s.t. 1) xtA¼ 0 mod q, and 2) 0 < ‖x‖ ≤ b.

As in LWE, one can think of n as of the main security
parameter, m = Θ(n log n), q¼ polyðnÞ.

The problem has been introduced by Ajtai in Ref. [137],
where he showed a classical worst‐case reduction from SIVP
with approximation factor γ ¼ b ⋅ polyðnÞ on an arbitrary n‐
dimensional lattice to SIS with m¼ polyðnÞ, q > b ⋅ polyðnÞ.

The relation to lattices is immediate once we look at the so‐
called orthogonal lattice

L⊥
q ðAÞ ¼ fx ∈ Zm : xtA¼ 0 mod qg:

This lattice is of dimension m, and with overwhelming

probability its determinant is det
�
L⊥
q ðAÞ

�
¼ qn. Therefore,

according to Minkowski, λ1
�
L⊥
q ðAÞ

�
≤

ffiffiffiffi
m
p

qn=m, which

asymptotically belongs to Θð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n
p

Þ whenm = Θ(n log n),
q¼ polyðnÞ. Analogous to LWE, SIS is the appSVP problem,
but now on the lattice L⊥

q ðAÞ with approximation factor
β

Θð
ffiffiffiffiffiffiffiffiffiffiffi
n log n
p

Þ
. Exactly the same arguments as for LWE lead to the

estimate on the BKZ parameter β needed to solve SIS:

βSIS ¼
log q
2log 2β

log

 
n log q
log 2β

!

⋅ n:

Again, as in LWE, one can run BKZ with either classical
SVP oracles, thus having 20:292βSISþoðβSISÞ as the currently best
achievable runtime, or with quantum SVP oracle improving the
0.292 constant to 0.2571.

There is much less non‐lattice‐based approaches to solve
SIS than for LWE. A recent result from Ref. [136] gives a
quantum algorithm for SIS in the infinity norm, that is, when
the SIS solution x is required to be bounded in ℓ∞‐norm. The
algorithm achieves polynomial time when = (q − c)/2, and
m = Ω(q4nc+1 log q) for some constant c. Note that SIS (in
ℓ∞‐norm) is easy when b = q/2; thus, this result gives an
efficient algorithm for a non‐trivial range, yet it is far from
what is used in cryptographic applications. In particular, certain
signature schemes, such as Ref. [90], rely on the hardness of
SIS in ℓ∞ for b ≈ q/8. Apart from this quantum algorithm,
Ref. [136] gives a classical algorithm that solves SIS in time
O
�
nlog q

�
when m¼O

�
nlog q

�
.

8.4 | Open problems

The results presented in this section are purely asymptotic and
it is far from an easy task to estimate the small order terms.
Currently to get a ‘feeling’ on how the algorithms perform we
actually implement and run them in practice. While this is
possible for classical algorithms [138], at this stage it seems
very unlikely that we shall be able to run quantum sieve (or
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even low‐memory enumeration) in the near future. The result
from Ref. [139] suggests that speed‐ups for memory‐intense
SVP approaches are rather dubious under our today's under-
standing of quantum gate complexity. Hence,

Question 1 are known quantum speed‐ups for SVP algorithms
plausible, or do the hidden terms and (quantum) memory
overheads diminish them?

Switching to a more optimistic side and assuming that we
shall be able to run SVP algorithms quantumly, the question of
designing efficient quantum circuits for polynomial‐time al-
gorithm like LLL is open. Therefore,
Question 2 what are potential quantum speed‐ups for ‘easy’
lattice‐reductions like LLL or BKZ with small block‐size?

Turning to the average‐case problem, like LWE and SIS,
the currently most efficient approach to solve these problems
for cryptographically relevant parameters is to run the appSVP
solvers, that is, BKZ reduction. So,
Question 3 are there any non‐lattice‐based approaches (clas-
sical or quantum) to solve LWE/SIS that are faster, may be
even for some limited parameter ranges, than the approach via
lattice‐reduction?

The last question is not limited to the ℓ2‐norm: LWE is
also interesting when the error vector comes form a uniform
distribution. Respectively, SIS is of importance as well [90]
when the solution is required to be bounded in ℓ∞‐norm.

9 | CODE‐BASED ASSUMPTIONS

9.1 | Definitions

Throughout this section F denotes a finite field.

Definition 19 (Hamming weight). For x ∈ Fn, the Hamming
weight, denoted by ω(x), is the number of non‐zero co‐
ordinates of x.

Definition 20 (Linear code). For integers 1 ≤ k ≤ n and
d < n, a linear [n, k, d]‐code C is a subspace of Fn of dimension
k, where d ≔minc≠0;c∈CωðcÞ is called the minimal distance of
the code.

Associated to a linear code C are its generator matrix
G ∈ Fk�n and its parity‐check matrixH ∈ Fn−k�n. A code C can
be equivalently defined as the row space ofG or as a kernel ofH.

Definition 21 (Information Set Decoding (ISD)). The Infor‐
mation Set Decoding problem asks to find the error‐vector e ∈
Fn given a parity‐check matrix H ∈ Fðn−kÞ�n of a linear [n, k,
d]‐code C, a vector s¼Het called the syndrome, and w—the
Hamming weight of e.

If w ≤ ⌊d−1
2 ⌋, then the solution of ISD is unique. The

weight w can be unknown, in which case one can simply guess
it as it lies in the known small range. Let us make some specific

instantiations of the ISD parameters relevant to (post‐quan-
tum) cryptography:

� Classic McEliece KEM. The security of Classic McEliece Key
Encapsulation Mechanism (KEM) [140] is based on the ISD
problem over F2, where H is systematic form of the parity‐
check matrix of a Goppa code, and w = (n − k)/⌈ lg n⌉.
Among the existing post‐quantum cryptographic schemes,
Classic McEliece is considered to be the most conservative
from the security perspective.

� BIKE [141] is another code‐based key encapsulation
mechanism over F2, where n = 2k, the parity‐check matrix
H is of the form ½rotðhÞjIk�, where rotðhÞ is a circulant
matrix consisting of the coefficients of cyclic rotations of
public polynomial h, and w ≈

ffiffiffi
n
p

. In essence, BIKE is a
binary version of the NTRU cryptosystem [142].

� WAVE signature [143], contrary to the above examples, is
based on a version of the ISD problem that asks for a
dense error solution, not a sparse one. This is partially
driven by the fact that the problem is formulated over F3.
Relevant to WAVE is the setting w ≈ 0.95n and with
multiple solutions (intuitively, there usually exists many
signatures for a message, hence the non‐uniqueness of ISD
solutions).

