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Abstract

The goal of this project is to understand and analyze the supersingular isogeny Diffie Hellman (SIDH),

a post-quantum key exchange protocol which security lies on the isogeny-finding problem between

supersingular elliptic curves. In order to do so, we first introduce the reader to cryptography focusing

on key agreement protocols and motivate the rise of post-quantum cryptography as a necessity with

the existence of the model of quantum computation. We review some of the known attacks on the

SIDH and finally study some algorithmic aspects to understand how the protocol can be implemented.
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1. Introduction to cryptography

The purpose of this chapter is to introduce the reader to the topic of cryptography. We will define

several concepts that we will need in the following chapters, such as public key cryptography, key

agreement and security notions. Finally we will introduce the concept of post-quantum cryptography

to motivate the appearance of the protocol we aim to understand, and we will briefly talk about the

main post-quantum crytography active research fields.

We will assume the reader to have a background of elemental mathematics, algebraic structures

-specially groups and finite fields- and some notions of algebraic geometry.

1.1 Basic concepts and definitions

Here we will assume that two users called Alice and Bob want to communicate with each another.

There exist, of course, cryptographic protocols designed for more than two parties, but we will not

study that. To determine the security of our scheme, we will assume the existence of a third user

called Eve who will try to deduce the secret messages in the conversation. We will assume that Eve

is “listening” to the conversation between Alice and Bob, receiving all of the information that Alice

and Bob are sharing to one another. If we just let Eve listen, we will be studying how secure is our

protocol to passive attacks. However, we will also consider the possibility that Eve does not only

listen but also act in the middle of the conversation trying to corrupt it. For example, Eve could

modify Alice’s messages to Bob, or even re-write them, in order to obtain information from Bob’s

answer. Attacks where Eve is able to act directly on the information exchanged will be called active

attacks, and have to be considered as well. We are still not considering all kinds of attack, but in

this theoretical study it will be enough. We will talk about security in 1.4.

Alice needs to somehow encrypt the message that she wants to share with Bob in a way that

Eve does not get much information (or none at all) about it. Of course, Bob has to be able to

decrypt the message. Let us put some names over all these concepts.
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First of all, let us define M as the set of all possible messages we could want to share in

our scheme, and assume this set to be finite. Usually M will be all the possible n-bit chains,

M = {0, 1}n, but sometimes we will assume M to be elements of a group G , because we can always

code elements of a finite group as bit chains. Messages before (respectively, after) encryption will

be called plaintexts (respectively, ciphertexts).

We need an encryption function, which we will call Enc or simply E and a decrypt function,

which we will call Dec or simply D. Of course, Dec has to be the inverse of Enc , meaning that for

any plaintext m ∈ M we have Dec(Enc(m)) = m. We will assume that these functions are both

public and also computable in polynomial time (we will define this concept in 1.4) .

At this point it is clear that we need something else for this to work. If Eve and Bob have the

same information, how could Bob be able to recover the message but not Eve? We need Alice and

Bob to have one or more secret parameters -keys- and use them to encrypt and decrypt. However,

two possibilities arise: do Alice and Bob have the same key, or do they have different keys?

1.2 Symmetric key encryption

In a symmetric key encryption scheme Alice and Bob have a common key k in a finite set of possible

keys K . Alice will encrypt a message m using the key k and Bob will decrypt the ciphertext using

the same key. Namely, Alice will compute c = Enc(m, k) = Ek(m), she will share it to Bob and he

will decrypt it computing Dec(c , k) = Dk(c) = m. In this process, Eve will have seen the ciphertext

c , and remember we assume that Enc and Dec are both public. Thus, the only thing that remains

hidden from Eve is the shared key k , and we need her to not be able to get information of m using

everything except for k .

Example 1. Cæsar cipher

This is a very simple example of a symmetric key encryption. Let M be the words in the Latin

alphabet up to n letters, for some n. Choose a natural number k ≤ |M|. To cipher a word m simply

shift each of its letters k positions to the right in the ordered alphabet. For example, if k = 2, the

plaintext m = hello would be encrypted as c = Enc(m, k) = jgnnq.

This is not a safe encryption method. First of all, an attacker could try to decrypt with each

possible key until a readable message appears, and that would not take long because of the key size.

It has many other weaknesses, such as the repeated letters in m being repeated as well in c .

Example 2. One Time Pad

There is one cipher that solves these problems, called One Time Pad. It is simple: using a key

k of size equal than (or greater) than the size of the plaintext m, to cipher we add it to m (as bit
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strings, with the XOR operation): Enc(m, k) = c = m ⊕ k . To decrypt the ciphertext, since XOR

operation is self-inverse we just need to add k again, Dec(c , k) = c ⊕ k = m.

This protocol is safe. It is actually the safest we can find. Assuming that the key is completely

random, when Eve reads the ciphertext she gets no information at all about m, just like she received

a random bit string and she had to guess the message. However, there are weaknesses.

First, if Alice decides to send another message to Bob and uses the same key, then Eve will get

significative information about the plaintexts. If Eve has two ciphertexts encrypted with the same

key, she can compute c1 ⊕ c2 = (m1 ⊕ k) ⊕ (m2 ⊕ k) = m1 ⊕m2, the XOR or the two plaintexts,

and that is clearly unsafe. Hence, this cipher is only safe when the key is unused, and that is why it

is called One Time. Also, the key size needed grows as much as the message, making it really hard

to share long messages.

1.3 Public key encryption

In symmetric key encryption we studied how can we safely send messages assuming that Alice and

Bob share a secret key that no one else knows. In this section we will study protocols that do not

need the parties to previously agree in a key and also the Diffie Hellman key agreement for them to

do so.

In this subsection, the communication will be one-way, breaking the symmetric scheme we had

until now. Alice will have a public key pk and a secret key sk , and Bob will use Alice’s public key to

encrypt a message for her c = Enc(m, pk), which Alice will be able to decrypt using her secret key

computing m = Dec(c , sk). In other words, the public key will be used to encrypt (and therefore

everyone will be able to encrypt) but only those who know the secret key (in our case, Alice) will

be able to decrypt those messages.

Example 3. ElGamal

This public key encryption scheme has a very characteristic structure, which can be used in many

other protocols. The idea to encrypt is to generate a shared key with the public key, and then send

the ciphertext together with a “clue” with which the other party can recover the shared key and

then decrypt the message. Its security is based on the Discrete logarithm problem, which we will

talk about later, but let us introduce the protocol.

The public parameters are a finite cyclic group G , its size n and a generator g . To generate her

public and secret keys, Alice chooses a random integer s ∈ Z/nZ and compute h = g s . Her secret

key is sk = s, and all the other information is public pk = (G , n, g , h).

To encrypt a message m, which we assume to be an element of G , Bob chooses a random integer
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r ∈ Z/nZ and computes hr = g rs . This is the shared key that they will use this session. Then he

ciphers m as c1 = m · hr . The “clue” that he gives to Alice in order for her to deduce the shared

key is c2 = g r . Finally he sends c = (c1, c2).

To decrypt c = (c1, c2), Alice first computes the shared key as cs
2 = g rs . Then she decrypts c1

as m = c1 · (cs
2)−1.

1.4 Security in cryptography

Clearly, we will need to talk about the security of the schemes we define. In order to do that, we

introduce now some basic concepts of security in cryptography, focusing in decisional problems.

When studying asymptotic complexities of algorithms we will classify them depending on their

running times using the “big O” notation.

Notation. “Big O”. Let f , g : N → N. If there exist N, c ∈ N such that g(n) ≥ cf (n) for all

n > N we will say that f = O(g).

Larger keys usually leads to higher security, at least in the sense that the brute-force attack1

complexity gets higher. What we would like is that this growth was a fast as possible, in order

to have high security with low key sizes. We will study the time required to attack a scheme in

asymptotic terms over a security parameter which we will denote by λ. This parameter is usually

the size of the key used in the protocol, or maybe linearly proportional to it.

Definition 1. We will say that an algorithm is polynomial (or runs in polynomial time) if its running

time is upper bounded by a polynomial on λ or, equivalently, if there exists k ∈ N such that the

running time is O(λk).

When there is no known polynomial algorithm to solve a problem, we will say that this problem

is hard. Otherwise we will say it is easy.

The same way that we talk about functions (in this case, the running time of an algorithm) not

growing too fast, we also define what we will consider to be small enough that is negligible.

Definition 2. We will say that a function f (λ) is negligible if it decays faster than the inverse of

any polynomial in λ or, equivalently, it decays faster than the inverse of λk for all k . Formally, f is

negligible if ∀k > 0 there exists λ0 such that |f (λ)| < 1
λk

for all λ > λ0. In this case, we will write

f ∈ negl(λ).

1Any cryptosystem can be attacked using the brute force or exhaustive attack, which means trying to decrypt the
ciphertext using each possible key.
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We will also talk about decisional problems, problems which answer can be represented with a

single bit. In other words, if the answer of a decisional problem is either “yes” or “no”. We will use

the concept of decisional problem several times, and in fact they are very important in cryptography.

They are classified in classes, such as BPP or the famous P and NP classes2.

For decisional problems, let us define the concept of advantage. Informally, the advantage of a

probabilistic algorithm A in a decisional problem family determines how good is it at distinguishing

yes-problems (problems which answer is yes) than no-problems. Given a yes-problem and a no-

problem at random (not necessarily uniformly distributed, but random by specific distributions of

probability), the advantage will measure the probability that A has to distinguish them. From now

on, consider a fixed security parameter λ.

Definition 3. Given D0, D1, distributions of probabilities of yes-problems and no-problems respec-

tively, in a decisional problem family, the advantage of a probabilistic algorithm A is

Avg(A) := |Prob(A(p) = 1 | p ← D1)− Prob(A(p) = 1 | p ← D0)|

where ← denotes picking a random yes/no-problem using the distrbution D1/0.

If the advantage of A is negligible, then we will say that the distributions are indistinguishable

by A, and the indistinguishability will become a very relevant property. If the distributions are

indistinguishable for all polynomial algorithms, we will say that they are indistinguishable. This

property will usually be very hard to prove.

1.5 Diffie Hellman key agreement

In symmetric key encryption, we needed both parties to know a previously agreed secret value in

order to both encrypt and decrypt messages. We saw how, using public key encryption, users

can communicate without having any previous agreement. Key agreement protocols are designed to

agree in a key (without, of course, any previous agreements) in a way that the exchanged information

does not leak any clue of the key.

First, there are some public parameters, which can be chosen by a trusted third party or just

published for everyone to see. Using those parameters and (maybe) a random oracle, Alice and Bob

will do some polynomial time computations, between which they might exchange information any

number of times (in the protocols we will see, there will be just one moment in which they exchange

2An algorithm is said to be in P if it can be solved in polynomial time. A problem is said to be in NP if it can be
verified in polynomial time whether an answer is correct or not. It is obvious that P ⊆ NP, however no problem has
been proved to be in NP but not in P. Therefore, it is an open problem to determine whether P = NP or not.
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of information), and they will eventually be able to compute a common value to use as a key.

Many public key encryption schemes can be converted into key agreement schemes and vice-

versa. We will explain now the most famous and used key agreement protocol, the Diffie Hellman,

named after its creators Whitefield Diffie and Martin Hellman.

1.5.1 Diffie Hellman key agreement

The security of this protocol, as usually, will rely on a hard problem in cryptography, which is the

discrete logarithm problem. The protocol works as follows:

Public parameters are a cyclic group G of size n = |G | and a generator of the group g ∈ G .

Remember that an element g ∈ G is a generator if and only if the cyclic group generated by g is

G . In other words, if any element x ∈ G is a power of g , x = g r for some r ∈ Z.

Now, Alice and Bob each chooses a random3 element of Z/nZ which we will call a and b,

respectively. This integers are secret and they will not share them to each other. Instead, they will

compute ga and gb, respectively, and send this to the other party. Alice will receive gb and will

compute (gb)a = gab and Bob will receive ga and compute (ga)b = gab. Now they share a secret,

gab.

Public parameters

A cyclic group G , its size n and a generator g .

Alice

Chooses random a ∈ Z/nZ and

computes ga.

