11,906 research outputs found

    Sharp identification regions in games

    Get PDF
    We study identification in static, simultaneous move finite games of complete information, where the presence of multiple Nash equilibria may lead to partial identification of the model parameters. The identification regions for these parameters proposed in the related literature are known not to be sharp. Using the theory of random sets, we show that the sharp identification region can be obtained as the set of minimizers of the distance from the conditional distribution of game's outcomes given covariates, to the conditional Aumann expectation given covariates of a properly defined random set. This is the random set of probability distributions over action profiles given profit shifters implied by mixed strategy Nash equilibria. The sharp identification region can be approximated arbitrarily accurately through a finite number of moment inequalities based on the support function of the conditional Aumann expectation. When only pure strategy Nash equilibria are played, the sharp identification region is exactly determined by a finite number of moment inequalities. We discuss how our results can be extended to other solution concepts, such as for example correlated equilibrium or rationality and rationalizability. We show that calculating the sharp identification region using our characterization is computationally feasible. We also provide a simple algorithm which finds the set of inequalities that need to be checked in order to insure sharpness. We use examples analyzed in the literature to illustrate the gains in identification afforded by our method.Identification, Random Sets, Aumann Expectation, Support Function, Capacity Functional, Normal Form Games, Inequality Constraints.

    Voronoi Choice Games

    Get PDF
    We study novel variations of Voronoi games and associated random processes that we call Voronoi choice games. These games provide a rich framework for studying questions regarding the power of small numbers of choices in multi-player, competitive scenarios, and they further lead to many interesting, non-trivial random processes that appear worthy of study. As an example of the type of problem we study, suppose a group of nn miners are staking land claims through the following process: each miner has mm associated points independently and uniformly distributed on an underlying space, so the kkth miner will have associated points pk1,pk2,,pkmp_{k1},p_{k2},\ldots,p_{km}. Each miner chooses one of these points as the base point for their claim. Each miner obtains mining rights for the area of the square that is closest to their chosen base, that is, they obtain the Voronoi cell corresponding to their chosen point in the Voronoi diagram of the nn chosen points. Each player's goal is simply to maximize the amount of land under their control. What can we say about the players' strategy and the equilibria of such games? In our main result, we derive bounds on the expected number of pure Nash equilibria for a variation of the 1-dimensional game on the circle where a player owns the arc starting from their point and moving clockwise to the next point. This result uses interesting properties of random arc lengths on circles, and demonstrates the challenges in analyzing these kinds of problems. We also provide several other related results. In particular, for the 1-dimensional game on the circle, we show that a pure Nash equilibrium always exists when each player owns the part of the circle nearest to their point, but it is NP-hard to determine whether a pure Nash equilibrium exists in the variant when each player owns the arc starting from their point clockwise to the next point

    Pure Nash Equilibria and Best-Response Dynamics in Random Games

    Full text link
    In finite games mixed Nash equilibria always exist, but pure equilibria may fail to exist. To assess the relevance of this nonexistence, we consider games where the payoffs are drawn at random. In particular, we focus on games where a large number of players can each choose one of two possible strategies, and the payoffs are i.i.d. with the possibility of ties. We provide asymptotic results about the random number of pure Nash equilibria, such as fast growth and a central limit theorem, with bounds for the approximation error. Moreover, by using a new link between percolation models and game theory, we describe in detail the geometry of Nash equilibria and show that, when the probability of ties is small, a best-response dynamics reaches a Nash equilibrium with a probability that quickly approaches one as the number of players grows. We show that a multitude of phase transitions depend only on a single parameter of the model, that is, the probability of having ties.Comment: 29 pages, 7 figure

    Approximate well-supported Nash equilibria in symmetric bimatrix games

    Full text link
    The ε\varepsilon-well-supported Nash equilibrium is a strong notion of approximation of a Nash equilibrium, where no player has an incentive greater than ε\varepsilon to deviate from any of the pure strategies that she uses in her mixed strategy. The smallest constant ε\varepsilon currently known for which there is a polynomial-time algorithm that computes an ε\varepsilon-well-supported Nash equilibrium in bimatrix games is slightly below 2/32/3. In this paper we study this problem for symmetric bimatrix games and we provide a polynomial-time algorithm that gives a (1/2+δ)(1/2+\delta)-well-supported Nash equilibrium, for an arbitrarily small positive constant δ\delta

    Query Complexity of Approximate Equilibria in Anonymous Games

    Full text link
    We study the computation of equilibria of anonymous games, via algorithms that may proceed via a sequence of adaptive queries to the game's payoff function, assumed to be unknown initially. The general topic we consider is \emph{query complexity}, that is, how many queries are necessary or sufficient to compute an exact or approximate Nash equilibrium. We show that exact equilibria cannot be found via query-efficient algorithms. We also give an example of a 2-strategy, 3-player anonymous game that does not have any exact Nash equilibrium in rational numbers. However, more positive query-complexity bounds are attainable if either further symmetries of the utility functions are assumed or we focus on approximate equilibria. We investigate four sub-classes of anonymous games previously considered by \cite{bfh09, dp14}. Our main result is a new randomized query-efficient algorithm that finds a O(n1/4)O(n^{-1/4})-approximate Nash equilibrium querying O~(n3/2)\tilde{O}(n^{3/2}) payoffs and runs in time O~(n3/2)\tilde{O}(n^{3/2}). This improves on the running time of pre-existing algorithms for approximate equilibria of anonymous games, and is the first one to obtain an inverse polynomial approximation in poly-time. We also show how this can be utilized as an efficient polynomial-time approximation scheme (PTAS). Furthermore, we prove that Ω(nlogn)\Omega(n \log{n}) payoffs must be queried in order to find any ϵ\epsilon-well-supported Nash equilibrium, even by randomized algorithms

    When Can Limited Randomness Be Used in Repeated Games?

    Full text link
    The central result of classical game theory states that every finite normal form game has a Nash equilibrium, provided that players are allowed to use randomized (mixed) strategies. However, in practice, humans are known to be bad at generating random-like sequences, and true random bits may be unavailable. Even if the players have access to enough random bits for a single instance of the game their randomness might be insufficient if the game is played many times. In this work, we ask whether randomness is necessary for equilibria to exist in finitely repeated games. We show that for a large class of games containing arbitrary two-player zero-sum games, approximate Nash equilibria of the nn-stage repeated version of the game exist if and only if both players have Ω(n)\Omega(n) random bits. In contrast, we show that there exists a class of games for which no equilibrium exists in pure strategies, yet the nn-stage repeated version of the game has an exact Nash equilibrium in which each player uses only a constant number of random bits. When the players are assumed to be computationally bounded, if cryptographic pseudorandom generators (or, equivalently, one-way functions) exist, then the players can base their strategies on "random-like" sequences derived from only a small number of truly random bits. We show that, in contrast, in repeated two-player zero-sum games, if pseudorandom generators \emph{do not} exist, then Ω(n)\Omega(n) random bits remain necessary for equilibria to exist
    corecore