From the above examples, the hardness of ISD directly
impacts the security of various cryptographic scheme. In
the rest of the section, we specialise to the case F¼ F2.
The methods we describe generalise to the Fq setting, see
Ref. [144] and, for cryptanalysis of the WAVE setting see
Ref. [145].

In order to simplify the analysis of ISD algorithms, it is
usually assumed that the matrix H is drawn uniformly at
random from Fn−k�n

2 . Despite the fact that some crypto-
graphic schemes use structured H, such as quasi‐cyclic H in
BIKE, we are not aware of significant speed‐ups that use
this structure (the speed‐ups we know are at most linear in
n, see [Ref. 141, Sec. B.2.1]). With this assumption on H,
the hardness of ISD resides on two parameters: n and ω(e).
The dimension k is usually related to n as k = Θ(n), often
k ≈ n/2.

All known classical ISD algorithms [146–149] try to find e
by enumerating its search space, which is of size

�
n
w

�
. The

difference between various ISD algorithms lies in the way this
enumeration is performed. All known quantum algorithms
[150–152] for ISD are quantum versions of the existing clas-
sical algorithms, in which some routines are sped up by the
quantum methods such as amplitude amplification or quantum
random walks. Below, we describe known ISD algorithms and
their quantum speed‐ups.

We should warn the reader that for simplicity of the
exposition we omit O or eO terms. We do not present the
complexities of the form 2cnþoðnÞ for some constant c, as it is
often done in the cited studies. Instead, we let the reader be
able to optimise the complexity formulas by themselves for the
concrete parameters they are interested in.
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9.2 | ISD algorithms

Prange's algorithm: In the 60s, Prange showed [148] how a
simple linear algebra trick can improve the enumeration of e.
Notice first that permuting the columns of H is equivalent to
permuting the positions of 1's in e. Prange's algorithm consists
in finding a permutation π such that π(e) has exactly zero 1's
on the first k coordinates and all the weight w is distributed
over the last n − k coordinates.

To check whether a candidate π is good, we transform π
(H) into systematic form [Q∣In−k] (provided the last n − k
columns of π(H) form an invertible matrix, which happens
with constant probability) for Q ∈ Fn−k�k

2 . The same trans-
formation is applied to the syndrome s giving a new syndrome
s and a new decoding equation Qe1 þ e2 ¼ s, where e = [e1|
e2] and ω(e1) = 0, ω(e)2 = w. It follows that for such π,
e2 ¼ s, and one checks whether ωðsÞ ¼ w.

We expect to find a ‘good’ permutation π (i.e. a π that gives
the correct weight distribution and makes the last n − k col-
umns of π(H) invertible) after

TC
Prange ¼

�
n
w

�

�
n−k
w

�

trials, which is the inverse of the probability of finding a
‘good’ π.

To speed‐up Prange's algorithm quantumly, Bernstein in
Ref. [150] uses Grover's search over the space of permuta-
tions, where Grover's function f evaluates to 1 on a ‘good’
permutation π, that is, Cost

�
Of
�
¼ polyðnÞ and implements

computation of the systematic form of H, matrix‐vector
multiplication and evaluation of the Hamming weight. It
follows from Proposition 6 that the number TQ of calls to
Of is

TQ
Prange ¼O

0

B
B
@

ffiffiffiffiffiffiffiffiffiffiffi�
n
w

�

�
n−k
w

�

s
1

C
C
A :

Classical and quantum memory complexities of Prange's
algorithm is polyðnÞ as we only store one matrix H and one
vector s. Such a low memory requirement is a significant
advantage of this algorithm over the other memory challenging
ISD solvers we discuss next.

Stern's algorithm: It is convenient to work with the ISD
equation where H is in systematic form:
½Q∣In−k� ⋅ et ¼ s for Q ∈ Fn−k�k

2 . Rather than restricting the
weight of e to be 0 on the first k coordinates, Stern in Ref.
[149] proposed to allow p > 0 non‐zero coordinates in the first
k indices at the price of a more expensive check for π. It was
later improved in Ref. [153] and also in Ref. [154].

Stern's idea can be viewed as a meet‐in‐the‐middle
technique: Assume a good permutation π gives us e with
(w − p) 1's on n − k coordinates that correspond to In−k,
and with p 1's on k coordinates that correspond to Q. Then

represent e as e = (e1‖0) + (e2‖0) + (0‖e3), where
e1 ∈ F

k=2
2 � 0k=2, e2 ∈ 0k=2 � F

k=2
2 , e3 ∈ Fn−k

2 . Hence, the
ISD equation rewrites as

Qe1 ≈ sþQe2; ð5Þ

where the ≈ sign indicates that the right‐hand side of Equa-
tion (5) differs from the left‐hand side only on ω(e3) = w − p
coordinates. Stern's algorithm enumerates two lists,
L1 = {Qe1} and L2 = {s + Qe2}, and searches for two ele-
ments v1, v2 from each list s.t. ω(v1 − v2) = w − p. The
corresponding error vectors e1, e2 are implicitly stored
alongside in the lists.

This is an instance of the so‐called near neighbour problem
for the Hamming distance: Given two lists L1, L2, the problem
asks to find (almost) all pairs (v1, v2) ∈ L1 � L2 that are close
under the Hamming distance. For instance, it can be solved by
testing whether on certain fixed ℓ coordinates, the vectors
from L1 and L2 match, that is, equal to each other, exactly. If
so, they are then tested for approximate match on the
remaining coordinates. In the near neighbour literature, this
method was put forward by Indyk–Motwani [155].

Finiasz and Sendrier in Ref. [154] proposed an improve-
ment to Stern's algorithm: They introduced the ℓ‐length 0‐
window into the systematic form of H, so now it is of the

form
h
Q0
�
�In−k−ℓ

0

i
for Q0 ∈ Fn−k�kþℓ

2 . This shape can be reached

by applying a partial Gaussian elimination on the right‐hand
upper square (n − k − ℓ) � (n − k − ℓ) submatrix of H,
giving us In−k−ℓ. Then we force the bottom ℓ rows to be 0 by
adding the appropriate rows of In−k−ℓ.