Sends U = ga to Bob and receives Bob’s

message V .

Computes V a = gab, the shared secret

key.

Bob

Chooses random b ∈ Z/nZ and

computes gb.

Sends V = gb to Alice and receives

Alice’s message U.

Computes Ub = gab, the shared secret

key.

1.5.2 Security of DH and associated problems

In the Diffie Hellman protocol, all the information available for an eavesdropper is G , n, g , ga and

gb. Computing gab with that information is known as the Computational Diffie Hellman problem

(CDH) and is believed to be hard for a generic group. It is worth mentioning that it is not equivalent

3When we say random element in a finite set S we will always assume we are using the uniform distribution where
each element is chosen with probability 1

|S| .
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to the Discrete Logarithm Problem (DLOG) nor the Decisional Diffie Hellman (DDH) problem. Let

us introduce them.

1. CDH: Given G , n, g , ga and gb compute gab where a, b are chosen randomly in Z/nZ.

2. DLOG: Given G , n, g and ga compute a where a is chosen randomly in Z/nZ.

3. DDH: Win Game 1 with non-negligible advantage.

Game 1. In this game there will be two parties: the challenger and the attacker. The game proceeds

as follows:

1. The challenger generates the public parameters of a DH key agreement protocol, PP :=

(G , n, g). He also chooses random a, b ∈ Z/nZ and computes ga and gb.

2. The challenger generates a random bit b ∈ {0, 1}. Then,

• if b = 0, he chooses a random r ∈ Z/nZ and sends PP, ga, gb and g r to the attacker.

• if b = 1, he computes gab and sends PP, ga, gb and gab to the attacker.

3. The attacker, with only the information he receives from the challenger and in polynomial

time outputs a bit b∗ ∈ {0, 1}.

4. The attacker wins if and only if b = b∗.

These problems are not known to be equivalent. However, there are some clear reductions. If

the attacker can solve CDH, then he can solve DDH as well. Also, if he is able to solve DLOG, then

he is also capable of solving both CDH and DDH. No general inverse reductions have been found,

but it has not been demonstrated that they are not equivalent yet.

1.5.3 Group action Diffie Hellman

Definition 4. Let G be a group and X a set. An action of G on X is a map

G × X → X

(g , x) 7−→ g ∗ x

such that

• For all g , h ∈ G , x ∈ X we have g ∗ (h ∗ x) = (gh) ∗ x .
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• For all x ∈ X we have 1 ∗ x = x .

Example 4. Let G be a group (which will act as X in the definition). The group of integers Z (with

the sum operation) acts on G as

Z× G −→ G

(n, g) 7−→ gn.

It is clear that this is an action because given n, m ∈ Z and g ∈ G we have (gm)n = gmn and

g1 = g .

In fact, what we did in the Diffie Hellman key agreement was using this group action on a cyclic

group G , and the resulting key was the same precisely thanks to the action commutative property.

More generally, given an action

a : G × X → X

(g , x) 7−→ a(g , x) = g ∗ x

one can define a Diffie Hellman key agreement scheme as follows:

Public parameters A finite abelian group G , a set X , an element x ∈ X and an action a of

G over X .

Alice

Chooses a random element g ∈ G and

computes g ∗ x .

Sends U = g ∗ x to Bob and receives

Bob’s message V .

Computes g ∗ V = g ∗ (h ∗ x) = (gh) ∗ x ,

the shared secret key.

Bob

Chooses a random element h ∈ G and

computes h ∗ x .

Sends V = h ∗ x to Alice and receives

Alice’s message U.

Computes h ∗ U = h ∗ (g ∗ x) = (hg) ∗ x ,

the shared secret key.

It is easy to check that the DH agreement we defined previously is a particular case of this

scheme, using the parameters of Example 4. Also, note that we are using the fact that the group

G is commutative to say that (gh) ∗ x) = (hg) ∗ x . In fact, there are generalizations of this idea

that do not require the group to be abelian, but in the end we need to somehow guarantee that the

actions of gh and hg on x are equal.
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1.6 Quantum and post-quantum cryptography

All we have seen up to this point is called classical cryptography. We have assumed the classical

model of computation, in which a computer is essentially a machine with an internal state made

of bits that periodically changes this state using logic gates. The protocol we aim to understand,

however, is a post-quantum protocol, in which we assume the attacker to have a machine called

quantum computer. It is not in our purposes to understand the quantum computation model,

because we do not really need it to make post-quantum cryptography (PQC). In PQC, we only

assume the attacker to have such machine and, hence, to be able to run all the known quantum

algorithms. Let us show the most famous quantum algorithms and why they are a problem to

classical cryptography.

1.6.1 Shor’s and Grover’s algorithms

In 1994, with the model of quantum computation arising, Shor [Sho94] shows how to efficiently

factorize a number4 and compute the discrete logarithm in a quantum computer. Two years later,

another revolutionary result is given by Grover [Gro96]. Given a function f : A→ B as a black-box

and an output value b ∈ B, Grover’s algorithm finds with high probability the unique element a ∈ A

such that f (a) = b in O(
√
|A|) function evaluations.

Many of the problems which have been found to be easy in quantum computers can be seen as

particular cases of a problem called abelian hidden subgroup problem.

Problem 1. (Hidden Subgroup Problem) Let f : G → R be a function given as a black-box with

its domain G being a known finite group. Assume that there exists a subgroup H ⊂ G for which

the following holds ∀x , y ∈ G

f (x) = f (y)⇔ xH = yH.

The hidden subgroup problem is to find a generating set of H given f , G , R. If the group G is

abelian, the problem is called abelian hidden subgroup problem.

A generalization of Shor’s algorithm solves the abelian HSP. In [Wan10] Wang explains this

algorithm and how the DLOG and the factorizing problems can be seen as particular cases of

abelian-HSP. However, it remains as an open problem if the HSP problem for arbitrary groups can

be efficiently solved in a quantum computer .

It is clear how these algorithms affect classical cryptographic schemes. Most of the protocols

4Here, “efficiently” means that the algorithm runs in polynomial time on the size of the number to factorize (if the
number is n, the running time in a quantum computer is bounded by a polynomial in log(n)).
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used in classical cryptography rely on the hardness of these problems. For example, the security of

one of the most used public key encryption schemes, the RSA, lies directly on the hardness of the

factoring problem. Shor’s and Grover’s algorithms break most of the vastly used classical protocols.

General purpose quantum computers with enough power to break the standard protocols with

these algorithms are not known to exist yet. However, with the model and the algorithms on the

table, it is only a matter of time until classical protocols become unsafe. Hence, the necessity of

schemes that resist an attack from a quantum computer arises as a major priority in the cryptographic

world. This motivates the research of quantum-resistant hard problems and protocols based on them,

and the protocol we aim to understand here is one of them. We will explain later the isogeny-finding

problem, but let us show some examples of research fields in which quantum-hard problems have

been found.

1.6.2 Lattice based cryptography

We will introduce lattice-based cryptography with some of the problems considered hard in the field.

For first time readers of the topic we recommend [CCSKK15] and to go deeper in the cryptosystems

that have been proposed using these problems we suggest [P+16].

Definition 5. Let B = {b1, ... , bn} be a collection of linearly independent vectors bi ∈ Rk . We

define the lattice generated by B as

L = L(B) =

{
n∑

i=1

bici where ci ∈ Z

}
.

Example 5. One can think of a lattice as a collection of points in Rk with a particular structure.

For example, taking B = {(1, 0), (0, 1)}, the canonical base of Z2, the lattice L(B) is represented

as in Figure 1a. Of course, the following figures show a part of the lattices, since they are infinite.

(a) Lattice defined by B = {(1, 0), (0, 1)}.
(b) Representation of another lattice.

Figure 1

Let us show some problems that are considered hard in lattice-based cryptography.
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Definition 6. Shortest Vector Problem (SVP)

Given an arbitrary basis B of a lattice L, find a shortest non-zero vector (with the euclidean

norm).

The norm of a shortest non-zero vector

λ1(L) := min
v∈L\{0}

||v ||

is also known as the minimum distance in L.

There are many variants of this problem

• Decisional SVP: the decisional version of SVP.

• Approximate SVP: Given a scalar ε ≥ 1 find a non-zero v ∈ L such that ||v || ≤ ελ1(L).

Problem 2. Closest Vector Problem (CVP)

Given an arbitrary basis B of a lattice L ⊂ Rn and a vector v ∈ Rn (not necessarily in L), find

the closest vector (with the euclidean norm) to v in L.

Finally, let us introduce a lattice-related problem called learning with errors, which has inspired

many post-quantum cryptographic protocols. Let s ∈ Z/qZ be the secret vector and ξ a probability

distribution which generates “short” elements, usually taken as the discrete Gaussian over Z. We

define an oracle O which does the following:

• Chooses e ← ξ from the probability distribution ξ.

• Chooses a vector a← (Z/qZ)n at random.

• Outputs (a, 〈a, s〉+ e), where 〈a, s〉 denotes the inner product of a and s.

The computational learning with errors problem is to find s given access to polynomial many

calls to the oracle O.

1.6.3 Code-based cryptography

Another important research field in post-quantum cryptography is code theory and its hard problems.

Definition 7. A linear (n, k)-code C over the finite field Fq is a subspace of dimension k of Fn
q as a

vector space. A basis of C in matrix form, C ∈Mn×k(Fq), is called a generating matrix of C. Given

m ∈ Fn
q, we define its encoding as c := mC ∈ C. Elements of C are called codewords.
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We define the distance between two codewords as the Hamming distance, which is the number

of positions in which the two words differ. A crucial property of codes is that, given a codeword c∗,

the minimum distance between c∗ and another codeword is independent from c, because

max
c∈C
{dist(c∗, c)} = max

c∈C
{dist(c∗ − c , 0)} = max

c∈C
{dist(c , 0)}.

Let D be this maximum distance, and let x = c + e with c ∈ C and e ∈ Fn
q with ||e|| < D/2.

Thanks to this property, we know that c the closest element of C, and hence c is uniquely determined

from x .

This induces a problem: Given an element x of the form x = c + e as before, determine c .

This operation is called decoding. It turns out that there is a particular type of codes, called Goppa

codes, in which decoding can be computed efficiently.

In the McEllice cryptosystem [McE78], Alice chooses a Goppa code, a generating matrix G , and

also a dense invertible matrix S and a random n × n permutation matrix P. She then publishes

G ′ = SGP as her public key, and keeps S and P as her secret. The matrix G ′ generates a code with

the same minimum distance between points as G . The encryption of a message consists in encoding

with G ′ and adding a random small enough error, c = mG ′+ e. Then, to decrypt c , Alice computes

cP−1 = mSG + eP−1, and then she can efficiently decode mS because G generates a Goppa code.

Finally, multiplying this quantity by S−1 she recovers the original message.

The McEllise cryptosystem has inspired some post-quantum protocols, such as the Classic McEl-

lise [BCL+17], competing to become a standard by NIST as the protocol we aim to study, SIKE.
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2. Elliptic curves

Elliptic curves and their uses in cryptography is a very active field of study because they have a very

interesting structure. They are defined as an algebraic variety as the solutions to a certain kind of

equation, which gives them a geometric structure. However, they happen to have a very natural

group structure as well. That gives a hint on the importance of elliptic curves, and also of isogenies,

which will be a kind of operation between elliptic curves that preserve both aspects. As a reference

on this topic we recommend the first chapter of Conell’s book [Con96].

2.1 What is an elliptic curve?

There are different ways to define what is an elliptic curve, we will now introduce some of them.

We will assume that the field on which we define the elliptic curve has characteristic greater than

3. This assumption makes sense in our context because most of the time we will work with curves

over Fq for a large prime -or prime power- q.

For the change of variables from one form to another, more information and a deep analysis on

the forms of elliptic curves see the reference book [Con96].

Definition 8. (Projective and short Weierstrass form) Given a, b in a field K (with char(K ) > 3)

such that 4a3 + 27b2 6= 0, we define an elliptic curve E as the locus in the projective plane P2(K )

of the equation

Y 2Z = X 3 + aXZ 2 + bZ 3. (1)

.

