research

Approximate well-supported Nash equilibria in symmetric bimatrix games

Abstract

The ε\varepsilon-well-supported Nash equilibrium is a strong notion of approximation of a Nash equilibrium, where no player has an incentive greater than ε\varepsilon to deviate from any of the pure strategies that she uses in her mixed strategy. The smallest constant ε\varepsilon currently known for which there is a polynomial-time algorithm that computes an ε\varepsilon-well-supported Nash equilibrium in bimatrix games is slightly below 2/32/3. In this paper we study this problem for symmetric bimatrix games and we provide a polynomial-time algorithm that gives a (1/2+δ)(1/2+\delta)-well-supported Nash equilibrium, for an arbitrarily small positive constant δ\delta

    Similar works