From now on, we will be working with the ISD equation of
the form

�

Q0
�
�
�
�
In−k−ℓ

0

�

et ¼ s:

Then the same strategy as in the original Stern's algorithm

applies. Let e1 ∈ F
kþℓ
2
2 � 0

kþℓ
2 , e2 ∈ 0

kþℓ
2 � F

kþℓ
2
2 and e3 ∈ Fn−k−l

2 .
If e¼ ðe1k0Þ þ ðe2k0Þ þ ð0ke3Þ ∈ Fn is solution, then

Q0e1 þ sþQ0e2 ¼
�
In−k−ℓ

0

�

e3 ∈ Fn−k−ℓ
2 � 0ℓ:

This means thatQ0e1 and s + Q0e2 are necessarily equal on
their last ℓ coordinates. We search for two vectors,
v1 ∈ L1 = {Q0e1} and v2 ∈ L2 = {s + Q0e2}, that are equal on
this ℓ‐window. We expect to find jL1j⋅jL2j2ℓ such pairs, one of
them being our solution. It turns out that the additional
parameter ℓ gives a better handle for balancing the time for
finding a good permutation and enumerating the lists. In
particular, this approach leads to classical time complexity

TC
Stern ¼

�
n
w

�

�
kþℓ
p

��
n−k−ℓ
w−p

� ⋅max
��
�
�
�L2j;
jL1j ⋅ jL2j

2ℓ

�

;
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where the first multiple is the expected number of permuta-
tions we need to choose before we hit the needed weight
distribution, the arguments inside max{} are the complexity of
creating L1, L2 and sorting L2, and the expected number of
pairs from L1 � L2 that are equal on the ℓ‐window, which we
check for a solution. Note that by construction

jL1j ¼ jL2j ¼
�
kþℓ
p

�
. The space complexity of this algorithm is

SCStern ¼ jL1j. The parameters p, ℓ are subject to optimisa-
tions for concrete n, k, w. It might be instructive to view
Prange's algorithm as a one for‐loop procedure searching for a
good permutation. Then, Stern's algorithm is a two for‐loop
procedure with the outer loop searching for a permutation
and the inner loop checking whether the permutation is cor-
rect. The purpose of the parameters p, ℓ is to remove the
workload from the outer loop to the inner loop, thus reba-
lancing the overall cost. It turns out that in the ISD setting
when w = Θ(n), we have p, ℓ = Θ(n), hence improving the
decoding asymptotically.

We describe quantum speed‐ups for Stern's algorithm (and
its modifications) after we explain another useful technique to
solve ISD: the representation‐based algorithms.

Representation‐based techniques: The ideas from Refs.
[146, 156] enable us to obtain the lists L1, L2 faster by first
enlarging the enumeration space for e, thus creating many
solutions, and then only looking for specific ones. Concretely,

let L1 = {Q0e1}, with e1 ∈ Fkþℓ
2 (as opposed to e1 ∈ F

kþℓ
2
2 in

Stern) with ω(e1) = p/2. Analogously,

L2 ¼
n
sþQ0e2 j e2 ∈ Fkþℓ

2 ;ωðe2Þ ¼ p=2
o
. The key obser-

vation is that now there are RMMT ≔
�

p
p=2

�
ways to represent

the target e as e = e1 + e2. Hence, on average, it is enough to
construct only an RMMT−fraction of L1, L2.

We do so by restricting the elements in L1, L2 to be 0 on
⌊log2ðRMMTÞ⌋ coordinates (these coordinates are subsets of
the ℓ coordinates we aim to match on at the end). We
construct such L1 by merging in the meet‐in‐the‐middle way
yet another two smaller lists L1,1 and L1,2. Henceforth, we refer
to the term ‘merging’ as a process of creating one list out of
another two given lists (vectors) by summing only those ele-
ments from the given lists that satisfy a certain relation. In ISD
algorithms, this relation is equal to 0 on some coordinates. In
the MMT algorithm, due to May–Meurer–Thomae [146], L1,1,
L1,2 are of the form

L1;1 ¼
�

Q0
h
e1;1k0

kþℓ
2

i
j e1;1 ∈ F

kþℓ
2
2 ;ω

�
e1;1
�
¼ p=4

�

;

L1;2 ¼
�

Q0
h
0
kþℓ
2 ke1;2

i
j e1;2 ∈ F

kþℓ
2
2 ;ω

�
e1;2
�
¼ p=4

�

;

We require that during the merge the sum Q0[e1,1‖0(k+ℓ)/2]
+ Q0[0(k+ℓ)/2‖e1,2] is zero on ⌊log2ðRMMTÞ⌋ last coordinates.
The list L2 is constructed analogously except that, similar

to Stern, we include the syndrome s to L2,2. Pictorially the

algorithm has a tree‐structure with each node being a list, and
such a view is provided in Figure 9.

The correctness of this algorithm can be found in Ref.
[146]. Let us analyse its complexity. The number of necessary
permutations we need to try before we have the correct weight
distribution on e is

PMMT ≔
�
n
w

�

�
ðkþℓÞ=2
p=2

�2�
n−k−ℓ
w−p

�: ð6Þ

To check whether a permutation π is good, we attempt to
find e by constructing the lists from Figure 9. Provided the lists
on the same level are of the same excepted size, the complexity
of this routine is given by

max

(

jL1;1j;
jL1;1j2

2⌊log 2RMMT⌋
;

jL1;1j4

2ℓþ2⌊log 2RMMT⌋

)

:

This quantity is the maximum between (I) the size of top 4
lists (II) the size of the output after the first merge on
⌊log2RMMT⌋ coordinates, and (III) the size of the output after
merging on the remaining ℓ − ⌊log2RMMT⌋ coordinates. Since
jL1;1j ¼

�
ðkþℓÞ=2
p=2

�
, we obtain

TC
MMT ¼ PMMT ⋅max

(

jL1;1j;
jL1;1j2

2⌊log 2RMMT⌋
;

jL1;1j4

2ℓþ2⌊log 2RMMT⌋

)

:

F I GURE 9 Representation‐based ISD algorithm due to Ref. [146]

28 - BIASSE ET AL.

0 0 



The memory complexity of this algorithm is

SCMMT ¼max

(�
�
�
�L1;1j;

jL1;1j2

2⌊log 2RMMT⌋

)

(we omit the size of the output list since we do not have to
store it).

Becker–Jeux–May–Meurer in Ref. [156] notice that we can
increase the number of representations by splitting zero‐
coordinates of e not only as 0 + 0 but also as 1 + 1. It
turns out that constructing longer top‐level lists Li,j with ei,j of
weights ω(ei,j) = p/2 + ɛ for some integer ɛ > 0 improves the
algorithm as it significantly increases the number of repre-

sentations from
�

p
p=2

�
to RBJMM ≔

�
p
p=2

��
kþℓ−p

ε

�
, where the

second multiple is the number of ways we can choose ɛ 1's out
of k + ℓ − p coordinates. Intuitively, the strategy allows for a
better balance between the two merges: the first merge on
⌊log2RBJMM⌋ coordinates and the second on
ℓ − ⌊log2RBJMM⌋ coordinates. The expected running time of
the BJMM algorithm is given by

TC
BJMM ¼ PMMT ⋅max

(�
�
�
�L1;1j;

jL1;1j2

2⌊log 2RBJMM⌋
;

jL1;1j4

2ℓþ2⌊log 2RBJMM⌋

)

;

where jL1;1j ¼
�
ðkþℓÞ=2
p=4þε

�
.