For Z 6= 0 one can define the change of coordinates x = X/Z , y = Y /Z , which leads to the

short Weierstrass equation:

y2 = x3 + ax + b.

.

Remember that points in the projective space are defined up to multiplication by a non-zero

constant. Since the only projective point with Z = 0 that satisfies the equation 1 is the point

(0 : 1 : 0), one can also define the elliptic curve by its short Weierstrass equation plus the point

(0 : 1 : 0), which we will call O or point at infinity.

Observation 1. The condition of 4a3 + 27b2 6= 0 is more intuitive than one could think. We are

defining the curve implicitly as the solutions of an equation or a multi-variable function being equal
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to zero, hence we need to be able to invert the function. In order to do this, we need the partial

derivatives not to be simultaneously zero, and that is exactly what the condition does. In other

expressions for the elliptic curve the conditions will change, as we will see now.

Definition 9. (Weierstrass form) One can also define an elliptic curve in its (not reduced) Weierstrass

form as the solutions of an equation of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

plus the point at infinity O. The coefficients ai are taken in K and there is also a condition on

them for the curve not to be singular (although a much longer one). Defining the coefficients

b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6 and b8 = a21a6 − a1a3a4 + 4a2a6 + a2a23 − a24

the condition becomes

−b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 6= 0

It can be seen with a change of variables that an equation in Weierstrass form can be expressed

in short Weierstrass form. That is why we will usually work with the second one.

Definition 10. (Montgomery form) Another common form for an elliptic curve is the Montgomery

form. Any elliptic curve can be written as the locus of the equation

by2 = x3 + ax2 + x

plus the point at infinity O. The coefficients a, b are taken in K and the condition in this case

becomes b(a2 − 4) 6= 0.

Example 6. To get familiar with elliptic curves and see how they look in their common representa-

tion, let us introduce the curve secp256k1, which we will talk about later, to give an example.

Short Weierstrass form of the secp256k1: y2 = x3 + 7.
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Figure 2: Geometrical representation of secp256k1.

This curve is typically used in a digital signature called ECDSA (Elliptic Curve Digital Signature

Algorithm), used by the Bitcoin protocols. This example shows that we do not need very large

parameters for a and b to make the protocols secure. Instead, what will become important will be

the finite field K that we choose to set our curve in. For example, in the case of secp256k1, the

field taken is Fp where p = 2256− 232− 977. For more information about this protocol see [KD13].

2.1.1 Group law

To make cryptography we need some sort of mathematical structure. For now, elliptic curves are

defined as algebraic varieties. In this subsection we talk about their group structure. Since we are

working with elliptic curves over finite fields, this should not be a surprise for anyone. Given a finite

field K and an elliptic curve E = E (K ) with n points, there is a natural bijection with {0, ... , n− 1}

and one can transport the group structure of Z/nZ to E using this bijection. However, we need

more than that to make cryptography. We need this group law to be relatively natural and, most

importantly, efficiently computable. Fortunately, elliptic curves have a very intuitive group law, at

least from a geometrical point of view. We will first see this intuitive geometrical approach and

afterwards we will give the algebraic formal definition.

2.1.2 Geometrical approach

Let E = E (K ) be an elliptic curve over a finite field K and consider the geometrical representation

of its short Weierstrass form in the plane. We define the group operation + as follows.

First of all, we set the point at infinity O to be the neutral element. This means that for any P

in E , P +O = O + P = P.

Now let P and Q be two different points in E different than O. Joining this two points we get

a line, which will intersect a third point of the curve. Note that this line could be a vertical line. In

this case, it will intersect the curve at O, and we define P + Q = O. Otherwise we define P + Q
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to be the x-axis reflection of this third point. See Figure 3a for an example.

Given P ∈ E we still have to define P + P. In this case, take the tangent line to the point P.

This line intersects the curve in exactly one more point. Note that this point could be O. In this

case, we define P + P = O. Otherwise, we define P + P as the x-axis reflection of that point. See

Figure 3b for an example.

(a) Sum of two different points. (b) Sum of one point with itself.

But why does this work? We are implicitly working in the projective space, and therefore we

need to be careful when using intuition. In our definition we assumed that a line intersects the curve

in exactly three points, up to multiplicity. For this to be mathematically rigorous we need to use

Bezout’s Theorem. Since the elliptic curve is a projective variety given by a polynomial of degree

3, and the line is a projective variety given by a polynomial of degree 1, Bezout’s Theorem tells us

that they will intersect in exactly 3× 1 = 3 points, up to multiplicity.

2.1.3 Algebraic definition

Let E be an elliptic curve with short Weierstrass form y2 = x3 + ax + b.

Given P, Q two points of the elliptic curve, we define P + Q as follows

• If P = O set P + Q = Q.

• If Q = O, set P + Q = P.

• Otherwise, set P = (xP , yP), Q = (xQ , yQ) and

– If xP = xQ and yP = −yQ , set P + Q = O.
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– Otherwise, define λ as

λ :=


yP−yQ
xP−xQ if P 6= Q

3x2P+a
2yP

if P = Q.

and set P + Q = (xS , yS) where xS = λ2 − xP − xQ and yS = λ(xP − xS)− yP .

Observation 2. When talking about the computational costs of cryptographic protocols involving

elliptic curves, optimizing the costs of arithmetic operations will be crucial. It turns out that curves

in Montgomery form have good properties in that sense. That is why, in the implementations of the

protocol we aim to study, curves will usually be specified to be in Montgomery form.

2.2 Important concepts

Definition 11. Let E be an elliptic curve. For a non-negative integer m we define the multiplication-

by-m map as

[m] : E −→ E

P 7−→ mP := P+
m· · · +P

and for a negative integer m < 0 we define the multiplication-by-m as

[m] : E −→ E

P 7−→ mP := [−m][−P] = (−P)+
−m· · · +(−P).

Notation. Using the natural embedding

Z −→ End(E )

n 7−→ [n]

we will sometimes write the multiplication-by-n map as n instead of [n] and consider Z as a subset

of the endomorphism ring End(E ).

Given an integer l , we will be interested in for which points we have [l ]P = O. Let us define

this concept.

Definition 12. Let E = E (K ) be an elliptic curve over a field K . For an integer l we define the

l -torsion subgroup as

E [l ] :=
{

P ∈ E (K ) | [l ]P = O
}

.
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Proposition 1. For any integer l , E [l ] is a subgroup of E .

Proof. It is not hard to check that the group requirements hold for E [l ]. However, it is easier

and will be more helpful to note that E [l ] = ker([l ]). Since elliptic curves are abelian groups, the

multiplication-by-m map is a group morphism, and therefore its kernel is a subgroup of E .

There is one crucial result about the structure of the l-torsion groups that we will use several

times.

Proposition 2. ([DF17], Proposition 4) Let E = E (K ) be an elliptic curve over a finite field K with

characteristic p. Then, if gcd(p, l) = 1 we have E [l ] ∼= Z/lZ× Z/lZ.

Elliptic curves can be classified in two categories: supersingular and ordinary ones.

Definition 13. Let E be an elliptic curve over Fpm . We will say that E is supersingular if E [p] = {O}.

We will say that E is ordinary if it is not supersingular.

There are many differences between ordinary curves and supersingular ones, and the protocol

we aim to understand here, the SIDH, uses the latter. However, we will also be interested in the

properties of ordinary curves because other cryptographic schemes have been proposed using them.

We will talk about these protocols and the differences between ordinary and supersingular curves in

3.5.

Another morphism which we will be interested in is the Frobenius endomorphism.

Definition 14. Let E be an elliptic curve defined over Fq. We define the Frobenius endomorphism

as

πq : E −→ E

O 7−→ O

(x , y) 7−→ (xq, yq).

Proposition 3. ([Sch87], Proposition 3.6) Let E be an elliptic curve over Fq and πq the Frobenius

endomorphism. Then, there exists a unique t ∈ Z ⊂ End(E ) such that πq satisfies the equation

π2q − tπq + q = 0.

Definition 15. We will call t from Proposition 3 the trace of the Frobenius endomorphism or simply

trace of Frobenius.

Let us now introduce the j-invariant, which will play a crucial role in elliptic curve and isogeny-

based cryptography.
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Definition 16. Let E be an elliptic curve with short Weierstrass form y2 = x3 + ax + b. The

j -invariant of E is

j(E ) = 1728
4a3

4a3 + 27b2
.

Of course, with the corresponding change of variables, the j-invariant can be defined for curves

in Weiestrass form, Montgomery form, etc. The reason why this value will play such an important

role is because the j-invariant characterizes a curve, up to isomorphism. In other words, two elliptic

curves E , E ′ are isomorphic if and only if j(E ) = j(E ′). For a proof of this result see ([Sut17],

Theorem 14.14). With this property, when making isogeny-based cryptography we will usually work

with isomorphism classes of elliptic curves.

Observation 3. It is worth mentioning that, given a j-invariant (a quantity that is the j-invariant

of some curve over a fixed field Fq), one can also compute an elliptic curve with that j-invariant. In

fact, it is easy to check that, given j 6= 0, 1728, the curve E with short Weierstass equation

y2 = x3 +
3j

1728− j
x +

2j

1728− j

has j(E ) = j (other examples can be found in [Con96]). For j = 1728, we have the curve E : y2 =

x3 + x and for j = 0, the curve E : y2 = x3 + 1.

2.3 Structure and point counting

We now analyze some basics on the group structure of elliptic curves. The proofs of most of the

results we use here can be found in [Sch87] and [Wat69]. A well known result is that an elliptic

curve is isomorphic to either a cyclic group or a product of two cyclic groups (see [Sch87], Lemma

4.8). Let us show a remarkable result of point counting on elliptic curves, known as Hasse’s bound

or Hasse’s interval.

Theorem 1. (Hasse) Let E be an elliptic curve defined over Fpn for a prime p and integer n. Then,

|E (Fpn)| = pn + 1− tn with |tn| ≤ 2
√

pn.

For a proof of this result we refer to ([Sil09], Theorem V.1.1). It turns out that the quantity tn

is the trace of Frobenius and it is a multiple of p if and only if the curve E is supersingular ([Sch87],

Proposition 3.6). Joining this results we deduce the following:

• For a supersingular curve defined over Fp for a prime p, the only possible value for t1 with

|t1| ≤ 2
√

p is 0. Therefore, we have |E (Fp)| = p + 1. In this case, E (Fp) ∼= Z/(p + 1)Z.

22



• For a supersingular curve defined over Fp2 , the theorem tells us that t2 ∈ {−2p,−p, 0, p, 2p}.

More generally, a classical result from Waterhouse [Wat69] determines for which values of tn there

exists a supersingular elliptic curve over Fq = Fpn with Frobenius endomorphism of trace tn.

Let us use Waterhouse’s result to focus on the case that we will study (q = p2), so we can be

more specific.

Proposition 4. ([Wat69], Theorem 4.1) There exist supersingular elliptic curves over Fp2 with trace

of Frobenius t2 if and only if one of the following holds:

• t2 = ±2p.

• t2 = ±p and p 6≡ 1 mod(3).

• t2 = 0 and p 6≡ 1 mod(4).

Observation 4. In the SIDH, the conditions p 6≡ 1 mod(3) and p 6≡ 1 mod(4) happen to hold

false for the primes chosen in many implementations, which are of the form p = 2eA3eB d + 1 for an

integer d and large eA, eB . In this case, we then have that |E (Fp2)| = p2 + 1∓ 2p = (p ∓ 1)2 and

therefore E (Fp2) ∼= Z/(p ∓ 1)Z× Z/(p ∓ 1)Z.
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3. Isogenies and SIDH

3.1 Isogenies

Definition 17. An isogeny is a non-constant rational map5 between elliptic curves φ : E (K ) →

E ′(K ) such that φ(OE ) = OE ′ . We will say that two curves are isogenous if there is an isogeny φ

from E to E ′.

One important thing that we will use several times about isogenies and that may not be clear

from this definition is that they are morphisms of curves (see [Gal12], Lemma 7.3.6). Also, since

a morphism of projective curves is either constant or surjective ([Sut17], Theorem 5.12) and we

disallowed the constant functions, isogenies are surjective as well.