For ɛ = 0, we recover the MMT algorithm. In fact, the
authors in Ref. [156] propose to construct trees of depth
higher than 2, merging on each level to 0 on the appropriate
number of coordinates, thus removing the representations. We
shall not describe this extension here, but note that this depth
is yet another parameter to be optimised and the optimal value
differs for concrete ISD parameters.

Quantum walks for the list matching problem: At the
heart of the above ISD algorithms (except Prange's) is the
search for tuples of vectors from given lists, where a good
tuple should satisfy a certain relation. This task can be gener-
alised to the list matching problem (also known as the k‐list
problem [157], but we decided to remove k not to be confused
with the code dimension).

Definition 22 (List matching problem). Let m be fixed. Given
m equal sized lists L1,…, Lm of binary vectors and a function
g that decides whether an m‐tuple (v1, …, vm) ∈ L1 �⋯ � Lm
forms a ‘match’ or not (outputs 1 in case of a ‘match’), finds
(almost) all m‐tuples (v1, …, vm) ∈ L1� ⋯ � Lm s.t. g(v1, …,
vm) = 1.

We have already met some instances of this problem:
Stern's algorithm is an example for m = 2, where g decides for
a ‘match’ whenever a pair (v1, v2) ∈ L1 � L2 is equal on certain
fixed ℓ coordinates. In representation‐based algorithms such as
Refs. [146, 156] there are (at least) 4 lists L1, …, L4, and
function g decides for the match if v1 þ v2, v3 þ v4 are equal
on certain coordinates (first merge) and, in addition, if

v1 þ v2 þ v3 þ v4 is 0 on the designated ℓ coordinates (second
merge). In decoding, g additionally checks if the weight of the
sum is correct.

A special version of the list matching problem, where
g = 1 ⇔ v1 = ,…, = vm, called the Element distinctness
problem, has its history in quantum computing [158] since it
serves as an illustrative application of quantum random walk
techniques. Let us specialise this technique to the ISD setting.

The setup phase of the walk consists in preparing a uni-
form superposition over all r‐size subsets (optimal value for r
will be discussed later) Si ⊂ Li together with an auxiliary reg-
ister jAux〉 (normalisation omitted):

P
Si⊂Li; jSij¼rjS1〉 ⊗…

⊗jSm〉 ⊗ jAux〉.
The auxiliary register jAux〉 contains information needed

to decide whether S1, …, Sm contains a match. In the ISD
setting, jAux〉 stores intermediate and output lists of the
matching process. For example, in Stern's algorithm
ðm¼ 2Þ jAux〉 contains all pairs (v1, v2) ∈ S1 � S2 that match
on ℓ coordinates. In case the merge is done in several steps
such as in MMT (m = 4), the intermediate lists are also stored
in jAux〉. Hence, when we talk about quantum memory of an
ISD algorithm in this section, we mean the size of the jAux〉
register.

The running time and the space complexities of the Setup
phase are essentially the running time and the space com-
plexities of the corresponding classical ISD algorithm with the
input lists of size |Si| = r instead of |Li|.

The Setup phase finishes with a superposition over all r‐
sublists S1, …, Sm of L1, …, Lk, where each (S1, …, Sm) is
entangled with the register jAux〉 that contains the result of
merging (S1, …, Sm) into the final output list Soutput.

The Update phase consists in choosing a sublist Si and
replacing one of its element vi ∈ Si by v0i ∉ Si. This is one step
of a walk on the Johnson graph, see Section 3.3 for the relevant
definitions. We update the data stored in jAux〉: Remove all the
pairs in the merged lists that involve vi and create possibly new
matches with v0i. We assume that throughout the walk the
sublists Si's are kept sorted and stored in a data‐structure that
allows fast insertions/removals (e.g. radix trees as proposed in
Ref. [159]). We also assume that elements in S1, …, Sm that
result in a match store pointers to their match to be able to
quickly update the output of the checking function.

After we have performed Θð1=
ffiffiffi
δ
p
Þ updates, where δ is

the eigenvalue gap of the Johnson graph J(N, r), we check if
the updated register jS1〉 ⊗…⊗ jSm〉 ⊗ jAux〉 gives a match.
We give a lower bound on δ below. This is the Checking phase
of the walk.

Thanks to the quantum walk framework described in
Section 3.3, once we know the costs of the Setup phase TS, the
Update phase TU, and the Checking phase TC, we know that
after TQW many steps, we measure a register
jS1〉 ⊗…⊗ jSk〉 ⊗ jAux〉 that contains the correct error‐
vector with overwhelming probability, where

TQW ¼ TS þ
1
ffiffiffi
ε
p

�
1
ffiffiffi
δ
p ⋅ TU þ TC

�

; ð7Þ
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where ɛ is a fraction of vertices in J(N, r) that contain the correct
error vector. For a fixedm, we have ɛ ≈ rm/NmwhereN= |L1|.

Strictly speaking, the walk we have just described is a walk
on an m‐Cartesian product of Johnson graphs—one for each
sublist Si, so the value δ in Equation (7) must be the eigenvalue
gap for such a Cartesian product graph. As shown in [Ref. 151,
Theorem 2], for fixed constant m, it is bounded from below by

N
m⋅rðN−rÞ.

Quantum walks speed‐ups for high‐memory ISD algo‐
rithms: The quantum walk search algorithm described above
solves the ISD problem provided we have found a permutation
π that gives the desired distribution of 1's in the error‐vector.
Kachigar and Tillich in Ref. [151] suggest to run Grover's al-
gorithm for π with the ‘checking’ function for Grover's search
being the quantum walk routine for the List matching problem.
In particular, we operate on the quantum state (normalisation
omitted):

X

i
jπi〉jπiðHÞ〉

⊗

2

6
4

X

Si⊂Li; jSij¼r

jS1〉 ⊗…⊗ jSk〉 ⊗ jAux〉

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Quantum Walk ¼ Check for the outer Grover

⊗j Is π good?〉:

The outer summation is performed over a set of all per-
mutations from πi ∈ Sn. Let N denote the total number of
permutations and M—the number of marked permutations,
that is, those give the desired weight distribution of the error. If
we can check that π is a marked permutation, then after

O
� ffiffiffi

N
M

q �
Grover steps, the state is (almost) equal to the su-

perposition over the marked π0s. For example, for the MMT

algorithm, we have O
� ffiffiffi

N
M

q �
¼O

�
1ffiffiffiffiffiffiffi
PMMT
p

�

, where PMMT is as

in Equation (6). The check if a permutation π is good is
realised via quantum walk search for m vectors v1, …,
vm ∈ S1 �⋯ � Sm that match on certain coordinates and lead
to the correct error vector. Note an important difference be-
tween classical and quantum settings: during the quantum walk
we search over size‐r sublists Si ⊂ Li, which are exponentially
shorter than Li. After TQW steps, the register jAux〉 contains an
m‐tuple (v1, …, vm) that leads to the correct error vector
provided a permutation π is good. Hence, after
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#permutations

p
⋅ TQW steps, the measurement of the first

register gives a good π with constant success probability. The
resulting state will be entangled with registers that store S1, …,
Sm together with the pointers to the matching elements. Once
we measure S1, …, Sm, we retrieve these pointers and, finally,
reconstruct the error vector as in the classical case.

With all the above, we are ready to analyse quantum ver-
sions of ISD algorithms that use the list matching problem as a
subroutine. For Stern's algorithm, the quantum random walk
will have the following complexities:

� TS ¼max
�
r; r2=2ℓ�, where the max{} is taken between

time to construct r‐size sublists S1, S2 and the expected
output size of pairs from these sublists that match on ℓ
coordinates;

� TU ¼ r=2ℓ, which is the expected number of elements we
will need to update if we change one element in S1;

� TC ¼ log r.

Assuming r2/2ℓ ≥ r, the value for TQW from Eq. (7) is
minimised when r = |L1|2/3, where jL1j ¼

�
kþℓ
p

�
as in the

classical Stern. Including the outer Grover search for a good
permutation, the overall complexity of quantum Stern
becomes

TQ
Stern ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n
w

�

�
kþℓ
p

��
n−k−ℓ
w−p

�

v
u
u
t ⋅ jL1j2=3:

During the quantum walk we store the r‐size sublists on
quantum registers, so the quantum space complexity of Stern's
algorithm is SQStern ¼ jL1j

2=3.
Similar arguments apply to the ISD algorithms that use the

representation technique. Let us consider the quantum walk
complexities of the BJMM algorithm, since MMT can be
viewed as a special case of BJMM. Similar to Stern, we have

� TS ¼max
�
r; r2=2⌊log2RBJMM⌋; r4=2ℓ−2⌊log2RBJMM⌋

�
,

� TU ¼max
�
r=2⌊log2RBJMM⌋; r2=2⌊ℓ−2log2RBJMM⌋

�
,

� TC ¼ log r.

Assuming the second level dominates the list construction,
that is, the max in TS is achieved by r2=2⌊log2RBJMM⌋ and by
r=2⌊log2RBJMM⌋ in TU, TQW from Eq. (7) is minimised when r = |

L1,1|4/5, where jL1;1j ¼
�
ðkþℓÞ=2
p=4þε

�
as in the classical BJMM.

Taking into account the square‐root speed‐up for the number
of permutations PMMT given in Eq. (6), we obtain

TQ
BJMM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n
w

�

�
ðkþℓÞ=2
p=2

�2�
n−k−ℓ
w−p

�

v
u
u
u
t ⋅ jL1;1j4=5:

The quantum space complexity of BJMM is
SQBJMM ¼ jL1;1j

4=5.

9.3 | Open problems

Despite a lot of effort that has been put into lowering the
complexity of ISD over the last 50 years, the picture is far from
satisfactory. Essentially all the speed‐ups we know and have
described here are asymptotically applicable to the dense error
regime w = Θ(n), which is less cryptographically relevant. It
was shown in Ref. [160] that the improvements starting from
Stern until the very recent ones [147, 161] vanish when w = o
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(n) for n going to infinity. So, for sparse errors, we are in the
strange situation when asymptotically the best known attack
remains Prange's algorithm. Hence,

Question 1 can we improve over‐Prange's algorithm for
sparse errors both classically and quantumly?
One might argue that perhaps asymptotic complexity is not

the only metric one should care about when evaluating security
levels for specific ISD settings. And this is certainly true:
Hidden low‐order terms may have serious impact on concrete
hardness. The fact that the fastest known algorithms are
memory intensive makes the actual costs even less predictable
from the asymptotics. Hence,
Question 2 what are the precise (classical and quantum) costs
of solving ISD for concrete parameters?
First steps in this direction in the classical setting have

been done in Ref. [162], where the authors provide an esti-
mator for concrete ISD parameters. In the quantum setting it
seems to be a much harder task to give any meaningful
statement about the concrete costs as one would need to
analyse in details the complexity of implementing quantum
walks.
Instead of analysing the general ISD problem, one can

turn their attention to actual cryptographic schemes. The
assumption that all known code‐based constructions use is
that the structure hidden in the parity‐check matrix H does
not impact security. While we are not aware of any attack that
exploits either the structure of the Goppa code in McEliece
KEM or the cyclic structure in BIKE KEM, it is still natural
to ask
Question 3 can we speed up ISD routines using the knowl-
edge that the parity‐check matrix H is not chosen uniformly at
random?
Continuing analysing concrete schemes, the hardness of

ISD over F3 has only recently started drawing attention. To
gain our confidence in the security of the code‐based signature
WAVE, the decoding problem over F3 for dense error requires
more investigations.

10 | ISOGENIES

An elliptic curve E defined over a finite field Fq of charac-
teristic p ≠ 2, 3 is a projective algebraic curve with an affine
plane model given by an equation of the form
y2 = x3 + ax + b, where a, b ∈ Fq and 4a3 + 27b2 ≠ 0. The set
of points of an elliptic curve is equipped with an additive group
law. Details about the arithmetic of elliptic curves can be found
in many references, such as [Ref. [163], Chap. 3]. Isogenies
between elliptic curves are non‐zero maps that are given by
rational functions, and that are group homomorphisms. The
main problem we are interested in is:

Problem 7 (Main isogeny problem). Given elliptic curves E,
E0 defined over a finite field Fq, find an isogeny between E
and E0.

Problem 7 is deliberately phrased in an ambiguous way.
First, we do not specify the representation of the solution φ: E
→ E0 required. Indeed, the natural representation of an isogeny
is via polynomials f ; g; h ∈ Fq½x� such that

φððx; yÞÞ ¼
�
f
h2
ðxÞ; y ⋅

g
h3
ðxÞ
�

:

The degree of φ is its degree as a rational function. There-
fore, such a representation cannot be efficient when the degree
is large. On the other hand, we can decide to accept a repre-
sentation as a composition of small degree isogenies. Indeed,
the degree is multiplicative: deg(φ ° ψ) = deg(φ) deg(ψ);
therefore, it might be possible to represent a degree‐2n as a
composition of n degree‐2 isogenies, thus trading an expo-
nential representation for a polynomial‐sized one. Another
aspect of Problem 7 that could be further specified is whether
the existence of an isogeny of small degree between E and E0 is
known. Indeed, depending on the properties of the curves,
generic bounds are known on the existence of an isogeny of
bounded degree between the input curves. However, certain
popular cryptosystems deliberately choose curves with an un-
usually low degree isogeny between them. This naturally
influences the performances of the computational methods to
find the secret isogeny.