Example 7. The negation map defined as follows (taking E in the projective space as defined in

Definition 8)

φ : E −→ E

(X : Y : Z ) 7−→ (X : −Y : Z )

that sends P to its opposite by the elliptic curve group law is an isogeny, since we have already

defined it in a rational map form and φ(O) = φ(0 : 1 : 0) = (0 : −1 : 0) = (0 : 1 : 0) = O.

Actually we already know some functions that are isogenies. For example, the identity map is

an isogeny, and the multiplication-by-n map [n](P) = P+
n· · · +P is an isogeny as well.

3.1.1 Degree and separability

Let φ : E → E ′ be an isogeny defined over K , and let K (E ) and K (E ′) be the function fields of E

and E ′, respectively. Given a function f ∈ K (E ′), we can compute φ∗(f ) = f ◦ φ : E → E ′ and we

obtain φ∗(f ) ∈ K (E ) (see Figure 4).

5See [[Sut17], Definition 5.6] for the rational map definition.
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Figure 4: Diagram of the induced φ∗(f ) = f ◦ φ : E → K .

Hence, since isogenies are injective we have that an isogeny φ induces a injective map

φ∗ : K (E ′) −→ K (E )

f 7→ φ∗(f ) = f ◦ φ

Additionally, this yields a field extension K (E )/Im(φ∗).

Definition 18. We define the degree of φ as the degree of this field extension, deg(φ) := [K (E ) :

Im(φ∗)].

Definition 19. We will say that the isogeny φ is separable if the field extension K (E )/Im(φ∗) is.

For separable isogenies, we have an equivalent definition of the degree, which is easier to deter-

mine and compute.

Proposition 5. ([Sil09], Theorem 4.10) Given a separable isogeny φ, we have that deg(φ) =

|ker(φ)|.

It turns out that the degree has a very useful property, which we will use implicitly several times

from now on: it is multiplicative under composition of isogenies.

Proposition 6. ([Sut17], Corollary 6.8) Given a composition of isogenies γ = ψ ◦ φ we have

deg(γ) = deg(φ)deg(ψ).

3.1.2 Fundamental results

One of the reasons why we are interested in isogenies is that they preserve both facets of elliptic

curves, the algebraic variety and the group structure. Let us show some important results over

isogenies, some of which will be extremely necessary when constructing the SIDH protocol.

Proposition 7. ([Sut17], Lemma 5.21) Let E , E ′ be elliptic curves over K in short Weierstrass form

and φ : E → E ′ an isogeny between them. Then there exist polynomials u(x), v(x), s(x), t(x) with
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gcd(u, v) = gcd(s, t) = 1 such that

φ(x , y) =

(
u(x)

v(x)
,

s(x)

t(x)
y

)
.

This standard form for isogenies is a useful tool when algebraically working with them. It gives

a lot of information, specially the roots of these polynomials, which will define the kernel of the

isogeny. Also, with this definition we can give alternative (but equivalent) definitions for degree and

separability.

Proposition 8. ([Sut17], Remark 5.27) Let φ be an isogeny in standard form, φ(x , y) =
(
u(x)
v(x) , s(x)

t(x)y
)

,

1. The degree of φ is deg(φ) = max{deg(u), deg(v)}.

2. The isogeny φ is separable if and only if the derivative of u(x)
v(x) is nonzero.

It will be useful in many situations to have such a natural expression for isogenies. However,

this proposition tells us that, when it comes to computers, storing an isogeny in such form requires

storing coefficients of these polynomials, one of which (at least) has degree deg(φ). Hence, the

space required is O(|deg(φ)|).

Definition 20. Given an isogeny φ : E → E ′ of degree n, one can find another isogeny in the

opposite direction φ̂ : E ′ → E , which we will call the dual isogeny6. It is worth noting that this

isogeny is not the inverse of φ, meaning that φ̂ ◦ φ 6= IdE . However, this composition is indeed a

function we already know:

φ̂ ◦ φ = [n]E

where [n]E denotes the multiplication-by-n map in E .

It is also important to have in mind that it is not a hard problem to determine if two curves are

isogenous. This is thanks to Tate’s theorem:

Theorem 2. (Tate) Two elliptic curves E , E ′ defined over Fq are Fq-isogenous if and only if

|E (Fq)| = |E ′(Fq)|.

Since we will be working with isogenies between supersingular elliptic curves, the next result is

crucial.

Proposition 9. ([Sut17], Theorem 14.1) Let φ : E (K ) → E ′(K ) be an isogeny. Then, E is

supersingular if and only if E ′ is supersingular.

6A proof and detailed explanation of this can be found in ([Sil09], III.6).
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The proof of this proposition is not hard. Considering the composition [p]E2 ◦ φ = φ ◦ [p]E1 ,

where p = char(K ) and [p]Ei
denotes the multiplication-by-p in the curve Ei , one concludes that

deg([p]E1) = deg([p]E2) and the proposition follows.

Finally, let us show a result that we will be using many times explicitly in the scheme: Vélu’s

formulas.

Theorem 3. (Vélu) Let E be an elliptic curve in short Weierstrass form y2 = x3 + ax + b. Given a

subgroup G of E , there exists a unique -up to isomorphism- elliptic curve EG and a unique -up to

isomorphism7- isogeny φ with φ : E → EG such that ker(φ) = G .

For P /∈ G the isogeny φ is given by the formula

φ(P) =

x(P) +
∑

Q∈G\O

[x(P + Q)− x(Q)] , y(P) +
∑

Q∈G\O

[y(P + Q)− y(Q)]


where x(A) denotes the x-coordinate of the point A and y(A) its y-coordinate.

The short Weierstrass form of Im(φ) = E/G is y2 = x3 + a′x + b′ where

a′ = a− 5
∑

Q∈G\O

[
3x(Q)2 + a

]
b′ = b − 7

∑
Q∈G\O

[
5x(Q)3 + 3ax(Q) + b

]
.

Note that this theorem gives a bijection between subgroups of G -up to isomorphism- and

separable isogenies with domain E -up to isomorphism. This is a very powerful result, and it will be

crucial in the protocol. However, note that the formula for φ(P) needs O(|G |) group operations. In

the protocol, for security reasons, the size of the kernel of the secret isogenies will be exponential,

and therefore we will not be able to use this formula directly.

Observation 5. The first isomorphism theorem states that, for a morphism of groups f : G → H

one has

G/ker(f ) ∼= Im(f ).

In particular for an isogeny φ : E → E ′ we have E/ker(φ) ∼= E ′ because φ is exhaustive. Now let

G ⊂ E be a subgroup, φ the isogeny given by Vélu’s formulas using G and EG the corresponding

curve φ(E ). Then we have E/G ∼= EG . This is why we will usually talk about quotient groups when

using Vélu, although these formulas give a curve isomorphic to this quotient group.

7When talking about isogenies, “up to isomorphism” will mean “up to composition with isomorphisms”.
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3.1.3 Isogenies of prime power degree

Thanks to Proposition 6, we know that a composition of e isogenies of degree l will be an isogeny

of degree le . Let us briefly study this last type of isogeny. In particular, we will focus on separable

isogenies of degree le for some prime l and positive e, because it is the case that we will face in the

SIDH protocol, proving the following theorem.

Theorem 4. Let l be a prime and e ∈ Z an integer with e > 1. Let φ : E → E ′ be a separable

isogeny of degree le . Then, φ can be written as

φ = φe ◦ · · · ◦ φ1

where φi is an isogeny of degree l for all i ∈ {1, ... , e}.

Proof. We will first see a way to decompose the le-isogeny into a composition of an l-isogeny and

a le−1-isogeny. Then, repeating the same argument the theorem will follow.

Since φ is separable, we know that |ker(φ)| = le . Now, given that ker(φ) is a subgroup of E

because φ is a morphism of groups, we can use Cauchy’s theorem8 to say that there is an element

P ∈ ker(φ) of order l .

Now, since P has order l , the cyclic group 〈P〉 has order l as well, and Vélu’s formulas give a

unique -up to isomorphism- isogeny φ1 : E → E1 where ker(φ1) = 〈P〉, and thus deg(φ1) = l . Now,

we want to find an isogeny ψ : E1 → E ′ so that ψ ◦ φ1 = φ (as can be seen in Figure 5).

Figure 5: Commutative diagram of the decomposition of φ.

We know that kernels characterize isogenies up to isomorphism, thanks to Vélu’s formulas.

Hence, it is sufficient to find a ψ′ such that ker(ψ′ ◦ φ1) = ker(φ). Therefore, we want to send

ker(φ) to OE ′ by ψ′ ◦φ1, so we look at φ1(ker(φ)), which is a subgroup of E1, and we can use Vélu

again to find ψ′ : E1 → E ′′ with ker(ψ′) = φ1(ker(φ)). Then,

ker(ψ′ ◦ φ1) = φ−11 (ker(ψ′)) = φ−11 (φ1(ker(φ)).

8Let G be a finite group of order n. Cauchy’s theorem states that for each prime p dividing n, there is an element
g ∈ G with order p.
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Now we need to be careful, because φ−11 (φ1(ker(φ)) is not necessarily ker(φ). Instead,

φ−11 (φ1(ker(φ)) = ker(φ) + ker(φ1).

However, in our case, since ker(φ1) = 〈P〉 ⊂ ker(φ), we have that ker(ψ′ ◦ φ1) = ker(φ).

Therefore, E ′′ ∼= E ′ and ψ′ ◦ φ1 = α ◦ φ for some isomorphism α, as can be seen in Figure 6.

Figure 6

Now we can define ψ as ψ = α−1 ◦ ψ′ : E1 → E ′. It only remains to see that deg(ψ) = le−1,

but that is easy to check using Proposition 6 as follows.

φ = ψ ◦ φ1 ⇒ deg(φ) = deg(ψ ◦ φ1) = deg(φ1)deg(ψ)

and using that we know the degrees of φ and φ1 we can state

le = l · deg(ψ)⇒ deg(ψ) = le−1.

We now observe that the same argument can be used to decompose the le−1-isogeny ψ in

an l-isogeny and a le−2-isogeny and so on, until we reach l1, and this yields the desired chain

φ = φe ◦ · · · ◦ φ1.

Observation 6. More generally, if the prime factorization of the degree of an isogeny is l r11 ... l rnn

then it can be decomposed in r1 + · · · + rn isogenies of prime degree. It should be clear how the

proof above can be adapted to fit this generalization. However, for our purposes it suffices with this

theorem.
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3.2 Supersingular Isogeny Diffie Hellman (SIDH)

3.2.1 Simplified SIDH

Before we jump to the full version of supersingular isogeny Diffie Hellman, let us study a simplified

version that shows the main idea of the scheme.

In SIDH, instead of operating inside an elliptic curve using the group operation as in the regular

Diffie Hellman key agreement we will operate over elliptic curves using isogenies. In fact, we will

operate over isomorphism classes of elliptic curves, which are represented by j-invariants.

The main idea is the following. Alice and Bob will both choose a random point and its cyclic

subgroup of the public supersingular elliptic curve E , namely 〈a〉 and 〈b〉, and calculate E/〈a〉 and

E/〈b〉, respectively (in fact, they calculate curves isomorphic to E/〈a〉 and E/〈b〉), along with the

corresponding isogenies using Vélu’s formulas. They will send to the other party their quotient group

and they will be able to calculate E/〈a, b〉 up to isomorphism, sharing then a secret key j(E/〈a, b〉).

But Bob will have the following problem (and Alice the analogous): knowing E/〈a〉 and 〈b〉 is

not enough to calculate E/〈a, b〉, because 〈b〉 is not in E/〈a〉 but in E . We could solve this saying

that Alice sends the image of 〈b〉 by the isogeny φA : E → E/〈a〉, but that is where the security

of the protocol lies. The hard problem that a passive attacker would have to face is that given two

isogenous curves, it is hard to find the isogeny between them. Therefore, we would like to give as

less information as possible about these isogenies.