In this section, we avoid presenting extensive background
on isogenies in order to focus on the properties that are
relevant to the state‐of‐the‐art quantum algorithms. We need
however to introduce the following important fact. The search
for an isogeny between two curves can be reduced to the
search for a possible kernel of a map. Indeed, an isogeny
φ : E → E0 is always the composition φ = α ° φ0 of a purely
inseparable isogeny α and an inseparable isogeny φ0. Purely
inseparable isogenies are the composition of the Frobenius
endomorphism π: (x, y)↦(xp, yp) where p = char(q) and an
isomorphism. In particular, ker(α) = {∞} is trivial, and the
kernel of α0 determines φ0 uniquely up to isomorphisms. There
is an explicit way to construct a separable isogeny from the
points of its kernel using Vélu's formulas [164]. All the algo-
rithms we present in this section focus on computing separable
isogenies.

10.1 | Isogenies arising as group actions

We begin our overview of quantum algorithms for solving the
isogeny problem with the most structured one, namely when
we know the action of a finite abelian group G on isomor-
phism classes of elliptic curves. In this context, we assume that
given g ∈ G, such that g ∗ E ¼ E0 (where E denotes the
isomorphism class of E, i.e. all curves isomorphic to E), and we
can efficiently derive a (separable) isogeny φ : E → E0. This is
the framework of hard homogeneous spaces described by
Couveignes [165] and of cryptographic group actions [166].
This motivates the formulation of the problem of inverting a
group action on isomorphism classes of elliptic curves:
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Problem 8 (Group action on curves). Let G be an abelian
group acting faithfully and transitively on a set X of
isomorphism classes of elliptic curves defined over Fq, and
E;E0 ∈ X. Find g ∈ G such that g ∗ E ¼ E0.

The hardness of this problem is the security assumption of
multiple isogeny‐based schemes [165, 167, 168], including the
key exchange mechanism CSIDH [169].

To understand the relevance of Problem 8 to the compu-
tation of isogenies, we need to introduce the distinction between
ordinary and supersingular curves. An elliptic curve defined
over Fq of characteristic p is said to be supersingular if
p∣E
�
Fq
�

− q − 1 where EðFÞ denotes the group of points of E
defined over the field F. If an elliptic curve is not supersingular,
then it is ordinary. The ring of endomorphisms End(E) of an
ordinary elliptic curve is an order O within the quadratic field
QðπÞwhere π is the Frobenius endomorphism. The embedding
of π into a quadratic number field is done by noticing that it
satisfies the equation π2 − tπ + q = 0 where t ¼ qþ 1 − E

�
Fq
�

is the trace of E. Then the ideal class group ClðOÞ ofO acts on
isomorphism classes of elliptic curves E such that EndðEÞ ≃O.
More specifically, the class ½a� of an ideal a ⊆O acts on E up to
isomorphisms via a separable isogeny of kernel
E½a�≔ fP ∈ E∣ ∀ α ∈ a : αðPÞ ¼ 0g and degree NðaÞ, the
algebraic norm of a. An introduction to number fields, orders,
ideal and ideal class groups can be found in standard textbooks
of algebraic number theory, including [Ref. [170], Chap. 1]. From
a high level standpoint, the takeaway is that the group
G¼ ClðOÞ with size jGj ∈ Oð ffiffiffiqp Þ acts faithfully and transi-
tively on isomorphism classes of elliptic curves, and that there is
a natural correspondence between an element g ∈ G such that
g ∗ E ¼ E0 and the kernel of an isogenyφ : E→ E0. Therefore, in
ordinary elliptic curves, Problem 7 reduces to Problem 8.

The group action framework also applies to certain
supersingular elliptic curves. Typically, by E, we mean the
isomorphism class of E for isomorphisms defined over Fq. In
this case, there is always a curve E0 ∈ E defined over Fp2 . It
might also be possible that E admits a representative E″ that is
defined over Fp. In any case, End(E) is isomorphic to an order
in a quaternion algebra, which is a 4‐dimensional non‐
commutative ring. When E is defined over Fp, the ring
EndðEÞFp of endomorphisms of E that are defined over Fp is
isomorphic to an order O in the quadratic number field
Kð ffiffiffiffiffiffi−pp

Þ. In this case, ClðOÞ acts faithfully and transitively on
classes of Fp‐isomorphisms of curves defined over Fp (we
denote the class of Fp‐isomorphisms of E by E

p
). As above, the

action of (the class of) an ideal a ⊆O is through a separable
isogeny of degree NðaÞ. Therefore, when E, E0 are defined
over Fp, Problem 7 also reduces to Problem 8. In this case,
G¼ ClðOÞ has size jGj ∈ Oð ffiffiffipp Þ, and as before, the knowl-
edge of g such that g ∗ Ep ¼ E0p yields an isogeny φ : E → E0.
This framework can be partially extended to supersingular
curves defined over Fp2 when an orientation is known, that is,
an injective morphism ι : O→ EndðEÞ where O is an imagi-
nary quadratic order [[171], Def. 2].

Problem 8 subsequently reduces to the dihedral hidden
subgroup problem [172] for which we presented an algorithm
in Section 4.3. Assume we are looking for a such that
½a� ∗ E1 ¼ E2. Let A¼ Z=d1Z�⋯� Z=dkZ ≃ ClðOÞ be the
elementary decomposition of ClðOÞ. Then we define a quan-
tum oracle f : Z=2Z ⋉ A → fquantum statesg by

f ðx; yÞ≔

( �
�
�
ay
�

∗ E1〉 if x¼ 0;
�
�
�
a−y
�

∗ E2〉 if x¼ 1;
ð8Þ

where
�
ay
�
is the element of ClðOÞ corresponding to y ∈ A via

the isomorphism ClðOÞ ≃ A. Let H be the subgroup of
Z=2Z ⋉ A of the periods of f. This means that f(x, y)= f(x0, y0) if
and only if (x, y) − (x0, y0) ∈ H. Then since the action is tran-
sitive, we have H = {(0, 0), (1, s)} where s ∈ A such that
½as� ∗ E1 ¼ E2. The computation of s can thus be done through
the resolution of the Hidden Subgroup Problem in Z=2Z ⋉ A.

Proposition 23 There is a quantum algorithm that solves

Problem 8 in quantum time 2
~O
� ffiffiffiffiffiffiffiffiffiffiffiffi

logðjGjÞ
p �

using a polynomial
amount of memory.

This yields solutions to the isogeny problem in time 2~Oð ffiffiqp Þ

between ordinary elliptic curves with the same endomorphism
ring and in time 2~Oð

ffiffi
p
p
Þ between two supersingular curves

defined over Fp. A non‐asymptotic analysis of these algorithms
and of the cost of the attack against the initial parameters of the
scheme CSIDH can be found in Refs. [173, 174]. In another
recent work [175], safer parameter sizes were proposed.

10.2 | Memoryless algorithms for small‐
degree isogenies

We now assume that no group action is known. Otherwise, the
best known algorithms for solving the isogeny problem are
always those of the previous section. This means that we are
considering the case of supersingular curves defined over Fp2 .
In this section, we focus on the sub‐case where we know the
existence of a bounded‐degree isogeny between the two input
curves. This is the case for the prominent isogeny‐based
cryptographic scheme SIDH [176] which resulted in the
SIKE submission [177] of NIST standardisation of post‐
quantum KEM protocols. This leads us to the formulation
of the following problem:

Problem 9 (Small‐degree isogeny). Set E, E0 be two elliptic
curves over Fq and ℓ be a prime. Suppose that there is a degree
ℓk‐separable isogeny φ: E → E0 for some k. Find φ.

In the SIKE system, ℓ = 2 or 3, and k¼ 1
2 logðpÞ. These

are the typical parameters of interest. The secret isogeny
could be viewed as a walk in the ℓ‐isogeny graph, which is an
ℓ + 1‐regular graph where nodes are isomorphism classes of
elliptic curves, and there is an edge between E1 and E2 if
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there is a degree‐ℓ isogeny φ : E01 → E02 for some E01 ∈ E1
and E02 ∈ E2. The choice of a non‐backtracking walk of
length k originating from E in the ℓ‐isogeny graph can be
mapped to a bit string in f0; 1g⌈klog2ℓ⌉. Such a choice rep-
resents the choice of one of the possible kernels. To effi-
ciently compute the map corresponding to a given bit string,
we follow the approach of Ref. [176, Sec. 4.2.2]. In a nutshell,
it consists in identifying a cyclic kernel 〈R〉 ⊆ E
[ℓk] = {P ∈ E∣[ℓk]P = 0} and computing the corresponding
isogeny with Vélu's formulas. Instead of directly applying the
formulas using all the points of 〈R〉, we rather only compute
ℓ‐isogenies. By interleaving ℓ‐isogeny computation/evalua-
tions and multiplications of the points defining the kernel by
ℓ, we can compute an ℓk isogeneous curve E″ in time O(k
log k log q) operations. Then we need to decide whether
E00 ∈ E0. If that is the case, then we have solved our problem.
To decide if two curves are isomorphic, we compute their so‐
called j‐invariant, which is a value of Fq for which we have a
closed formula from the coefficient of the curve. If these
match, the curves are isomorphic (i.e. the j invariants identify
isomorphism classes of curves).

The natural strategy is therefore to perform a quantum
search on all possible strings in f0; 1g⌈klog2ℓ⌉ that encode a
length‐k walk in the ℓ‐isogeny graph until one of them yields a
curve whose j‐invariant matches that of E0. This can be done
by using Grover's search with oracle

f0; 1g⌈k log2ℓ⌉ → f0; 1g
Of : s ↦ 1 if φs : E → Es

with jðEsÞ ¼ jðE0Þ;

where φs is the degree‐ℓk isogeny obtained from s by the
procedure described above.

Proposition 24 Using Grover's search algorithm there is an
algorithm to solve Problem 9 in quantum time O(ℓk/2k log
k log q) with a polynomial amount of memory.

Interestingly, the above approach is the best quantum
attack against SIDH/SIKE with low memory. Marginal im-
provements are known (to improve on the polynomial factors).
For example, it is possible to reduce the length of the walk by
pre‐computing all k0‐length paths from E0 and storing all the
corresponding j‐invariants in the circuit of the oracle which
makes a comparison between the j‐invariant obtained after a
walk of length k − k0 originating from E and all the pre-
computed ones [178].

10.3 | Large‐memory algorithms for small‐
degree isogenies

The search for a path in the ℓ‐isogeny graph between E and E0
can be done with ameet‐in‐the‐middle strategy. Indeed, finding
a path of length k from E to E0 can be done by fixing
1 < k0 < k and finding two paths: the one of length k0 origi-
nating from E and the other of length k − k0 originating from

E0 that land in the same isomorphism class, that is, on curves
that share the same j‐invariant. Typically, k0 = k − k0 = k/2 (i.e.
the meeting point is really in the middle), but it is not funda-
mentally required. Once the two paths are found, we have a
path from E to E0 (note that we know how to backtrack the
length k − k0 path all the way to E0 using dual isogenies). This
process fits the framework of claw finding which, given
f : X − f0; 1gk1 → Z and g : X ¼ f0; 1gk2 → Z for some set
Z, consists in looking for x, y such that f(x) = g(y). Such a pair
is called a claw. In the context of isogenies of small degree
(parameterised by k), we assume that the claw is unique.

To solve the claw finding problemwith optimal circuit depth
(at the cost of increased quantum memory), we can use Tani's
algorithm [179]. It consists in a quantum random walk in the
product of the two Johnson graphs, Jf ≔ J(|X|, (|X‖Y|)1/3) and
Jg ≔ J(|Y|, (|X‖Y|)1/3) (provided that |Y| ≤ |X|2, which we
will assume since our target case is |X| = |Y|). A vertex
(F,G)∈ Jf� Jg ismarked if there is a pair (x, y)∈ F�G such that f
(x) = f(y) (i.e. F � G contains a claw). To check if (F, G) is a
marked vertex, we sort all elements of F∪Gwith respect to their
function value (for us the function values are j‐invariants in
Z¼ Fp2 ). Therefore, Cost(Setup) is the cost of evaluating f and g
on X ∪ Y and then sorting all the elements. However, Cost
(Update) only consists in the deletion of one element and the
insertion of a new element on an already sorted list, which is
efficient. Note that the memory used by this algorithm is
QRAQM (due to the quantum walk framework).

Proposition 25 (Tani). The claw finding problem can be
solved by a quantum algorithm using a circuit
~O
�
ðjXkY jÞ1=3

�
calls to the comparison oracle and with O((|

X‖Y|)1/3) quantum memory.

When searching for a degree‐ℓk isogeny between represen-
tatives of E;E0, we can choose |X|= |Y|= ℓk/2, which yields a
circuit with depth and width in ~O

�
ℓk=3

�
(to simplify notations,

we incorporate the cost of the comparison oracle in ~O). In the
case of SIDH/SIKE, ℓ = 2 and k¼ 1

2 logðpÞ, which yields depth
and width in ~O

�
p1=6
�
, but a Depth � Width cost of ~O

�
p1=3
�
,

which is worse than a Grover search that achieves ~O
�
p1=4
�
.