Let us introduce a change: instead of using random points 〈a〉 and 〈b〉, we will choose two points

for Alice, PA and QA and two for Bob, PB and QB and make them public. Then, they will use

a random combination of their points to define their secret subgroups. However, these points will

be taken such that 〈PA, QA〉 = E [lA] and 〈PB , QB〉 = E [lB ] for some primes lA 6= lB . The reason

why we can find such points is that from Proposition 2 we know that E [lA] ∼= Z/lAZ× Z/lAZ and

E [lB ] ∼= Z/lBZ× Z/lBZ, and the reason why we do so will become clear later on.

With this change, now instead of sending the image of 〈b〉 by the isogeny, Alice will send the

image of Bob’s generators and, with that, Bob will be able to calculate the image of his random

combination (because isogenies are morphisms).

Let us show a sketch of how the key exchange works. We will be omitting some crucial facts

like what is the ground field, how are the primes lA, lB chosen or what are the restrictions on the

random integers that both parties compute, but all these will be explained in forecoming sections

when we see the full protocol and prove its correctness. For now, assume that

• E is an elliptic curve defined over a field Fq.
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• Integers lA, lB are fixed different primes and gcd(lA, q) = gcd(lB , q) = 1.

• Points PA, QA, PB , QB ∈ E are chosen such that 〈PA, QA〉 = E [lA] and 〈PB , QB〉 = E [lB ].

We now explain a sketch of how the protocol works from Alice’s point of view.

1. Alice chooses two random integers nA, mA ∈ Z/lAZ and computes RA := nAPA + mAQA.

2. Let A be the cyclic group 〈RA〉. Vélu allows her to compute unique -up to isomorphism- curve

EA and isogeny φA such that

φA : E → EA and ker(φA) = A.

3. Evaluates Bob’s points PB , QB with φA and sends these values and her curve to Bob.

4. Receives Bob’s curve EB and evaluation of PA, QA on Bob’s isogeny φB(PA),φB(QA). Now

she can compute φB(RA) as

nAφB(PA) + mAφB(QA) = φB(nAPA + mAQA) = φB(RA).

5. Again, taking the group 〈φB(RA)〉 ⊂ EB Vélu’s formulas determine unique -up to isomorphism-

elliptic curve and isogeny EBA and φ′A with

φ′A : EB → EBA and ker(φ′A) = 〈φB(RA)〉.

Finally, the shared secret key is j(EBA).

Bob will act analogously, ending in a curve EAB and computing j(EAB) as the secret key. For

this protocol to work properly, we need the following theorem to hold.

Theorem 5. In the previous protocol, EAB
∼= EBA.

Proof. This is a particular case of Theorem 6, which we will prove later on.

3.2.2 Isogenies between supersingular elliptic curves

Let l be an integer such that gcd(l , p) = 1. We are interested in how many isogenies -up to

isomorphism- are there φ : E → E ′ such that deg(φ) = l . To count them we will use the fact

that for each subgroup G we have a unique -up to isomorphism- isogeny with G as kernel. In other
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words, what we have is a bijection between subgroups of E and (separable) isogenies φ : E → E . In

particular we have a bijection between subgroups of E of order l and isogenies φ : E → E ′ of degree

l .

Counting the subgroups of order l in E may not be easy. Let us try to fix that problem. Let

φ : E → E ′ be an isogeny with deg(φ) = l . We know that there exists the dual isogeny φ̂ and

φ̂ ◦ φ = [l ]. Now let P ∈ ker(φ) be a point of the kernel of φ. We have that

φ(P) = O ⇒
(
φ̂ ◦ φ

)
(P) = O ⇒ [l ](P) = O ⇒ P ∈ E [l ].

That means that the kernel of an isogeny φ of degree l is always in E [l ], namely ker(φ) ⊂ E [l ].

This will help us count the number of isogenies, because now we only have to count the subgroups

of order l in E [l ], and we know that E [l ] ∼= Z/lZ× Z/lZ. Thus, we only need to count how many

subgroups of order l are there in Z/lZ× Z/lZ.

Proposition 10. Let l be a prime integer. There are exactly l+1 subgroups of order l in Z/lZ×Z/lZ.

Proof. Let us count the subgroups of order l . First of all, note that any such group is cyclic, because

it has prime order. Consider, for each pair (x , y) ∈ Z/lZ× Z/lZ, the cyclic group 〈(x , y)〉. Since l

is prime, this subgroup has order l if and only if (x , y) 6= (0, 0).

Then, we have counted |(Z/lZ×Z/lZ)\{0}| = l2− 1 subgroups of order l . However, it is clear

that we have counted each subgroup multiple times with this process. In fact, in a cyclic group of

prime order l , each element has order l except for 0, meaning that each non-zero element of this

group is a generator. Hence, we have counted each subgroup of order l a total of l−1 times. Finally,

the number of subgroups of order l is l2−1
l−1 = l + 1.

Corollary 1. Given an elliptic curve E and a prime l, there are exactly l + 1 isogenies φ : E → E ′

such that deg(φ) = l .

The importance of this fact is clear. In SIDH, the secrecy of the isogenies that both parties

compute is essential to guarantee security. Therefore, we need the possibilities for those isogenies

to be exponential, and what we just studied shows that this requires the degree of the isogeny to

be exponential.

3.2.3 Supersingular isogeny graph

The idea of each supersingular elliptic curve having l + 1 isogenies originating from it leads to

the concept of the supersingular isogeny graph. Consider the set of supersingular elliptic curves
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isomorphism classes (or simply the set of supersingular j-invariants) as vertices and the l-isogenies

between them as edges. This graph is called supersingular isogeny graph. In fact, what we have

seen in the previous subsection is that this graph is l + 1-regular9.

A question may arise at this point: these j-invariants represent isomorphism classes of supersin-

gular elliptic curves, but these curves may not be defined over Fp. Not only we do not know where

do we have to look to find all these classes, but we do not even know if there are a finite many of

them. What is sure is that they all are defined over the algebraic closure Fp. Also, it turns out that

given a prime p, all the isomorphism classes of supersingular curves have a representative in Fp2 . In

other words, each supersingular elliptic curve defined over Fp is isomorphic to one defined over Fp2 .

That is why here we will always work in Fq = Fp2 .

In the same way that we counted isogenies (edges in the graph), one can also count j-invariants

(vertices in the graph). Let us get straight to the result in this case. The number of j-invariants of

curves defined over Fp2 , usually represented by Sp2 is

Sp2 =
⌊ p

12

⌋
+ δ + ε where δ =

0 if p ≡ 1 mod(3)

1 if p ≡ 2 mod(3)
and ε =

0 if p ≡ 1 mod(4)

1 if p ≡ 3 mod(4)
.

A study of supersingular isogeny graphs along with a proof of this result can be found in [KZ98].

For our purposes, what matters is that there are about
⌊ p
12

⌋
isomorphism classes of supersingular

elliptic curves, hence that many vertices on the graph.

Observation 7. Note that we chose the graph not to be directed although we defined the edges as

isogenies from a curve to another. This is because we know that for each isogeny φ : E → E ′ there

exists the dual isogeny φ̂ : E ′ → E , and thus the existence of an edge from j(E ) to j(E ′) implies

the existence of another edge from j(E ′) to j(E ).

With this notion, let us study what happened in the simplified version of SIDH. Alice chose a

random lA-isogeny, which is equivalent to taking a random step in the lA-isogeny graph, and so did

Bob in the lB -isogeny graph. These graphs share the set of vertices, and in our protocol the two

paths start in the same vertex, represented by j(E ), and end in the same vertex, represented by

j(E/〈RA, RB〉). In the full version, what will happen is that these random steps will become random

walks. Alice will compute a random leAA -isogeny in the lA-isogeny graph, for a small prime lA and a

large enough eA, which in fact will be the composition of eA isogenies of degree lA.

9Remember that a graph is k-regular if each vertex has exactly k neighbors (counting itself in case of loops).
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3.2.4 SIDH

We are now able to look at the full SIDH protocol, detailed below. The protocol is due to David

Jao and Luca de Feo and the original paper is [JDF11]. However, an extended version by Jao, de

Feo and Plût can be found in [DFJP14] containing all information of [JDF11], so we will sometimes

cite the extended version as the original paper as well.

Public parameters

Two different small primes lA, lB and two integers eA, eB such that leAA ≈ leBB .

A prime p of the form p = leAA leBB d ± 1 for a small factor d .

A supersingular elliptic curve E over Fq for q = p2 with (leAA leBB d)2 points.

Points PA, QA that generate E [leAA ].

Points PB , QB that generate E [leBB ].

Alice
Chooses two random integers

nA, mA ∈ Z/leAA Z not both divisible by lA
and computes RA := nAPA + mAQA.

Let A be the cyclic group 〈RA〉. Vélu’s

formulas determine unique -up to

isomorphism- curve EA and isogeny φA with

φA : E → EA and ker(φA) = A.

Evaluates Bob’s points PB , QB with φA and

sends these values and her curve to Bob.

EA,φA(PB),φA(QB)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Receives Bob’s curve EB and evaluation of

PA, QA on Bob’s isogeny φB(PA),φB(QA).

Now she can compute φB(RA) as

nAφB(PA)+mAφB(QA) = φB(nAPA+mAQA).

Again, taking the group 〈φB(RA)〉 ⊂ EB

Vélu’s formulas determine unique -up to

isomorphism- elliptic curve and isogeny EBA

and φ′A with

φ′A : EB → EBA and ker(φ′A) = 〈φB(RA)〉.

Finally, the shared secret key is j(EBA).

Bob
Chooses two random integers

nB , mB ∈ Z/leBB Z not both divisible by lB
and computes RB := nBPB + mBQB .

Let B be the cyclic group 〈RB〉. Vélu’s

formulas determine unique curve EB and

isogeny φB with

φB : E → EB and ker(φB) = B.

Evaluates Alice’s points PA, QA with φB and

sends these values and his curve to Alice.

EB ,φB(PA),φB(QA)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Receives Alice’s curve EA and evaluation of

PB , QB on Alice’s isogeny φA(PB),φA(QB).

Now he can compute φA(RB) as

nBφA(PB)+mBφA(QB) = φA(nBPB+mBQB).

Again, taking the group 〈φA(RB)〉 ⊂ EA

Vélu’s formulas determine unique -up to

isomorphism- elliptic curve and isogeny EAB

and φ′B with

φ′B : EA → EAB and ker(φ′B) = 〈φA(RB)〉.

Finally, the shared secret key is j(EAB).
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Theorem 6. In the previous protocol, EAB
∼= EBA.

Proof. Let ϕ : E → EAB the composition ϕ = φ′B ◦ φA and ψ : E → EBA the composition

ψ = φ′A ◦ φB . The diagram in Figure 7 represents the situation in the scheme:

Figure 7

In the construction of the protocol we imposed that RA and RB were mapped to the neutral

element O by both ϕ and ψ. In fact we imposed that the cyclic subgroups they generate, 〈RA〉 and

〈RB〉, were mapped to O, which is necessary because isogenies are group morphisms. With this, we

know that 〈RA, RB〉 ⊆ ker(ϕ) and 〈RA, RB〉 ⊆ ker(ψ). We will now show that these inclusions are,

in fact, equalities.

Let us show that ker(ϕ) = 〈RA, RB〉, and analogously the same will hold for ψ. Note that

|ker(ϕ)| = deg(ϕ) = deg(φ′B ◦ φA) = deg(φA)deg(φ′B).

First we observe that deg(φA) = |ker(φA)| = ord(RA) with RA = nAPA + mAQA. Now,

the condition that nA, mA can not be both divisible by lA becomes crucial in order to state that

ord(RA) = leAA . Let us prove this. Assume αRA = αnAPA + αmAQA = O for some α ≤ leAA and let

us prove that α has to be leAA . Note that αnAPA +αmAQA = O holds if and only if both αnAPA and

αmAQA are O. This is true because 〈PA, QA〉 ∼= Z/leAA Z× Z/leAA Z and hence 〈PA〉 ∩ 〈QA〉 = {O}.

Therefore, we have that if αRA = O thenαnAPA = O

αmAQA = O
⇒

ord(PA) = leAA divides αnA

ord(QA) = leAA divides αmA

.

Now, without loss of generality assume that nA is not divisible by lA. Then leAA divides α, hence

α must be leAA . Analogously, the same is true if mA is not divisible by lA. Therefore we can state

that ord(RA) = leAA = deg(φA).