There exists a natural time‐memory tradeoff, which in-
terpolates between Tani's algorithm and Grover search: One
simply sets the vertex size of the Johnson graphs to a given
parameter R ≤ (|X‖Y|)1/3, so that only R elements of X and
R elements of Y are stored. This reduces the probability to be
marked to R2

jXkY j and the time complexity changes to

~O
�

Rþ
ffiffiffiffiffiffiffiffiffi
jXjjY j
R

q �

. The result of Proposition 25 is simply the

point R = (|X‖Y|)1/3, which balances the setup and walk
steps and achieves the minimum complexity. Storing a single
pair of elements in the vertex (R = 1) reduces this algorithm to
a Grover search on all the pairs, corresponding to Proposition
24: the complexity becomes ~Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jXkY j

p
Þ.
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More tradeoffs between time, depth and width can be
done, and optimisations of the resulting Depth � Width and
Gate costs (thus without QRAM) have been studied in Refs.
[16, 180]. In all cases, due to the techniques being used, the
quantum time complexity achievable for a given amount of
quantum hardware (e.g. memory or processors) achieves at
most a square‐root improvement on the classical time
complexity achievable with the corresponding amount of
classical hardware.

10.4 | Algorithm for generic isogenies

Assuming we want to find an isogeny between two super-
singular curves E, E0 defined over Fp2 without any guarantee of
existence of a short degree map between them, there is a non‐
trivial method to achieve a speed‐up over Grover's search
without incurring the memory costs of Tani's algorithm. The
generic isogeny problem is less relevant for cryptography than
Problems 8 and 9, which gave rise to the most popular isogeny‐
based cryptosystems, but it enables the search for collisions for
the Charles–Lauter–Goren hash function [181]. Aside from
this, the generic isogeny problem is a fundamental problem for
which quantum computers provide a non‐trivial speedup.

We combine techniques from Sections 10.1 and 10.2 to
compute an isogeny between two given supersingular curves
defined over Fp2 without any particular property. The high level
strategy we follow was first described by Delfs and Galbraith
[182] and then adapted to the quantum setting by Biasse, Jao and
Sankar [183]. It consists in searching for an isogeny path between
E and a curve E1 defined over Fp and for an isogeny path be-
tween E0 and a curve E2 defined over Fp. Then in a second stage,
we find an isogeny between E1 and E2 using the methods of
Section 10.1. Altogether this yields an isogeny between E and E0.
This approach is illustrated by Figure 10.

The cost of computing an isogeny from E1 to E2 is
negligible and immediately derives from the analysis presented
in Section 10.1. Now, we turn to the computations of isogenies
E → E1 and E0 → E2. There are O(p) isomorphism classes of
supersingular curves containing a representative defined over
Fp2 , among which ~Ωð

ffiffiffipp Þ have a representative defined over
Fp. This means that a fraction ~Ω

�
1ffiffi
pp
�
of the isomorphism

classes contain a representative defined over Fp. The ℓ‐isogeny
graph for a prime ℓ ∤ p is a Ramanujan graph [176, Sec. 2].
This property allows us to evaluate the probability that an ℓ‐
isogeny path of a given length reaches a certain subset of the
vertices. If the length is long enough, then the distribution of
the end point of the walk is close to uniform at random.

Proposition 26 (Prop 2.1 of Ref. [176]). Let G be a k‐regular
graph such that the eigenvalues λ of the non‐constant eigen‐
vectors of its adjacency matrix satisfy jλ ≤ c for some c < k. Let
S ⊆ G be a subset of vertices and x ∈ G. Then a random walk

of length at least
logðð2jSj=jGjÞ1=2Þ

logðk=cÞ starting from x lands in S with

probability at least jSj2jGk.

The ℓ‐isogeny graph is k = ℓ + 1‐regular, and the non‐
trivial eigenvalues satisfy jλj ≤ c ¼ 2

ffiffiffi
ℓ
p

. So if we choose
ℓ = 3, G the 3‐isogeny graph, and S the set of isomorphism
classes with a representative over Fp, we obtain that a random
walk of length in O(log(p)) hits a supersingular curve defined

over Fp with probability at least ~Ω
�
1ffiffi
p
p

�
. Using a Grover

search over all 3‐isogeny paths of the length given in Propo-
sition 26, we obtain a cost of ~O

�
p1=4
�
. As mentioned before,

this cost is the bottleneck of the computation of an isogeny
between E and E0 since it is asymptotically larger than the cost
of the computation of E1 → E2.

10.5 | Open problems

In the case of SIDH, there is additional information available to
the adversary that the algorithms presented so far in this section
do not exploit. Indeed, the security of SIDH relies not only on
the difficulty of finding isogenies but also on finding them given
some additional information (the evaluation of the isogeny on a
torsion subgroup) that is necessary for the key exchange.

Problem 10 (SIDH). Let E be an elliptic curve. Let N1, N2 be
two smooth coprime integers (powers of 2 and 3 in the case of
SIKE). Let K be a cyclic subgroup of order N1 of E chosen
uniformly at random. Let ϕ : E → E/K. Given the super‐
singular elliptic curves E and E/K, given the restriction of ϕ
to E[N2], compute K.

Question 1 Can we design methods that take advantage of the
information of the restriction of ϕ to E[N2] to solve Problem
10 more efficiently than the best methods to solve Problem 9?1

In SIKE, one has N1 ≃ N2. But the torsion points allow for
some attacks in the case of unbalanced or overstretched (N1,
N2), as seen, for example, in Ref. [184], which includes quan-
tum attacks based on claw‐finding. In Ref. [185], the authors
showed the following.

F I GURE 1 0 Computation of an isogeny from E to E0

1
An efficient attack against SIDH using the restriction of φ to E[N2] was discovered by
Castryck and Decru after this survey was written [186].
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subexponential complexity 



Theorem 27 (Theorem 4.27 in [185]). If N2 > pN4
1, then the

SIDH problem can be reduced (with additional heuristics) to
the abelian hidden shift problem, and solved in quantum
subexponential time.

This is, to the best of our knowledge, the first application
of quantum hidden shift algorithms in dedicated cryptanalysis
of SIDH, outside the setting where a group action is already
given. Another natural angle to extend the scope of quantum
hidden shift algorithms would be to take advantage of orien-
tations, which are injective morphisms ι : O→ EndðEÞ where
O is an imaginary quadratic order [[171], Def. 2]. It seems like
in the case of two curves sharing the same orientation, the
isogeny problem reduces to Problem 8.

Question 2 Can the quantum hidden shift framework be
applied to more general classes of supersingular curves defined
over Fp2 by using the concept of orientation?
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