We now need to calculate deg(φ′B). Note that deg(φ′B) = |ker(φ′B)| = |〈φA(RB)〉| and

〈φA(RB)〉 = {nφA(RB)|n ∈ Z} = {φA(nRB)|n ∈ Z} = φA(〈RB〉).
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We will prove that ord(φA(RB)) = ord(RB) by proving that αφA(RB) = O if and only if αRB = O.

First, if αRB = O then

αφA(RB) = φA(αRB) = φA(O) = O.

In the other direction, if αφA(RB) = O then φA(αRB) = O, so αRB ∈ ker(φA) = 〈RA〉 and thus

〈αRB〉 is a subgroup of 〈RA〉. But αRB is also a subgroup of 〈RB〉, and since ord(RA) = leAA and

ord(RB) = leBB are relatively primes, we have that 〈αRB〉 = {O} and therefore αRB = O.

With this we can conclude that

deg(φ′B) = |ker(φ′B)| = ord(φA(RB)) = ord(RB) = leBB

and, finally, we can state that deg(ϕ) = leAA leBB .

Now, let us see that |〈RA, RB〉| = leAA leBB as well. We will use the following well known result (a

corollary of the so-called second isomorphism theorem): for two finite subgroups H, K of a group G

with H or K being normal10, one has |HK | = |H||K |
|H∩K | (with multiplicative group notation).

In our case 〈RA〉 and 〈RB〉 have trivial intersection because they are cyclic groups and their

orders are relatively primes. Therefore, we have that

|〈RA, RB〉| = |〈RA〉+ 〈RB〉| = |RA||RB | = leAA leBB .

Since 〈RA, RB〉 ⊆ ker(ϕ) and |〈RA, RB〉| = |ker(ϕ)|, we conclude that 〈RA, RB〉 = ker(ϕ).

Analogously, one can see that 〈RA, RB〉 = ker(ψ) and, thus, ker(ϕ) = ker(ψ).

Now it only remains to use the first isomorphism theorem and we have

EAB = Im(ϕ) ∼= E/ker(ϕ) = E/ker(ψ) ∼= Im(ψ) = EBA.

Although in the protocol description may not look like there is a substantial change from what

we saw in 3.2.1, a lot has changed both theoretically and in practice. First, changing random steps

for random walks increased the size of the kernels exponentially. However a new problem arises:

Vélu’s formulas give a way to compute the isogenies, but the complexity of the computations grows

with as the size of the kernel, meaning that O(le) operations are required to compute an isogeny

of degree le . Therefore, now that we have exponentially big kernels this may look like a problem to

10A subgroup H of a group G is called normal if gN = Ng for all g ∈ G . In our case, all groups are normal because
elliptic curves are abelian.
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us. We will see how Alice computes the images of PB , QB in 3.4.3, where Theorem 4 will play an

important role.

Observation 8. In the SIDH protocol, the isogenies computed by Alice are φA and φ′A, and Bob’s

are φB , φ′B . This may be confusing for a first time reader, because the idea of getting to the same

endpoint from a common starting point may lead to think that party A computes one path and party

B computes another. In our case, one may think that Alice is doing the upper path E → EA → EAB

and Bob is doing E → EB → EBA. However, they are actually “exchanging” their roles in the middle

step, as can be seen in Figure 8 below.

Figure 8: The blue line represent Alice’s computations or “path”, and the red one represents Bob’s.

Observation 9. It is worth mentioning that this protocol is not a particular case of the group action

Diffie Hellman we saw in 1.5.3. It may look like isogenies are acting on the set of j-invariants in a

commutative way to reach a shared secret j-invariant. However, isogenies do not commute because,

in fact, once we compute an isogeny we are not in the same curve anymore, meaning that it does

not even make sense to think of commutativity.

3.2.5 Public key encryption from SIDH

The SIDH protocol is an unauthenticated key agreement. This means that an active attacker could

interfere in the conversation between Alice and Bob, for example changing the message that one

party receives by one of his or her choice. This is known as a man-in-the-middle attack, and clearly

SIDH is vulnerable to them. In [Gal18], Galbraith studies possible SIDH-based authenticated key

agreements (AKE) and proposes several AKE protocols.

SIKE is a key encapsulation protocol based on SIDH. In January of 2003, with the horizon of

large quantum computers getting closer, NIST initialized a project for post-quantum cryptography

standardization and SIKE is one of the candidates that passed to the second round of the selection11.

We do not give details of the SIKE protocol because it has many technical details to guarantee fast

implementations and additional security, and we are for now mostly working on the theoretical

11See the full list of round 2 submissions at https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-
submissions.
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approach. For all details, see the NIST submission [CCH+19] and also implementations can be

found in the SIKE website.

As in many key agreement protocols, one can easily derive a public key encryption scheme from

the SIDH key exchange. The idea is to use the secret shared key to encrypt and decrypt as in a

symmetric key encryption scheme. Let us show an example (which is defined in the original paper

[JDF11] and attacked in [GPST16]) with one-time pad (see Example 2) as symmetric key scheme.

We will be using the same notation as in the SIDH protocol.

1. Public parameters. The public parameters are chosen as in SIDH and, additionally, a hash

function H is also agreed as a public parameter. Then we have as public parameters

p,Fp2 , E , PA, QA, PB , QB , lA, eA, lB , eB , H.

2. Keys generation. Alice generates (nA, mA) as in the protocol. This pair will be her secret key.

She then computes her first step of the protocol and publishes (φA(PB),φA(QB), EA). This

will be her public key.

3. Encryption. Bob wants to cipher a message m. First, he chooses nB , mB as in the protocol

and he computes the secret shared key k. He computes H(k) and c := m ⊕ H(k).

The encrypted message he sends to Alice is the ciphered m, which we called c , and the

information that Alice needs to compute the secret key and then decrypt c , namely

Enc(m) = (EB ,φB(PA),φB(QA), c).

4. Decryption. Upon receiving Bob’s message, Alice can compute the secret shared key k as in

the SIDH protocol and then recover the message as m = c ⊕ H(k).

3.3 Security

To study the security of SIDH and the attacks that have been proposed against this protocol and

other isogeny-based schemes, first we should define some basic problems for the attacker to solve.

Let us first define a basic and general one, which we will call the pure isogeny problem.

Problem 3. Pure isogeny problem. Given two elliptic curves E , E ′ over Fp with |E (Fp)| =

|E ′(Fp)|, find an isogeny φ : E → E ′.
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Alternatively, one can also give the information of the degree of the isogeny. In the SIDH case

that is also a known parameter so let us define a slightly different problem.

Problem 4. Given two le-isogenous elliptic curves E , E ′ over Fp, find an le-isogeny φ : E → E ′.

Obviously, an attacker that could solve any of these problems would easily break the SIDH

protocol, recovering the isogenies and thus the kernels and the key. The good news is that no

classical or quantum attack has been published that solves that problem in less than exponential

time. But this is too general. Let us define the problem that a passive attacker would have to

face in SIDH in order to find the isogeny, with the information being the public parameters of SIDH

and the information that Alice shares with Bob. We will assume without loss of generality that the

adversary attacks Alice’s isogeny.

Problem 5. Computational Supersingular Isogeny problem (CSSI). Given

q,Fq, E , lA, lB , eA, eB , PA, QA, PB , QB ,φA(PB),φA(QB) and EA

compute the isogeny φA : E → EA.

It is clear that computing the isogeny is equivalent to computing a generator of A, so we could

have also defined it the other way. Also, note that we do not give the attacker the information

that Bob shares to Alice. In fact, that information should be completely irrelevant for him to

compute Alice’s isogeny, because Bob’s random choice of integers nB , mB (and, thus, of isogeny) is

independent from Alice’s computations.

However, none of this problems gives enough security. It is good (and necessary) that an attacker

can not find the isogeny between E and EA, but what we really want to secure is the shared key

j(EAB) = j(EBA). What if the attacker could compute that value without discovering the secret

isogeny? That would be a problem as well. In fact, what we would like is that, for an attacker, the

secret shared key is as similar to a random value as possible. In other words, we want the attacker

to not be able to distinguish between the secret key and a random value. Let us formally define this

concept with a game.

Game 2. Indistinguishability of SIDH.

We will be using the notation from subsection 3.2.4.

In this game there will be two parties: the challenger and the attacker. The game proceeds as

follows:
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1. First, the challenger generates the public parameters of a SIDH protocol, namely

PublicParams = (Fq, E , lA, eA, PA, QA, lB , eB , PB , QB).

2. He computes a key k1 using the SIDH protocol acting as two honest parties12 Alice and Bob

and also the information that they exchange

ExchangedInfo = (φA(PB),φA(QB), EA,φB(PA),φB(QA), EB).

3. Then, he generates a random bit b ∈ {0, 1}.

• If b = 0, he computes a random value k0 in the set of possible supersingular j-invariants

of curves over Fq. Then, he sends the PublicParams, ExchangedInfo and this value k0

to the attacker.

• If b = 1, he sends PublicParams, ExchangedInfo and the key k1 to the attacker.

4. The attacker receives the public parameters and the value k , and then in polynomial time he

outputs a bit b∗ ∈ {0, 1}.

5. The attacker wins if and only if b = b∗.

To the date, no classical or quantum polynomial or subexponential algorithm is known that wins

this game with non-negligible advantage.

3.3.1 Auxiliary points

A natural question about the security of SIDH is how much information does an attacker obtain

from φA(PB , QB) and φB(PA, QA). One important observation is that not only we are giving the

attacker the images of some particular points, but the image by φA of the whole leBB -torsion group

and the image by φB of the whole leAA -torsion group. Let us explain why this is true.

Remember that PA and QA generate E [leAA ]. Thus, each point R of E [leAA ] can be written as

R = nPA + mQA for some n, m. That means that the image of R by φB is

φB(R) = φ(nPA + mQA) = nφB(PA) + mφB(QA).

12By honest parties we mean parties that follow the specification as defined. For example, in SIDH a dishonest Alice
could choose nA and mA in a specific way so that she can get information about Bob’s secret subgroup, or even use a
specific isogeny of her choice without following the protocol. Hence, in this case what we mean is that nA,mA, nB ,mB as
chosen randomly (in their respective possible values) and the following process is done as described in the specification.
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All this was clear, but the problem comes to find the integers n, m. In fact, finding this numbers

reminds us to the discrete logarithm problem, for which we have a polynomial quantum algorithm.

Actually, since we are working in a group of order l2eAA or l2eBB , all the prime factors are small and

the discrete logarithm is easy even in classical computation thanks to the Pohlig-Hellman algo-

rithm [PH78], and polynomial algorithms exist to compute this 2-dimensional logarithm (see the

generalization of Pohlig-Hellman algorithm in [Tes99]).

Petit’s work [Pet17] shows a way to exploit the auxiliary points given. Assuming some additional

knowledge he shows a polynomial time attack to recover the secret isogeny. In SIDH, the attacker is

revealed the image of E [leBB ] by φA, which is a leAA -isogeny. One of Petit’s assumptions is the image

of E [N2] by the N1-isogeny with N2 significantly larger than N1. This is not the case of SIDH, where

N1 = leAA ≈ leBB = N2. He also assumes some non-scalar endomorphisms over the original curve to

be known or easy to compute. The main idea of the attack is to consider ψ := θ1φ + θ2 where

φ is the secret isogeny and θ1, θ2 are known endomorphisms such that deg(ψ) = N ′1N2 for some

N ′1. Then one can decompose ψ = ψN′
1
ψN2 as a product of a N ′1-isogeny and a N2-isogeny. Using

that the image of φ in E [N2] is known, one can evaluate ψ in E [N2] and then he shows how to

find ker(ψN2) and, thus, ψN2 . He then uses a meet-in-the-middle attack to recover ψN′
1

and finally

computes φ = θ−11 (ψN′
1
ψN2 − θ2). He also shows a way to use this technique without the given

endomorphisms, adding some extra conditions and using scalar multiplications as endomorphisms.

3.3.2 Reusing keys

Here we talk about an important weakness of SIDH. When talking about a public encryption scheme

it is natural to ask how long can the keys be reused before we lose too much security. Focusing on

Alice, this can be asked in the SIDH key exchange talking about her secret combination (nA, mA).

It turns out that the protocol loses security when Alice keeps reusing the same random combination

(nA, mA) and, therefore, the same secret subgroup 〈RA〉 and isogeny. Galbraith, Petit, Shani and Ti

[GPST16] show how to attack the protocol in an active adaptive attack, acting as a dishonest Bob.

Let (nA, mA) be the static pair that Alice is using. Their only assumption is to have access to an

oracle

O(E , R, S , E ′) =

1 if j(E ′) = j(E/〈nAR + mAS〉)

0 otherwise.

This assumption is realistic. If E is the curve computed by Bob (E = EB
∼= E/〈RB〉 in the SIDH

between honest parties), then the oracle query is just a validation of the secret shared key being

correct, which is reasonable to exist in order to guarantee authentication in the messages exchanged
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after the key agreement. We do not show how the attack works, because it involves concepts that

we have not explained here. The attack requires about 1
2 log2(p) interactions with Alice.

Countermeasures have been discussed to avoid this type of attacks against SIDH. Some of them

were found vulnerable to the GPST, however there are countermeasures that prevent this attack,

checking that the auxiliary points sent by Bob correspond to a honest user. In [GPST16] they

discuss the usability of this countermeasures and remark that the ones that avoid this attack require

an important amount of time in validations.

It is worth mentioning another attack defined in the same article [GPST16]. In this attack, a

honest key-agreement takes places between Alice and Bob with Eve eavesdropping the session, hence

obtaining EA, φA(PB), φA(QB), EBφB(PA), φB(QA) and then Eve acts as Bob to recover the shared

j-invariant choosing her secret curve as EB/〈RC 〉 for some specific 〈RC 〉. In the attack they assume

to obtain some partial information of the j-invariants computed by Alice, which could be obtained

for example via a side-channel attack13, and hence they obtain information on j(E/〈RA, RC 〉) which

they use to recover information from j(EAB).

Of course, it is important to know what to do we mean by “partial information”. They mount

the attack based on two possible oracles for this partial information that we are mentioning.

Before we introduce them, note that the field Fp2 is an extension of Fp for some α with α2 +

Aα + B = 0 with A, B ∈ Fp. Then we can write Fp2 = Fp(α) and if x ∈ Fp2 one can write it as

x = a + bα for some a, b ∈ Fp. We will say that a and b are the components of x . One of the

oracles they define return one of the two components of the j-invariant that Alice computes. The

other one returns only the most significant bits of one of the components. To know how reasonable

are this oracles we should do a completely different study, focusing on the side-channel weaknesses

of the SIDH, which is not in the route of this work.

The result of the attack assuming to have the more powerful oracle (the one that outputs a full

component) is that with only two queries they are able to recover the secret key with probability at

least 1
18 in the worst case (when none of the two components given by the oracle is the α-component).

3.3.3 Meet in the middle

To the date, the best known classical or quantum attack to the protocol using no extra information

is a generic approach -meaning that it barely uses any property of the elliptic curves or isogenies-

13Informally, a side-channel attack does not attack the structure of the protocol itself, instead it uses physical
observations and information on, such as detecting voltage spikes, calculating computation times or similar techniques
on the honest users devices. For example, if a protocol requires significantly small computing time to encrypt or decrypt
for some specific keys, a side-channel attack could be used to obtain some information.
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that takes exponential time both in classical and quantum computers. The abstract attack is defined

against the generic claw search problem. In this section we will assume that, when trying to recover

the secret isogenies of SIDH, we do so against Alice’s secret isogeny.

Problem 6. Let f : A → C and g : B → C be two functions with |A| ≤ |B|. The claw-search

finding problem is to find a pair (a, b) ∈ A× B such that f (a) = g(b).

As mentioned in [CLN+19], the claw-search problem can be solved in O(|A| + |B|) time and

O(|A|) space in classical computation, and Tani [Tan07] shows how to solve it in a quantum computer

with time

O((|A||B|)1/3) if |A| ≤ |B| < |A|2

O(|B|1/2) if |B| ≥ |A|2.

Using the notation from the SIDH protocol, to reduce CSSI to the claw-search, let A be the

order-l
eA/2
A cyclic subgroups of E [leAA ] and B be the order-l

eA/2
A cyclic subgroups of EA[leAA ]. For

G ∈ A define f (G ) = j(E/G ) where j(E/G ) is obtained using Vélu’s formulas. Similarly, for H ∈ B

define g(H) = j(EA/H). If we can find G , H such that f (G ) = g(H) then we can yield an isogeny

from E to EA as we will see step by step. First, we define the abstract idea of the attack.

1. Compute all possible paths in the le/2 supersingular isogeny graph starting from the vertex

j(E ) and store the resulting edge and vertex.

2. Compute paths in the graph starting from j(E ′) until a collision is find with one of the stored

values.

Now let E , E ′ be supersingular elliptic curves and assume we want to find an isogeny φ : E → E ′

of degree le . In the SIDH we would be trying to recover a leAA -isogeny, so one can think of l as lA,

e as eA and E ′ as EA, and thus p = leAA leBB d ± 1 ≈ l2e (remember that leAA ≈ leBB ). Let us assume

that e is even for simplicity. The basic meet-in-the-middle attack proceeds as follows:

1. Compute all subgroups G of E [l ] of order le/2, and their corresponding isogenies and images

φG : E → EG . Store each pair (G , j(EG )).

2. For each subgroup H of E ′[l ] of order le/2, calculate its corresponding ψH : E → EH and

j(EH). Then, search in the stored values from Step 1 for a G ⊂ E [l ] with j(EG ) = j(EH). If

one such G is found, one can find an isomorphism α : EG → EH and yield

E
φG−−→ EG

α−−→ EH
ψ̂H−−−→ E ′
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where ψ̂H denotes the dual isogeny of ψH . Clearly we have the desired degree

deg(ψ̂H ◦ α ◦ φG ) = le/2 · 1 · le/2 = le .

Observation 10. In the algorithm above we computed a dual isogeny, and a question arises: can

isogeny duals for SIDH-like isogenies be computed in polynomial time? The answer is yes. One can

find how this can be done in [NR19], together with an optimization of the SIKE protocol using dual

isogenies.

However, as we said before and is clear from the definition, the MITM does not run in polynomial

time. There are (l + 1)le/2−1 subgroups of order le/2 in E [le ]. It follows that the algorithm needs

to do, at least, (l + 1)le/2−1 Vélu computations to get isogenies of degree le/2. In fact, assuming

that the paths in the graph are random, the average case needs 1.5(l + 1)le/2−1 such computations,

and the worst case 2(l + 1)le/2−1. Since le ≈ √p, the quantity (l + 1)le/2−1 is O(p1/4). The space

complexity of the attack is also huge, because we have to store the pairs (G , j(EG )) for all subgroups

G ⊂ E [l ]. Again, since there are (l + 1)le/2−1 such groups, the space required is O(p1/4).

Many optimizations for this strategy have been found, for example using a depth-first-search

(DFS) strategy. In [ACVCD+18] they define this optimization and show the following results.

Figure 9: ([ACVCD+18], TABLE 1) Meet-in-the-middle attacks for finding a 2eA-isogeny between
two supersingular elliptic curves over Fp2 with p = 2eA ·3eB ·d−1. For each p, 25 randomly generated
CSSI instances were solved and the average of the results are reported. The “expected time” and
“measured time” columns give the expected number and the actual number of degree-2eA/2 isogeny
computations for MITM-basic. The space is measured in bytes.

In [ACVCD+18] they mention that, although the MITM strategy seems to be optimal for the

CSSI problem, the space required is completely infeasible for cryptographic applications. They also
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give one of the best optimizations, which uses Oorschot-Wiener’s parallel collision search [VOW99],

which can be found implemented with some improvements in [CLN+19].

3.4 Implementations and performance

In this section we analyze why the SIDH can be done efficiently, how efficient it is and what can be

done to optimize the operations required in the protocol, such as large-degree isogeny computations

and arithmetic in elliptic curves. Then, we talk about the experimental results on the performance

of SIKE, the key-encapsulation SIDH-based protocol competing to become a standard by NIST and

we compare it to other post-quantum protocols.

3.4.1 Parameters generation

When we were defining the SIDH protocol we made some implicit assumptions such as the fact that

we were able to efficiently choose primes of a given form or random supersingular elliptic curves in

a certain field. Let us briefly discuss why this is true, which can also be found in the original papers

of SIDH ([DFJP14], [DFJP14]).

First, the small primes lA, lB are usually taken as 2, 3, respectively. However, in some cases it can

be useful to use 4 instead of 2 for computational reasons. Although 4 is not a prime, the protocol

works properly because gcd(3, 4) = 1.

Now we need to choose eA, eB , d so that leAA ≈ leBB and p = leAA leBB d ± 1 is a prime number. To

guarantee that choosing random eA, eB , d (such that leAA ≈ leBB , which is not hard to check) will

often yield a prime p, we use the following theorem.

Theorem 7. ([Eve18], Theorem 6.4) Prime number theorem for arithmetic progressions. Let

π(x , n, a) denote the number of primes p ≤ x such that p ≡ a mod(n). Then,

π(x , n, a) ∼ 1

ϕ(n)

x

log(x)
as x →∞

where ϕ(n) denotes Euler’s totient function, the number of positive integers 1 ≤ k ≤ n such that

gcd(n, k) = 1.

With this, taking a = ±1 and n = 2eA3eB we obtain that, when we look at very large numbers,

there is a reasonable quantity of primes of the form p = 2eA3eB d ± 1.

Choosing a supersingular elliptic curve E over Fp2 with (p ∓ 1)2 = (2eA3eB d)2 points can be

done in O(log(q)3) as shown in [Brö09], as long as such curve exists. To justify its existence, recall
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from 2.2 that |E (Fp2)| = p2 + 1 − t where t is the trace of Frobenius and also recall Proposition

4, which determined for which values of t there exist supersingular curves. Since p = 2eA3eB d ± 1,

choosing t = ±2p (which Proposition 4 states as possible values for t) we obtain a curve with

|E (Fp2)| = p2 + 1∓ 2p = (p ∓ 1)2 = (2eA3eB d)2. Then we can use Bröker’s algorithm to compute

the curve efficiently.

From the curve given by Bröker’s algrithm, one can find a “random” curve by randomly walking

in supersingular isogeny graphs. This random walks should be properly defined in order to formally

justify the efficiency of parameter generation, we just give the idea and refer to [DFJP14] for further

details.

It only remains to see how one can efficiently choose points P, Q that generate E [le ]. Not only

P, Q need to have maximal order le , but we also need them to be independent. However, the latter

can be easily verified and will hardly ever happen, so the main difficulty is fining points of maximal

order. Recall that E [le ] ∼= Z/leZ×Z/leZ and note that for a point (a, b) ∈ Z/leZ×Z/leZ to have

maximal order le it suffices that one of its two components has order le . Also, an element a ∈ Z/leZ

has order le if and only if gcd(a, le) = 1. But gcd(a, le) = 1 if and only if gcd(a, l) = 1, so a has

order le in Z/leZ if and only if a modulo l has order l in Z/lZ. This means that the elements of

maximal order in Z/leZ are numbers of the form n + kl with gcd(n, l) = 1 and 0 ≤ k < le−1. With

ϕ(l) choices for n and le−1 choices for k , we obtain that there are le−1ϕ(l) such numbers.

Finally with the primes chosen as 2 and 3 we can state that

• In Z/2eAZ there are 2eA−1 elements of maximal order (which is a half of all the elements).

Then, a random point in Z/2eAZ× Z/2eAZ has maximal order with probability at least 3
4 .

• In Z/3eBZ there are 2 · 3eB−1 elements of maximal order (which is 2
3 of all the elements).

Then, a random point in Z/3eBZ× Z/3eBZ has maximal order with probability at least 8
9 .

This justifies taking random leAA -torsion points to obtain maximal order points in E [leAA ]. As a way

to generate these random leAA -torsion points, in [JDF11] they suggest choosing random points in the

curve and multiplying by (leBB d)2. The same reasoning holds for leBB .

3.4.2 Multiplication map computation

Recall the multiplication-by-m map [m]P = P+
m· · · +P, and let us take a look at how this operation

should be done in an elliptic curve.

The naive approach is to compute the literal sum P+
m· · · +P. However, as we have seen, the

addition in elliptic curve requires an important amount of time (compared to the operations of other

46



groups used in cryptography, such as Z/pZ). This first approach requires m − 1 sums.

Let us show a technique called double-and-add, which is commonly used to compute this type

of operations. Assume we want to compute [b] P and let b = b0 + 2b1 + 22b2 + · · ·+ 2nbn be the

binary decomposition of b. Then, [b] P = [b0] P + [2] [b1] P +
[
22
]

[b2] P + · · ·+ [2n] [bn] P and each

[2s ] is, in fact, [2]s = [2] ◦ · · · ◦ [2]. Now we use this decomposition of [b] P to compute it term by

term.

The idea is to iterate from 0 to n computing the corresponding term. Of course, we only do

computations if bi = 1, and in this case the
[
2i
]

P is computed as [2]
([

2i−1
]

P
)

because we have

stored
[
2i−1

]
P from the previous computation.

With this strategy we do log2(b) doubling operations and, at most, the same number of point

adding operations. The worst case of this strategy then needs 2log2(b) point adding operations,

which is much better than the naive strategy. However, as mentioned in [JDF11], the double-and-add

strategy is vulnerable to a side-channel attack known as Simple Power Analysis (SPA). Assuming an

attacker has access to the power consumption of the machine computing [b]P with this algorithm,

it is not hard to determine the binary representation of b, distinguishing the case when the machine

does not compute operations (when bi = 0) and the case when it does (when b = 1), and thus

consumes more power. This can be solved by adding noise to the signal or performing unnecessary

or dummy operations.

In the SIDH case we want to compute nP +mQ for P, Q ∈ E [le ] and n, m ∈ Z/leZ, which looks

like two multiplication maps and a sum. However, since either n or m are invertible modulo le (we

assume it is n), it suffices to compute P + n−1mQ (or m−1nP + Q, in the other case), because they

generate the same subgroup of E [le ]. In ([JDF11], §4.2.1 Algorithm 1) they propose an algorithm

for such purpose, which they claim to be much better than the other general approaches. This same

algorithm is also used in the other two implementations we cite in this section [CLN16], [AFJ].

3.4.3 Large degree isogenies computation

As we mentioned right after the protocol specification, the isogenies used in SIDH are too large to

use Vélu formulas. Let us explain how these isogenies can be computed efficiently. From Theorem 4

we know that le-isogenies are compositions of e isogenies of degree l . Let us show how to construct

these l-isogenies in the case of SIDH. Assume we start in E0 and we want to compute an isogeny

φ : E0 → E with kernel 〈R〉 = 〈nP + mQ〉, where 〈P, Q〉 = E0[le ] and (n, m) 6≡ (0, 0) mod(l). As

we saw in the proof of Theorem 6, the condition on n, m implies that R has maximal order le .

Let R1 = [le−1]R ∈ E0. Since ord(R) = le , the order of R1 is l , and hence we can efficiently

47



use Vélu to find φ1 : E0 → E1
∼= E0/[le−1]R with ker(φ1) = 〈R1〉.

Let R2 = [le−2]φ1(R) = φ1([le−2]R) ∈ E1. Note that R2 has order l , because [l ]R2 =

φ1([le−1]R) = O by construction. Since ord([le−2]R) = l2 and ord(R2) = l we can compute

Vélu again to find φ2 : E1 → E2 with ker(φ2) = R2. Now note that we have E2
∼= E0/[le−2]R. This

is easy to see using the same argument as in the proof of Theorem 6. We have that

• The composition φ2 ◦ φ1 has degree l2 because both isogenies have degree l .

• The point [le−2]R of order l2 is in the kernel of φ2 ◦ φ1 by construction.

and that means that ker(φ2 ◦ φ1) = 〈[le−2]R]〉 and hence Im(φ2 ◦ φ1) = E2
∼= E/[le−2]R

Similarly, any 1 ≤ i ≤ e we have that Ri = [le−i ](φi−1 ◦ · · · ◦ φ1)R ∈ Ei has order l and using

Vélu we obtain an isogeny φi : Ei−1 → Ei with Ei
∼= E0/[le−i ]R. This ends with an isogeny chain

φe ◦ ...φ1 : E0 → E of degree le and E ∼= E0/R.

This way, instead of computing the isogeny of degree le using Vélu, which we know that requires

O(le) operations, we compute e isogenies of degree l , which can be done efficiently for small values

of l like 2, 3, 4. This strategy is enough for us to understand how this computation can be done

efficiently, but much better strategies can be found in the literature for the computation of such

isogenies. In [JDF11] they discuss deeply this aspect.

3.4.4 Performance

In [KRSS19] they test most of the Round 2 submissions of the NIST post-quantum standardization

project (see 3.2.5) on a ARM Cortex-m4 processor. Remember that SIKE is a key encapsulation

scheme, therefore the time is measured for key encapsulation and key decapsulation instead of

encryption and decryption algorithms. The running times of the SIKE protocol are studied in

[SJA19] and in [JAK+19], with the performance being analyzed from different possible processors.

They also discuss the feasibility of SIKE working in mobile devices.

We will show some results of the tests on the performance of SIKE, focusing on “SIKEp503”

and “SIKEp751”, where the “pXXX” refers to the size of the prime p used. In the former it stands

for p = 22503159 − 1 with log2(p) ≈ 503 and the latter for p = 23723239 − 1 with log2(p) ≈ 751.

This sizes are chosen in order to achieve certain security levels defined by NIST. SIKEp503 claims to

have security level II, which means that breaking it is as hard as breaking SHA256 (collision search)

and SIKEp751 claims to have security level V, which means that breaking it is as hard as breaking

AES256 (exhaustive key search).

14A clock cycle is a very small amount of time, corresponding to the latency with which processors compute
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In the SIKE 2nd round specification [CCH+19] their results show that a full SIKEp503 protocol

(with key generation, key encapsulation and decapsulation) runs in about 91.764.000 clock cycles14

on an ARMv8 assembly, while the SIKEp751 needs 307.105.000 clock cycles. They also show a

compressed version of SIKE protocols, which achieves ≈ 40% compression of key sizes in exchange

for a higher running time. The following table summarizes the memory needed in these protocols.

Figure 10: ([CCH+19], Table 2.2) Memory of keys and texts in SIKE protocol, measured in bytes.

However, a compressed SIKE503 full protocol runs in 151.262.000 clock cycles in their tests and

in the case of compressed SIKEp751 they get 524.448.000 clock cycles, which is about 40% slower

than the non-compressed versions.

The numbers results obtained in [KRSS19] can not be compared to the ones we have shown,

because they do not use the same optimizations and processors, but they do show some notable

things. First, in their results, many versions of SIKE have the highest running times among their

respective competitors in the same NIST security level. However, recent studies ([KAEK+], [SJA19],

[JAK+19]) of optimization in the performance of SIKE already show the feasibility of the protocol

in different devices. They also see how SIKE requires significantly less space than the average of

candidates. For example, their executions of SIKEp751 are about 2500 times slower (in terms of

clock cycles) than NewHope1024, a LWE-based protocol with the same NIST security level, but

NewHope1024 needs double the space than its isogeny-based competitor. This may not look like

a fair trade, but note that the speed can always be improved with faster processors, which execute

more clock cycles per second, while the space required will always be the same. Another good

example of this trade is the Classic McEllice (which we talked about in 1.6.3). While the protocol

runs in relatively fast constant time (see [BCL+17]), the public key sizes range from 255 KiB to

1326 KiB, where 1 KiB = 1024 B. This is much higher than SIKE’s public key sizes, that range

from 330 B to 564 B in the non-compressed versions.

Although the precise numbers may differ between different comparison articles between post-

operations and hence devices change their internal state.
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quantum protocols, the conclusion to which all the tests agree is that isogeny-based have the shortest

key sizes and the largest running time. This is because the keys are usually few points in an elliptic

curve, which can be stored in relatively short space, but arithmetic operations inside elliptic curves

require more time than in many other structures. Apart from SIKE, 16 other key encapsulation

methods have passed to the second round of NIST standardization project. From these, 9 are

lattice-based and 7 are code-based, and the former seem to require less space both in key sizes and

in ciphertexts than the latter. However, we will not analyze the performance differences between

code and lattice based protocols because it is beyond the scope of this work.

3.5 Supersingular versus ordinary elliptic curves

The SIDH protocol is not the first one that uses the hard problem of finding isogenies between elliptic

curves. Stolbunov [Sto10] presented a key agreement scheme (together with a public encryption

scheme) that was based in the group action of isogenies on elliptic curves. However, his protocol used

ordinary elliptic curves. This is not because he did not think of using supersingular elliptic curves,

which he did (see [Sto10], p.221), but because the endomorphism ring of an ordinary elliptic curve

is commutative, and that leads to the idea of group action. The scheme uses the commutativity of

the endomorphism ring to define a group action, that implicitly defines a key agreement scheme as

we saw in 1.5.3.

Stulbonov’s protocol was found vulnerable to a quantum attack that recovered the secret key in

subexponential time [CJS14]. Using precisely the fact that the endomorphism ring is commutative,

they made a reduction to a particular hidden shift problem15 (HSP), where the blackbox functions

required action evaluation. They showed that this evaluation could be done in subexponential time

and, with that, they also proved that the HSP could be solved in quantum-subexponential time.

That is what motivated researchers to try to create cryptographic schemes based on the hardness

of finding isogenies between supersingular elliptic curves16.

15Let A be a finite group and S a finite set. Let f , g : A → S two black-box functions such that there is a shift
s ∈ A with f (s) = g(s + x)∀x ∈ A. The HSP is to determine s with this information. In [CJS14], the group A is
abelian and they also use the fact that f is injective.

16In fact they mention the possibility of using supersingular elliptic curves in cryptography and understanding the
hardness of finding isogenies between them as an “interesting open problem” ([CJS14], p.3). In fact, one of the authors
of the attack (D. Jao) is also part of the team that presented the SIDH protocol.
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4. Conclusion

Assuming barely no knowledge on cryptography, our main goal was to understand the supersingular

isogeny Diffie Hellman key exchange from its most mathematical and theoretical point of view. We

have seen the basics of classical cryptography, empathizing on the Diffie Hellman key agreement,

and motivated the rising of post-quantum protocols as a need in the sights of a computation model

that will soon become a real threat to most of the classical cryptographic schemes.

We have briefly studied the basics of elliptic curves and its arithmetic, focusing on its rich

algebraic structure, and from there isogenies appeared as a natural need for their structure-preserving

property. Given that isogeny-finding is believed to be a hard problem for cryptography, we then

focused on our main object of study, the SIDH, merging the Diffie Hellman structure we had seen

together with this relatively new hard problem of finding isogenies. We then analyzed this problem

from its mathematical perspective trying to understand the real hardness of it, reviewing some

of the known attempts to solve it. Finally, we connected this theoretical idea of a key exchange

protocol with the implementation of it that is competing to become a standard in the post-quantum

cryptographic world and seen its performance in comparison with the other competitors.

In our way to understand SIDH we have proven some important mathematical results (such as

isogeny decomposition or SIDH correctness) which are not usually proven in cryptographic articles

and we believe this can help cryptographers who try to understand the mathematical fundamentals

behind the schemes. We also think that this work can also be useful for mathematicians who want to

introduce to the field of isogeny-based cryptography as we avoided any assumption of cryptographic

knowledge and tried to follow a logical mathematical order and style.

As future work, we believe that an interesting path would be to study the structure of the

endomorphism ring of elliptic curves (ordinary and supersingular) and how it affects isogenies. In

particular, the relation between isogeny-finding problem and the problem of computing the endo-

morphism ring of a given curve. Another interesting research field in the direction of this work is

the possible generalization of the notions we analyzed to hyperelliptic curves of genus 2 or higher.
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